intel_lrc.c 85.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142
#include "intel_workarounds.h"
143

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157

158
#define GEN8_CTX_STATUS_COMPLETED_MASK \
159
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160

161 162
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163
#define WA_TAIL_DWORDS 2
164
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165

166
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167 168
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
169 170 171 172
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
173

174 175 176 177 178 179 180
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
181
	return rq->sched.attr.priority;
182 183 184 185 186 187
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
188
	return (intel_engine_has_preemption(engine) &&
189 190
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
191 192
}

193
/*
194 195 196 197 198
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
199 200
 * This is what a descriptor looks like, from LSB to MSB::
 *
201
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
202 203 204 205
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
206 207 208 209 210 211 212 213 214 215 216 217
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
218
 */
219
static void
220
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
221 222
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
223
{
224
	u64 desc;
225

226 227
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
228

229
	desc = ctx->desc_template;				/* bits  0-11 */
230 231
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

232
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
233
								/* bits 12-31 */
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
252

253
	ce->lrc_desc = desc;
254 255
}

256
static struct i915_priolist *
257
lookup_priolist(struct intel_engine_cs *engine, int prio)
258
{
259
	struct intel_engine_execlists * const execlists = &engine->execlists;
260 261 262 263
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

264
	if (unlikely(execlists->no_priolist))
265 266 267 268 269
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
270
	parent = &execlists->queue.rb_node;
271 272
	while (*parent) {
		rb = *parent;
273
		p = to_priolist(rb);
274 275 276 277 278 279
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
280
			return p;
281 282 283 284
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
285
		p = &execlists->default_priolist;
286 287 288 289 290 291 292 293 294 295 296 297 298 299
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
300
			execlists->no_priolist = true;
301 302 303 304 305
			goto find_priolist;
		}
	}

	p->priority = prio;
306
	INIT_LIST_HEAD(&p->requests);
307
	rb_link_node(&p->node, rb, parent);
308
	rb_insert_color(&p->node, &execlists->queue);
309 310

	if (first)
311
		execlists->first = &p->node;
312

313
	return p;
314 315
}

316
static void unwind_wa_tail(struct i915_request *rq)
317 318 319 320 321
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

322
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
323
{
324
	struct i915_request *rq, *rn;
325 326
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
327

328
	lockdep_assert_held(&engine->timeline.lock);
329 330

	list_for_each_entry_safe_reverse(rq, rn,
331
					 &engine->timeline.requests,
332
					 link) {
333
		if (i915_request_completed(rq))
334 335
			return;

336
		__i915_request_unsubmit(rq);
337 338
		unwind_wa_tail(rq);

339 340 341
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
342
			p = lookup_priolist(engine, last_prio);
343 344
		}

345
		GEM_BUG_ON(p->priority != rq_prio(rq));
346
		list_add(&rq->sched.link, &p->requests);
347 348 349
	}
}

350
void
351 352 353 354
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
355 356 357
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
358 359

	__unwind_incomplete_requests(engine);
360 361

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
362 363
}

364
static inline void
365
execlists_context_status_change(struct i915_request *rq, unsigned long status)
366
{
367 368 369 370 371 372
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
373

374 375
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
376 377
}

378 379 380 381 382 383 384 385 386 387 388 389 390
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

391
static inline void
392
execlists_context_schedule_in(struct i915_request *rq)
393 394
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
395
	intel_engine_context_in(rq->engine);
396 397 398
}

static inline void
399
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
400
{
401
	intel_engine_context_out(rq->engine);
402 403
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
404 405
}

406 407 408 409 410 411 412 413 414
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

415
static u64 execlists_update_context(struct i915_request *rq)
416
{
417
	struct intel_context *ce = rq->hw_context;
418
	struct i915_hw_ppgtt *ppgtt =
C
Chris Wilson 已提交
419
		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
420
	u32 *reg_state = ce->lrc_reg_state;
421

422
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
423

424 425 426 427 428
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
429
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
430
		execlists_update_context_pdps(ppgtt, reg_state);
431 432

	return ce->lrc_desc;
433 434
}

435
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
436
{
437 438 439 440 441 442 443
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
444 445
}

446
static void execlists_submit_ports(struct intel_engine_cs *engine)
447
{
448 449
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
450
	unsigned int n;
451

452 453 454 455 456 457 458
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
459
		struct i915_request *rq;
460 461 462 463 464 465 466
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
467
				execlists_context_schedule_in(rq);
468 469 470
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
471

472
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
473
				  engine->name, n,
474
				  port[n].context_id, count,
475
				  rq->global_seqno,
476
				  rq->fence.context, rq->fence.seqno,
477
				  intel_engine_get_seqno(engine),
478
				  rq_prio(rq));
479 480 481 482
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
483

484
		write_desc(execlists, desc, n);
485
	}
486 487 488 489 490 491

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
492 493
}

494
static bool ctx_single_port_submission(const struct intel_context *ce)
495
{
496
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
497
		i915_gem_context_force_single_submission(ce->gem_context));
498
}
499

