intel_lrc.c 78.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
186 187
	return (intel_engine_has_preemption(engine) &&
		__execlists_need_preempt(prio, rq_prio(last)));
188 189
}

190
/**
191 192 193
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
194
 * @engine: Engine the descriptor will be used with
195
 *
196 197 198 199 200
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
201 202
 * This is what a descriptor looks like, from LSB to MSB::
 *
203
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
204 205 206 207
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
208 209 210 211 212 213 214 215 216 217 218 219
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
220
 */
221
static void
222
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
223
				   struct intel_engine_cs *engine)
224
{
225
	struct intel_context *ce = &ctx->engine[engine->id];
226
	u64 desc;
227

228 229
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
230

231
	desc = ctx->desc_template;				/* bits  0-11 */
232 233
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

234
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
235
								/* bits 12-31 */
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
254

255
	ce->lrc_desc = desc;
256 257
}

258 259 260 261
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
262
{
263
	struct intel_engine_execlists * const execlists = &engine->execlists;
264 265 266 267
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

268
	if (unlikely(execlists->no_priolist))
269 270 271 272 273
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
274
	parent = &execlists->queue.rb_node;
275 276
	while (*parent) {
		rb = *parent;
277
		p = to_priolist(rb);
278 279 280 281 282 283
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
284
			return p;
285 286 287 288
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
289
		p = &execlists->default_priolist;
290 291 292 293 294 295 296 297 298 299 300 301 302 303
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
304
			execlists->no_priolist = true;
305 306 307 308 309
			goto find_priolist;
		}
	}

	p->priority = prio;
310
	INIT_LIST_HEAD(&p->requests);
311
	rb_link_node(&p->node, rb, parent);
312
	rb_insert_color(&p->node, &execlists->queue);
313 314

	if (first)
315
		execlists->first = &p->node;
316

317
	return p;
318 319
}

320
static void unwind_wa_tail(struct i915_request *rq)
321 322 323 324 325
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

326
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327
{
328
	struct i915_request *rq, *rn;
329 330
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
331 332 333 334 335 336

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
337
		if (i915_request_completed(rq))
338 339
			return;

340
		__i915_request_unsubmit(rq);
341 342
		unwind_wa_tail(rq);

343 344 345 346
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
347 348 349
		}

		list_add(&rq->priotree.link, &p->requests);
350 351 352
	}
}

353
void
354 355 356 357 358 359 360 361 362 363
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

364
static inline void
365
execlists_context_status_change(struct i915_request *rq, unsigned long status)
366
{
367 368 369 370 371 372
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
373

374 375
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
376 377
}

378 379 380 381 382 383 384 385 386 387 388 389 390
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

391
static inline void
392
execlists_context_schedule_in(struct i915_request *rq)
393 394
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
395
	intel_engine_context_in(rq->engine);
396 397 398
}

static inline void
399
execlists_context_schedule_out(struct i915_request *rq)
400
{
401
	intel_engine_context_out(rq->engine);
402 403 404
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

405 406 407 408 409 410 411 412 413
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

414
static u64 execlists_update_context(struct i915_request *rq)
415
{
416
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
417 418
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
419
	u32 *reg_state = ce->lrc_reg_state;
420

421
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
422

423 424 425 426 427
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
428
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
429
		execlists_update_context_pdps(ppgtt, reg_state);
430 431

	return ce->lrc_desc;
432 433
}

434
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
435
{
436 437 438 439 440 441 442
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
443 444
}

445
static void execlists_submit_ports(struct intel_engine_cs *engine)
446
{
447 448
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
449
	unsigned int n;
450

451 452 453 454 455 456 457
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
458
		struct i915_request *rq;
459 460 461 462 463 464 465
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
466
				execlists_context_schedule_in(rq);
467 468 469
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
470

471
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%d (current %d), prio=%d\n",
472
				  engine->name, n,
473
				  port[n].context_id, count,
474
				  rq->global_seqno,
475
				  intel_engine_get_seqno(engine),
476
				  rq_prio(rq));
477 478 479 480
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
481

482
		write_desc(execlists, desc, n);
483
	}
484 485 486 487 488 489

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
490 491
}

492
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
493
{
494
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
495
		i915_gem_context_force_single_submission(ctx));
496
}
497

498 499 500 501 502
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
503

504 505
	if (ctx_single_port_submission(prev))
		return false;
506

507
	return true;
508 509
}

510
static void port_assign(struct execlist_port *port, struct i915_request *rq)
511 512 513 514
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
515
		i915_request_put(port_request(port));
516

517
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
518 519
}

C
Chris Wilson 已提交
520 521
static void inject_preempt_context(struct intel_engine_cs *engine)
{
522
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
523 524 525 526
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

527
	GEM_BUG_ON(execlists->preempt_complete_status !=
528
		   upper_32_bits(ce->lrc_desc));
529 530 531 532 533 534
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

535 536 537 538
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
539
	GEM_TRACE("%s\n", engine->name);
540 541 542 543 544 545 546 547
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
548

549
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
550
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
551 552
}

553
static void execlists_dequeue(struct intel_engine_cs *engine)
554
{
555 556
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
557 558
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
559
	struct i915_request *last = port_request(port);
560
	struct rb_node *rb;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
582
	 */
583

584
	spin_lock_irq(&engine->timeline->lock);
585 586
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
587 588 589 590 591 592 593 594

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
595 596
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
597
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
598 599 600
		if (port_count(&port[0]) > 1)
			goto unlock;

601 602 603 604 605 606 607 608 609 610
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

611
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
612 613 614
			inject_preempt_context(engine);
			goto unlock;
		}
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
649 650
	}

651 652
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
653
		struct i915_request *rq, *rn;
654 655 656 657 658 659 660 661 662 663 664 665

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
666
			 */
667 668 669 670 671 672
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
673
				if (port == last_port) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
698 699

				GEM_BUG_ON(port_isset(port));
700
			}
701

702
			INIT_LIST_HEAD(&rq->priotree.link);
703 704
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
705 706
			last = rq;
			submit = true;
707
		}
708

709
		rb = rb_next(rb);
710
		rb_erase(&p->node, &execlists->queue);
711 712
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
713
			kmem_cache_free(engine->i915->priorities, p);
714
	}
715
done:
716
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
717
	execlists->first = rb;
718
	if (submit)
719
		port_assign(port, last);
720 721 722 723

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
724
unlock:
725
	spin_unlock_irq(&engine->timeline->lock);
726

727
	if (submit) {
728
		execlists_user_begin(execlists, execlists->port);
729
		execlists_submit_ports(engine);
730
	}
731 732 733

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
734 735
}

736
void
737
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
738
{
739
	struct execlist_port *port = execlists->port;
740
	unsigned int num_ports = execlists_num_ports(execlists);
741

742
	while (num_ports-- && port_isset(port)) {
743
		struct i915_request *rq = port_request(port);
744

745
		GEM_BUG_ON(!execlists->active);
746
		intel_engine_context_out(rq->engine);
747 748 749 750 751 752

		execlists_context_status_change(rq,
						i915_request_completed(rq) ?
						INTEL_CONTEXT_SCHEDULE_OUT :
						INTEL_CONTEXT_SCHEDULE_PREEMPTED);

753
		i915_request_put(rq);
754

755 756 757
		memset(port, 0, sizeof(*port));
		port++;
	}
758

759
	execlists_user_end(execlists);
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static void clear_gtiir(struct intel_engine_cs *engine)
{
	static const u8 gtiir[] = {
		[RCS]  = 0,
		[BCS]  = 0,
		[VCS]  = 1,
		[VCS2] = 1,
		[VECS] = 3,
	};
	struct drm_i915_private *dev_priv = engine->i915;
	int i;

	/* TODO: correctly reset irqs for gen11 */
	if (WARN_ON_ONCE(INTEL_GEN(engine->i915) >= 11))
		return;

	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are
	 * double buffered, and so if we only reset it once there may
	 * still be an interrupt pending.
	 */
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
			   engine->irq_keep_mask);
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
		   engine->irq_keep_mask);
}

static void reset_irq(struct intel_engine_cs *engine)
{
	/* Mark all CS interrupts as complete */
	smp_store_mb(engine->execlists.active, 0);
	synchronize_hardirq(engine->i915->drm.irq);

	clear_gtiir(engine);

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

813 814
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
815
	struct intel_engine_execlists * const execlists = &engine->execlists;
816
	struct i915_request *rq, *rn;
817 818 819
	struct rb_node *rb;
	unsigned long flags;

820 821
	GEM_TRACE("%s\n", engine->name);

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
837 838

	/* Cancel the requests on the HW and clear the ELSP tracker. */
839
	execlists_cancel_port_requests(execlists);
840
	reset_irq(engine);
841

842 843
	spin_lock(&engine->timeline->lock);

844 845 846
	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
847
		if (!i915_request_completed(rq))
848 849 850 851
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
852
	rb = execlists->first;
853
	while (rb) {
854
		struct i915_priolist *p = to_priolist(rb);
855 856 857 858 859

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
860
			__i915_request_submit(rq);
861 862 863
		}

		rb = rb_next(rb);
864
		rb_erase(&p->node, &execlists->queue);
865 866 867 868 869 870 871
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

872
	execlists->queue_priority = INT_MIN;
873 874
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
875
	GEM_BUG_ON(port_isset(execlists->port));
876

877 878 879
	spin_unlock(&engine->timeline->lock);

	local_irq_restore(flags);
880 881
}

882
/*
883 884 885
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
886
static void execlists_submission_tasklet(unsigned long data)
887
{
888 889
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
890
	struct execlist_port *port = execlists->port;
891
	struct drm_i915_private *dev_priv = engine->i915;
892
	bool fw = false;
893

894 895
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
896 897 898 899 900 901 902 903
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

904 905
	/*
	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
906 907 908 909
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
910 911 912
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
913
		unsigned int head, tail;
914

915
		if (unlikely(execlists->csb_use_mmio)) {
916 917
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
918
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
919 920
		}

921 922 923 924
		/* Clear before reading to catch new interrupts */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
		smp_mb__after_atomic();

925
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
926 927 928 929 930 931
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

932 933 934
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
935
			execlists->csb_head = head;
936 937 938 939 940
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

941
			head = execlists->csb_head;
942 943
			tail = READ_ONCE(buf[write_idx]);
		}
944
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
945
			  engine->name,
946 947
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
948

949
		while (head != tail) {
950
			struct i915_request *rq;
951
			unsigned int status;
952
			unsigned int count;
953 954 955

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

974
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
975
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
976
				  engine->name, head,
977 978
				  status, buf[2*head + 1],
				  execlists->active);
979 980 981 982 983 984 985 986 987

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

988 989 990
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

991 992 993
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

994
			if (status & GEN8_CTX_STATUS_COMPLETE &&
995
			    buf[2*head + 1] == execlists->preempt_complete_status) {
996 997
				GEM_TRACE("%s preempt-idle\n", engine->name);

998 999
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
1000

1001 1002 1003 1004
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
1005 1006 1007 1008
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
1009 1010
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
1011 1012
				continue;

1013 1014 1015
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

1016
			rq = port_unpack(port, &count);
1017
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%d (current %d), prio=%d\n",
1018
				  engine->name,
1019
				  port->context_id, count,
1020
				  rq ? rq->global_seqno : 0,
1021
				  intel_engine_get_seqno(engine),
1022
				  rq ? rq_prio(rq) : 0);
1023 1024 1025 1026

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

1027 1028
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
1029 1030 1031 1032 1033 1034 1035 1036
				/*
				 * On the final event corresponding to the
				 * submission of this context, we expect either
				 * an element-switch event or a completion
				 * event (and on completion, the active-idle
				 * marker). No more preemptions, lite-restore
				 * or otherwise.
				 */
1037
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1038 1039
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1040 1041 1042 1043 1044 1045 1046 1047 1048
				GEM_BUG_ON(!port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));

				/*
				 * We rely on the hardware being strongly
				 * ordered, that the breadcrumb write is
				 * coherent (visible from the CPU) before the
				 * user interrupt and CSB is processed.
				 */
1049
				GEM_BUG_ON(!i915_request_completed(rq));
1050

1051
				execlists_context_schedule_out(rq);
1052 1053
				trace_i915_request_out(rq);
				i915_request_put(rq);
1054

1055 1056 1057
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

1058 1059 1060 1061 1062
				port = execlists_port_complete(execlists, port);
				if (port_isset(port))
					execlists_user_begin(execlists, port);
				else
					execlists_user_end(execlists);
1063 1064
			} else {
				port_set(port, port_pack(rq, count));
1065
			}
1066
		}
1067

1068 1069
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
1070 1071 1072
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
1073 1074
	}

1075
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1076
		execlists_dequeue(engine);
1077

1078 1079
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1080 1081 1082 1083 1084

	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1085 1086
}

1087 1088 1089
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
1090
{
1091 1092
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
1093

1094 1095 1096 1097 1098 1099
static void __submit_queue(struct intel_engine_cs *engine, int prio)
{
	engine->execlists.queue_priority = prio;
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1100 1101
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1102 1103
	if (prio > engine->execlists.queue_priority)
		__submit_queue(engine, prio);
1104 1105
}

1106
static void execlists_submit_request(struct i915_request *request)
1107
{
1108
	struct intel_engine_cs *engine = request->engine;
1109
	unsigned long flags;
1110

1111 1112
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
1113

1114 1115
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
1116

1117
	GEM_BUG_ON(!engine->execlists.first);
1118 1119
	GEM_BUG_ON(list_empty(&request->priotree.link));

1120
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1121 1122
}

1123
static struct i915_request *pt_to_request(struct i915_priotree *pt)
1124
{
1125
	return container_of(pt, struct i915_request, priotree);
1126 1127
}

1128 1129 1130
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
1131
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1132 1133

	GEM_BUG_ON(!locked);
1134 1135

	if (engine != locked) {
1136 1137
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
1138 1139 1140 1141 1142
	}

	return engine;
}

1143
static void execlists_schedule(struct i915_request *request, int prio)
1144
{
1145
	struct intel_engine_cs *engine;
1146 1147 1148 1149
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1150 1151
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1152
	if (i915_request_completed(request))
1153 1154
		return;

1155 1156 1157
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1158 1159
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1160 1161 1162 1163

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1164 1165
	/*
	 * Recursively bump all dependent priorities to match the new request.
1166 1167 1168 1169 1170
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1171
	 *	queue_request(pt);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1182
	list_for_each_entry(dep, &dfs, dfs_link) {
1183 1184
		struct i915_priotree *pt = dep->signaler;

1185 1186
		/*
		 * Within an engine, there can be no cycle, but we may
1187 1188 1189 1190 1191
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1192 1193
			GEM_BUG_ON(p == dep); /* no cycles! */

1194
			if (i915_priotree_signaled(p->signaler))
1195 1196
				continue;

1197
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1198 1199
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1200
		}
1201 1202
	}

1203 1204
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1205 1206 1207 1208
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1209
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1210 1211 1212 1213 1214 1215 1216
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1217 1218 1219
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1232 1233
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1234
			queue_request(engine, pt, prio);
1235
		}
1236 1237 1238 1239

		if (prio > engine->execlists.queue_priority &&
		    i915_sw_fence_done(&pt_to_request(pt)->submit))
			__submit_queue(engine, prio);
1240 1241
	}

1242
	spin_unlock_irq(&engine->timeline->lock);
1243 1244
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1268 1269 1270
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1271
{
1272
	struct intel_context *ce = &ctx->engine[engine->id];
1273
	void *vaddr;
1274
	int ret;
1275

1276
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1277

1278 1279
	if (likely(ce->pin_count++))
		goto out;
1280
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1281

1282 1283 1284
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1285
	GEM_BUG_ON(!ce->state);
1286

1287
	ret = __context_pin(ctx, ce->state);
1288
	if (ret)
1289
		goto err;
1290

1291
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1292 1293
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1294
		goto unpin_vma;
1295 1296
	}

1297
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1298
	if (ret)
1299
		goto unpin_map;
1300

1301
	intel_lr_context_descriptor_update(ctx, engine);
1302

1303 1304
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1305
		i915_ggtt_offset(ce->ring->vma);
1306
	ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1307

1308
	ce->state->obj->pin_global++;
1309
	i915_gem_context_get(ctx);
1310 1311
out:
	return ce->ring;
1312

1313
unpin_map:
1314 1315 1316
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1317
err:
1318
	ce->pin_count = 0;
1319
	return ERR_PTR(ret);
1320 1321
}

1322 1323
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1324
{
1325
	struct intel_context *ce = &ctx->engine[engine->id];
1326

1327
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1328
	GEM_BUG_ON(ce->pin_count == 0);
1329

1330
	if (--ce->pin_count)
1331
		return;
1332

1333
	intel_ring_unpin(ce->ring);
1334

1335
	ce->state->obj->pin_global--;
1336 1337
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1338

1339
	i915_gem_context_put(ctx);
1340 1341
}

1342
static int execlists_request_alloc(struct i915_request *request)
1343 1344 1345
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1346
	int ret;
1347

1348 1349
	GEM_BUG_ON(!ce->pin_count);

1350 1351 1352 1353 1354 1355
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1356 1357 1358
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1387 1388
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1389
{
1390 1391 1392 1393 1394 1395 1396 1397 1398
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1399 1400 1401 1402
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1403 1404 1405 1406 1407 1408 1409

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1410 1411
}

1412 1413 1414 1415 1416 1417
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1418
 *
1419 1420
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1421
 *
1422 1423 1424 1425
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1426
 */
1427
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1428
{
1429
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1430
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1431

1432
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1433 1434
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1435

1436 1437
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1438 1439 1440 1441 1442 1443 1444
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1445

C
Chris Wilson 已提交
1446 1447
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1448
	/* Pad to end of cacheline */
1449 1450
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1451 1452 1453 1454 1455 1456 1457

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1458
	return batch;
1459 1460
}

1461
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1462
{
C
Chris Wilson 已提交
1463 1464
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1465
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1466
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1467

1468
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1469 1470 1471 1472 1473
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1474

1475 1476
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1477
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1478 1479 1480 1481 1482 1483 1484
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1485
	}
1486

1487
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1502 1503 1504 1505 1506 1507
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1508 1509
	}

C
Chris Wilson 已提交
1510 1511
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1512
	/* Pad to end of cacheline */
1513 1514
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1515

1516
	return batch;
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1553 1554 1555
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1556
{
1557 1558 1559
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1560

1561
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1562 1563
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1564

1565
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1566 1567 1568
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1569 1570
	}

1571 1572 1573 1574 1575
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1576
	return 0;
1577 1578 1579 1580

err:
	i915_gem_object_put(obj);
	return err;
1581 1582
}

1583
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1584
{
1585
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1586 1587
}

1588 1589
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1590
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1591
{
1592
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1593 1594 1595
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1596
	struct page *page;
1597 1598
	void *batch, *batch_ptr;
	unsigned int i;
1599
	int ret;
1600

1601
	if (GEM_WARN_ON(engine->id != RCS))
1602
		return -EINVAL;
1603

1604
	switch (INTEL_GEN(engine->i915)) {
1605
	case 10:
1606 1607 1608
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1609 1610
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1611
		wa_bb_fn[1] = NULL;
1612 1613 1614
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1615
		wa_bb_fn[1] = NULL;
1616 1617 1618
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1619
		return 0;
1620
	}
1621

1622
	ret = lrc_setup_wa_ctx(engine);
1623 1624 1625 1626 1627
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1628
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1629
	batch = batch_ptr = kmap_atomic(page);
1630

1631 1632 1633 1634 1635 1636 1637
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1638 1639
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1640 1641 1642
			ret = -EINVAL;
			break;
		}
1643 1644
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1645
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1646 1647
	}

1648 1649
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1650 1651
	kunmap_atomic(batch);
	if (ret)
1652
		lrc_destroy_wa_ctx(engine);
1653 1654 1655 1656

	return ret;
}

1657
static void enable_execlists(struct intel_engine_cs *engine)
1658
{
1659
	struct drm_i915_private *dev_priv = engine->i915;
1660 1661

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1678 1679 1680
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1681 1682 1683

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1684 1685 1686 1687
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1688
	struct intel_engine_execlists * const execlists = &engine->execlists;
1689 1690 1691 1692 1693
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1694

1695
	intel_engine_reset_breadcrumbs(engine);
1696
	intel_engine_init_hangcheck(engine);
1697

1698
	enable_execlists(engine);
1699

1700
	/* After a GPU reset, we may have requests to replay */
1701
	if (execlists->first)
1702
		tasklet_schedule(&execlists->tasklet);
1703

1704
	return 0;
1705 1706
}

1707
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1708
{
1709
	struct drm_i915_private *dev_priv = engine->i915;
1710 1711
	int ret;

1712
	ret = gen8_init_common_ring(engine);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1726
	return init_workarounds_ring(engine);
1727 1728
}

1729
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1730 1731 1732
{
	int ret;

1733
	ret = gen8_init_common_ring(engine);
1734 1735 1736
	if (ret)
		return ret;

1737
	return init_workarounds_ring(engine);
1738 1739
}

1740
static void reset_common_ring(struct intel_engine_cs *engine,
1741
			      struct i915_request *request)
1742
{
1743
	struct intel_engine_execlists * const execlists = &engine->execlists;
1744
	struct intel_context *ce;
1745
	unsigned long flags;
1746

1747 1748
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1749

1750 1751
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1762
	execlists_cancel_port_requests(execlists);
1763
	reset_irq(engine);
1764

1765
	/* Push back any incomplete requests for replay after the reset. */
1766
	spin_lock(&engine->timeline->lock);
1767
	__unwind_incomplete_requests(engine);
1768
	spin_unlock(&engine->timeline->lock);
1769

1770
	local_irq_restore(flags);
1771

1772 1773
	/*
	 * If the request was innocent, we leave the request in the ELSP
1774 1775 1776 1777 1778 1779 1780 1781 1782
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1783
	if (!request || request->fence.error != -EIO)
1784
		return;
1785

1786 1787
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1788 1789 1790 1791 1792 1793
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1794
	ce = &request->ctx->engine[engine->id];
1795 1796 1797
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1798
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1799 1800
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1801
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1802

1803 1804 1805
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1806
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1807
	unwind_wa_tail(request);
1808 1809
}

1810
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1811
{
1812 1813
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1814
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1815 1816
	u32 *cs;
	int i;
1817

1818
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1819 1820
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1821

1822
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1823
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1824 1825
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1826 1827 1828 1829
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1830 1831
	}

1832
	*cs++ = MI_NOOP;
1833
	intel_ring_advance(rq, cs);
1834 1835 1836 1837

	return 0;
}

1838
static int gen8_emit_bb_start(struct i915_request *rq,
1839
			      u64 offset, u32 len,
1840
			      const unsigned int flags)
1841
{
1842
	u32 *cs;
1843 1844
	int ret;

1845 1846 1847 1848
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1849 1850
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1851 1852 1853 1854 1855
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1856 1857
		if (ret)
			return ret;
1858

1859
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1860 1861
	}

1862
	cs = intel_ring_begin(rq, 4);
1863 1864
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1883 1884
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1885
	/* FIXME(BDW): Address space and security selectors. */
1886 1887 1888
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1889 1890
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1891
	intel_ring_advance(rq, cs);
1892 1893 1894 1895

	return 0;
}

1896
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1897
{
1898
	struct drm_i915_private *dev_priv = engine->i915;
1899 1900 1901
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1902 1903
}

1904
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1905
{
1906
	struct drm_i915_private *dev_priv = engine->i915;
1907
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1908 1909
}

1910
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1911
{
1912
	u32 cmd, *cs;
1913

1914 1915 1916
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1917 1918 1919

	cmd = MI_FLUSH_DW + 1;

1920 1921 1922 1923 1924 1925 1926
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1927
	if (mode & EMIT_INVALIDATE) {
1928
		cmd |= MI_INVALIDATE_TLB;
1929
		if (request->engine->id == VCS)
1930
			cmd |= MI_INVALIDATE_BSD;
1931 1932
	}

1933 1934 1935 1936 1937
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1938 1939 1940 1941

	return 0;
}

1942
static int gen8_emit_flush_render(struct i915_request *request,
1943
				  u32 mode)
1944
{
1945
	struct intel_engine_cs *engine = request->engine;
1946 1947
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1948
	bool vf_flush_wa = false, dc_flush_wa = false;
1949
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1950
	int len;
1951 1952 1953

	flags |= PIPE_CONTROL_CS_STALL;

1954
	if (mode & EMIT_FLUSH) {
1955 1956
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1957
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1958
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1959 1960
	}

1961
	if (mode & EMIT_INVALIDATE) {
1962 1963 1964 1965 1966 1967 1968 1969 1970
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1971 1972 1973 1974
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1975
		if (IS_GEN9(request->i915))
1976
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1977 1978 1979 1980

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1981
	}
1982

M
Mika Kuoppala 已提交
1983 1984 1985 1986 1987 1988 1989 1990
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1991 1992 1993
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1994

1995 1996
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1997

1998 1999 2000
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2001

2002
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2003

2004 2005
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2006

2007
	intel_ring_advance(request, cs);
2008 2009 2010 2011

	return 0;
}

2012 2013 2014 2015 2016
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2017
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2018
{
C
Chris Wilson 已提交
2019 2020
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2021 2022
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2023
}
2024

2025
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2026
{
2027 2028
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2029

2030 2031
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2032 2033 2034
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
2035
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2036

2037
	gen8_emit_wa_tail(request, cs);
2038
}
2039 2040
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2041
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2042
{
2043 2044 2045
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2046 2047
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2048 2049 2050
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
2051
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2052

2053
	gen8_emit_wa_tail(request, cs);
2054
}
2055
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2056

2057
static int gen8_init_rcs_context(struct i915_request *rq)
2058 2059 2060
{
	int ret;

2061
	ret = intel_ring_workarounds_emit(rq);
2062 2063 2064
	if (ret)
		return ret;

2065
	ret = intel_rcs_context_init_mocs(rq);
2066 2067 2068 2069 2070 2071 2072
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2073
	return i915_gem_render_state_emit(rq);
2074 2075
}

2076 2077
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2078
 * @engine: Engine Command Streamer.
2079
 */
2080
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2081
{
2082
	struct drm_i915_private *dev_priv;
2083

2084 2085 2086 2087
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2088 2089 2090
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2091

2092
	dev_priv = engine->i915;
2093

2094 2095
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2096
	}
2097

2098 2099
	if (engine->cleanup)
		engine->cleanup(engine);
2100

2101
	intel_engine_cleanup_common(engine);
2102

2103
	lrc_destroy_wa_ctx(engine);
2104

2105
	engine->i915 = NULL;
2106 2107
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2108 2109
}

2110
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2111
{
2112
	engine->submit_request = execlists_submit_request;
2113
	engine->cancel_requests = execlists_cancel_requests;
2114
	engine->schedule = execlists_schedule;
2115
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2116 2117 2118

	engine->park = NULL;
	engine->unpark = NULL;
2119 2120

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2121 2122
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2123 2124 2125 2126

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2127
	if (intel_engine_has_preemption(engine))
2128
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2129 2130
}

2131
static void
2132
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2133 2134
{
	/* Default vfuncs which can be overriden by each engine. */
2135
	engine->init_hw = gen8_init_common_ring;
2136
	engine->reset_hw = reset_common_ring;
2137 2138 2139 2140

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2141 2142
	engine->request_alloc = execlists_request_alloc;

2143
	engine->emit_flush = gen8_emit_flush;
2144
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2145
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2146 2147

	engine->set_default_submission = execlists_set_default_submission;
2148

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2160
	engine->emit_bb_start = gen8_emit_bb_start;
2161 2162
}

2163
static inline void
2164
logical_ring_default_irqs(struct intel_engine_cs *engine)
2165
{
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2180 2181
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2182 2183
}

2184 2185 2186 2187 2188 2189
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2190 2191
	intel_engine_setup_common(engine);

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2207
	engine->execlists.fw_domains = fw_domains;
2208

2209 2210
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2211 2212 2213 2214 2215

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2216
static int logical_ring_init(struct intel_engine_cs *engine)
2217 2218 2219
{
	int ret;

2220
	ret = intel_engine_init_common(engine);
2221 2222 2223
	if (ret)
		goto error;

2224 2225 2226 2227 2228 2229 2230 2231 2232
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2233

2234 2235 2236 2237 2238
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2239 2240 2241 2242 2243 2244 2245
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2246
int logical_render_ring_init(struct intel_engine_cs *engine)
2247 2248 2249 2250
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2251 2252
	logical_ring_setup(engine);

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2263 2264
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2265

2266
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2281
	return logical_ring_init(engine);
2282 2283
}

2284
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2285 2286 2287 2288
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2289 2290
}

2291
static u32
2292
make_rpcs(struct drm_i915_private *dev_priv)
2293 2294 2295 2296 2297 2298 2299
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2300
	if (INTEL_GEN(dev_priv) < 9)
2301 2302 2303 2304 2305 2306 2307 2308
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2309
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2310
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2311
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2312 2313 2314 2315
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2316
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2317
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2318
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2319 2320 2321 2322
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2323 2324
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2325
			GEN8_RPCS_EU_MIN_SHIFT;
2326
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2327 2328 2329 2330 2331 2332 2333
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2334
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2335 2336 2337
{
	u32 indirect_ctx_offset;

2338
	switch (INTEL_GEN(engine->i915)) {
2339
	default:
2340
		MISSING_CASE(INTEL_GEN(engine->i915));
2341
		/* fall through */
2342 2343 2344 2345
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2346 2347 2348 2349
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2363
static void execlists_init_reg_state(u32 *regs,
2364 2365 2366
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2367
{
2368 2369
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2384 2385
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2401 2402
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2403 2404 2405
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2406
		if (wa_ctx->indirect_ctx.size) {
2407
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2408

2409
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2410 2411
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2412

2413
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2414
				intel_lr_indirect_ctx_offset(engine) << 6;
2415 2416 2417 2418 2419
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2420

2421
			regs[CTX_BB_PER_CTX_PTR + 1] =
2422
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2423
		}
2424
	}
2425 2426 2427 2428

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2429
	/* PDP values well be assigned later if needed */
2430 2431 2432 2433 2434 2435 2436 2437
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2438

2439
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2440 2441 2442 2443
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2444
		ASSIGN_CTX_PML4(ppgtt, regs);
2445 2446
	}

2447 2448 2449 2450
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2451 2452

		i915_oa_init_reg_state(engine, ctx, regs);
2453
	}
2454 2455 2456 2457 2458 2459 2460 2461 2462
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2463
	u32 *regs;
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2478
	ctx_obj->mm.dirty = true;
2479

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2498 2499
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2500 2501 2502 2503 2504
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2505
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2506 2507 2508
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2509

2510
	i915_gem_object_unpin_map(ctx_obj);
2511 2512 2513 2514

	return 0;
}

2515
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2516
					    struct intel_engine_cs *engine)
2517
{
2518
	struct drm_i915_gem_object *ctx_obj;
2519
	struct intel_context *ce = &ctx->engine[engine->id];
2520
	struct i915_vma *vma;
2521
	uint32_t context_size;
2522
	struct intel_ring *ring;
2523 2524
	int ret;

2525 2526
	if (ce->state)
		return 0;
2527

2528
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2529

2530 2531 2532 2533 2534
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2535

2536
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2537
	if (IS_ERR(ctx_obj)) {
2538
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2539
		return PTR_ERR(ctx_obj);
2540 2541
	}

2542
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2543 2544 2545 2546 2547
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2548
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2549 2550
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2551
		goto error_deref_obj;
2552 2553
	}

2554
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2555 2556
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2557
		goto error_ring_free;
2558 2559
	}

2560
	ce->ring = ring;
2561
	ce->state = vma;
2562 2563

	return 0;
2564

2565
error_ring_free:
2566
	intel_ring_free(ring);
2567
error_deref_obj:
2568
	i915_gem_object_put(ctx_obj);
2569
	return ret;
2570
}
2571

2572
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2573
{
2574
	struct intel_engine_cs *engine;
2575
	struct i915_gem_context *ctx;
2576
	enum intel_engine_id id;
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2588
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2589
		for_each_engine(engine, dev_priv, id) {
2590 2591
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2592

2593 2594
			if (!ce->state)
				continue;
2595

2596 2597 2598 2599
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2600

2601 2602 2603
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2604

C
Chris Wilson 已提交
2605
			ce->state->obj->mm.dirty = true;
2606
			i915_gem_object_unpin_map(ce->state->obj);
2607

2608
			intel_ring_reset(ce->ring, 0);
2609
		}
2610 2611
	}
}
2612 2613 2614 2615

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif