intel_lrc.c 85.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_lrc_reg.h"
142
#include "intel_mocs.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 169
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
170 171 172 173
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184 185 186 187 188
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
189
	return (intel_engine_has_preemption(engine) &&
190 191
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
192 193
}

194
/*
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205 206
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 223
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
224
{
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

237 238 239 240 241
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
258

259
	ce->lrc_desc = desc;
260 261
}

262
static struct i915_priolist *
263
lookup_priolist(struct intel_engine_cs *engine, int prio)
264
{
265
	struct intel_engine_execlists * const execlists = &engine->execlists;
266 267 268 269
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

270
	if (unlikely(execlists->no_priolist))
271 272 273 274 275
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
276
	parent = &execlists->queue.rb_root.rb_node;
277 278
	while (*parent) {
		rb = *parent;
279
		p = to_priolist(rb);
280 281 282 283 284 285
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
286
			return p;
287 288 289 290
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
291
		p = &execlists->default_priolist;
292 293 294 295 296 297 298 299 300 301 302 303 304 305
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
306
			execlists->no_priolist = true;
307 308 309 310 311
			goto find_priolist;
		}
	}

	p->priority = prio;
312
	INIT_LIST_HEAD(&p->requests);
313
	rb_link_node(&p->node, rb, parent);
314
	rb_insert_color_cached(&p->node, &execlists->queue, first);
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330

331
	lockdep_assert_held(&engine->timeline.lock);
332 333

	list_for_each_entry_safe_reverse(rq, rn,
334
					 &engine->timeline.requests,
335
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
345
			p = lookup_priolist(engine, last_prio);
346 347
		}

348
		GEM_BUG_ON(p->priority != rq_prio(rq));
349
		list_add(&rq->sched.link, &p->requests);
350 351 352
	}
}

353
void
354 355 356 357
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
358 359 360
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
361 362

	__unwind_incomplete_requests(engine);
363 364

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 366
}

367
static inline void
368
execlists_context_status_change(struct i915_request *rq, unsigned long status)
369
{
370 371 372 373 374 375
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
376

377 378
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392 393
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

394
static inline void
395
execlists_context_schedule_in(struct i915_request *rq)
396 397
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398
	intel_engine_context_in(rq->engine);
399 400 401
}

static inline void
402
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403
{
404
	intel_engine_context_out(rq->engine);
405 406
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
407 408
}

409 410 411 412 413 414 415 416 417
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

418
static u64 execlists_update_context(struct i915_request *rq)
419
{
420
	struct intel_context *ce = rq->hw_context;
421
	struct i915_hw_ppgtt *ppgtt =
C
Chris Wilson 已提交
422
		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423
	u32 *reg_state = ce->lrc_reg_state;
424

425
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426

427 428 429 430 431
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
432
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
433
		execlists_update_context_pdps(ppgtt, reg_state);
434 435

	return ce->lrc_desc;
436 437
}

438
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
439
{
440 441 442 443 444 445 446
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
447 448
}

449
static void execlists_submit_ports(struct intel_engine_cs *engine)
450
{
451 452
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
453
	unsigned int n;
454

455 456 457 458 459 460 461
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
462
		struct i915_request *rq;
463 464 465 466 467 468 469
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
470
				execlists_context_schedule_in(rq);
471 472 473
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
474

475
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
476
				  engine->name, n,
477
				  port[n].context_id, count,
478
				  rq->global_seqno,
479
				  rq->fence.context, rq->fence.seqno,
480
				  intel_engine_get_seqno(engine),
481
				  rq_prio(rq));
482 483 484 485
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
486

487
		write_desc(execlists, desc, n);
488
	}
489 490 491 492 493 494

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
495 496
}

497
static bool ctx_single_port_submission(const struct intel_context *ce)
498
{
499
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
500
		i915_gem_context_force_single_submission(ce->gem_context));
501
}
502

503 504
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
505 506 507
{
	if (prev != next)
		return false;
508

509 510
	if (ctx_single_port_submission(prev))
		return false;
511

512
	return true;
513 514
}

515
static void port_assign(struct execlist_port *port, struct i915_request *rq)
516 517 518 519
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
520
		i915_request_put(port_request(port));
521

522
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
523 524
}

C
Chris Wilson 已提交
525 526
static void inject_preempt_context(struct intel_engine_cs *engine)
{
527
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
528
	struct intel_context *ce =
529
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
530 531
	unsigned int n;