500 501
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
502 503 504
{
	if (prev != next)
		return false;
505

506 507
	if (ctx_single_port_submission(prev))
		return false;
508

509
	return true;
510 511
}

512
static void port_assign(struct execlist_port *port, struct i915_request *rq)
513 514 515 516
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
517
		i915_request_put(port_request(port));
518

519
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
520 521
}

C
Chris Wilson 已提交
522 523
static void inject_preempt_context(struct intel_engine_cs *engine)
{
524
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
525
	struct intel_context *ce =
526
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
527 528
	unsigned int n;

529
	GEM_BUG_ON(execlists->preempt_complete_status !=
530
		   upper_32_bits(ce->lrc_desc));
531 532 533 534 535 536
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

537 538 539 540
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
541
	GEM_TRACE("%s\n", engine->name);
542 543 544 545 546 547 548 549
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
550

551 552 553 554 555 556 557 558 559 560 561 562
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

	execlists_cancel_port_requests(execlists);
	execlists_unwind_incomplete_requests(execlists);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
563 564
}

565
static bool __execlists_dequeue(struct intel_engine_cs *engine)
566
{
567 568
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
569 570
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
571
	struct i915_request *last = port_request(port);
572
	struct rb_node *rb;
573 574
	bool submit = false;

575 576
	lockdep_assert_held(&engine->timeline.lock);

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
596
	 */
597

598 599
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
600 601 602 603 604 605 606 607

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
608 609
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
610
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
611

612 613 614 615 616 617 618 619
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
620
			return false;
621

622
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
623
			inject_preempt_context(engine);
624
			return false;
C
Chris Wilson 已提交
625
		}
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
649
			return false;
650 651 652 653 654 655 656 657 658 659

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
660 661
	}

662 663
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
664
		struct i915_request *rq, *rn;
665

666
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
667 668 669 670 671 672 673 674 675 676
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
677
			 */
678 679
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
680 681 682 683 684
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
685
				if (port == last_port) {
686
					__list_del_many(&p->requests,
687
							&rq->sched.link);
688 689 690 691 692 693 694 695 696 697
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
698 699
				if (ctx_single_port_submission(last->hw_context) ||
				    ctx_single_port_submission(rq->hw_context)) {
700
					__list_del_many(&p->requests,
701
							&rq->sched.link);
702 703 704
					goto done;
				}

705
				GEM_BUG_ON(last->hw_context == rq->hw_context);
706 707 708 709

				if (submit)
					port_assign(port, last);
				port++;
710 711

				GEM_BUG_ON(port_isset(port));
712
			}
713

714
			INIT_LIST_HEAD(&rq->sched.link);
715 716
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
717 718
			last = rq;
			submit = true;
719
		}
720

721
		rb = rb_next(rb);
722
		rb_erase(&p->node, &execlists->queue);
723 724
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
725
			kmem_cache_free(engine->i915->priorities, p);
726
	}
727

728
done:
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

748
	execlists->first = rb;
749
	if (submit)
750
		port_assign(port, last);
751 752 753 754

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

755 756
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
757
		execlists_user_begin(execlists, execlists->port);
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

	return submit;
}

static void execlists_dequeue(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	unsigned long flags;
	bool submit;

	spin_lock_irqsave(&engine->timeline.lock, flags);
	submit = __execlists_dequeue(engine);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	if (submit)
773
		execlists_submit_ports(engine);
774 775 776

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
777 778
}

779
void
780
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
781
{
782
	struct execlist_port *port = execlists->port;
783
	unsigned int num_ports = execlists_num_ports(execlists);
784

785
	while (num_ports-- && port_isset(port)) {
786
		struct i915_request *rq = port_request(port);
787

788 789 790 791 792 793 794
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

795
		GEM_BUG_ON(!execlists->active);
796 797 798 799
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
800

801
		i915_request_put(rq);
802

803 804 805
		memset(port, 0, sizeof(*port));
		port++;
	}
806

807
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
808
	execlists_user_end(execlists);
809 810
}

811 812 813 814 815 816 817 818 819 820 821 822
static void clear_gtiir(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	if (INTEL_GEN(dev_priv) >= 11) {
		static const struct {
			u8 bank;
			u8 bit;
		} gen11_gtiir[] = {
			[RCS] = {0, GEN11_RCS0},
			[BCS] = {0, GEN11_BCS},
			[_VCS(0)] = {1, GEN11_VCS(0)},
			[_VCS(1)] = {1, GEN11_VCS(1)},
			[_VCS(2)] = {1, GEN11_VCS(2)},
			[_VCS(3)] = {1, GEN11_VCS(3)},
			[_VECS(0)] = {1, GEN11_VECS(0)},
			[_VECS(1)] = {1, GEN11_VECS(1)},
		};
		unsigned long irqflags;

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));

