intel_lrc.c 71.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_mocs.h"
141

142 143 144 145 146 147 148 149 150 151 152 153 154
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
155

156
#define GEN8_CTX_STATUS_COMPLETED_MASK \
157
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188
#define CTX_REG(reg_state, pos, reg, val) do { \
189
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
190 191 192 193
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
194
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
195 196
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197
} while (0)
198

199
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
200 201
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202
} while (0)
203

204 205
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
206
#define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x19
207

208 209
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210
#define WA_TAIL_DWORDS 2
211
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
212
#define PREEMPT_ID 0x1
213

214
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215
					    struct intel_engine_cs *engine);
216 217 218 219
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
220

221
/**
222 223 224
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
225
 * @engine: Engine the descriptor will be used with
226
 *
227 228 229 230 231
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
232 233
 * This is what a descriptor looks like, from LSB to MSB::
 *
234
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
235 236 237 238
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
239
 */
240
static void
241
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
242
				   struct intel_engine_cs *engine)
243
{
244
	struct intel_context *ce = &ctx->engine[engine->id];
245
	u64 desc;
246

247
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
248

249
	desc = ctx->desc_template;				/* bits  0-11 */
250
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
251
								/* bits 12-31 */
252
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275 276 277 278 279 280 281 282
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return ptr_pack_bits(p, first, 1);
317 318
}

319 320 321 322 323 324
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 327
{
	struct drm_i915_gem_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335 336 337 338 339 340 341

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

342 343 344 345 346 347 348 349 350 351 352
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
353 354 355
	}
}

356
void
357 358 359 360 361 362 363 364 365 366
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

367 368 369
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
370
{
371 372 373 374 375 376
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
377

378 379
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393
static inline void
execlists_context_schedule_in(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
}

static inline void
execlists_context_schedule_out(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

394 395 396 397 398 399 400 401 402
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

403
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
404
{
405
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
406 407
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
408
	u32 *reg_state = ce->lrc_reg_state;
409

410
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
411

412 413 414 415 416
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
417
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
418
		execlists_update_context_pdps(ppgtt, reg_state);
419 420

	return ce->lrc_desc;
421 422
}

C
Chris Wilson 已提交
423 424 425 426 427 428
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

429
static void execlists_submit_ports(struct intel_engine_cs *engine)
430
{
431
	struct execlist_port *port = engine->execlists.port;
432
	u32 __iomem *elsp =
433 434
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
435

436
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
437 438 439 440 441 442 443 444
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
445
				execlists_context_schedule_in(rq);
446 447 448
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
449 450 451 452 453

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
454 455 456 457
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
458

C
Chris Wilson 已提交
459
		elsp_write(desc, elsp);
460
	}
461
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
462 463
}

464
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
465
{
466
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
467
		i915_gem_context_force_single_submission(ctx));
468
}
469

470 471 472 473 474
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
475

476 477
	if (ctx_single_port_submission(prev))
		return false;
478

479
	return true;
480 481
}

482 483 484 485 486 487 488 489 490 491 492
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	u32 __iomem *elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

509
	GEM_TRACE("\n");
C
Chris Wilson 已提交
510 511 512 513
	for (n = execlists_num_ports(&engine->execlists); --n; )
		elsp_write(0, elsp);

	elsp_write(ce->lrc_desc, elsp);
514
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
C
Chris Wilson 已提交
515 516
}

517
static void execlists_dequeue(struct intel_engine_cs *engine)
518
{
519 520
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
521 522
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
523
	struct drm_i915_gem_request *last = port_request(port);
524
	struct rb_node *rb;
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
546
	 */
547

548
	spin_lock_irq(&engine->timeline->lock);
549 550
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
551 552 553 554 555 556 557 558 559 560
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
561
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
562 563 564
		if (port_count(&port[0]) > 1)
			goto unlock;

565 566 567 568 569 570 571 572 573 574
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

575
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
576 577 578 579 580 581 582
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
583 584
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
622 623 624 625 626 627 628 629 630 631 632 633 634 635
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
636
			 */
637 638 639 640 641 642
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
643
				if (port == last_port) {
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
668 669

				GEM_BUG_ON(port_isset(port));
670
			}
671

672 673
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
674
			trace_i915_gem_request_in(rq, port_index(port, execlists));
675 676
			last = rq;
			submit = true;
677
		}
678