532
	GEM_BUG_ON(execlists->preempt_complete_status !=
533
		   upper_32_bits(ce->lrc_desc));
534 535 536 537 538 539
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

540 541 542 543
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
544
	GEM_TRACE("%s\n", engine->name);
545 546 547 548 549 550 551 552
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
553

554 555 556 557 558 559 560 561
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

562 563 564
	if (inject_preempt_hang(execlists))
		return;

565
	execlists_cancel_port_requests(execlists);
566 567 568
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
569 570
}

571
static void execlists_dequeue(struct intel_engine_cs *engine)
572
{
573 574
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
575 576
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
577
	struct i915_request *last = port_request(port);
578
	struct rb_node *rb;
579 580
	bool submit = false;

581 582
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
601
	 */
602

C
Chris Wilson 已提交
603 604 605 606 607 608 609
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
610 611
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
612
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
613

614 615 616 617 618 619 620 621
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
622
			return;
623

624
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
625
			inject_preempt_context(engine);
626
			return;
C
Chris Wilson 已提交
627
		}
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
651
			return;
652 653 654 655 656 657 658 659 660 661

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
662 663
	}

664
	while ((rb = rb_first_cached(&execlists->queue))) {
665
		struct i915_priolist *p = to_priolist(rb);
666
		struct i915_request *rq, *rn;
667

668
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
669 670 671 672 673 674 675 676 677 678
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
679
			 */
680 681
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
682 683 684 685 686
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
687
				if (port == last_port) {
688
					__list_del_many(&p->requests,
689
							&rq->sched.link);
690 691 692 693 694 695 696 697 698 699
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
700 701
				if (ctx_single_port_submission(last->hw_context) ||
				    ctx_single_port_submission(rq->hw_context)) {
702
					__list_del_many(&p->requests,
703
							&rq->sched.link);
704 705 706
					goto done;
				}

707
				GEM_BUG_ON(last->hw_context == rq->hw_context);
708 709 710 711

				if (submit)
					port_assign(port, last);
				port++;
712 713

				GEM_BUG_ON(port_isset(port));
714
			}
715

716
			INIT_LIST_HEAD(&rq->sched.link);
717 718
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
719 720
			last = rq;
			submit = true;
721
		}
722

723
		rb_erase_cached(&p->node, &execlists->queue);
724 725
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
726
			kmem_cache_free(engine->i915->priorities, p);
727
	}
728

729
done:
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

749
	if (submit) {
750
		port_assign(port, last);
751 752
		execlists_submit_ports(engine);
	}
753 754

	/* We must always keep the beast fed if we have work piled up */
755 756
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
757

758 759
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
760
		execlists_user_begin(execlists, execlists->port);
761

762 763 764 765
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
766 767
}

768
void
769
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
770
{
771
	struct execlist_port *port = execlists->port;
772
	unsigned int num_ports = execlists_num_ports(execlists);
773

774
	while (num_ports-- && port_isset(port)) {
775
		struct i915_request *rq = port_request(port);
776

777 778 779 780 781 782 783
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

784
		GEM_BUG_ON(!execlists->active);
785 786 787 788
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
789

790
		i915_request_put(rq);
791

792 793 794
		memset(port, 0, sizeof(*port));
		port++;
	}
795

796
	execlists_clear_all_active(execlists);
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = execlists->csb_write_reset;
	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
}

814 815 816 817 818
static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

819 820
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
821
	struct intel_engine_execlists * const execlists = &engine->execlists;
822
	struct i915_request *rq, *rn;
823 824 825
	struct rb_node *rb;
	unsigned long flags;

826 827
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
843
	spin_lock_irqsave(&engine->timeline.lock, flags);
844 845

	/* Cancel the requests on the HW and clear the ELSP tracker. */
846
	execlists_cancel_port_requests(execlists);
847
	execlists_user_end(execlists);
848 849

	/* Mark all executing requests as skipped. */
850
	list_for_each_entry(rq, &engine->timeline.requests, link) {
851
		GEM_BUG_ON(!rq->global_seqno);
852
		if (!i915_request_completed(rq))
853 854 855 856
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
857
	while ((rb = rb_first_cached(&execlists->queue))) {
858
		struct i915_priolist *p = to_priolist(rb);
859

860 861
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
862 863

			dma_fence_set_error(&rq->fence, -EIO);
864
			__i915_request_submit(rq);
865 866
		}

867
		rb_erase_cached(&p->node, &execlists->queue);
868 869 870 871 872 873 874
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

875
	execlists->queue_priority = INT_MIN;
876
	execlists->queue = RB_ROOT_CACHED;
877
	GEM_BUG_ON(port_isset(execlists->port));
878

879 880 881
	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;

882
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
883 884
}

885 886 887 888 889 890
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

891
static void process_csb(struct intel_engine_cs *engine)
892
{
893
	struct intel_engine_execlists * const execlists = &engine->execlists;
894
	struct execlist_port *port = execlists->port;
895 896
	const u32 * const buf = execlists->csb_status;
	u8 head, tail;
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
913

914 915 916 917 918 919 920 921 922
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
923

924
	do {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

		if (++head == GEN8_CSB_ENTRIES)
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
952
			  buf[2 * head + 0], buf[2 * head + 1],
953 954
			  execlists->active);

955
		status = buf[2 * head];
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
975
		}
976

977 978 979 980
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
981

982 983
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		rq = port_unpack(port, &count);
		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
			  engine->name,
			  port->context_id, count,
			  rq ? rq->global_seqno : 0,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
			  intel_engine_get_seqno(engine),
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1000
			/*
1001 1002 1003 1004 1005 1006
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1007
			 */
1008 1009 1010 1011 1012
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1013

1014 1015 1016 1017 1018 1019 1020
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1021

1022 1023 1024
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1025

1026 1027
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1028

1029 1030 1031 1032 1033 1034 1035
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1036
		}
1037
	} while (head != tail);
1038

1039
	execlists->csb_head = head;
1040
}
1041

1042
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1043
{
1044
	lockdep_assert_held(&engine->timeline.lock);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

C
Chris Wilson 已提交
1056
	process_csb(engine);
1057 1058
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);

	if (engine->i915->gt.awake) /* we may be delayed until after we idle! */
		__execlists_submission_tasklet(engine);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1083
static void queue_request(struct intel_engine_cs *engine,
1084
			  struct i915_sched_node *node,
1085
			  int prio)
1086
{
1087
	list_add_tail(&node->link,
1088
		      &lookup_priolist(engine, prio)->requests);
1089
}
1090

1091
static void __update_queue(struct intel_engine_cs *engine, int prio)
1092 1093
{
	engine->execlists.queue_priority = prio;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1107 1108
}

1109 1110
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1111 1112 1113 1114
	if (prio > engine->execlists.queue_priority) {
		__update_queue(engine, prio);
		__submit_queue_imm(engine);
	}
1115 1116
}

1117
static void execlists_submit_request(struct i915_request *request)
1118
{
1119
	struct intel_engine_cs *engine = request->engine;
1120
	unsigned long flags;
1121

1122
	/* Will be called from irq-context when using foreign fences. */
1123
	spin_lock_irqsave(&engine->timeline.lock, flags);
1124

1125
	queue_request(engine, &request->sched, rq_prio(request));
1126

1127
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1128
	GEM_BUG_ON(list_empty(&request->sched.link));
1129

1130 1131
	submit_queue(engine, rq_prio(request));

1132
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1133 1134
}

1135
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1136
{
1137
	return container_of(node, struct i915_request, sched);
1138 1139
}

1140
static struct intel_engine_cs *
1141
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1142
{
1143
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1144 1145

	GEM_BUG_ON(!locked);
1146 1147

	if (engine != locked) {
1148 1149
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1150 1151 1152 1153 1154
	}

	return engine;
}

1155 1156
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1157
{
1158 1159
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1160 1161
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1162
	const int prio = attr->priority;
1163 1164
	LIST_HEAD(dfs);

1165 1166
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1167
	if (i915_request_completed(request))
1168 1169
		return;

1170
	if (prio <= READ_ONCE(request->sched.attr.priority))
1171 1172
		return;

1173 1174
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1175

1176
	stack.signaler = &request->sched;
1177 1178
	list_add(&stack.dfs_link, &dfs);

1179 1180
	/*
	 * Recursively bump all dependent priorities to match the new request.
1181 1182
	 *
	 * A naive approach would be to use recursion:
1183 1184
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1185
	 *		update_priorities(dep->signal, prio)
1186
	 *	queue_request(node);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1197
	list_for_each_entry(dep, &dfs, dfs_link) {
1198
		struct i915_sched_node *node = dep->signaler;
1199

1200 1201
		/*
		 * Within an engine, there can be no cycle, but we may
1202 1203 1204 1205
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1206
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1207 1208
			GEM_BUG_ON(p == dep); /* no cycles! */

1209
			if (i915_sched_node_signaled(p->signaler))
1210 1211
				continue;

1212 1213
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1214
				list_move_tail(&p->dfs_link, &dfs);
1215
		}
1216 1217
	}

1218 1219
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1220 1221 1222 1223
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1224
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1225
		GEM_BUG_ON(!list_empty(&request->sched.link));
1226
		request->sched.attr = *attr;
1227 1228 1229 1230 1231
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1232
	last = NULL;
1233
	engine = request->engine;
1234
	spin_lock_irq(&engine->timeline.lock);
1235

1236 1237
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1238
		struct i915_sched_node *node = dep->signaler;
1239 1240 1241

		INIT_LIST_HEAD(&dep->dfs_link);

1242
		engine = sched_lock_engine(node, engine);
1243

1244
		if (prio <= node->attr.priority)
1245 1246
			continue;

1247
		node->attr.priority = prio;
1248
		if (!list_empty(&node->link)) {
1249 1250 1251 1252 1253 1254
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1255
		}
1256 1257

		if (prio > engine->execlists.queue_priority &&
1258 1259 1260 1261 1262
		    i915_sw_fence_done(&sched_to_request(node)->submit)) {
			/* defer submission until after all of our updates */
			__update_queue(engine, prio);
			tasklet_hi_schedule(&engine->execlists.tasklet);
		}
1263 1264
	}

1265
	spin_unlock_irq(&engine->timeline.lock);
1266 1267
}

1268 1269 1270 1271
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1272 1273 1274
	if (!ce->state)
		return;

1275
	intel_ring_free(ce->ring);
1276 1277 1278

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1279 1280
}

1281
static void execlists_context_unpin(struct intel_context *ce)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
{
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1315 1316 1317 1318
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1319
{
1320
	void *vaddr;
1321
	int ret;
1322

1323
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1324 1325
	if (ret)
		goto err;
1326
	GEM_BUG_ON(!ce->state);
1327

1328
	ret = __context_pin(ctx, ce->state);
1329
	if (ret)
1330
		goto err;
1331

1332
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1333 1334
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1335
		goto unpin_vma;
1336 1337
	}

1338
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1339
	if (ret)
1340
		goto unpin_map;
1341

1342
	intel_lr_context_descriptor_update(ctx, engine, ce);
1343

1344 1345
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1346
		i915_ggtt_offset(ce->ring->vma);
1347
	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1348
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1349

1350
	ce->state->obj->pin_global++;
1351
	i915_gem_context_get(ctx);
1352
	return ce;
1353

1354
unpin_map:
1355 1356 1357
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1358
err:
1359
	ce->pin_count = 0;
1360
	return ERR_PTR(ret);
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1371
{
1372
	struct intel_context *ce = to_intel_context(ctx, engine);
1373

1374
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1375

1376 1377 1378
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1379

1380
	ce->ops = &execlists_context_ops;
1381

1382
	return __execlists_context_pin(engine, ctx, ce);
1383 1384
}

1385
static int execlists_request_alloc(struct i915_request *request)
1386
{
1387
	int ret;
1388

1389
	GEM_BUG_ON(!request->hw_context->pin_count);
1390

1391 1392 1393 1394 1395 1396
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1397 1398 1399
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1428 1429
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1430
{
1431 1432 1433 1434 1435 1436 1437 1438 1439
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1440 1441 1442 1443
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1444 1445 1446 1447 1448 1449 1450

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1451 1452
}

1453 1454 1455 1456 1457 1458
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1459
 *
1460 1461
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1462
 *
1463 1464 1465 1466
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1467
 */
1468
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1469
{
1470
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1471
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1472

1473
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1474 1475
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1476

1477 1478
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1479 1480 1481 1482 1483 1484 1485
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1486

C
Chris Wilson 已提交
1487 1488
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1489
	/* Pad to end of cacheline */
1490 1491
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1492 1493 1494 1495 1496 1497 1498

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1499
	return batch;
1500 1501
}

1502 1503 1504 1505 1506 1507
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1508
{
1509
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1510

1511 1512 1513 1514 1515 1516
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1517

1518 1519
	return batch;
}
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1545

1546
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1547

1548 1549
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1550

1551
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1552

1553 1554
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1555
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1556 1557 1558 1559 1560 1561 1562
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1563
	}
1564

1565
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1580 1581 1582 1583 1584 1585
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1586 1587
	}

C
Chris Wilson 已提交
1588 1589
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1590
	/* Pad to end of cacheline */
1591 1592
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1593

1594
	return batch;
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1631 1632 1633
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1634
{
1635 1636 1637
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1638

1639
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1640 1641
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1642

1643
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1644 1645 1646
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1647 1648
	}

1649 1650 1651 1652 1653
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1654
	return 0;
1655 1656 1657 1658

err:
	i915_gem_object_put(obj);
	return err;
1659 1660
}

1661
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1662
{
1663
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1664 1665
}

1666 1667
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1668
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1669
{
1670
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1671 1672 1673
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1674
	struct page *page;
1675 1676
	void *batch, *batch_ptr;
	unsigned int i;
1677
	int ret;
1678

1679
	if (GEM_WARN_ON(engine->id != RCS))
1680
		return -EINVAL;
1681

1682
	switch (INTEL_GEN(engine->i915)) {
1683 1684
	case 11:
		return 0;
1685
	case 10:
1686 1687 1688
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1689 1690
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1691
		wa_bb_fn[1] = NULL;
1692 1693 1694
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1695
		wa_bb_fn[1] = NULL;
1696 1697 1698
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1699
		return 0;
1700
	}
1701

1702
	ret = lrc_setup_wa_ctx(engine);
1703 1704 1705 1706 1707
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1708
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1709
	batch = batch_ptr = kmap_atomic(page);
1710

1711 1712 1713 1714 1715 1716 1717
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1718 1719
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1720 1721 1722
			ret = -EINVAL;
			break;
		}
1723 1724
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1725
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1726 1727
	}

1728 1729
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1730 1731
	kunmap_atomic(batch);
	if (ret)
1732
		lrc_destroy_wa_ctx(engine);
1733 1734 1735 1736

	return ret;
}

1737
static void enable_execlists(struct intel_engine_cs *engine)
1738
{
1739
	struct drm_i915_private *dev_priv = engine->i915;
1740 1741

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1758 1759 1760
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1761 1762 1763 1764 1765
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1779 1780
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1781 1782 1783 1784 1785
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1786

1787
	intel_engine_reset_breadcrumbs(engine);
1788

1789 1790 1791 1792 1793 1794
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1795
	enable_execlists(engine);
1796

1797
	return 0;
1798 1799
}

1800
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1801
{
1802
	struct drm_i915_private *dev_priv = engine->i915;
1803 1804
	int ret;

1805
	ret = gen8_init_common_ring(engine);
1806 1807 1808
	if (ret)
		return ret;

1809
	intel_whitelist_workarounds_apply(engine);
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1821
	return 0;
1822 1823
}

1824
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1825 1826 1827
{
	int ret;

1828
	ret = gen8_init_common_ring(engine);
1829 1830 1831
	if (ret)
		return ret;

1832
	intel_whitelist_workarounds_apply(engine);
1833 1834

	return 0;
1835 1836
}

1837 1838 1839 1840
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1841
	struct i915_request *request, *active;
1842
	unsigned long flags;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1857 1858
	spin_lock_irqsave(&engine->timeline.lock, flags);

1859 1860 1861 1862 1863 1864 1865
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
C
Chris Wilson 已提交
1866
	process_csb(engine);
1867 1868 1869 1870 1871 1872 1873 1874 1875

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
1876 1877 1878 1879 1880 1881
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
	}

1893 1894
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

1895
	return active;
1896 1897 1898 1899
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1900
{
1901
	struct intel_engine_execlists * const execlists = &engine->execlists;
1902
	unsigned long flags;
1903
	u32 *regs;
1904

1905 1906 1907
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1908

1909
	spin_lock_irqsave(&engine->timeline.lock, flags);
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1920
	execlists_cancel_port_requests(execlists);
1921

1922
	/* Push back any incomplete requests for replay after the reset. */
1923
	__unwind_incomplete_requests(engine);
1924

1925
	/* Following the reset, we need to reload the CSB read/write pointers */
1926
	reset_csb_pointers(&engine->execlists);
1927

1928
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1929

1930 1931
	/*
	 * If the request was innocent, we leave the request in the ELSP
1932 1933 1934 1935 1936 1937 1938 1939 1940
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1941
	if (!request || request->fence.error != -EIO)
1942
		return;
1943

1944 1945
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1946 1947 1948 1949 1950 1951
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1952
	regs = request->hw_context->lrc_reg_state;
1953 1954 1955 1956
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1957
	}
C
Chris Wilson 已提交
1958 1959
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1960

1961
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1962
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1963

1964 1965 1966
	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
	regs[CTX_RING_HEAD + 1] = request->ring->head;

1967 1968
	intel_ring_update_space(request->ring);

1969
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1970
	unwind_wa_tail(request);
1971 1972
}

1973 1974
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
1975 1976 1977
	struct intel_engine_execlists * const execlists = &engine->execlists;

	/* After a GPU reset, we may have requests to replay */
1978
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1979 1980
		tasklet_schedule(&execlists->tasklet);

1981 1982 1983 1984 1985 1986 1987 1988 1989
	/*
	 * Flush the tasklet while we still have the forcewake to be sure
	 * that it is not allowed to sleep before we restart and reload a
	 * context.
	 *
	 * As before (with execlists_reset_prepare) we rely on the caller
	 * serialising multiple attempts to reset so that we know that we
	 * are the only one manipulating tasklet state.
	 */
1990
	__tasklet_enable_sync_once(&execlists->tasklet);
1991 1992 1993 1994

	GEM_TRACE("%s\n", engine->name);
}

1995
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1996
{
C
Chris Wilson 已提交
1997
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1998
	struct intel_engine_cs *engine = rq->engine;
1999
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2000 2001
	u32 *cs;
	int i;
2002

2003
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2004 2005
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2006

2007
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2008
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2009 2010
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2011 2012 2013 2014
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2015 2016
	}

2017
	*cs++ = MI_NOOP;
2018
	intel_ring_advance(rq, cs);
2019 2020 2021 2022

	return 0;
}

2023
static int gen8_emit_bb_start(struct i915_request *rq,
2024
			      u64 offset, u32 len,
2025
			      const unsigned int flags)
2026
{
2027
	u32 *cs;
2028 2029
	int ret;

2030 2031 2032 2033
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2034 2035
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
C
Chris Wilson 已提交
2036 2037
	if (rq->gem_context->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2038
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2039 2040
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2041 2042
		if (ret)
			return ret;
2043

C
Chris Wilson 已提交
2044
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2045 2046
	}

2047
	cs = intel_ring_begin(rq, 6);
2048 2049
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2068 2069
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2070
	/* FIXME(BDW): Address space and security selectors. */
2071 2072 2073
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
2074 2075
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2076 2077 2078

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2079
	intel_ring_advance(rq, cs);
2080 2081 2082 2083

	return 0;
}

2084
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2085
{
2086
	struct drm_i915_private *dev_priv = engine->i915;
2087 2088 2089
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2090 2091
}

2092
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2093
{
2094
	struct drm_i915_private *dev_priv = engine->i915;
2095
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2096 2097
}

2098
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2099
{
2100
	u32 cmd, *cs;
2101

2102 2103 2104
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2105 2106 2107

	cmd = MI_FLUSH_DW + 1;

2108 2109 2110 2111 2112 2113 2114
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2115
	if (mode & EMIT_INVALIDATE) {
2116
		cmd |= MI_INVALIDATE_TLB;
2117
		if (request->engine->id == VCS)
2118
			cmd |= MI_INVALIDATE_BSD;
2119 2120
	}

2121 2122 2123 2124 2125
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2126 2127 2128 2129

	return 0;
}

2130
static int gen8_emit_flush_render(struct i915_request *request,
2131
				  u32 mode)
2132
{
2133
	struct intel_engine_cs *engine = request->engine;
2134 2135
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2136
	bool vf_flush_wa = false, dc_flush_wa = false;
2137
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2138
	int len;
2139 2140 2141

	flags |= PIPE_CONTROL_CS_STALL;

2142
	if (mode & EMIT_FLUSH) {
2143 2144
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2145
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2146
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2147 2148
	}

2149
	if (mode & EMIT_INVALIDATE) {
2150 2151 2152 2153 2154 2155 2156 2157 2158
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2159 2160 2161 2162
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2163
		if (IS_GEN9(request->i915))
2164
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2165 2166 2167 2168

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2169
	}
2170

M
Mika Kuoppala 已提交
2171 2172 2173 2174 2175 2176 2177 2178
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2179 2180 2181
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2182

2183 2184
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2185

2186 2187 2188
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2189

2190
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2191

2192 2193
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2194

2195
	intel_ring_advance(request, cs);
2196 2197 2198 2199

	return 0;
}

2200 2201 2202 2203 2204
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2205
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2206
{
C
Chris Wilson 已提交
2207 2208
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2209 2210
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2211
}
2212

2213
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2214
{
2215 2216
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2217

2218 2219
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2220
	*cs++ = MI_USER_INTERRUPT;
2221
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2222
	request->tail = intel_ring_offset(request, cs);
2223
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2224

2225
	gen8_emit_wa_tail(request, cs);
2226
}
2227 2228
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2229
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2230
{
2231 2232 2233
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2234 2235
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2236
	*cs++ = MI_USER_INTERRUPT;
2237
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2238
	request->tail = intel_ring_offset(request, cs);
2239
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2240

2241
	gen8_emit_wa_tail(request, cs);
2242
}
2243
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2244

2245
static int gen8_init_rcs_context(struct i915_request *rq)
2246 2247 2248
{
	int ret;

2249
	ret = intel_ctx_workarounds_emit(rq);
2250 2251 2252
	if (ret)
		return ret;

2253
	ret = intel_rcs_context_init_mocs(rq);
2254 2255 2256 2257 2258 2259 2260
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2261
	return i915_gem_render_state_emit(rq);
2262 2263
}

2264 2265
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2266
 * @engine: Engine Command Streamer.
2267
 */
2268
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2269
{
2270
	struct drm_i915_private *dev_priv;
2271

2272 2273 2274 2275
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2276 2277 2278
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2279

2280
	dev_priv = engine->i915;
2281

2282 2283
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2284
	}
2285

2286 2287
	if (engine->cleanup)
		engine->cleanup(engine);
2288

2289
	intel_engine_cleanup_common(engine);
2290

2291
	lrc_destroy_wa_ctx(engine);
2292

2293
	engine->i915 = NULL;
2294 2295
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2296 2297
}

2298
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2299
{
2300
	engine->submit_request = execlists_submit_request;
2301
	engine->cancel_requests = execlists_cancel_requests;
2302
	engine->schedule = execlists_schedule;
2303
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2304

2305 2306
	engine->reset.prepare = execlists_reset_prepare;

2307 2308
	engine->park = NULL;
	engine->unpark = NULL;
2309 2310

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2311 2312
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2313 2314 2315 2316

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2317
	if (intel_engine_has_preemption(engine))
2318
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2319 2320
}

2321
static void
2322
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2323 2324
{
	/* Default vfuncs which can be overriden by each engine. */
2325
	engine->init_hw = gen8_init_common_ring;
2326 2327 2328 2329

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2330 2331

	engine->context_pin = execlists_context_pin;
2332 2333
	engine->request_alloc = execlists_request_alloc;

2334
	engine->emit_flush = gen8_emit_flush;
2335
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2336
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2337 2338

	engine->set_default_submission = execlists_set_default_submission;
2339

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2351
	engine->emit_bb_start = gen8_emit_bb_start;
2352 2353
}

2354
static inline void
2355
logical_ring_default_irqs(struct intel_engine_cs *engine)
2356
{
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2371 2372
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2373 2374
}

2375 2376 2377
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
2378 2379
	intel_engine_setup_common(engine);

2380 2381 2382
	/* Intentionally left blank. */
	engine->buffer = NULL;

2383 2384
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2385 2386 2387 2388 2389

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2390 2391 2392 2393 2394 2395
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/* Older GVT emulation depends upon intercepting CSB mmio */
	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
}

2396
static int logical_ring_init(struct intel_engine_cs *engine)
2397
{
2398 2399
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2400 2401
	int ret;

2402
	ret = intel_engine_init_common(engine);
2403 2404 2405
	if (ret)
		goto error;

2406 2407
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
		execlists->submit_reg = i915->regs +
2408
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2409
		execlists->ctrl_reg = i915->regs +
2410 2411
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
2412
		execlists->submit_reg = i915->regs +
2413 2414
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2415

2416 2417
	execlists->preempt_complete_status = ~0u;
	if (i915->preempt_context) {
2418
		struct intel_context *ce =
2419
			to_intel_context(i915->preempt_context, engine);
2420

2421
		execlists->preempt_complete_status =
2422 2423
			upper_32_bits(ce->lrc_desc);
	}
2424

2425 2426 2427 2428 2429 2430 2431
	execlists->csb_read =
		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
	if (csb_force_mmio(i915)) {
		execlists->csb_status = (u32 __force *)
			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));

		execlists->csb_write = (u32 __force *)execlists->csb_read;
2432 2433 2434
		execlists->csb_write_reset =
			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
				      GEN8_CSB_ENTRIES - 1);
2435 2436 2437 2438 2439 2440
	} else {
		execlists->csb_status =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];

		execlists->csb_write =
			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2441
		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2442
	}
2443
	reset_csb_pointers(execlists);
2444

2445 2446 2447 2448 2449 2450 2451
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2452
int logical_render_ring_init(struct intel_engine_cs *engine)
2453 2454 2455 2456
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2457 2458
	logical_ring_setup(engine);

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2469 2470
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2471

2472
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2487
	return logical_ring_init(engine);
2488 2489
}

2490
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2491 2492 2493 2494
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2495 2496
}

2497
static u32
2498
make_rpcs(struct drm_i915_private *dev_priv)
2499 2500 2501 2502 2503 2504 2505
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2506
	if (INTEL_GEN(dev_priv) < 9)
2507 2508 2509 2510 2511 2512 2513 2514
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2515
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2516
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2517
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2518 2519 2520 2521
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2522
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2523
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2524
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2525 2526 2527 2528
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2529 2530
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2531
			GEN8_RPCS_EU_MIN_SHIFT;
2532
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2533 2534 2535 2536 2537 2538 2539
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2540
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2541 2542 2543
{
	u32 indirect_ctx_offset;

2544
	switch (INTEL_GEN(engine->i915)) {
2545
	default:
2546
		MISSING_CASE(INTEL_GEN(engine->i915));
2547
		/* fall through */
2548 2549 2550 2551
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2552 2553 2554 2555
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2569
static void execlists_init_reg_state(u32 *regs,
2570 2571 2572
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2573
{
2574 2575
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2576
	u32 base = engine->mmio_base;
2577
	bool rcs = engine->class == RENDER_CLASS;
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2590 2591
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2607 2608
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2609 2610 2611
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2612
		if (wa_ctx->indirect_ctx.size) {
2613
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2614

2615
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2616 2617
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2618

2619
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2620
				intel_lr_indirect_ctx_offset(engine) << 6;
2621 2622 2623 2624 2625
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2626

2627
			regs[CTX_BB_PER_CTX_PTR + 1] =
2628
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2629
		}
2630
	}
2631 2632 2633 2634

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2635
	/* PDP values well be assigned later if needed */
2636 2637 2638 2639 2640 2641 2642 2643
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2644

2645
	if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2646 2647 2648 2649
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2650
		ASSIGN_CTX_PML4(ppgtt, regs);
2651 2652
	}

2653 2654 2655 2656
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2657 2658

		i915_oa_init_reg_state(engine, ctx, regs);
2659
	}
2660 2661 2662 2663 2664 2665 2666 2667 2668
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2669
	u32 *regs;
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2684
	ctx_obj->mm.dirty = true;
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2697 2698 2699 2700
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2701 2702 2703 2704 2705

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2706 2707
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2708 2709 2710 2711 2712
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2713
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2714 2715 2716
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2717

2718
err_unpin_ctx:
2719
	i915_gem_object_unpin_map(ctx_obj);
2720
	return ret;
2721 2722
}

2723
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2724 2725
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2726
{
2727
	struct drm_i915_gem_object *ctx_obj;
2728
	struct i915_vma *vma;
2729
	uint32_t context_size;
2730
	struct intel_ring *ring;
2731
	struct i915_timeline *timeline;
2732 2733
	int ret;

2734 2735
	if (ce->state)
		return 0;
2736

2737
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2738

2739 2740 2741 2742 2743
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2744

2745
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2746 2747
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2748

2749
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2750 2751 2752 2753 2754
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2755 2756 2757 2758 2759 2760 2761 2762
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2763 2764
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2765
		goto error_deref_obj;
2766 2767
	}

2768
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2769 2770
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2771
		goto error_ring_free;
2772 2773
	}

2774
	ce->ring = ring;
2775
	ce->state = vma;
2776 2777

	return 0;
2778

2779
error_ring_free:
2780
	intel_ring_free(ring);
2781
error_deref_obj:
2782
	i915_gem_object_put(ctx_obj);
2783
	return ret;
2784
}
2785

2786
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2787
{
2788
	struct intel_engine_cs *engine;
2789
	struct i915_gem_context *ctx;
2790
	enum intel_engine_id id;
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2802
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2803
		for_each_engine(engine, dev_priv, id) {
2804 2805
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2806
			u32 *reg;
2807

2808 2809
			if (!ce->state)
				continue;
2810

2811 2812 2813 2814
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2815

2816 2817 2818
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2819

C
Chris Wilson 已提交
2820
			ce->state->obj->mm.dirty = true;
2821
			i915_gem_object_unpin_map(ce->state->obj);
2822

2823
			intel_ring_reset(ce->ring, 0);
2824
		}
2825 2826
	}
}
2827 2828 2829 2830

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif