intel_lrc.c 80.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
enum {
	ADVANCED_CONTEXT = 0,
211
	LEGACY_32B_CONTEXT,
212 213 214
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
215 216 217 218
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
219 220 221 222 223 224 225
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
226 227
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
228

229 230
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
231 232
static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
					   struct drm_i915_gem_object *default_ctx_obj);
233

234

235 236 237 238 239 240
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
241
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
242 243 244
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
245 246
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
247 248
	WARN_ON(i915.enable_ppgtt == -1);

249 250 251 252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

255 256 257
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

258 259 260
	if (enable_execlists == 0)
		return 0;

261 262
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
263 264 265 266
		return 1;

	return 0;
}
267

268
static void
269
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
270
{
271
	struct drm_device *dev = engine->dev;
272

273
	if (IS_GEN8(dev) || IS_GEN9(dev))
274
		engine->idle_lite_restore_wa = ~0;
275

276
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
277
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
278
					(engine->id == VCS || engine->id == VCS2);
279

280 281
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
282 283
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
284 285
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
286 287 288 289 290 291 292

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
293 294
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
295 296
}

297
/**
298 299
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
300
 *
301 302
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
303
 *
304 305 306 307 308 309 310 311 312 313
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
314
 */
315 316
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
317
				   struct intel_engine_cs *engine)
318
{
319
	uint64_t lrca, desc;
320

321
	lrca = ctx->engine[engine->id].lrc_vma->node.start +
322
	       LRC_PPHWSP_PN * PAGE_SIZE;
323

324
	desc = engine->ctx_desc_template;			   /* bits  0-11 */
325 326
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
327

328
	ctx->engine[engine->id].lrc_desc = desc;
329 330
}

331
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
332
				     struct intel_engine_cs *engine)
333
{
334
	return ctx->engine[engine->id].lrc_desc;
335
}
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
354
			   struct intel_engine_cs *engine)
355
{
356
	return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
357 358
}

359 360
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
361
{
362

363
	struct intel_engine_cs *engine = rq0->engine;
364
	struct drm_device *dev = engine->dev;
365
	struct drm_i915_private *dev_priv = dev->dev_private;
366
	uint64_t desc[2];
367

368
	if (rq1) {
369
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
370 371 372 373
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
374

375
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
376
	rq0->elsp_submitted++;
377

378
	/* You must always write both descriptors in the order below. */
379 380
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
381

382
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
383
	/* The context is automatically loaded after the following */
384
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
385

386
	/* ELSP is a wo register, use another nearby reg for posting */
387
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
388 389
}

390 391 392 393 394 395 396 397 398 399
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
400
{
401
	struct intel_engine_cs *engine = rq->engine;
402
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
403
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
404

405
	reg_state[CTX_RING_TAIL+1] = rq->tail;
406

407 408 409 410 411 412 413
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
414 415
}

416 417
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
418
{
419
	execlists_update_context(rq0);
420

421
	if (rq1)
422
		execlists_update_context(rq1);
423

424
	execlists_elsp_write(rq0, rq1);
425 426
}

427
static void execlists_context_unqueue__locked(struct intel_engine_cs *engine)
428
{
429
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
430
	struct drm_i915_gem_request *cursor, *tmp;
431

432
	assert_spin_locked(&engine->execlist_lock);
433

434 435 436 437
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
438
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
439

440
	/* Try to read in pairs */
441
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
442 443 444
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
445
		} else if (req0->ctx == cursor->ctx) {
446 447
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
448
			cursor->elsp_submitted = req0->elsp_submitted;
449
			list_move_tail(&req0->execlist_link,
450
				       &engine->execlist_retired_req_list);
451 452 453
			req0 = cursor;
		} else {
			req1 = cursor;
454
			WARN_ON(req1->elsp_submitted);
455 456 457 458
			break;
		}
	}

459 460 461
	if (unlikely(!req0))
		return;

462
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
463
		/*
464 465 466 467 468 469
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
470
		 */
471
		struct intel_ringbuffer *ringbuf;
472

473
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
474 475
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
476 477
	}

478
	execlists_submit_requests(req0, req1);
479 480
}

481
static void execlists_context_unqueue(struct intel_engine_cs *engine)
482
{
483
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
484 485 486 487

	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);

488
	execlists_context_unqueue__locked(engine);
489 490 491 492 493 494

	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
}

static unsigned int
495
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
496
{
497
	struct drm_i915_gem_request *head_req;
498

