intel_lrc.c 62.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141 142 143 144 145 146 147 148 149 150 151 152 153
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
154

155 156 157 158 159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

189
#define CTX_REG(reg_state, pos, reg, val) do { \
190
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 192 193 194
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
195
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
196 197
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198
} while (0)
199

200
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 202
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203
} while (0)
204

205 206
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
207

208 209 210
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

211 212
#define WA_TAIL_DWORDS 2

213
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
214
					    struct intel_engine_cs *engine);
215 216 217 218
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
219

220 221
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
222
 * @dev_priv: i915 device private
223 224 225
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
226
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
227 228 229
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
230
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
231
{
232 233 234
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
235
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
236 237
		return 1;

238
	if (INTEL_GEN(dev_priv) >= 9)
239 240
		return 1;

241 242 243
	if (enable_execlists == 0)
		return 0;

244 245 246
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
247 248 249 250
		return 1;

	return 0;
}
251

252
/**
253 254 255
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
256
 * @engine: Engine the descriptor will be used with
257
 *
258 259 260 261 262
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
263 264
 * This is what a descriptor looks like, from LSB to MSB::
 *
265
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
266 267 268 269
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
270
 */
271
static void
272
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
273
				   struct intel_engine_cs *engine)
274
{
275
	struct intel_context *ce = &ctx->engine[engine->id];
276
	u64 desc;
277

278
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
279

280
	desc = ctx->desc_template;				/* bits  0-11 */
281
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
282
								/* bits 12-31 */
283
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
284

285
	ce->lrc_desc = desc;
286 287
}

288
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
289
				     struct intel_engine_cs *engine)
290
{
291
	return ctx->engine[engine->id].lrc_desc;
292
}
293

294 295 296
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
297
{
298 299 300 301 302 303
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
304

305 306
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
307 308
}

309 310 311 312 313 314 315 316 317
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

318
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
319
{
320
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
321 322
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
323
	u32 *reg_state = ce->lrc_reg_state;
324

325
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
326

327 328 329 330 331
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
332
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
333
		execlists_update_context_pdps(ppgtt, reg_state);
334 335

	return ce->lrc_desc;
336 337
}

338
static void execlists_submit_ports(struct intel_engine_cs *engine)
339
{
340
	struct execlist_port *port = engine->execlist_port;
341
	u32 __iomem *elsp =
342 343
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	unsigned int n;
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
362

363 364 365
		writel(upper_32_bits(desc), elsp);
		writel(lower_32_bits(desc), elsp);
	}
366 367
}

368
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
369
{
370
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
371
		i915_gem_context_force_single_submission(ctx));
372
}
373

374 375 376 377 378
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
379

380 381
	if (ctx_single_port_submission(prev))
		return false;
382

383
	return true;
384 385
}

386 387 388 389 390 391 392 393 394 395 396
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

397
static void execlists_dequeue(struct intel_engine_cs *engine)
398
{
399
	struct drm_i915_gem_request *last;
400
	struct execlist_port *port = engine->execlist_port;
401
	struct rb_node *rb;
402 403
	bool submit = false;

404
	last = port_request(port);
405 406 407
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
408
		 * as we resubmit the request. See gen8_emit_breadcrumb()
409 410 411 412
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
413

414
	GEM_BUG_ON(port_isset(&port[1]));
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
435
	 */
436

437
	spin_lock_irq(&engine->timeline->lock);
438
	rb = engine->execlist_first;
439
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
440
	while (rb) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
455
			 */
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
			}
488

489 490
			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;
491

492 493 494 495
			__i915_gem_request_submit(rq);
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
496
		}
497

498
		rb = rb_next(rb);
499 500 501
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
502
			kmem_cache_free(engine->i915->priorities, p);
503
	}
504 505 506
done:
	engine->execlist_first = rb;
	if (submit)
507
		port_assign(port, last);
508
	spin_unlock_irq(&engine->timeline->lock);
509

510 511
	if (submit)
		execlists_submit_ports(engine);
512 513
}

514
static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
515
{
516
	const struct execlist_port *port = engine->execlist_port;
B
Ben Widawsky 已提交
517

518
	return port_count(&port[0]) + port_count(&port[1]) < 2;
B
Ben Widawsky 已提交
519 520
}