		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
		for (i = 0; i < 2; i++) {
			gen11_reset_one_iir(dev_priv,
					    gen11_gtiir[engine->id].bank,
					    gen11_gtiir[engine->id].bit);
		}
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
	} else {
		static const u8 gtiir[] = {
			[RCS]  = 0,
			[BCS]  = 0,
			[VCS]  = 1,
			[VCS2] = 1,
			[VECS] = 3,
		};

		GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

		for (i = 0; i < 2; i++) {
			I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
				   engine->irq_keep_mask);
			POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
		}
		GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
			   engine->irq_keep_mask);
	}
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

886 887
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
888
	struct intel_engine_execlists * const execlists = &engine->execlists;
889
	struct i915_request *rq, *rn;
890 891 892
	struct rb_node *rb;
	unsigned long flags;

893 894
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
911 912

	/* Cancel the requests on the HW and clear the ELSP tracker. */
913
	execlists_cancel_port_requests(execlists);
914
	reset_irq(engine);
915

916
	spin_lock(&engine->timeline.lock);
917

918
	/* Mark all executing requests as skipped. */
919
	list_for_each_entry(rq, &engine->timeline.requests, link) {
920
		GEM_BUG_ON(!rq->global_seqno);
921
		if (!i915_request_completed(rq))
922 923 924 925
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
926
	rb = execlists->first;
927
	while (rb) {
928
		struct i915_priolist *p = to_priolist(rb);
929

930 931
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
932 933

			dma_fence_set_error(&rq->fence, -EIO);
934
			__i915_request_submit(rq);
935 936 937
		}

		rb = rb_next(rb);
938
		rb_erase(&p->node, &execlists->queue);
939 940 941 942 943 944 945
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

946
	execlists->queue_priority = INT_MIN;
947 948
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
949
	GEM_BUG_ON(port_isset(execlists->port));
950

951
	spin_unlock(&engine->timeline.lock);
952 953

	local_irq_restore(flags);
954 955
}

956
static void process_csb(struct intel_engine_cs *engine)
957
{
958
	struct intel_engine_execlists * const execlists = &engine->execlists;
959
	struct execlist_port *port = execlists->port;
960
	struct drm_i915_private *i915 = engine->i915;
961
	bool fw = false;
962

963
	do {
964 965 966
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
967
		unsigned int head, tail;
968

969
		if (unlikely(execlists->csb_use_mmio)) {
970
			buf = (u32 * __force)
971 972
				(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
			execlists->csb_head = -1; /* force mmio read of CSB */
973 974
		}

975 976 977 978
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

979
		if (unlikely(execlists->csb_head == -1)) { /* after a reset */
980
			if (!fw) {
981
				intel_uncore_forcewake_get(i915, execlists->fw_domains);
982 983 984
				fw = true;
			}

985
			head = readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
986 987
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
988
			execlists->csb_head = head;
989 990
		} else {
			const int write_idx =
991
				intel_hws_csb_write_index(i915) -
992 993
				I915_HWS_CSB_BUF0_INDEX;

994
			head = execlists->csb_head;
995
			tail = READ_ONCE(buf[write_idx]);
996
			rmb(); /* Hopefully paired with a wmb() in HW */
997
		}
998
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
999
			  engine->name,
1000 1001
			  head, GEN8_CSB_READ_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1002

1003
		while (head != tail) {
1004
			struct i915_request *rq;
1005
			unsigned int status;
1006
			unsigned int count;
1007 1008 1009

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
1010

1011 1012
			/*
			 * We are flying near dragons again.
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

1029
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1030
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1031
				  engine->name, head,
1032 1033
				  status, buf[2*head + 1],
				  execlists->active);
1034 1035 1036 1037 1038 1039 1040 1041 1042

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

1043 1044 1045
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

1046 1047 1048
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

1049
			if (status & GEN8_CTX_STATUS_COMPLETE &&
1050
			    buf[2*head + 1] == execlists->preempt_complete_status) {
1051
				GEM_TRACE("%s preempt-idle\n", engine->name);
1052
				complete_preempt_context(execlists);
C
Chris Wilson 已提交
1053 1054 1055 1056
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
1057 1058
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
1059 1060
				continue;

1061 1062 1063
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1064
			rq = port_unpack(port, &count);
1065
			GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1066
				  engine->name,
1067
				  port->context_id, count,
1068
				  rq ? rq->global_seqno : 0,
1069 1070
				  rq ? rq->fence.context : 0,
				  rq ? rq->fence.seqno : 0,
1071
				  intel_engine_get_seqno(engine),
1072
				  rq ? rq_prio(rq) : 0);
1073 1074 1075 1076

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1077 1078
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1079 1080 1081 1082 1083 1084 1085 1086
				/*
				 * On the final event corresponding to the
				 * submission of this context, we expect either
				 * an element-switch event or a completion
				 * event (and on completion, the active-idle
				 * marker). No more preemptions, lite-restore
				 * or otherwise.
				 */
1087
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1088 1089
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1090 1091 1092 1093 1094 1095 1096 1097 1098
				GEM_BUG_ON(!port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));

				/*
				 * We rely on the hardware being strongly
				 * ordered, that the breadcrumb write is
				 * coherent (visible from the CPU) before the
				 * user interrupt and CSB is processed.
				 */
1099
				GEM_BUG_ON(!i915_request_completed(rq));
1100

1101 1102
				execlists_context_schedule_out(rq,
							       INTEL_CONTEXT_SCHEDULE_OUT);
1103
				i915_request_put(rq);
1104

1105 1106 1107
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1108 1109 1110 1111 1112
				port = execlists_port_complete(execlists, port);
				if (port_isset(port))
					execlists_user_begin(execlists, port);
				else
					execlists_user_end(execlists);
1113 1114
			} else {
				port_set(port, port_pack(rq, count));
1115
			}
1116
		}
1117

1118 1119
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1120
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1121
			       i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1122
		}
1123
	} while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));
1124

1125 1126 1127
	if (unlikely(fw))
		intel_uncore_forcewake_put(i915, execlists->fw_domains);
}
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;

	GEM_TRACE("%s awake?=%d, active=%x, irq-posted?=%d\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active,
		  test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted));

	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		process_csb(engine);

	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1163 1164 1165 1166 1167

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1168 1169
}

1170
static void queue_request(struct intel_engine_cs *engine,
1171
			  struct i915_sched_node *node,
1172
			  int prio)
1173
{
1174
	list_add_tail(&node->link,
1175
		      &lookup_priolist(engine, prio)->requests);
1176
}
1177

1178 1179 1180 1181 1182 1183
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1184 1185
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1186 1187
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1188 1189
}

1190
static void execlists_submit_request(struct i915_request *request)
1191
{
1192
	struct intel_engine_cs *engine = request->engine;
1193
	unsigned long flags;
1194

1195
	/* Will be called from irq-context when using foreign fences. */
1196
	spin_lock_irqsave(&engine->timeline.lock, flags);
1197

1198
	queue_request(engine, &request->sched, rq_prio(request));
1199
	submit_queue(engine, rq_prio(request));
1200

1201
	GEM_BUG_ON(!engine->execlists.first);
1202
	GEM_BUG_ON(list_empty(&request->sched.link));
1203

1204
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1205 1206
}

1207
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1208
{
1209
	return container_of(node, struct i915_request, sched);
1210 1211
}

1212
static struct intel_engine_cs *
1213
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1214
{
1215
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1216 1217

	GEM_BUG_ON(!locked);
1218 1219

	if (engine != locked) {
1220 1221
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1222 1223 1224 1225 1226
	}

	return engine;
}

1227 1228
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1229
{
1230 1231
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1232 1233
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1234
	const int prio = attr->priority;
1235 1236
	LIST_HEAD(dfs);

1237 1238
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1239
	if (i915_request_completed(request))
1240 1241
		return;

1242
	if (prio <= READ_ONCE(request->sched.attr.priority))
1243 1244
		return;

1245 1246
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1247

1248
	stack.signaler = &request->sched;
1249 1250
	list_add(&stack.dfs_link, &dfs);

1251 1252
	/*
	 * Recursively bump all dependent priorities to match the new request.
1253 1254
	 *
	 * A naive approach would be to use recursion:
1255 1256
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1257
	 *		update_priorities(dep->signal, prio)
1258
	 *	queue_request(node);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1269
	list_for_each_entry(dep, &dfs, dfs_link) {
1270
		struct i915_sched_node *node = dep->signaler;
1271

1272 1273
		/*
		 * Within an engine, there can be no cycle, but we may
1274 1275 1276 1277
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1278
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1279 1280
			GEM_BUG_ON(p == dep); /* no cycles! */

1281
			if (i915_sched_node_signaled(p->signaler))
1282 1283
				continue;

1284 1285
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1286
				list_move_tail(&p->dfs_link, &dfs);
1287
		}
1288 1289
	}

1290 1291
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1292 1293 1294 1295
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1296
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1297
		GEM_BUG_ON(!list_empty(&request->sched.link));
1298
		request->sched.attr = *attr;
1299 1300 1301 1302 1303
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1304
	last = NULL;
1305
	engine = request->engine;
1306
	spin_lock_irq(&engine->timeline.lock);
1307

1308 1309
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1310
		struct i915_sched_node *node = dep->signaler;
1311 1312 1313

		INIT_LIST_HEAD(&dep->dfs_link);

1314
		engine = sched_lock_engine(node, engine);
1315

1316
		if (prio <= node->attr.priority)
1317 1318
			continue;

1319
		node->attr.priority = prio;
1320
		if (!list_empty(&node->link)) {
1321 1322 1323 1324 1325 1326
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1327
		}
1328 1329

		if (prio > engine->execlists.queue_priority &&
1330
		    i915_sw_fence_done(&sched_to_request(node)->submit))
1331
			__submit_queue(engine, prio);
1332 1333
	}

1334
	spin_unlock_irq(&engine->timeline.lock);
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(!ce->state);
	GEM_BUG_ON(ce->pin_count);

	intel_ring_free(ce->ring);
	__i915_gem_object_release_unless_active(ce->state->obj);
}

1346
static void execlists_context_unpin(struct intel_context *ce)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
{
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1380 1381 1382 1383
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1384
{
1385
	void *vaddr;
1386
	int ret;
1387

1388
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1389 1390
	if (ret)
		goto err;
1391
	GEM_BUG_ON(!ce->state);
1392

1393
	ret = __context_pin(ctx, ce->state);
1394
	if (ret)
1395
		goto err;
1396

1397
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1398 1399
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1400
		goto unpin_vma;
1401 1402
	}

1403
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1404
	if (ret)
1405
		goto unpin_map;
1406

1407
	intel_lr_context_descriptor_update(ctx, engine, ce);
1408

1409 1410
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1411
		i915_ggtt_offset(ce->ring->vma);
1412
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1413

1414
	ce->state->obj->pin_global++;
1415
	i915_gem_context_get(ctx);
1416
	return ce;
1417

1418
unpin_map:
1419 1420 1421
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1422
err:
1423
	ce->pin_count = 0;
1424
	return ERR_PTR(ret);
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1435
{
1436
	struct intel_context *ce = to_intel_context(ctx, engine);
1437

1438
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1439

1440 1441 1442
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1443

1444
	ce->ops = &execlists_context_ops;
1445

1446
	return __execlists_context_pin(engine, ctx, ce);
1447 1448
}

1449
static int execlists_request_alloc(struct i915_request *request)
1450
{
1451
	int ret;
1452

1453
	GEM_BUG_ON(!request->hw_context->pin_count);
1454

1455 1456 1457 1458 1459 1460
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1461 1462 1463
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1492 1493
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1494
{
1495 1496 1497 1498 1499 1500 1501 1502 1503
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1504 1505 1506 1507
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1508 1509 1510 1511 1512 1513 1514

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1515 1516
}

1517 1518 1519 1520 1521 1522
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1523
 *
1524 1525
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1526
 *
1527 1528 1529 1530
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1531
 */
1532
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1533
{
1534
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1535
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1536

1537
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1538 1539
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1540

1541 1542
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1543 1544 1545 1546 1547 1548 1549
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1550

C
Chris Wilson 已提交
1551 1552
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1553
	/* Pad to end of cacheline */
1554 1555
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1556 1557 1558 1559 1560 1561 1562

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1563
	return batch;
1564 1565
}

1566
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1567
{
C
Chris Wilson 已提交
1568 1569
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1570
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1571
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1572

1573
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1574 1575 1576 1577 1578
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1579

1580 1581
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1582
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1583 1584 1585 1586 1587 1588 1589
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1590
	}
1591

1592
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1607 1608 1609 1610 1611 1612
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1613 1614
	}

C
Chris Wilson 已提交
1615 1616
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1617
	/* Pad to end of cacheline */
1618 1619
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1620

1621
	return batch;
1622 1623
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1658 1659 1660
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1661
{
1662 1663 1664
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1665

1666
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1667 1668
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1669

1670
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1671 1672 1673
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1674 1675
	}

1676 1677 1678 1679 1680
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1681
	return 0;
1682 1683 1684 1685

err:
	i915_gem_object_put(obj);
	return err;
1686 1687
}

1688
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1689
{
1690
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1691 1692
}

1693 1694
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1695
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1696
{
1697
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1698 1699 1700
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1701
	struct page *page;
1702 1703
	void *batch, *batch_ptr;
	unsigned int i;
1704
	int ret;
1705

1706
	if (GEM_WARN_ON(engine->id != RCS))
1707
		return -EINVAL;
1708

1709
	switch (INTEL_GEN(engine->i915)) {
1710 1711
	case 11:
		return 0;
1712
	case 10:
1713 1714 1715
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1716 1717
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1718
		wa_bb_fn[1] = NULL;
1719 1720 1721
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1722
		wa_bb_fn[1] = NULL;
1723 1724 1725
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1726
		return 0;
1727
	}
1728

1729
	ret = lrc_setup_wa_ctx(engine);
1730 1731 1732 1733 1734
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1735
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1736
	batch = batch_ptr = kmap_atomic(page);
1737

1738 1739 1740 1741 1742 1743 1744
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1745 1746
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1747 1748 1749
			ret = -EINVAL;
			break;
		}
1750 1751
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1752
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1753 1754
	}

1755 1756
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1757 1758
	kunmap_atomic(batch);
	if (ret)
1759
		lrc_destroy_wa_ctx(engine);
1760 1761 1762 1763

	return ret;
}

1764
static void enable_execlists(struct intel_engine_cs *engine)
1765
{
1766
	struct drm_i915_private *dev_priv = engine->i915;
1767 1768

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1785 1786 1787
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1788 1789 1790

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1791 1792 1793 1794
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1795
	struct intel_engine_execlists * const execlists = &engine->execlists;
1796 1797 1798 1799 1800
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1801

1802
	intel_engine_reset_breadcrumbs(engine);
1803
	intel_engine_init_hangcheck(engine);
1804

1805
	enable_execlists(engine);
1806

1807
	/* After a GPU reset, we may have requests to replay */
1808
	if (execlists->first)
1809
		tasklet_schedule(&execlists->tasklet);
1810

1811
	return 0;
1812 1813
}

1814
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1815
{
1816
	struct drm_i915_private *dev_priv = engine->i915;
1817 1818
	int ret;

1819
	ret = gen8_init_common_ring(engine);
1820 1821 1822
	if (ret)
		return ret;

1823
	intel_whitelist_workarounds_apply(engine);
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1835
	return 0;
1836 1837
}

1838
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1839 1840 1841
{
	int ret;

1842
	ret = gen8_init_common_ring(engine);
1843 1844 1845
	if (ret)
		return ret;

1846
	intel_whitelist_workarounds_apply(engine);
1847 1848

	return 0;
1849 1850
}

1851 1852 1853 1854
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1855
	struct i915_request *request, *active;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
	if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
		process_csb(engine);

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
		unsigned long flags;

1890 1891 1892 1893 1894 1895
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		spin_lock_irqsave(&engine->timeline.lock, flags);
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
	}

	return active;
1910 1911 1912 1913
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1914
{
1915
	struct intel_engine_execlists * const execlists = &engine->execlists;
1916
	unsigned long flags;
1917
	u32 *regs;
1918

1919 1920 1921
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1922

1923 1924
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1935
	execlists_cancel_port_requests(execlists);
1936
	reset_irq(engine);
1937

1938
	/* Push back any incomplete requests for replay after the reset. */
1939
	spin_lock(&engine->timeline.lock);
1940
	__unwind_incomplete_requests(engine);
1941
	spin_unlock(&engine->timeline.lock);
1942

1943
	local_irq_restore(flags);
1944

1945 1946
	/*
	 * If the request was innocent, we leave the request in the ELSP
1947 1948 1949 1950 1951 1952 1953 1954 1955
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1956
	if (!request || request->fence.error != -EIO)
1957
		return;
1958

1959 1960
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1961 1962 1963 1964 1965 1966
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1967
	regs = request->hw_context->lrc_reg_state;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	if (engine->default_state) {
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (!IS_ERR(defaults)) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       defaults + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
			i915_gem_object_unpin_map(engine->default_state);
		}
	}
C
Chris Wilson 已提交
1980 1981
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1982

1983
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1984 1985
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
	regs[CTX_RING_HEAD + 1] = request->postfix;
1986

1987 1988 1989
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1990
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1991
	unwind_wa_tail(request);
1992 1993
}

1994 1995 1996 1997 1998 1999 2000
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->execlists.tasklet);

	GEM_TRACE("%s\n", engine->name);
}

2001
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2002
{
C
Chris Wilson 已提交
2003
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2004
	struct intel_engine_cs *engine = rq->engine;
2005
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2006 2007
	u32 *cs;
	int i;
2008

2009
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2010 2011
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2012

2013
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2014
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2015 2016
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2017 2018 2019 2020
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2021 2022
	}

2023
	*cs++ = MI_NOOP;
2024
	intel_ring_advance(rq, cs);
2025 2026 2027 2028

	return 0;
}

2029
static int gen8_emit_bb_start(struct i915_request *rq,
2030
			      u64 offset, u32 len,
2031
			      const unsigned int flags)
2032
{
2033
	u32 *cs;
2034 2035
	int ret;

2036 2037 2038 2039
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2040 2041
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
C
Chris Wilson 已提交
2042 2043 2044
	if (rq->gem_context->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->base) &&
2045 2046
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2047 2048
		if (ret)
			return ret;
2049

C
Chris Wilson 已提交
2050
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2051 2052
	}

2053
	cs = intel_ring_begin(rq, 6);
2054 2055
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2074 2075
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2076
	/* FIXME(BDW): Address space and security selectors. */
2077 2078 2079
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2080 2081
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2082 2083 2084

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2085
	intel_ring_advance(rq, cs);
2086 2087 2088 2089

	return 0;
}

2090
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2091
{
2092
	struct drm_i915_private *dev_priv = engine->i915;
2093 2094 2095
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2096 2097
}

2098
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2099
{
2100
	struct drm_i915_private *dev_priv = engine->i915;
2101
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2102 2103
}

2104
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2105
{
2106
	u32 cmd, *cs;
2107

2108 2109 2110
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2111 2112 2113

	cmd = MI_FLUSH_DW + 1;

2114 2115 2116 2117 2118 2119 2120
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2121
	if (mode & EMIT_INVALIDATE) {
2122
		cmd |= MI_INVALIDATE_TLB;
2123
		if (request->engine->id == VCS)
2124
			cmd |= MI_INVALIDATE_BSD;
2125 2126
	}