499
	assert_spin_locked(&engine->execlist_lock);
500

501
	head_req = list_first_entry_or_null(&engine->execlist_queue,
502
					    struct drm_i915_gem_request,
503 504
					    execlist_link);

505 506
	if (!head_req)
		return 0;
507

508
	if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
509 510 511 512 513 514 515 516
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
517
		       &engine->execlist_retired_req_list);
518

519
	return 1;
520 521
}

522
static u32
523
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524
		   u32 *context_id)
B
Ben Widawsky 已提交
525
{
526
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
527
	u32 status;
B
Ben Widawsky 已提交
528

529 530
	read_pointer %= GEN8_CSB_ENTRIES;

531
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532 533 534

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
535

536
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 538 539
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
540 541
}

542
/**
543
 * intel_lrc_irq_handler() - handle Context Switch interrupts
544 545 546 547 548
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
549
void intel_lrc_irq_handler(struct intel_engine_cs *engine)
550
{
551
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
552
	u32 status_pointer;
553
	unsigned int read_pointer, write_pointer;
554
	u32 status = 0;
555
	u32 status_id;
556 557
	unsigned int submit_contexts = 0;

558
	spin_lock(&engine->execlist_lock);
559

560 561 562
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);

563
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
564

565
	read_pointer = engine->next_context_status_buffer;
566
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
567
	if (read_pointer > write_pointer)
568
		write_pointer += GEN8_CSB_ENTRIES;
569 570

	while (read_pointer < write_pointer) {
571 572
		status = get_context_status(engine, ++read_pointer,
				            &status_id);
B
Ben Widawsky 已提交
573

574
		if (unlikely(status & GEN8_CTX_STATUS_PREEMPTED)) {
575
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
576
				if (execlists_check_remove_request(engine, status_id))
577 578 579 580 581
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

582 583 584
		if (status & (GEN8_CTX_STATUS_ACTIVE_IDLE |
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
585 586
				execlists_check_remove_request(engine,
						               status_id);
587 588
	}

589
	if (submit_contexts) {
590
		if (!engine->disable_lite_restore_wa ||
591
		    (status & GEN8_CTX_STATUS_ACTIVE_IDLE))
592
			execlists_context_unqueue__locked(engine);
593
	}
594

595
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
596

597 598
	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
599
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
600
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
601
				    engine->next_context_status_buffer << 8));
602 603 604 605

	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);

606
	spin_unlock(&engine->execlist_lock);
607 608 609

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
610 611
}

612
static void execlists_context_queue(struct drm_i915_gem_request *request)
613
{
614
	struct intel_engine_cs *engine = request->engine;
615
	struct drm_i915_gem_request *cursor;
616
	int num_elements = 0;
617

618
	if (request->ctx != request->i915->kernel_context)
619
		intel_lr_context_pin(request->ctx, engine);
620

621 622
	i915_gem_request_reference(request);

623
	spin_lock_irq(&engine->execlist_lock);
624

625
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
626 627 628 629
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
630
		struct drm_i915_gem_request *tail_req;
631

632
		tail_req = list_last_entry(&engine->execlist_queue,
633
					   struct drm_i915_gem_request,
634 635
					   execlist_link);

636
		if (request->ctx == tail_req->ctx) {
637
			WARN(tail_req->elsp_submitted != 0,
638
				"More than 2 already-submitted reqs queued\n");
639
			list_move_tail(&tail_req->execlist_link,
640
				       &engine->execlist_retired_req_list);
641 642 643
		}
	}

644
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
645
	if (num_elements == 0)
646
		execlists_context_unqueue(engine);
647

648
	spin_unlock_irq(&engine->execlist_lock);
649 650
}

651
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
652
{
653
	struct intel_engine_cs *engine = req->engine;
654 655 656 657
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
658
	if (engine->gpu_caches_dirty)
659 660
		flush_domains = I915_GEM_GPU_DOMAINS;

661
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
662 663 664
	if (ret)
		return ret;

665
	engine->gpu_caches_dirty = false;
666 667 668
	return 0;
}

669
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
670 671
				 struct list_head *vmas)
{
672
	const unsigned other_rings = ~intel_engine_flag(req->engine);
673 674 675 676 677 678 679 680
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

681
		if (obj->active & other_rings) {
682
			ret = i915_gem_object_sync(obj, req->engine, &req);
683 684 685
			if (ret)
				return ret;
		}
686 687 688 689 690 691 692 693 694 695 696 697 698

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
699
	return logical_ring_invalidate_all_caches(req);
700 701
}

702
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
703
{
D
Dave Gordon 已提交
704
	int ret = 0;
705

706
	request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
707

708 709 710 711 712 713 714 715 716 717 718 719 720
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
721
	if (request->ctx != request->i915->kernel_context)
722
		ret = intel_lr_context_pin(request->ctx, request->engine);
D
Dave Gordon 已提交
723 724

	return ret;
725 726
}

727
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
728
				       int bytes)
729
{
730
	struct intel_ringbuffer *ringbuf = req->ringbuf;
731
	struct intel_engine_cs *engine = req->engine;
732
	struct drm_i915_gem_request *target;
733 734
	unsigned space;
	int ret;
735 736 737 738

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

739 740 741
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

742
	list_for_each_entry(target, &engine->request_list, list) {
743 744 745 746 747
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
748
		if (target->ringbuf != ringbuf)
749 750 751
			continue;

		/* Would completion of this request free enough space? */
752
		space = __intel_ring_space(target->postfix, ringbuf->tail,
753 754
					   ringbuf->size);
		if (space >= bytes)
755 756 757
			break;
	}

758
	if (WARN_ON(&target->list == &engine->request_list))
759 760
		return -ENOSPC;

761
	ret = i915_wait_request(target);
762 763 764
	if (ret)
		return ret;

765 766
	ringbuf->space = space;
	return 0;
767 768 769 770
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
771
 * @request: Request to advance the logical ringbuffer of.
772 773 774 775 776 777
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
778
static int
779
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
780
{
781
	struct intel_ringbuffer *ringbuf = request->ringbuf;
782
	struct drm_i915_private *dev_priv = request->i915;
783
	struct intel_engine_cs *engine = request->engine;
784

785 786
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
787

788 789 790 791 792 793 794 795 796
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
797

798
	if (intel_engine_stopped(engine))
799
		return 0;
800

801 802 803 804 805 806 807 808 809 810 811
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

812 813 814 815
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
816 817

	return 0;
818 819
}

820
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
821 822 823 824 825 826 827 828 829 830 831 832 833
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

834
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
835
{
836
	struct intel_ringbuffer *ringbuf = req->ringbuf;
837 838 839 840
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
841

842 843 844 845
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
866
		}
867 868
	}

869 870
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
871 872
		if (unlikely(ret))
			return ret;
873 874 875

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
876 877 878 879 880 881 882 883
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
884
 * @req: The request to start some new work for
885 886 887 888 889 890 891 892 893
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
894
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
895
{
896
	struct drm_i915_private *dev_priv;
897 898
	int ret;

899
	WARN_ON(req == NULL);
900
	dev_priv = req->i915;
901

902 903 904 905 906
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

907
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
908 909 910
	if (ret)
		return ret;

911
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
912 913 914
	return 0;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

930 931 932 933 934 935 936 937 938 939
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
940
 * @dispatch_flags: translated execbuffer call flags.
941 942 943 944 945 946
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
947
int intel_execlists_submission(struct i915_execbuffer_params *params,
948
			       struct drm_i915_gem_execbuffer2 *args,
949
			       struct list_head *vmas)
950
{
951
	struct drm_device       *dev = params->dev;
952
	struct intel_engine_cs *engine = params->engine;
953
	struct drm_i915_private *dev_priv = dev->dev_private;
954
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
955
	u64 exec_start;
956 957 958 959 960 961 962 963 964 965
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
966
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

991
	ret = execlists_move_to_gpu(params->request, vmas);
992 993 994
	if (ret)
		return ret;

995
	if (engine == &dev_priv->engine[RCS] &&
996
	    instp_mode != dev_priv->relative_constants_mode) {
997
		ret = intel_logical_ring_begin(params->request, 4);
998 999 1000 1001 1002
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1003
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
1004 1005 1006 1007 1008 1009
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

1010 1011 1012
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

1013
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1014 1015 1016
	if (ret)
		return ret;

1017
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1018

1019
	i915_gem_execbuffer_move_to_active(vmas, params->request);
1020
	i915_gem_execbuffer_retire_commands(params);
1021

1022 1023 1024
	return 0;
}

1025
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1026
{
1027
	struct drm_i915_gem_request *req, *tmp;
1028 1029
	struct list_head retired_list;

1030 1031
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
1032 1033 1034
		return;

	INIT_LIST_HEAD(&retired_list);
1035 1036 1037
	spin_lock_irq(&engine->execlist_lock);
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
	spin_unlock_irq(&engine->execlist_lock);
1038 1039

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1040 1041
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
1042
				ctx->engine[engine->id].state;
1043

1044
		if (ctx_obj && (ctx != req->i915->kernel_context))
1045
			intel_lr_context_unpin(ctx, engine);
1046

1047
		list_del(&req->execlist_link);
1048
		i915_gem_request_unreference(req);
1049 1050 1051
	}
}

1052
void intel_logical_ring_stop(struct intel_engine_cs *engine)
1053
{
1054
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
1055 1056
	int ret;

1057
	if (!intel_engine_initialized(engine))
1058 1059
		return;

1060
	ret = intel_engine_idle(engine);
1061
	if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1062
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1063
			  engine->name, ret);
1064 1065

	/* TODO: Is this correct with Execlists enabled? */
1066 1067 1068
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1069 1070
		return;
	}
1071
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1072 1073
}

1074
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1075
{
1076
	struct intel_engine_cs *engine = req->engine;
1077 1078
	int ret;

1079
	if (!engine->gpu_caches_dirty)
1080 1081
		return 0;

1082
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1083 1084 1085
	if (ret)
		return ret;

1086
	engine->gpu_caches_dirty = false;
1087 1088 1089
	return 0;
}

1090
static int intel_lr_context_do_pin(struct intel_context *ctx,
1091
				   struct intel_engine_cs *engine)
1092
{
1093
	struct drm_device *dev = engine->dev;
1094
	struct drm_i915_private *dev_priv = dev->dev_private;
1095 1096
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1097
	struct page *lrc_state_page;
1098
	uint32_t *lrc_reg_state;
1099
	int ret;
1100

1101
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1102

1103 1104 1105 1106
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1107

1108 1109 1110 1111 1112 1113
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1114
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1115 1116
	if (ret)
		goto unpin_ctx_obj;
1117

1118 1119
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
1120 1121
	lrc_reg_state = kmap(lrc_state_page);
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1122
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1123
	ctx_obj->dirty = true;
1124

1125 1126 1127
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1128

1129 1130 1131 1132
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1133 1134 1135 1136

	return ret;
}

1137 1138
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1139 1140 1141
{
	int ret = 0;

1142 1143
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1144 1145
		if (ret)
			goto reset_pin_count;
1146 1147

		i915_gem_context_reference(ctx);
1148 1149 1150
	}
	return ret;

1151
reset_pin_count:
1152
	ctx->engine[engine->id].pin_count = 0;
1153 1154 1155
	return ret;
}

1156 1157
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1158
{
1159
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1160

1161
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1162 1163 1164
	if (--ctx->engine[engine->id].pin_count == 0) {
		kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1165
		i915_gem_object_ggtt_unpin(ctx_obj);
1166 1167 1168
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1169 1170

		i915_gem_context_unreference(ctx);
1171 1172 1173
	}
}

1174
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1175 1176
{
	int ret, i;
1177
	struct intel_engine_cs *engine = req->engine;
1178
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1179
	struct drm_device *dev = engine->dev;
1180 1181 1182
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1183
	if (w->count == 0)
1184 1185
		return 0;

1186
	engine->gpu_caches_dirty = true;
1187
	ret = logical_ring_flush_all_caches(req);
1188 1189 1190
	if (ret)
		return ret;

1191
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1192 1193 1194 1195 1196
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1197
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1198 1199 1200 1201 1202 1203
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1204
	engine->gpu_caches_dirty = true;
1205
	ret = logical_ring_flush_all_caches(req);
1206 1207 1208 1209 1210 1211
	if (ret)
		return ret;

	return 0;
}

1212
#define wa_ctx_emit(batch, index, cmd)					\
1213
	do {								\
1214 1215
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1216 1217
			return -ENOSPC;					\
		}							\
1218
		batch[__index] = (cmd);					\
1219 1220
	} while (0)

V
Ville Syrjälä 已提交
1221
#define wa_ctx_emit_reg(batch, index, reg) \
1222
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1240
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1241 1242 1243 1244 1245
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1246 1247 1248 1249 1250 1251
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1252
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1253 1254
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1255
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1256
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1257
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1258
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1259 1260 1261
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1262
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1273
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1274
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1275
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1276
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1277
	wa_ctx_emit(batch, index, 0);
1278 1279 1280 1281

	return index;
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1320
 *
1321 1322 1323 1324 1325 1326 1327 1328
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1329
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1330 1331 1332 1333
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1334
	uint32_t scratch_addr;
1335 1336
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1337
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1338
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1339

1340
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1341 1342
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1343 1344 1345
		if (rc < 0)
			return rc;
		index = rc;
1346 1347
	}

1348 1349
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1350
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1361

1362 1363
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1364
		wa_ctx_emit(batch, index, MI_NOOP);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1382
 * @batch: page in which WA are loaded
1383 1384 1385 1386 1387 1388 1389 1390 1391
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1392
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1393 1394 1395 1396 1397 1398
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1399
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1400
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1401

1402
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1403 1404 1405 1406

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1407
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1408 1409 1410 1411
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1412
	int ret;
1413
	struct drm_device *dev = engine->dev;
1414 1415
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1416
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1417
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1418
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1419
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1420

1421
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1422
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1423 1424 1425 1426
	if (ret < 0)
		return ret;
	index = ret;

1427 1428 1429 1430 1431 1432 1433
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1434
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1435 1436 1437 1438
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1439
	struct drm_device *dev = engine->dev;
1440 1441
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1442
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1443
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1444
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1445
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1446
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1447 1448 1449 1450 1451
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1452
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1453
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1454
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1455 1456
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1457 1458 1459 1460 1461
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1462
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1463 1464 1465
{
	int ret;

1466 1467 1468
	engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
						   PAGE_ALIGN(size));
	if (!engine->wa_ctx.obj) {
1469 1470 1471 1472
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

1473
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1474 1475 1476
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1477
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1478 1479 1480 1481 1482 1483
		return ret;
	}

	return 0;
}

1484
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1485
{
1486 1487 1488 1489
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1490 1491 1492
	}
}

1493
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1494 1495 1496 1497 1498
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1499
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1500

1501
	WARN_ON(engine->id != RCS);
1502

1503
	/* update this when WA for higher Gen are added */
1504
	if (INTEL_INFO(engine->dev)->gen > 9) {
1505
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1506
			  INTEL_INFO(engine->dev)->gen);
1507
		return 0;
1508
	}
1509

1510
	/* some WA perform writes to scratch page, ensure it is valid */
1511 1512
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1513 1514 1515
		return -EINVAL;
	}

1516
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1517 1518 1519 1520 1521
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1522
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1523 1524 1525
	batch = kmap_atomic(page);
	offset = 0;

1526 1527
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1528 1529 1530 1531 1532 1533
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1534
		ret = gen8_init_perctx_bb(engine,
1535 1536 1537 1538 1539
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1540 1541
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1542 1543 1544 1545 1546 1547
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1548
		ret = gen9_init_perctx_bb(engine,
1549 1550 1551 1552 1553
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1554 1555 1556 1557 1558
	}

out:
	kunmap_atomic(batch);
	if (ret)
1559
		lrc_destroy_wa_ctx_obj(engine);
1560 1561 1562 1563

	return ret;
}

1564
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1565
{
1566
	struct drm_device *dev = engine->dev;
1567
	struct drm_i915_private *dev_priv = dev->dev_private;
1568
	unsigned int next_context_status_buffer_hw;
1569

1570 1571
	lrc_setup_hardware_status_page(engine,
				       dev_priv->kernel_context->engine[engine->id].state);
1572

1573 1574 1575
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1576

1577
	I915_WRITE(RING_MODE_GEN7(engine),
1578 1579
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1580
	POSTING_READ(RING_MODE_GEN7(engine));
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1591 1592
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1593
	 */
1594
	next_context_status_buffer_hw =
1595
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1596 1597 1598 1599 1600 1601 1602 1603 1604

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1605 1606
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1607

1608
	memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
1609 1610 1611 1612

	return 0;
}

1613
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1614
{
1615
	struct drm_device *dev = engine->dev;
1616 1617 1618
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1619
	ret = gen8_init_common_ring(engine);
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1633
	return init_workarounds_ring(engine);
1634 1635
}

1636
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1637 1638 1639
{
	int ret;

1640
	ret = gen8_init_common_ring(engine);
1641 1642 1643
	if (ret)
		return ret;

1644
	return init_workarounds_ring(engine);
1645 1646
}

1647 1648 1649
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1650
	struct intel_engine_cs *engine = req->engine;
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1663 1664
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1665
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1666 1667
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1668 1669 1670 1671 1672 1673 1674 1675 1676
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1677
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1678
			      u64 offset, unsigned dispatch_flags)
1679
{
1680
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1681
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1682 1683
	int ret;

1684 1685 1686 1687
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1688 1689
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1690
	if (req->ctx->ppgtt &&
1691
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1692 1693
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1694 1695 1696 1697
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1698

1699
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1700 1701
	}

1702
	ret = intel_logical_ring_begin(req, 4);
1703 1704 1705 1706
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1707 1708 1709 1710
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1711 1712 1713 1714 1715 1716 1717 1718
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1719
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1720
{
1721
	struct drm_device *dev = engine->dev;
1722 1723 1724
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1725
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726 1727 1728
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1729 1730 1731 1732
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1733 1734 1735 1736 1737 1738
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1739
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1740
{
1741
	struct drm_device *dev = engine->dev;
1742 1743 1744 1745
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1746 1747 1748
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1749 1750 1751 1752
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1753
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1754 1755 1756
			   u32 invalidate_domains,
			   u32 unused)
{
1757
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1758
	struct intel_engine_cs *engine = ringbuf->engine;
1759
	struct drm_device *dev = engine->dev;
1760 1761 1762 1763
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1764
	ret = intel_logical_ring_begin(request, 4);
1765 1766 1767 1768 1769
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1770 1771 1772 1773 1774 1775 1776 1777 1778
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1779
		if (engine == &dev_priv->engine[VCS])
1780
			cmd |= MI_INVALIDATE_BSD;
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1794
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1795 1796 1797
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1798
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1799
	struct intel_engine_cs *engine = ringbuf->engine;
1800
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1801
	bool vf_flush_wa = false;
1802 1803 1804 1805 1806 1807 1808 1809
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1810
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1811
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1824 1825 1826 1827
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1828
		if (IS_GEN9(engine->dev))
1829 1830
			vf_flush_wa = true;
	}
1831

1832
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1833 1834 1835
	if (ret)
		return ret;

1836 1837 1838 1839 1840 1841 1842 1843 1844
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1856
static u32 gen8_get_seqno(struct intel_engine_cs *engine, bool lazy_coherency)
1857
{
1858
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1859 1860
}

1861
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1862
{
1863
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1864 1865
}

1866 1867
static u32 bxt_a_get_seqno(struct intel_engine_cs *engine,
			   bool lazy_coherency)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
1882
		intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1883

1884
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1885 1886
}

1887
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1888
{
1889
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1890 1891

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1892
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1893 1894
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1907
static int gen8_emit_request(struct drm_i915_gem_request *request)
1908
{
1909
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1910 1911
	int ret;

1912
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1913 1914 1915
	if (ret)
		return ret;

1916 1917
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1918 1919

	intel_logical_ring_emit(ringbuf,
1920 1921
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1922
				hws_seqno_address(request->engine) |
1923
				MI_FLUSH_DW_USE_GTT);
1924
	intel_logical_ring_emit(ringbuf, 0);
1925
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1926 1927
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1928 1929
	return intel_logical_ring_advance_and_submit(request);
}
1930

1931 1932 1933 1934
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
	if (ret)
		return ret;

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1949
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1950 1951 1952 1953
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	return intel_logical_ring_advance_and_submit(request);
1954 1955
}

1956
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1957 1958 1959 1960
{
	struct render_state so;
	int ret;

1961
	ret = i915_gem_render_state_prepare(req->engine, &so);
1962 1963 1964 1965 1966 1967
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1968
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1969
				       I915_DISPATCH_SECURE);
1970 1971 1972
	if (ret)
		goto out;

1973
	ret = req->engine->emit_bb_start(req,
1974 1975 1976 1977 1978
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1979
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1980 1981 1982 1983 1984 1985

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1986
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1987 1988 1989
{
	int ret;

1990
	ret = intel_logical_ring_workarounds_emit(req);
1991 1992 1993
	if (ret)
		return ret;

1994 1995 1996 1997 1998 1999 2000 2001
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2002
	return intel_lr_context_render_state_init(req);
2003 2004
}

2005 2006 2007 2008 2009 2010
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
2011
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2012
{
2013
	struct drm_i915_private *dev_priv;
2014

2015
	if (!intel_engine_initialized(engine))
2016 2017
		return;

2018
	dev_priv = engine->dev->dev_private;
2019

2020 2021 2022
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2023
	}
2024

2025 2026
	if (engine->cleanup)
		engine->cleanup(engine);
2027

2028 2029
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
2030

2031 2032 2033
	if (engine->status_page.obj) {
		kunmap(sg_page(engine->status_page.obj->pages->sgl));
		engine->status_page.obj = NULL;
2034
	}
2035

2036 2037 2038
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
2039

2040 2041
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
2042 2043
}

2044 2045
static void
logical_ring_default_vfuncs(struct drm_device *dev,
2046
			    struct intel_engine_cs *engine)
2047 2048
{
	/* Default vfuncs which can be overriden by each engine. */
2049 2050 2051 2052 2053 2054
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
2055
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2056 2057
		engine->get_seqno = bxt_a_get_seqno;
		engine->set_seqno = bxt_a_set_seqno;
2058
	} else {
2059 2060
		engine->get_seqno = gen8_get_seqno;
		engine->set_seqno = gen8_set_seqno;
2061 2062 2063
	}
}

2064
static inline void
2065
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2066
{
2067 2068
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2069 2070
}

2071
static int
2072
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2073
{
2074
	struct intel_context *dctx = to_i915(dev)->kernel_context;
2075 2076 2077
	int ret;

	/* Intentionally left blank. */
2078
	engine->buffer = NULL;
2079

2080 2081 2082 2083 2084
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
2085

2086 2087 2088 2089
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
2090

2091
	logical_ring_init_platform_invariants(engine);
2092

2093
	ret = i915_cmd_parser_init_ring(engine);
2094
	if (ret)
2095
		goto error;
2096

2097
	ret = intel_lr_context_deferred_alloc(dctx, engine);
2098
	if (ret)
2099
		goto error;
2100 2101

	/* As this is the default context, always pin it */
2102
	ret = intel_lr_context_do_pin(dctx, engine);
2103 2104 2105
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
2106
			engine->name, ret);
2107
		goto error;
2108
	}
2109

2110 2111 2112
	return 0;

error:
2113
	intel_logical_ring_cleanup(engine);
2114
	return ret;
2115 2116 2117 2118 2119
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2120
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2121
	int ret;
2122

2123 2124 2125 2126 2127
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2128

2129
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2130
	if (HAS_L3_DPF(dev))
2131
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2132

2133
	logical_ring_default_vfuncs(dev, engine);
2134 2135

	/* Override some for render ring. */
2136
	if (INTEL_INFO(dev)->gen >= 9)
2137
		engine->init_hw = gen9_init_render_ring;
2138
	else
2139 2140 2141 2142 2143
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2144

2145
	engine->dev = dev;
2146

2147
	ret = intel_init_pipe_control(engine);
2148 2149 2150
	if (ret)
		return ret;

2151
	ret = intel_init_workaround_bb(engine);
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2162
	ret = logical_ring_init(dev, engine);
2163
	if (ret) {
2164
		lrc_destroy_wa_ctx_obj(engine);
2165
	}
2166 2167

	return ret;
2168 2169 2170 2171 2172
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2173
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2174

2175 2176 2177 2178 2179
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2180

2181 2182
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2183

2184
	return logical_ring_init(dev, engine);
2185 2186 2187 2188 2189
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2190
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2191

2192 2193 2194 2195 2196
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2197

2198 2199
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2200

2201
	return logical_ring_init(dev, engine);
2202 2203 2204 2205 2206
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2207
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2208

2209 2210 2211 2212 2213
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2214

2215 2216
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2217

2218
	return logical_ring_init(dev, engine);
2219 2220 2221 2222 2223
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2224
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2225

2226 2227 2228 2229 2230
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2231

2232 2233
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2234

2235
	return logical_ring_init(dev, engine);
2236 2237
}

2238 2239 2240 2241 2242
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2243
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2244 2245 2246 2247
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2284
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2285
cleanup_blt_ring:
2286
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2287
cleanup_bsd_ring:
2288
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2289
cleanup_render_ring:
2290
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2291 2292 2293 2294

	return ret;
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2338
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2339 2340 2341
{
	u32 indirect_ctx_offset;

2342
	switch (INTEL_INFO(engine->dev)->gen) {
2343
	default:
2344
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2359 2360
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2361 2362
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2363
{
2364
	struct drm_device *dev = engine->dev;
2365
	struct drm_i915_private *dev_priv = dev->dev_private;
2366
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2367 2368 2369 2370
	struct page *page;
	uint32_t *reg_state;
	int ret;

2371 2372 2373
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2390
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2391 2392 2393 2394 2395 2396 2397
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2398
	reg_state[CTX_LRI_HEADER_0] =
2399 2400 2401
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2402 2403
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2404 2405
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2406 2407 2408 2409
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2410 2411 2412
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2413 2414 2415 2416
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2417
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2418 2419 2420 2421 2422 2423
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2424
		       RING_BB_PPGTT);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2440 2441 2442 2443 2444 2445 2446
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2447
				intel_lr_indirect_ctx_offset(engine) << 6;
2448 2449 2450 2451 2452

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2453
	}
2454
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2455 2456
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2457
	/* PDP values well be assigned later if needed */
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2487
		execlists_update_context_pdps(ppgtt, reg_state);
2488 2489
	}

2490
	if (engine->id == RCS) {
2491
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2492 2493
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2494 2495 2496 2497 2498 2499 2500 2501
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2502 2503 2504 2505 2506 2507 2508 2509
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2510 2511
void intel_lr_context_free(struct intel_context *ctx)
{
2512 2513
	int i;

2514
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2515
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2516
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2517

D
Dave Gordon 已提交
2518 2519
		if (!ctx_obj)
			continue;
2520

D
Dave Gordon 已提交
2521 2522 2523
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2524
		}
D
Dave Gordon 已提交
2525 2526 2527 2528

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2529 2530 2531
	}
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2546
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2547 2548 2549
{
	int ret = 0;

2550
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2551

2552
	switch (engine->id) {
2553
	case RCS:
2554
		if (INTEL_INFO(engine->dev)->gen >= 9)
2555 2556 2557
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2568 2569
}

2570 2571
static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
					   struct drm_i915_gem_object *default_ctx_obj)
2572
{
2573
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
2574
	struct page *page;
2575

2576
	/* The HWSP is part of the default context object in LRC mode. */
2577
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2578 2579
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2580 2581
	engine->status_page.page_addr = kmap(page);
	engine->status_page.obj = default_ctx_obj;
2582

2583 2584 2585
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
			(u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2586 2587
}

2588
/**
2589
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2590 2591 2592 2593 2594 2595 2596 2597 2598
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2599
 * Return: non-zero on error.
2600
 */
2601 2602

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2603
				    struct intel_engine_cs *engine)
2604
{
2605
	struct drm_device *dev = engine->dev;
2606 2607
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2608
	struct intel_ringbuffer *ringbuf;
2609 2610
	int ret;

2611
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2612
	WARN_ON(ctx->engine[engine->id].state);
2613

2614
	context_size = round_up(intel_lr_context_size(engine), 4096);
2615

2616 2617 2618
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2619
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2620 2621 2622
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2623 2624
	}

2625
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2626 2627
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2628
		goto error_deref_obj;
2629 2630
	}

2631
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2632 2633
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2634
		goto error_ringbuf;
2635 2636
	}

2637 2638
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2639

2640
	if (ctx != ctx->i915->kernel_context && engine->init_context) {
2641
		struct drm_i915_gem_request *req;
2642

2643
		req = i915_gem_request_alloc(engine, ctx);
2644 2645 2646
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2647
			goto error_ringbuf;
2648 2649
		}

2650
		ret = engine->init_context(req);
2651 2652 2653 2654 2655 2656 2657
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2658
	}
2659
	return 0;
2660

2661 2662
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2663
error_deref_obj:
2664
	drm_gem_object_unreference(&ctx_obj->base);
2665 2666
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2667
	return ret;
2668
}
2669 2670 2671 2672 2673

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2674
	struct intel_engine_cs *engine;
2675 2676
	int i;

2677
	for_each_engine(engine, dev_priv, i) {
2678
		struct drm_i915_gem_object *ctx_obj =
2679
				ctx->engine[engine->id].state;
2680
		struct intel_ringbuffer *ringbuf =
2681
				ctx->engine[engine->id].ringbuf;
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2692
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}