521
/*
522 523 524
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
525
static void intel_lrc_irq_handler(unsigned long data)
526
{
527
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528
	struct execlist_port *port = engine->execlist_port;
529
	struct drm_i915_private *dev_priv = engine->i915;
530

531 532 533 534 535 536 537 538 539
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

540
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
541

542 543 544 545 546
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
547 548 549 550
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
551
		unsigned int head, tail;
552

553 554 555 556 557 558 559 560 561 562 563
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
564 565 566 567
		head = readl(csb_mmio);
		tail = GEN8_CSB_WRITE_PTR(head);
		head = GEN8_CSB_READ_PTR(head);
		while (head != tail) {
568
			struct drm_i915_gem_request *rq;
569
			unsigned int status;
570
			unsigned int count;
571 572 573

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

592
			status = readl(buf + 2 * head);
593 594 595
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

596
			/* Check the context/desc id for this event matches */
597
			GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
598
					 port->context_id);
599

600 601 602
			rq = port_unpack(port, &count);
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
603
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
604 605 606 607 608
				GEM_BUG_ON(!i915_gem_request_completed(rq));
				execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
609 610 611

				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));
612 613
			} else {
				port_set(port, port_pack(rq, count));
614
			}
615

616 617
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
618
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
619
		}
620

621
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
622
		       csb_mmio);
623 624
	}

625 626
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
627

628
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
629 630
}

631 632 633 634
static bool
insert_request(struct intel_engine_cs *engine,
	       struct i915_priotree *pt,
	       int prio)
635
{
636 637
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
638 639
	bool first = true;

640 641 642 643
	if (unlikely(engine->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
644 645
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
646 647 648 649 650 651 652 653
	parent = &engine->execlist_queue.rb_node;
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
654
			first = false;
655 656 657
		} else {
			list_add_tail(&pt->link, &p->requests);
			return false;
658 659
		}
	}
660 661 662 663

	if (prio == I915_PRIORITY_NORMAL) {
		p = &engine->default_priolist;
	} else {
664
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			engine->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	rb_link_node(&p->node, rb, parent);
	rb_insert_color(&p->node, &engine->execlist_queue);

	INIT_LIST_HEAD(&p->requests);
	list_add_tail(&pt->link, &p->requests);

	if (first)
		engine->execlist_first = &p->node;
691 692 693 694

	return first;
}

695
static void execlists_submit_request(struct drm_i915_gem_request *request)
696
{
697
	struct intel_engine_cs *engine = request->engine;
698
	unsigned long flags;
699

700 701
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
702

703 704 705
	if (insert_request(engine,
			   &request->priotree,
			   request->priotree.priority)) {
706
		if (execlists_elsp_ready(engine))
707 708
			tasklet_hi_schedule(&engine->irq_tasklet);
	}
709

710 711 712
	GEM_BUG_ON(!engine->execlist_first);
	GEM_BUG_ON(list_empty(&request->priotree.link));

713
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
714 715
}

716 717 718
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
719 720 721 722
	struct intel_engine_cs *engine =
		container_of(pt, struct drm_i915_gem_request, priotree)->engine;

	GEM_BUG_ON(!locked);
723 724

	if (engine != locked) {
725 726
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
727 728 729 730 731 732 733
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
734
	struct intel_engine_cs *engine;
735 736 737 738 739 740 741
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

742 743
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

768 769 770 771 772 773 774
		/* Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
			GEM_BUG_ON(p->signaler->priority < pt->priority);
775 776
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
777
		}
778

779
		list_safe_reset_next(dep, p, dfs_link);
780 781
	}

782 783 784 785 786 787 788 789 790 791 792 793 794
	/* If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (request->priotree.priority == INT_MIN) {
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

795 796 797
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

798 799 800 801 802 803 804 805 806 807 808 809
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
810 811 812
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
813
		}
814 815
	}

816
	spin_unlock_irq(&engine->timeline->lock);
817 818 819 820

	/* XXX Do we need to preempt to make room for us and our deps? */
}

821 822 823
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
824
{
825
	struct intel_context *ce = &ctx->engine[engine->id];
826
	unsigned int flags;
827
	void *vaddr;
828
	int ret;
829

830
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
831

832 833
	if (likely(ce->pin_count++))
		goto out;
834
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
835

836 837 838 839 840
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
841
	GEM_BUG_ON(!ce->state);
842

843
	flags = PIN_GLOBAL | PIN_HIGH;
844 845
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
846 847

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
848
	if (ret)
849
		goto err;
850

851
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
852 853
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
854
		goto unpin_vma;
855 856
	}

857
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
858
	if (ret)
859
		goto unpin_map;
860

861
	intel_lr_context_descriptor_update(ctx, engine);
862

863 864
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
865
		i915_ggtt_offset(ce->ring->vma);
866

C
Chris Wilson 已提交
867
	ce->state->obj->mm.dirty = true;
868

869
	i915_gem_context_get(ctx);
870 871
out:
	return ce->ring;
872

873
unpin_map:
874 875 876
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
877
err:
878
	ce->pin_count = 0;
879
	return ERR_PTR(ret);
880 881
}

882 883
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
884
{
885
	struct intel_context *ce = &ctx->engine[engine->id];
886

887
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
888
	GEM_BUG_ON(ce->pin_count == 0);
889

890
	if (--ce->pin_count)
891
		return;
892

893
	intel_ring_unpin(ce->ring);
894

895 896
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
897

898
	i915_gem_context_put(ctx);
899 900
}

901
static int execlists_request_alloc(struct drm_i915_gem_request *request)
902 903 904
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
905
	u32 *cs;
906 907
	int ret;

908 909
	GEM_BUG_ON(!ce->pin_count);

910 911 912 913 914 915 916 917 918 919 920 921 922 923
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
924
			goto err;
925 926
	}

927 928 929
	cs = intel_ring_begin(request, 0);
	if (IS_ERR(cs)) {
		ret = PTR_ERR(cs);
930
		goto err_unreserve;
931
	}
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
954
err:
955 956 957
	return ret;
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
974 975
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
976
{
977 978 979 980 981 982 983 984 985
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

986 987 988 989
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
990 991 992 993 994 995 996

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
997 998
}

999 1000 1001 1002 1003 1004
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1005
 *
1006 1007
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1008
 *
1009 1010 1011 1012
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1013
 */
1014
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1015
{
1016
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1017
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1018

1019
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1020 1021
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1022

1023 1024
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1025 1026 1027 1028 1029 1030 1031
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1032

1033
	/* Pad to end of cacheline */
1034 1035
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1036 1037 1038 1039 1040 1041 1042

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1043
	return batch;
1044 1045
}

1046 1047 1048
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1049
 *
1050
 *  The number of DWORDS written are returned using this field.
1051 1052 1053 1054
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1055
static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1056
{
1057
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1058 1059
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	*batch++ = MI_BATCH_BUFFER_END;
1060

1061
	return batch;
1062 1063
}

1064
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1065
{
1066
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1067
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1068

1069
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1070 1071 1072 1073 1074
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1075

1076 1077
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1078
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1079 1080 1081 1082 1083 1084 1085
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1086
	}
1087

1088
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1103 1104 1105 1106 1107 1108
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1109 1110
	}

1111
	/* Pad to end of cacheline */
1112 1113
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1114

1115
	return batch;
1116 1117
}

1118
static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1119
{
1120
	*batch++ = MI_BATCH_BUFFER_END;
1121

1122
	return batch;
1123 1124
}

1125 1126 1127
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1128
{
1129 1130 1131
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1132

1133
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1134 1135
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1136

1137
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1138 1139 1140
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1141 1142
	}

1143 1144 1145 1146 1147
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1148
	return 0;
1149 1150 1151 1152

err:
	i915_gem_object_put(obj);
	return err;
1153 1154
}

1155
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1156
{
1157
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1158 1159
}

1160 1161
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1162
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1163
{
1164
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1165 1166 1167
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1168
	struct page *page;
1169 1170
	void *batch, *batch_ptr;
	unsigned int i;
1171
	int ret;
1172

1173 1174
	if (WARN_ON(engine->id != RCS || !engine->scratch))
		return -EINVAL;
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	switch (INTEL_GEN(engine->i915)) {
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
		wa_bb_fn[1] = gen9_init_perctx_bb;
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
		wa_bb_fn[1] = gen8_init_perctx_bb;
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1187
		return 0;
1188
	}
1189

1190
	ret = lrc_setup_wa_ctx(engine);
1191 1192 1193 1194 1195
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1196
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1197
	batch = batch_ptr = kmap_atomic(page);
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
		if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
			ret = -EINVAL;
			break;
		}
		batch_ptr = wa_bb_fn[i](engine, batch_ptr);
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1212 1213
	}

1214 1215
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1216 1217
	kunmap_atomic(batch);
	if (ret)
1218
		lrc_destroy_wa_ctx(engine);
1219 1220 1221 1222

	return ret;
}

1223
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1224
{
1225
	struct drm_i915_private *dev_priv = engine->i915;
1226 1227
	struct execlist_port *port = engine->execlist_port;
	unsigned int n;
1228
	bool submit;
1229 1230 1231 1232 1233
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1234

1235
	intel_engine_reset_breadcrumbs(engine);
1236
	intel_engine_init_hangcheck(engine);
1237

1238 1239
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1240
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1241 1242 1243
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1244

1245
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1246

1247
	/* After a GPU reset, we may have requests to replay */
1248
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1249

1250
	submit = false;
1251
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1252
		if (!port_isset(&port[n]))
1253 1254 1255 1256
			break;

		DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
				 engine->name, n,
1257
				 port_request(&port[n])->global_seqno);
1258 1259

		/* Discard the current inflight count */
1260 1261
		port_set(&port[n], port_request(&port[n]));
		submit = true;
1262
	}
1263

1264
	if (submit && !i915.enable_guc_submission)
1265 1266
		execlists_submit_ports(engine);

1267
	return 0;
1268 1269
}

1270
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1271
{
1272
	struct drm_i915_private *dev_priv = engine->i915;
1273 1274
	int ret;

1275
	ret = gen8_init_common_ring(engine);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1289
	return init_workarounds_ring(engine);
1290 1291
}

1292
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1293 1294 1295
{
	int ret;

1296
	ret = gen8_init_common_ring(engine);
1297 1298 1299
	if (ret)
		return ret;

1300
	return init_workarounds_ring(engine);
1301 1302
}

1303 1304 1305 1306
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct execlist_port *port = engine->execlist_port;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1321

1322 1323 1324 1325 1326 1327 1328
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1329
	ce = &request->ctx->engine[engine->id];
1330 1331 1332
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1333
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1334 1335
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1336
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1337

1338 1339 1340 1341
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

	/* Catch up with any missed context-switch interrupts */
1342 1343
	if (request->ctx != port_request(port)->ctx) {
		i915_gem_request_put(port_request(port));
1344 1345 1346 1347
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

1348
	GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1349 1350

	/* Reset WaIdleLiteRestore:bdw,skl as well */
1351 1352 1353
	request->tail =
		intel_ring_wrap(request->ring,
				request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1354
	assert_ring_tail_valid(request->ring, request->tail);
1355 1356
}

1357 1358 1359
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1360
	struct intel_engine_cs *engine = req->engine;
1361
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1362 1363
	u32 *cs;
	int i;
1364

1365 1366 1367
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1368

1369
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1370
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1371 1372
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1373 1374 1375 1376
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1377 1378
	}

1379 1380
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1381 1382 1383 1384

	return 0;
}

1385
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1386
			      u64 offset, u32 len,
1387
			      const unsigned int flags)
1388
{
1389
	u32 *cs;
1390 1391
	int ret;

1392 1393 1394 1395
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1396 1397
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1398
	if (req->ctx->ppgtt &&
1399 1400 1401 1402 1403 1404
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1405

1406
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1407 1408
	}

1409 1410 1411
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1412 1413

	/* FIXME(BDW): Address space and security selectors. */
1414 1415 1416
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1417 1418 1419 1420
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1421 1422 1423 1424

	return 0;
}

1425
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1426
{
1427
	struct drm_i915_private *dev_priv = engine->i915;
1428 1429 1430
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1431 1432
}

1433
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1434
{
1435
	struct drm_i915_private *dev_priv = engine->i915;
1436
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1437 1438
}

1439
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1440
{
1441
	u32 cmd, *cs;
1442

1443 1444 1445
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1446 1447 1448

	cmd = MI_FLUSH_DW + 1;

1449 1450 1451 1452 1453 1454 1455
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1456
	if (mode & EMIT_INVALIDATE) {
1457
		cmd |= MI_INVALIDATE_TLB;
1458
		if (request->engine->id == VCS)
1459
			cmd |= MI_INVALIDATE_BSD;
1460 1461
	}

1462 1463 1464 1465 1466
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1467 1468 1469 1470

	return 0;
}

1471
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1472
				  u32 mode)
1473
{
1474
	struct intel_engine_cs *engine = request->engine;
1475 1476
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1477
	bool vf_flush_wa = false, dc_flush_wa = false;
1478
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1479
	int len;
1480 1481 1482

	flags |= PIPE_CONTROL_CS_STALL;

1483
	if (mode & EMIT_FLUSH) {
1484 1485
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1486
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1487
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1488 1489
	}

1490
	if (mode & EMIT_INVALIDATE) {
1491 1492 1493 1494 1495 1496 1497 1498 1499
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1500 1501 1502 1503
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1504
		if (IS_GEN9(request->i915))
1505
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1506 1507 1508 1509

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1510
	}
1511

M
Mika Kuoppala 已提交
1512 1513 1514 1515 1516 1517 1518 1519
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1520 1521 1522
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1523

1524 1525
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1526

1527 1528 1529
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1530

1531
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1532

1533 1534
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1535

1536
	intel_ring_advance(request, cs);
1537 1538 1539 1540

	return 0;
}

1541 1542 1543 1544 1545
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1546
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1547
{
1548 1549 1550
	*cs++ = MI_NOOP;
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1551
}
1552

1553
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1554
{
1555 1556
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1557

1558 1559 1560 1561 1562 1563 1564
	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = request->global_seqno;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1565
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1566

1567
	gen8_emit_wa_tail(request, cs);
1568
}
1569

1570 1571
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1572
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1573
					u32 *cs)
1574
{
1575 1576 1577
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1578 1579 1580 1581
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1582 1583 1584 1585 1586 1587
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = intel_hws_seqno_address(request->engine);
	*cs++ = 0;
	*cs++ = request->global_seqno;
1588
	/* We're thrashing one dword of HWS. */
1589 1590 1591 1592
	*cs++ = 0;
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1593
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1594

1595
	gen8_emit_wa_tail(request, cs);
1596 1597
}

1598 1599
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1600
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1601 1602 1603
{
	int ret;

1604
	ret = intel_ring_workarounds_emit(req);
1605 1606 1607
	if (ret)
		return ret;

1608 1609 1610 1611 1612 1613 1614 1615
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1616
	return i915_gem_render_state_emit(req);
1617 1618
}

1619 1620
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1621
 * @engine: Engine Command Streamer.
1622
 */
1623
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1624
{
1625
	struct drm_i915_private *dev_priv;
1626

1627 1628 1629 1630 1631 1632 1633
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1634
	dev_priv = engine->i915;
1635

1636 1637
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1638
	}
1639

1640 1641
	if (engine->cleanup)
		engine->cleanup(engine);
1642

1643 1644 1645
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1646
	}
1647 1648

	intel_engine_cleanup_common(engine);
1649

1650
	lrc_destroy_wa_ctx(engine);
1651
	engine->i915 = NULL;
1652 1653
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1654 1655
}

1656
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1657
{
1658 1659
	engine->submit_request = execlists_submit_request;
	engine->schedule = execlists_schedule;
1660
	engine->irq_tasklet.func = intel_lrc_irq_handler;
1661 1662
}

1663
static void
1664
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1665 1666
{
	/* Default vfuncs which can be overriden by each engine. */
1667
	engine->init_hw = gen8_init_common_ring;
1668
	engine->reset_hw = reset_common_ring;
1669 1670 1671 1672

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1673 1674
	engine->request_alloc = execlists_request_alloc;

1675
	engine->emit_flush = gen8_emit_flush;
1676
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1677
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1678 1679

	engine->set_default_submission = execlists_set_default_submission;
1680

1681 1682
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1683
	engine->emit_bb_start = gen8_emit_bb_start;
1684 1685
}

1686
static inline void
1687
logical_ring_default_irqs(struct intel_engine_cs *engine)
1688
{
1689
	unsigned shift = engine->irq_shift;
1690 1691
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1692 1693
}

1694
static int
1695
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1696
{
1697
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1698
	void *hws;
1699 1700

	/* The HWSP is part of the default context object in LRC mode. */
1701
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1702 1703
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1704 1705

	engine->status_page.page_addr = hws + hws_offset;
1706
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1707
	engine->status_page.vma = vma;
1708 1709

	return 0;
1710 1711
}

1712 1713 1714 1715 1716 1717
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1718 1719
	intel_engine_setup_common(engine);

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1744 1745 1746 1747 1748 1749
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1750
	ret = intel_engine_init_common(engine);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1768
int logical_render_ring_init(struct intel_engine_cs *engine)
1769 1770 1771 1772
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1773 1774
	logical_ring_setup(engine);

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1785
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1786
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1787

1788
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1803
	return logical_ring_init(engine);
1804 1805
}

1806
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1807 1808 1809 1810
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1811 1812
}

1813
static u32
1814
make_rpcs(struct drm_i915_private *dev_priv)
1815 1816 1817 1818 1819 1820 1821
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1822
	if (INTEL_GEN(dev_priv) < 9)
1823 1824 1825 1826 1827 1828 1829 1830
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1831
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1832
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1833
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1834 1835 1836 1837
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1838
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1839
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1840
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1841 1842 1843 1844
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1845 1846
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1847
			GEN8_RPCS_EU_MIN_SHIFT;
1848
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1849 1850 1851 1852 1853 1854 1855
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1856
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1857 1858 1859
{
	u32 indirect_ctx_offset;

1860
	switch (INTEL_GEN(engine->i915)) {
1861
	default:
1862
		MISSING_CASE(INTEL_GEN(engine->i915));
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1877
static void execlists_init_reg_state(u32 *regs,
1878 1879 1880
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1881
{
1882 1883
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
1918

1919
		if (engine->wa_ctx.vma) {
1920
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1921
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1922

1923
			regs[CTX_RCS_INDIRECT_CTX + 1] =
1924 1925
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1926

1927
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1928
				intel_lr_indirect_ctx_offset(engine) << 6;
1929

1930
			regs[CTX_BB_PER_CTX_PTR + 1] =
1931
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1932
		}
1933
	}
1934 1935 1936 1937

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1938
	/* PDP values well be assigned later if needed */
1939 1940 1941 1942 1943 1944 1945 1946
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1947

1948
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1949 1950 1951 1952
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
1953
		ASSIGN_CTX_PML4(ppgtt, regs);
1954 1955
	}

1956 1957 1958 1959
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
1960
	}
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
1984
	ctx_obj->mm.dirty = true;
1985 1986 1987 1988 1989 1990

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
1991

1992
	i915_gem_object_unpin_map(ctx_obj);
1993 1994 1995 1996

	return 0;
}

1997
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1998
					    struct intel_engine_cs *engine)
1999
{
2000
	struct drm_i915_gem_object *ctx_obj;
2001
	struct intel_context *ce = &ctx->engine[engine->id];
2002
	struct i915_vma *vma;
2003
	uint32_t context_size;
2004
	struct intel_ring *ring;
2005 2006
	int ret;

2007
	WARN_ON(ce->state);
2008

2009
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2010

2011 2012 2013
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2014
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2015
	if (IS_ERR(ctx_obj)) {
2016
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2017
		return PTR_ERR(ctx_obj);
2018 2019
	}

2020
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2021 2022 2023 2024 2025
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2026
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2027 2028
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2029
		goto error_deref_obj;
2030 2031
	}

2032
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2033 2034
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2035
		goto error_ring_free;
2036 2037
	}

2038
	ce->ring = ring;
2039
	ce->state = vma;
2040
	ce->initialised |= engine->init_context == NULL;
2041 2042

	return 0;
2043

2044
error_ring_free:
2045
	intel_ring_free(ring);
2046
error_deref_obj:
2047
	i915_gem_object_put(ctx_obj);
2048
	return ret;
2049
}
2050

2051
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2052
{
2053
	struct intel_engine_cs *engine;
2054
	struct i915_gem_context *ctx;
2055
	enum intel_engine_id id;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2068
		for_each_engine(engine, dev_priv, id) {
2069 2070
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2071

2072 2073
			if (!ce->state)
				continue;
2074

2075 2076 2077 2078
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2079

2080 2081 2082
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2083

C
Chris Wilson 已提交
2084
			ce->state->obj->mm.dirty = true;
2085
			i915_gem_object_unpin_map(ce->state->obj);
2086

2087
			intel_ring_reset(ce->ring, 0);
2088
		}
2089 2090
	}
}