2127 2128 2129 2130 2131
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2132 2133 2134 2135

	return 0;
}

2136
static int gen8_emit_flush_render(struct i915_request *request,
2137
				  u32 mode)
2138
{
2139
	struct intel_engine_cs *engine = request->engine;
2140 2141
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2142
	bool vf_flush_wa = false, dc_flush_wa = false;
2143
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2144
	int len;
2145 2146 2147

	flags |= PIPE_CONTROL_CS_STALL;

2148
	if (mode & EMIT_FLUSH) {
2149 2150
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2151
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2152
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2153 2154
	}

2155
	if (mode & EMIT_INVALIDATE) {
2156 2157 2158 2159 2160 2161 2162 2163 2164
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2165 2166 2167 2168
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2169
		if (IS_GEN9(request->i915))
2170
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2171 2172 2173 2174

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2175
	}
2176

M
Mika Kuoppala 已提交
2177 2178 2179 2180 2181 2182 2183 2184
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2185 2186 2187
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2188

2189 2190
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2191

2192 2193 2194
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2195

2196
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2197

2198 2199
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2200

2201
	intel_ring_advance(request, cs);
2202 2203 2204 2205

	return 0;
}

2206 2207 2208 2209 2210
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2211
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2212
{
C
Chris Wilson 已提交
2213 2214
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2215 2216
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2217
}
2218

2219
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2220
{
2221 2222
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2223

2224 2225
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2226
	*cs++ = MI_USER_INTERRUPT;
2227
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2228
	request->tail = intel_ring_offset(request, cs);
2229
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2230

2231
	gen8_emit_wa_tail(request, cs);
2232
}
2233 2234
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2235
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2236
{
2237 2238 2239
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2240 2241
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2242
	*cs++ = MI_USER_INTERRUPT;
2243
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2244
	request->tail = intel_ring_offset(request, cs);
2245
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2246

2247
	gen8_emit_wa_tail(request, cs);
2248
}
2249
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2250

2251
static int gen8_init_rcs_context(struct i915_request *rq)
2252 2253 2254
{
	int ret;

2255
	ret = intel_ctx_workarounds_emit(rq);
2256 2257 2258
	if (ret)
		return ret;

2259
	ret = intel_rcs_context_init_mocs(rq);
2260 2261 2262 2263 2264 2265 2266
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2267
	return i915_gem_render_state_emit(rq);
2268 2269
}

2270 2271
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2272
 * @engine: Engine Command Streamer.
2273
 */
2274
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2275
{
2276
	struct drm_i915_private *dev_priv;
2277

2278 2279 2280 2281
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2282 2283 2284
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2285

2286
	dev_priv = engine->i915;
2287

2288 2289
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2290
	}
2291

2292 2293
	if (engine->cleanup)
		engine->cleanup(engine);
2294

2295
	intel_engine_cleanup_common(engine);
2296

2297
	lrc_destroy_wa_ctx(engine);
2298

2299
	engine->i915 = NULL;
2300 2301
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2302 2303
}

2304
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2305
{
2306
	engine->submit_request = execlists_submit_request;
2307
	engine->cancel_requests = execlists_cancel_requests;
2308
	engine->schedule = execlists_schedule;
2309
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2310

2311 2312
	engine->reset.prepare = execlists_reset_prepare;

2313 2314
	engine->park = NULL;
	engine->unpark = NULL;
2315 2316

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2317 2318
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2319 2320 2321 2322

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2323
	if (intel_engine_has_preemption(engine))
2324
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2325 2326
}

2327
static void
2328
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2329 2330
{
	/* Default vfuncs which can be overriden by each engine. */
2331
	engine->init_hw = gen8_init_common_ring;
2332 2333 2334 2335

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2336 2337

	engine->context_pin = execlists_context_pin;
2338 2339
	engine->request_alloc = execlists_request_alloc;

2340
	engine->emit_flush = gen8_emit_flush;
2341
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2342
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2343 2344

	engine->set_default_submission = execlists_set_default_submission;
2345

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2357
	engine->emit_bb_start = gen8_emit_bb_start;
2358 2359
}

2360
static inline void
2361
logical_ring_default_irqs(struct intel_engine_cs *engine)
2362
{
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2377 2378
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2379 2380
}

2381 2382 2383 2384 2385 2386
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2387 2388
	intel_engine_setup_common(engine);

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2404
	engine->execlists.fw_domains = fw_domains;
2405

2406 2407
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2408 2409 2410 2411 2412

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2413
static int logical_ring_init(struct intel_engine_cs *engine)
2414 2415 2416
{
	int ret;

2417
	ret = intel_engine_init_common(engine);
2418 2419 2420
	if (ret)
		goto error;

2421 2422 2423 2424 2425 2426 2427 2428 2429
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2430