679
		rb = rb_next(rb);
680
		rb_erase(&p->node, &execlists->queue);
681 682
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
683
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
684
	} while (rb);
685
done:
686
	execlists->first = rb;
687
	if (submit)
688
		port_assign(port, last);
C
Chris Wilson 已提交
689
unlock:
690
	spin_unlock_irq(&engine->timeline->lock);
691

692 693
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
694
		execlists_submit_ports(engine);
695
	}
696 697
}

698
void
699
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
700
{
701
	struct execlist_port *port = execlists->port;
702
	unsigned int num_ports = execlists_num_ports(execlists);
703

704
	while (num_ports-- && port_isset(port)) {
705 706
		struct drm_i915_gem_request *rq = port_request(port);

707
		GEM_BUG_ON(!execlists->active);
708
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
709 710
		i915_gem_request_put(rq);

711 712 713
		memset(port, 0, sizeof(*port));
		port++;
	}
714 715
}

716 717
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
718
	struct intel_engine_execlists * const execlists = &engine->execlists;
719 720 721 722 723 724 725
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
726
	execlists_cancel_port_requests(execlists);
727 728 729 730 731 732 733 734 735

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
736
	rb = execlists->first;
737 738 739 740 741 742 743 744 745 746 747
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
748
		rb_erase(&p->node, &execlists->queue);
749 750 751 752 753 754 755
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

756

757 758
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
759
	GEM_BUG_ON(port_isset(execlists->port));
760 761 762 763 764 765 766 767 768 769 770 771

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

772
/*
773 774 775
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
776
static void execlists_submission_tasklet(unsigned long data)
777
{
778 779
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
780
	struct execlist_port * const port = execlists->port;
781
	struct drm_i915_private *dev_priv = engine->i915;
782

783 784 785 786 787 788 789 790 791
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

792
	intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
793

794 795 796 797 798
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
799 800 801
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
802
		unsigned int head, tail;
803

804
		if (unlikely(execlists->csb_use_mmio)) {
805 806
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
807
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
808 809
		}

810 811 812 813 814 815 816 817 818 819 820
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
821
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
822 823 824
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
825
			execlists->csb_head = head;
826 827 828 829 830
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

831
			head = execlists->csb_head;
832 833
			tail = READ_ONCE(buf[write_idx]);
		}
834 835 836 837
		GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
			  engine->name,
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))),
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))));
838

839
		while (head != tail) {
840
			struct drm_i915_gem_request *rq;
841
			unsigned int status;
842
			unsigned int count;
843 844 845

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

864
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
865 866 867
			GEM_TRACE("%s csb[%dd]: status=0x%08x:0x%08x\n",
				  engine->name, head,
				  status, buf[2*head + 1]);
868 869 870 871 872 873 874 875 876

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

877 878 879
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

880 881 882
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

883
			if (status & GEN8_CTX_STATUS_COMPLETE &&
C
Chris Wilson 已提交
884
			    buf[2*head + 1] == PREEMPT_ID) {
885 886
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
887

888 889 890 891
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
892 893 894 895
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
896 897
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
898 899
				continue;

900 901 902
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

903
			/* Check the context/desc id for this event matches */
904
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
905

906
			rq = port_unpack(port, &count);
907 908 909 910
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
				  rq->ctx->hw_id, count,
				  rq->global_seqno);
911 912
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
913
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
914 915
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
916
				GEM_BUG_ON(!i915_gem_request_completed(rq));
917
				execlists_context_schedule_out(rq);
918 919
				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
920

921
				execlists_port_complete(execlists, port);
922 923
			} else {
				port_set(port, port_pack(rq, count));
924
			}
925

926 927
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
928
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
929 930 931
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
932
		}
933

934 935
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
936 937 938
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
939 940
	}

941
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
942
		execlists_dequeue(engine);
943

944
	intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
945 946
}

947 948 949 950 951 952 953
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
954
	if (ptr_unmask_bits(p, 1))
955
		tasklet_hi_schedule(&engine->execlists.tasklet);
956 957
}

958
static void execlists_submit_request(struct drm_i915_gem_request *request)
959
{
960
	struct intel_engine_cs *engine = request->engine;
961
	unsigned long flags;
962

963 964
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
965

966
	insert_request(engine, &request->priotree, request->priotree.priority);
967

968
	GEM_BUG_ON(!engine->execlists.first);
969 970
	GEM_BUG_ON(list_empty(&request->priotree.link));

971
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
972 973
}

974 975 976 977 978
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

979 980 981
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
982
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
983 984

	GEM_BUG_ON(!locked);
985 986

	if (engine != locked) {
987 988
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
989 990 991 992 993 994 995
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
996
	struct intel_engine_cs *engine;
997 998 999 1000
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1001 1002
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1003 1004 1005
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1006 1007
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

1032 1033 1034 1035 1036 1037
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1038 1039 1040
			if (i915_gem_request_completed(pt_to_request(p->signaler)))
				continue;

1041
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1042 1043
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1044
		}
1045

1046
		list_safe_reset_next(dep, p, dfs_link);
1047 1048
	}

1049 1050 1051 1052 1053
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1054
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1055 1056 1057 1058 1059 1060 1061
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1062 1063 1064
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1077 1078 1079
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1080
		}
1081 1082
	}

1083
	spin_unlock_irq(&engine->timeline->lock);
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1109 1110 1111
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1112
{
1113
	struct intel_context *ce = &ctx->engine[engine->id];
1114
	void *vaddr;
1115
	int ret;
1116

1117
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1118

1119 1120
	if (likely(ce->pin_count++))
		goto out;
1121
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1122

1123 1124 1125 1126 1127
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
1128
	GEM_BUG_ON(!ce->state);
1129

1130
	ret = __context_pin(ctx, ce->state);
1131
	if (ret)
1132
		goto err;
1133

1134
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1135 1136
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1137
		goto unpin_vma;
1138 1139
	}

1140
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1141
	if (ret)
1142
		goto unpin_map;
1143

1144
	intel_lr_context_descriptor_update(ctx, engine);
1145

1146 1147
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1148
		i915_ggtt_offset(ce->ring->vma);
1149

1150
	ce->state->obj->pin_global++;
1151
	i915_gem_context_get(ctx);
1152 1153
out:
	return ce->ring;
1154

1155
unpin_map:
1156 1157 1158
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1159
err:
1160
	ce->pin_count = 0;
1161
	return ERR_PTR(ret);
1162 1163
}

1164 1165
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1166
{
1167
	struct intel_context *ce = &ctx->engine[engine->id];
1168

1169
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1170
	GEM_BUG_ON(ce->pin_count == 0);
1171

1172
	if (--ce->pin_count)
1173
		return;
1174

1175
	intel_ring_unpin(ce->ring);
1176

1177
	ce->state->obj->pin_global--;
1178 1179
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1180

1181
	i915_gem_context_put(ctx);
1182 1183
}

1184
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1185 1186 1187
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1188
	int ret;
1189

1190 1191
	GEM_BUG_ON(!ce->pin_count);

1192 1193 1194 1195 1196 1197
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1198 1199 1200
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1229 1230
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1231
{
1232 1233 1234 1235 1236 1237 1238 1239 1240
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1241 1242 1243 1244
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1245 1246 1247 1248 1249 1250 1251

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1252 1253
}

1254 1255 1256 1257 1258 1259
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1260
 *
1261 1262
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1263
 *
1264 1265 1266 1267
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1268
 */
1269
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1270
{
1271
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1272
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1273

1274
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1275 1276
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1277

1278 1279
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1280 1281 1282 1283 1284 1285 1286
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1287

C
Chris Wilson 已提交
1288 1289
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1290
	/* Pad to end of cacheline */
1291 1292
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1293 1294 1295 1296 1297 1298 1299

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1300
	return batch;
1301 1302
}

1303
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1304
{
C
Chris Wilson 已提交
1305 1306
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1307
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1308
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1309

1310
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1311 1312 1313 1314 1315
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1316

1317 1318
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1319
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1320 1321 1322 1323 1324 1325 1326
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1327
	}
1328

1329
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1344 1345 1346 1347 1348 1349
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1350 1351
	}

C
Chris Wilson 已提交
1352 1353
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1354
	/* Pad to end of cacheline */
1355 1356
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1357

1358
	return batch;
1359 1360
}

1361 1362 1363
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1364
{
1365 1366 1367
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1368

1369
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1370 1371
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1372

1373
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1374 1375 1376
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1377 1378
	}

1379 1380 1381 1382 1383
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1384
	return 0;
1385 1386 1387 1388

err:
	i915_gem_object_put(obj);
	return err;
1389 1390
}

1391
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1392
{
1393
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1394 1395
}

1396 1397
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1398
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1399
{
1400
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1401 1402 1403
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1404
	struct page *page;
1405 1406
	void *batch, *batch_ptr;
	unsigned int i;
1407
	int ret;
1408

1409 1410
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1411

1412
	switch (INTEL_GEN(engine->i915)) {
1413 1414
	case 10:
		return 0;
1415 1416
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1417
		wa_bb_fn[1] = NULL;
1418 1419 1420
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1421
		wa_bb_fn[1] = NULL;
1422 1423 1424
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1425
		return 0;
1426
	}
1427

1428
	ret = lrc_setup_wa_ctx(engine);
1429 1430 1431 1432 1433
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1434
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1435
	batch = batch_ptr = kmap_atomic(page);
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
1448 1449
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1450
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1451 1452
	}

1453 1454
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1455 1456
	kunmap_atomic(batch);
	if (ret)
1457
		lrc_destroy_wa_ctx(engine);
1458 1459 1460 1461

	return ret;
}

1462 1463 1464 1465 1466 1467 1468 1469
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1470
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1471
{
1472
	struct drm_i915_private *dev_priv = engine->i915;
1473
	struct intel_engine_execlists * const execlists = &engine->execlists;
1474 1475 1476 1477 1478
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1479

1480
	intel_engine_reset_breadcrumbs(engine);
1481
	intel_engine_init_hangcheck(engine);
1482

1483 1484
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1485
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1486 1487 1488
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1489

1490
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1505
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1506
	execlists->csb_head = -1;
1507
	execlists->active = 0;
1508

1509
	/* After a GPU reset, we may have requests to replay */
1510
	if (execlists->first)
1511
		tasklet_schedule(&execlists->tasklet);
1512

1513
	return 0;
1514 1515
}

1516
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1517
{
1518
	struct drm_i915_private *dev_priv = engine->i915;
1519 1520
	int ret;

1521
	ret = gen8_init_common_ring(engine);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1535
	return init_workarounds_ring(engine);
1536 1537
}

1538
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1539 1540 1541
{
	int ret;

1542
	ret = gen8_init_common_ring(engine);
1543 1544 1545
	if (ret)
		return ret;

1546
	return init_workarounds_ring(engine);
1547 1548
}

1549 1550 1551
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1552
	struct intel_engine_execlists * const execlists = &engine->execlists;
1553
	struct intel_context *ce;
1554
	unsigned long flags;
1555

1556 1557
	spin_lock_irqsave(&engine->timeline->lock, flags);

1558 1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1567
	execlists_cancel_port_requests(execlists);
1568

1569
	/* Push back any incomplete requests for replay after the reset. */
1570
	__unwind_incomplete_requests(engine);
1571

1572
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1584
	if (!request || request->fence.error != -EIO)
1585
		return;
1586

1587 1588 1589 1590 1591 1592 1593
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1594
	ce = &request->ctx->engine[engine->id];
1595 1596 1597
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1598
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1599 1600
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1601
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1602

1603 1604 1605
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1606
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1607
	unwind_wa_tail(request);
1608 1609
}

1610 1611 1612
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1613
	struct intel_engine_cs *engine = req->engine;
1614
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1615 1616
	u32 *cs;
	int i;
1617

1618 1619 1620
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1621

1622
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1623
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1624 1625
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1626 1627 1628 1629
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1630 1631
	}

1632 1633
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1634 1635 1636 1637

	return 0;
}

1638
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1639
			      u64 offset, u32 len,
1640
			      const unsigned int flags)
1641
{
1642
	u32 *cs;
1643 1644
	int ret;

1645 1646 1647 1648
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1649 1650
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1651
	if (req->ctx->ppgtt &&
1652 1653 1654 1655 1656 1657
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1658

1659
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1660 1661
	}

1662 1663 1664
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1683 1684
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1685
	/* FIXME(BDW): Address space and security selectors. */
1686 1687 1688
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1689 1690 1691
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1692 1693 1694 1695

	return 0;
}

1696
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1697
{
1698
	struct drm_i915_private *dev_priv = engine->i915;
1699 1700 1701
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1702 1703
}

1704
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1705
{
1706
	struct drm_i915_private *dev_priv = engine->i915;
1707
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1708 1709
}

1710
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1711
{
1712
	u32 cmd, *cs;
1713

1714 1715 1716
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1717 1718 1719

	cmd = MI_FLUSH_DW + 1;

1720 1721 1722 1723 1724 1725 1726
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1727
	if (mode & EMIT_INVALIDATE) {
1728
		cmd |= MI_INVALIDATE_TLB;
1729
		if (request->engine->id == VCS)
1730
			cmd |= MI_INVALIDATE_BSD;
1731 1732
	}

1733 1734 1735 1736 1737
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1738 1739 1740 1741

	return 0;
}

1742
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1743
				  u32 mode)
1744
{
1745
	struct intel_engine_cs *engine = request->engine;
1746 1747
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1748
	bool vf_flush_wa = false, dc_flush_wa = false;
1749
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1750
	int len;
1751 1752 1753

	flags |= PIPE_CONTROL_CS_STALL;

1754
	if (mode & EMIT_FLUSH) {
1755 1756
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1757
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1758
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1759 1760
	}

1761
	if (mode & EMIT_INVALIDATE) {
1762 1763 1764 1765 1766 1767 1768 1769 1770
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1771 1772 1773 1774
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1775
		if (IS_GEN9(request->i915))
1776
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1777 1778 1779 1780

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1781
	}
1782

M
Mika Kuoppala 已提交
1783 1784 1785 1786 1787 1788 1789 1790
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1791 1792 1793
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1794

1795 1796
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1797

1798 1799 1800
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1801

1802
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1803

1804 1805
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1806

1807
	intel_ring_advance(request, cs);
1808 1809 1810 1811

	return 0;
}

1812 1813 1814 1815 1816
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1817
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1818
{
C
Chris Wilson 已提交
1819 1820
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1821 1822
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1823
}
1824

1825
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1826
{
1827 1828
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1829

1830 1831
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1832 1833 1834
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1835
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1836

1837
	gen8_emit_wa_tail(request, cs);
1838
}
1839 1840
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1841
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1842
					u32 *cs)
1843
{
1844 1845 1846
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1847 1848
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1849 1850 1851
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1852
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1853

1854
	gen8_emit_wa_tail(request, cs);
1855
}
1856
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1857

1858
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1859 1860 1861
{
	int ret;

1862
	ret = intel_ring_workarounds_emit(req);
1863 1864 1865
	if (ret)
		return ret;

1866 1867 1868 1869 1870 1871 1872 1873
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1874
	return i915_gem_render_state_emit(req);
1875 1876
}

1877 1878
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1879
 * @engine: Engine Command Streamer.
1880
 */
1881
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1882
{
1883
	struct drm_i915_private *dev_priv;
1884

1885 1886 1887 1888
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1889 1890 1891
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1892

1893
	dev_priv = engine->i915;
1894

1895 1896
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1897
	}
1898

1899 1900
	if (engine->cleanup)
		engine->cleanup(engine);
1901

1902
	intel_engine_cleanup_common(engine);
1903

1904
	lrc_destroy_wa_ctx(engine);
1905
	engine->i915 = NULL;
1906 1907
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1908 1909
}

1910
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1911
{
1912
	engine->submit_request = execlists_submit_request;
1913
	engine->cancel_requests = execlists_cancel_requests;
1914
	engine->schedule = execlists_schedule;
1915
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1916 1917 1918

	engine->park = NULL;
	engine->unpark = NULL;
1919 1920
}

1921
static void
1922
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1923 1924
{
	/* Default vfuncs which can be overriden by each engine. */
1925
	engine->init_hw = gen8_init_common_ring;
1926
	engine->reset_hw = reset_common_ring;
1927 1928 1929 1930

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1931 1932
	engine->request_alloc = execlists_request_alloc;

1933
	engine->emit_flush = gen8_emit_flush;
1934
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1935
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1936 1937

	engine->set_default_submission = execlists_set_default_submission;
1938

1939 1940
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1941
	engine->emit_bb_start = gen8_emit_bb_start;
1942 1943
}

1944
static inline void
1945
logical_ring_default_irqs(struct intel_engine_cs *engine)
1946
{
1947
	unsigned shift = engine->irq_shift;
1948 1949
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1950 1951
}

1952 1953 1954 1955 1956 1957
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1958 1959
	intel_engine_setup_common(engine);

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1975
	engine->execlists.fw_domains = fw_domains;
1976

1977 1978
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
1979 1980 1981 1982 1983

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1984
static int logical_ring_init(struct intel_engine_cs *engine)
1985 1986 1987
{
	int ret;

1988
	ret = intel_engine_init_common(engine);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	if (ret)
		goto error;

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1999
int logical_render_ring_init(struct intel_engine_cs *engine)
2000 2001 2002 2003
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2004 2005
	logical_ring_setup(engine);

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2016 2017
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2018

2019
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2034
	return logical_ring_init(engine);
2035 2036
}

2037
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2038 2039 2040 2041
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2042 2043
}

2044
static u32
2045
make_rpcs(struct drm_i915_private *dev_priv)
2046 2047 2048 2049 2050 2051 2052
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2053
	if (INTEL_GEN(dev_priv) < 9)
2054 2055 2056 2057 2058 2059 2060 2061
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2062
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2063
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2064
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2065 2066 2067 2068
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2069
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2070
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2071
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2072 2073 2074 2075
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2076 2077
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2078
			GEN8_RPCS_EU_MIN_SHIFT;
2079
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2080 2081 2082 2083 2084 2085 2086
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2087
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2088 2089 2090
{
	u32 indirect_ctx_offset;

2091
	switch (INTEL_GEN(engine->i915)) {
2092
	default:
2093
		MISSING_CASE(INTEL_GEN(engine->i915));
2094
		/* fall through */
2095 2096 2097 2098
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2112
static void execlists_init_reg_state(u32 *regs,
2113 2114 2115
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2116
{
2117 2118
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2148 2149
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2150 2151 2152
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2153
		if (wa_ctx->indirect_ctx.size) {
2154
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2155

2156
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2157 2158
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2159

2160
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2161
				intel_lr_indirect_ctx_offset(engine) << 6;
2162 2163 2164 2165 2166
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2167

2168
			regs[CTX_BB_PER_CTX_PTR + 1] =
2169
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2170
		}
2171
	}
2172 2173 2174 2175

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2176
	/* PDP values well be assigned later if needed */
2177 2178 2179 2180 2181 2182 2183 2184
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2185

2186
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2187 2188 2189 2190
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2191
		ASSIGN_CTX_PML4(ppgtt, regs);
2192 2193
	}

2194 2195 2196 2197
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2198 2199

		i915_oa_init_reg_state(engine, ctx, regs);
2200
	}
2201 2202 2203 2204 2205 2206 2207 2208 2209
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2210
	u32 *regs;
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2225
	ctx_obj->mm.dirty = true;
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2245 2246
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2247 2248 2249 2250 2251
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2252

2253
	i915_gem_object_unpin_map(ctx_obj);
2254 2255 2256 2257

	return 0;
}

2258
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2259
					    struct intel_engine_cs *engine)
2260
{
2261
	struct drm_i915_gem_object *ctx_obj;
2262
	struct intel_context *ce = &ctx->engine[engine->id];
2263
	struct i915_vma *vma;
2264
	uint32_t context_size;
2265
	struct intel_ring *ring;
2266 2267
	int ret;

2268
	WARN_ON(ce->state);
2269

2270
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2271

2272 2273 2274 2275 2276
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2277

2278
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2279
	if (IS_ERR(ctx_obj)) {
2280
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2281
		return PTR_ERR(ctx_obj);
2282 2283
	}

2284
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2285 2286 2287 2288 2289
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2290
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2291 2292
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2293
		goto error_deref_obj;
2294 2295
	}

2296
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2297 2298
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2299
		goto error_ring_free;
2300 2301
	}

2302
	ce->ring = ring;
2303
	ce->state = vma;
2304 2305

	return 0;
2306

2307
error_ring_free:
2308
	intel_ring_free(ring);
2309
error_deref_obj:
2310
	i915_gem_object_put(ctx_obj);
2311
	return ret;
2312
}
2313

2314
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2315
{
2316
	struct intel_engine_cs *engine;
2317
	struct i915_gem_context *ctx;
2318
	enum intel_engine_id id;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2330
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2331
		for_each_engine(engine, dev_priv, id) {
2332 2333
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2334

2335 2336
			if (!ce->state)
				continue;
2337

2338 2339 2340 2341
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2342

2343 2344 2345
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2346

C
Chris Wilson 已提交
2347
			ce->state->obj->mm.dirty = true;
2348
			i915_gem_object_unpin_map(ce->state->obj);
2349

2350
			intel_ring_reset(ce->ring, 0);
2351
		}
2352 2353
	}
}