2431
	engine->execlists.preempt_complete_status = ~0u;
2432 2433 2434 2435
	if (engine->i915->preempt_context) {
		struct intel_context *ce =
			to_intel_context(engine->i915->preempt_context, engine);

2436
		engine->execlists.preempt_complete_status =
2437 2438
			upper_32_bits(ce->lrc_desc);
	}
2439

2440 2441 2442 2443 2444 2445 2446
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2447
int logical_render_ring_init(struct intel_engine_cs *engine)
2448 2449 2450 2451
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2452 2453
	logical_ring_setup(engine);

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2464 2465
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2466

2467
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2482
	return logical_ring_init(engine);
2483 2484
}

2485
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2486 2487 2488 2489
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2490 2491
}

2492
static u32
2493
make_rpcs(struct drm_i915_private *dev_priv)
2494 2495 2496 2497 2498 2499 2500
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2501
	if (INTEL_GEN(dev_priv) < 9)
2502 2503 2504 2505 2506 2507 2508 2509
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2510
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2511
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2512
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2513 2514 2515 2516
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2517
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2518
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2519
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2520 2521 2522 2523
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2524 2525
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2526
			GEN8_RPCS_EU_MIN_SHIFT;
2527
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2528 2529 2530 2531 2532 2533 2534
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2535
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2536 2537 2538
{
	u32 indirect_ctx_offset;

2539
	switch (INTEL_GEN(engine->i915)) {
2540
	default:
2541
		MISSING_CASE(INTEL_GEN(engine->i915));
2542
		/* fall through */
2543 2544 2545 2546
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2547 2548 2549 2550
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2564
static void execlists_init_reg_state(u32 *regs,
2565 2566 2567
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2568
{
2569 2570
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2571
	u32 base = engine->mmio_base;
2572
	bool rcs = engine->class == RENDER_CLASS;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2585 2586
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2602 2603
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2604 2605 2606
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2607
		if (wa_ctx->indirect_ctx.size) {
2608
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2609

2610
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2611 2612
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2613

2614
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2615
				intel_lr_indirect_ctx_offset(engine) << 6;
2616 2617 2618 2619 2620
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2621

2622
			regs[CTX_BB_PER_CTX_PTR + 1] =
2623
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2624
		}
2625
	}
2626 2627 2628 2629

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2630
	/* PDP values well be assigned later if needed */
2631 2632 2633 2634 2635 2636 2637 2638
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2639

2640
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2641 2642 2643 2644
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2645
		ASSIGN_CTX_PML4(ppgtt, regs);
2646 2647
	}

2648 2649 2650 2651
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2652 2653

		i915_oa_init_reg_state(engine, ctx, regs);
2654
	}
2655 2656 2657 2658 2659 2660 2661 2662 2663
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2664
	u32 *regs;
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2679
	ctx_obj->mm.dirty = true;
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2692 2693 2694 2695
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2696 2697 2698 2699 2700

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2701 2702
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2703 2704 2705 2706 2707
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2708
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2709 2710 2711
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2712

2713
err_unpin_ctx:
2714
	i915_gem_object_unpin_map(ctx_obj);
2715
	return ret;
2716 2717
}

2718
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2719 2720
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2721
{
2722
	struct drm_i915_gem_object *ctx_obj;
2723
	struct i915_vma *vma;
2724
	uint32_t context_size;
2725
	struct intel_ring *ring;
2726
	struct i915_timeline *timeline;
2727 2728
	int ret;

2729 2730
	if (ce->state)
		return 0;
2731

2732
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2733

2734 2735 2736 2737 2738
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2739

2740
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2741
	if (IS_ERR(ctx_obj)) {
2742 2743
		ret = PTR_ERR(ctx_obj);
		goto error_deref_obj;
2744 2745
	}

2746
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2747 2748 2749 2750 2751
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2752 2753 2754 2755 2756 2757 2758 2759
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2760 2761
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2762
		goto error_deref_obj;
2763 2764
	}

2765
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2766 2767
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2768
		goto error_ring_free;
2769 2770
	}

2771
	ce->ring = ring;
2772
	ce->state = vma;
2773 2774

	return 0;
2775

2776
error_ring_free:
2777
	intel_ring_free(ring);
2778
error_deref_obj:
2779
	i915_gem_object_put(ctx_obj);
2780
	return ret;
2781
}
2782

2783
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2784
{
2785
	struct intel_engine_cs *engine;
2786
	struct i915_gem_context *ctx;
2787
	enum intel_engine_id id;
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2799
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2800
		for_each_engine(engine, dev_priv, id) {
2801 2802
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2803
			u32 *reg;
2804

2805 2806
			if (!ce->state)
				continue;
2807

2808 2809 2810 2811
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2812

2813 2814 2815
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2816

C
Chris Wilson 已提交
2817
			ce->state->obj->mm.dirty = true;
2818
			i915_gem_object_unpin_map(ce->state->obj);
2819

2820
			intel_ring_reset(ce->ring, 0);
2821
		}
2822 2823
	}
}
2824 2825 2826 2827

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif