intel_lrc.c 77.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164

165
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166
					    struct intel_engine_cs *engine);
167 168 169 170
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
	return rq->priotree.priority;
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
}

189
/**
190 191 192
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
193
 * @engine: Engine the descriptor will be used with
194
 *
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203 204 205 206
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222
				   struct intel_engine_cs *engine)
223
{
224
	struct intel_context *ce = &ctx->engine[engine->id];
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
253

254
	ce->lrc_desc = desc;
255 256
}

257 258 259 260
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
261
{
262
	struct intel_engine_execlists * const execlists = &engine->execlists;
263 264 265 266
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

267
	if (unlikely(execlists->no_priolist))
268 269 270 271 272
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
273
	parent = &execlists->queue.rb_node;
274 275
	while (*parent) {
		rb = *parent;
276
		p = to_priolist(rb);
277 278 279 280 281 282
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
283
			return p;
284 285 286 287
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
288
		p = &execlists->default_priolist;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
303
			execlists->no_priolist = true;
304 305 306 307 308
			goto find_priolist;
		}
	}

	p->priority = prio;
309
	INIT_LIST_HEAD(&p->requests);
310
	rb_link_node(&p->node, rb, parent);
311
	rb_insert_color(&p->node, &execlists->queue);
312 313

	if (first)
314
		execlists->first = &p->node;
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330 331 332 333 334 335

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344 345
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
			p = lookup_priolist(engine, &rq->priotree, last_prio);
346 347 348
		}

		list_add(&rq->priotree.link, &p->requests);
349 350 351
	}
}

352
void
353 354 355 356 357 358 359 360 361 362
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

363
static inline void
364
execlists_context_status_change(struct i915_request *rq, unsigned long status)
365
{
366 367 368 369 370 371
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
372

373 374
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
375 376
}

377
static inline void
378
execlists_context_schedule_in(struct i915_request *rq)
379 380
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
381
	intel_engine_context_in(rq->engine);
382 383 384
}

static inline void
385
execlists_context_schedule_out(struct i915_request *rq)
386
{
387
	intel_engine_context_out(rq->engine);
388 389 390
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

391 392 393 394 395 396 397 398 399
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

400
static u64 execlists_update_context(struct i915_request *rq)
401
{
402
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
403 404
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
405
	u32 *reg_state = ce->lrc_reg_state;
406

407
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
408

409 410 411 412 413
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
414
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
415
		execlists_update_context_pdps(ppgtt, reg_state);
416 417

	return ce->lrc_desc;
418 419
}

420
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
421
{
422 423 424 425 426 427 428
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
429 430
}

431
static void execlists_submit_ports(struct intel_engine_cs *engine)
432
{
433 434
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
435
	unsigned int n;
436

437 438 439 440 441 442 443
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
444
		struct i915_request *rq;
445 446 447 448 449 450 451
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
452
				execlists_context_schedule_in(rq);
453 454 455
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
456

457
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
458
				  engine->name, n,
459
				  port[n].context_id, count,
460 461
				  rq->global_seqno,
				  rq_prio(rq));
462 463 464 465
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
466

467
		write_desc(execlists, desc, n);
468
	}
469 470 471 472 473 474

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
475 476
}

477
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
478
{
479
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
480
		i915_gem_context_force_single_submission(ctx));
481
}
482

483 484 485 486 487
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
488

489 490
	if (ctx_single_port_submission(prev))
		return false;
491

492
	return true;
493 494
}

495
static void port_assign(struct execlist_port *port, struct i915_request *rq)
496 497 498 499
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
500
		i915_request_put(port_request(port));
501

502
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
503 504
}

C
Chris Wilson 已提交
505 506
static void inject_preempt_context(struct intel_engine_cs *engine)
{
507
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
508 509 510 511
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

512
	GEM_BUG_ON(execlists->preempt_complete_status !=
513
		   upper_32_bits(ce->lrc_desc));
514 515 516 517 518 519
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

520 521 522 523
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
524
	GEM_TRACE("%s\n", engine->name);
525 526 527 528 529 530 531 532
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
533

534
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
535
	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
536 537
}

538
static void execlists_dequeue(struct intel_engine_cs *engine)
539
{
540 541
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
542 543
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
544
	struct i915_request *last = port_request(port);
545
	struct rb_node *rb;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
567
	 */
568

569
	spin_lock_irq(&engine->timeline->lock);
570 571
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
572 573 574 575 576 577 578 579

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
580
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
581 582 583
		if (port_count(&port[0]) > 1)
			goto unlock;

584 585 586 587 588 589 590 591 592 593
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

594
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
595 596 597
			inject_preempt_context(engine);
			goto unlock;
		}
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
			goto unlock;

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
632 633
	}

634 635
	while (rb) {
		struct i915_priolist *p = to_priolist(rb);
636
		struct i915_request *rq, *rn;
637 638 639 640 641 642 643 644 645 646 647 648

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
649
			 */
650 651 652 653 654 655
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
656
				if (port == last_port) {
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
681 682

				GEM_BUG_ON(port_isset(port));
683
			}
684

685
			INIT_LIST_HEAD(&rq->priotree.link);
686 687
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
688 689
			last = rq;
			submit = true;
690
		}
691

692
		rb = rb_next(rb);
693
		rb_erase(&p->node, &execlists->queue);
694 695
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
696
			kmem_cache_free(engine->i915->priorities, p);
697
	}
698
done:
699
	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
700
	execlists->first = rb;
701
	if (submit)
702
		port_assign(port, last);
703 704 705 706

	/* We must always keep the beast fed if we have work piled up */
	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));

C
Chris Wilson 已提交
707
unlock:
708
	spin_unlock_irq(&engine->timeline->lock);
709

710 711
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
712
		execlists_submit_ports(engine);
713
	}
714 715 716

	GEM_BUG_ON(port_isset(execlists->port) &&
		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
717 718
}

719
void
720
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
721
{
722
	struct execlist_port *port = execlists->port;
723
	unsigned int num_ports = execlists_num_ports(execlists);
724

725
	while (num_ports-- && port_isset(port)) {
726
		struct i915_request *rq = port_request(port);
727

728
		GEM_BUG_ON(!execlists->active);
729
		intel_engine_context_out(rq->engine);
730 731 732 733 734 735

		execlists_context_status_change(rq,
						i915_request_completed(rq) ?
						INTEL_CONTEXT_SCHEDULE_OUT :
						INTEL_CONTEXT_SCHEDULE_PREEMPTED);

736
		i915_request_put(rq);
737

738 739 740
		memset(port, 0, sizeof(*port));
		port++;
	}
741 742
}

743 744
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
745
	struct intel_engine_execlists * const execlists = &engine->execlists;
746
	struct i915_request *rq, *rn;
747 748 749
	struct rb_node *rb;
	unsigned long flags;

750 751
	GEM_TRACE("%s\n", engine->name);

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	local_irq_save(flags);
767 768

	/* Cancel the requests on the HW and clear the ELSP tracker. */
769
	execlists_cancel_port_requests(execlists);
770

771 772
	spin_lock(&engine->timeline->lock);

773 774 775
	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
776
		if (!i915_request_completed(rq))
777 778 779 780
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
781
	rb = execlists->first;
782
	while (rb) {
783
		struct i915_priolist *p = to_priolist(rb);
784 785 786 787 788

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
789
			__i915_request_submit(rq);
790 791 792
		}

		rb = rb_next(rb);
793
		rb_erase(&p->node, &execlists->queue);
794 795 796 797 798 799 800
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

801
	execlists->queue_priority = INT_MIN;
802 803
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
804
	GEM_BUG_ON(port_isset(execlists->port));
805

806 807
	spin_unlock(&engine->timeline->lock);

808 809 810 811 812 813 814 815
	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

816 817 818
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

819
	local_irq_restore(flags);
820 821
}

822
/*
823 824 825
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
826
static void execlists_submission_tasklet(unsigned long data)
827
{
828 829
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
830
	struct execlist_port * const port = execlists->port;
831
	struct drm_i915_private *dev_priv = engine->i915;
832
	bool fw = false;
833

834 835 836 837 838 839 840 841 842
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

843 844 845 846 847
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
848 849 850
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
851
		unsigned int head, tail;
852

853
		if (unlikely(execlists->csb_use_mmio)) {
854 855
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
856
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
857 858
		}

859 860 861 862 863 864 865 866 867 868 869
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
870
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
871 872 873 874 875 876
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

877 878 879
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
880
			execlists->csb_head = head;
881 882 883 884 885
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

886
			head = execlists->csb_head;
887 888
			tail = READ_ONCE(buf[write_idx]);
		}
889
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
890
			  engine->name,
891 892
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
893

894
		while (head != tail) {
895
			struct i915_request *rq;
896
			unsigned int status;
897
			unsigned int count;
898 899 900

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

919
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
920
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
921
				  engine->name, head,
922 923
				  status, buf[2*head + 1],
				  execlists->active);
924 925 926 927 928 929 930 931 932

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

933 934 935
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

936 937 938
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

939
			if (status & GEN8_CTX_STATUS_COMPLETE &&
940
			    buf[2*head + 1] == execlists->preempt_complete_status) {
941 942
				GEM_TRACE("%s preempt-idle\n", engine->name);

943 944
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
945

946 947 948 949
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
950 951 952 953
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
954 955
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
956 957
				continue;

958 959 960
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

961
			rq = port_unpack(port, &count);
962
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
963
				  engine->name,
964
				  port->context_id, count,
965 966
				  rq ? rq->global_seqno : 0,
				  rq ? rq_prio(rq) : 0);
967 968 969 970

			/* Check the context/desc id for this event matches */
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

971 972
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
973
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
974 975
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
976
				GEM_BUG_ON(!i915_request_completed(rq));
977
				execlists_context_schedule_out(rq);
978 979
				trace_i915_request_out(rq);
				i915_request_put(rq);
980

981 982 983
				GEM_TRACE("%s completed ctx=%d\n",
					  engine->name, port->context_id);

984
				execlists_port_complete(execlists, port);
985 986
			} else {
				port_set(port, port_pack(rq, count));
987
			}
988

989 990
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
991
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
992 993 994
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
995
		}
996

997 998
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
999 1000 1001
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
1002 1003
	}

1004
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1005
		execlists_dequeue(engine);
1006

1007 1008
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1009 1010
}

1011 1012 1013
static void queue_request(struct intel_engine_cs *engine,
			  struct i915_priotree *pt,
			  int prio)
1014
{
1015 1016
	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
}
1017

1018 1019 1020 1021
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
	if (prio > engine->execlists.queue_priority) {
		engine->execlists.queue_priority = prio;
1022
		tasklet_hi_schedule(&engine->execlists.tasklet);
1023
	}
1024 1025
}

1026
static void execlists_submit_request(struct i915_request *request)
1027
{
1028
	struct intel_engine_cs *engine = request->engine;
1029
	unsigned long flags;
1030

1031 1032
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
1033

1034 1035
	queue_request(engine, &request->priotree, rq_prio(request));
	submit_queue(engine, rq_prio(request));
1036

1037
	GEM_BUG_ON(!engine->execlists.first);
1038 1039
	GEM_BUG_ON(list_empty(&request->priotree.link));

1040
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1041 1042
}

1043
static struct i915_request *pt_to_request(struct i915_priotree *pt)
1044
{
1045
	return container_of(pt, struct i915_request, priotree);
1046 1047
}

1048 1049 1050
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
1051
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1052 1053

	GEM_BUG_ON(!locked);
1054 1055

	if (engine != locked) {
1056 1057
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
1058 1059 1060 1061 1062
	}

	return engine;
}

1063
static void execlists_schedule(struct i915_request *request, int prio)
1064
{
1065
	struct intel_engine_cs *engine;
1066 1067 1068 1069
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

1070 1071
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1072
	if (i915_request_completed(request))
1073 1074
		return;

1075 1076 1077
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

1078 1079
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1080 1081 1082 1083

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

1084 1085
	/*
	 * Recursively bump all dependent priorities to match the new request.
1086 1087 1088 1089 1090
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
1091
	 *	queue_request(pt);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1102
	list_for_each_entry(dep, &dfs, dfs_link) {
1103 1104
		struct i915_priotree *pt = dep->signaler;

1105 1106
		/*
		 * Within an engine, there can be no cycle, but we may
1107 1108 1109 1110 1111
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1112 1113
			GEM_BUG_ON(p == dep); /* no cycles! */

1114
			if (i915_priotree_signaled(p->signaler))
1115 1116
				continue;

1117
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1118 1119
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1120
		}
1121 1122
	}

1123 1124
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1125 1126 1127 1128
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1129
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1130 1131 1132 1133 1134 1135 1136
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1137 1138 1139
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1152 1153
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
1154
			queue_request(engine, pt, prio);
1155
		}
1156
		submit_queue(engine, prio);
1157 1158
	}

1159
	spin_unlock_irq(&engine->timeline->lock);
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1185 1186 1187
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1188
{
1189
	struct intel_context *ce = &ctx->engine[engine->id];
1190
	void *vaddr;
1191
	int ret;
1192

1193
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1194

1195 1196
	if (likely(ce->pin_count++))
		goto out;
1197
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1198

1199 1200 1201
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1202
	GEM_BUG_ON(!ce->state);
1203

1204
	ret = __context_pin(ctx, ce->state);
1205
	if (ret)
1206
		goto err;
1207

1208
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1209 1210
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1211
		goto unpin_vma;
1212 1213
	}

1214
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1215
	if (ret)
1216
		goto unpin_map;
1217

1218
	intel_lr_context_descriptor_update(ctx, engine);
1219

1220 1221
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1222
		i915_ggtt_offset(ce->ring->vma);
1223

1224
	ce->state->obj->pin_global++;
1225
	i915_gem_context_get(ctx);
1226 1227
out:
	return ce->ring;
1228

1229
unpin_map:
1230 1231 1232
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1233
err:
1234
	ce->pin_count = 0;
1235
	return ERR_PTR(ret);
1236 1237
}

1238 1239
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1240
{
1241
	struct intel_context *ce = &ctx->engine[engine->id];
1242

1243
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1244
	GEM_BUG_ON(ce->pin_count == 0);
1245

1246
	if (--ce->pin_count)
1247
		return;
1248

1249
	intel_ring_unpin(ce->ring);
1250

1251
	ce->state->obj->pin_global--;
1252 1253
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1254

1255
	i915_gem_context_put(ctx);
1256 1257
}

1258
static int execlists_request_alloc(struct i915_request *request)
1259 1260 1261
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1262
	int ret;
1263

1264 1265
	GEM_BUG_ON(!ce->pin_count);

1266 1267 1268 1269 1270 1271
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1272 1273 1274
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1303 1304
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1305
{
1306 1307 1308 1309 1310 1311 1312 1313 1314
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1315 1316 1317 1318
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1319 1320 1321 1322 1323 1324 1325

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1326 1327
}

1328 1329 1330 1331 1332 1333
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1334
 *
1335 1336
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1337
 *
1338 1339 1340 1341
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1342
 */
1343
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1344
{
1345
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1346
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1347

1348
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1349 1350
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1351

1352 1353
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1354 1355 1356 1357 1358 1359 1360
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1361

C
Chris Wilson 已提交
1362 1363
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1364
	/* Pad to end of cacheline */
1365 1366
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1367 1368 1369 1370 1371 1372 1373

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1374
	return batch;
1375 1376
}

1377
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1378
{
C
Chris Wilson 已提交
1379 1380
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1381
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1382
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1383

1384
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1385 1386 1387 1388 1389
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1390

1391 1392
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1393
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1394 1395 1396 1397 1398 1399 1400
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1401
	}
1402

1403
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1418 1419 1420 1421 1422 1423
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1424 1425
	}

C
Chris Wilson 已提交
1426 1427
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1428
	/* Pad to end of cacheline */
1429 1430
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1431

1432
	return batch;
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1469 1470 1471
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1472
{
1473 1474 1475
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1476

1477
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1478 1479
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1480

1481
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1482 1483 1484
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1485 1486
	}

1487 1488 1489 1490 1491
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1492
	return 0;
1493 1494 1495 1496

err:
	i915_gem_object_put(obj);
	return err;
1497 1498
}

1499
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1500
{
1501
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1502 1503
}

1504 1505
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1506
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1507
{
1508
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1509 1510 1511
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1512
	struct page *page;
1513 1514
	void *batch, *batch_ptr;
	unsigned int i;
1515
	int ret;
1516

1517
	if (GEM_WARN_ON(engine->id != RCS))
1518
		return -EINVAL;
1519

1520
	switch (INTEL_GEN(engine->i915)) {
1521
	case 10:
1522 1523 1524
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1525 1526
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1527
		wa_bb_fn[1] = NULL;
1528 1529 1530
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1531
		wa_bb_fn[1] = NULL;
1532 1533 1534
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1535
		return 0;
1536
	}
1537

1538
	ret = lrc_setup_wa_ctx(engine);
1539 1540 1541 1542 1543
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1544
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1545
	batch = batch_ptr = kmap_atomic(page);
1546

1547 1548 1549 1550 1551 1552 1553
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1554 1555
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1556 1557 1558
			ret = -EINVAL;
			break;
		}
1559 1560
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1561
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1562 1563
	}

1564 1565
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1566 1567
	kunmap_atomic(batch);
	if (ret)
1568
		lrc_destroy_wa_ctx(engine);
1569 1570 1571 1572

	return ret;
}

1573 1574 1575 1576 1577 1578 1579 1580
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1581
static void enable_execlists(struct intel_engine_cs *engine)
1582
{
1583
	struct drm_i915_private *dev_priv = engine->i915;
1584 1585

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1602 1603 1604
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1605 1606 1607

	/* Following the reset, we need to reload the CSB read/write pointers */
	engine->execlists.csb_head = -1;
1608 1609 1610 1611
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1612
	struct intel_engine_execlists * const execlists = &engine->execlists;
1613 1614 1615 1616 1617
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1618

1619
	intel_engine_reset_breadcrumbs(engine);
1620
	intel_engine_init_hangcheck(engine);
1621

1622
	enable_execlists(engine);
1623

1624
	/* After a GPU reset, we may have requests to replay */
1625
	if (execlists->first)
1626
		tasklet_schedule(&execlists->tasklet);
1627

1628
	return 0;
1629 1630
}

1631
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1632
{
1633
	struct drm_i915_private *dev_priv = engine->i915;
1634 1635
	int ret;

1636
	ret = gen8_init_common_ring(engine);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1650
	return init_workarounds_ring(engine);
1651 1652
}

1653
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1654 1655 1656
{
	int ret;

1657
	ret = gen8_init_common_ring(engine);
1658 1659 1660
	if (ret)
		return ret;

1661
	return init_workarounds_ring(engine);
1662 1663
}

1664 1665 1666
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1667
	int i;
1668

1669 1670 1671 1672
	/* TODO: correctly reset irqs for gen11 */
	if (WARN_ON_ONCE(INTEL_GEN(engine->i915) >= 11))
		return;

1673 1674
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1675 1676 1677 1678 1679 1680 1681
	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
1682 1683
	for (i = 0; i < 2; i++) {
		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1684
			   engine->irq_keep_mask);
1685 1686 1687
		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
	}
	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1688
		   engine->irq_keep_mask);
1689

1690 1691 1692
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1693
static void reset_common_ring(struct intel_engine_cs *engine,
1694
			      struct i915_request *request)
1695
{
1696
	struct intel_engine_execlists * const execlists = &engine->execlists;
1697
	struct intel_context *ce;
1698
	unsigned long flags;
1699

1700 1701
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1702

1703 1704
	/* See execlists_cancel_requests() for the irq/spinlock split. */
	local_irq_save(flags);
1705

1706 1707
	reset_irq(engine);

1708 1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1717
	execlists_cancel_port_requests(execlists);
1718

1719
	/* Push back any incomplete requests for replay after the reset. */
1720
	spin_lock(&engine->timeline->lock);
1721
	__unwind_incomplete_requests(engine);
1722
	spin_unlock(&engine->timeline->lock);
1723

1724 1725 1726
	/* Mark all CS interrupts as complete */
	execlists->active = 0;

1727
	local_irq_restore(flags);
1728

1729 1730
	/*
	 * If the request was innocent, we leave the request in the ELSP
1731 1732 1733 1734 1735 1736 1737 1738 1739
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1740
	if (!request || request->fence.error != -EIO)
1741
		return;
1742

1743 1744
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1745 1746 1747 1748 1749 1750
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1751
	ce = &request->ctx->engine[engine->id];
1752 1753 1754
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1755
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1756 1757
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1758
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1759

1760 1761 1762
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1763
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1764
	unwind_wa_tail(request);
1765 1766
}

1767
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1768
{
1769 1770
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
	struct intel_engine_cs *engine = rq->engine;
1771
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1772 1773
	u32 *cs;
	int i;
1774

1775
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1776 1777
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1778

1779
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1780
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1781 1782
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1783 1784 1785 1786
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1787 1788
	}

1789
	*cs++ = MI_NOOP;
1790
	intel_ring_advance(rq, cs);
1791 1792 1793 1794

	return 0;
}

1795
static int gen8_emit_bb_start(struct i915_request *rq,
1796
			      u64 offset, u32 len,
1797
			      const unsigned int flags)
1798
{
1799
	u32 *cs;
1800 1801
	int ret;

1802 1803 1804 1805
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1806 1807
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1808 1809 1810 1811 1812
	if (rq->ctx->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
1813 1814
		if (ret)
			return ret;
1815

1816
		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1817 1818
	}

1819
	cs = intel_ring_begin(rq, 4);
1820 1821
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1840 1841
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1842
	/* FIXME(BDW): Address space and security selectors. */
1843 1844 1845
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1846 1847
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
1848
	intel_ring_advance(rq, cs);
1849 1850 1851 1852

	return 0;
}

1853
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1854
{
1855
	struct drm_i915_private *dev_priv = engine->i915;
1856 1857 1858
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1859 1860
}

1861
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1862
{
1863
	struct drm_i915_private *dev_priv = engine->i915;
1864
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1865 1866
}

1867
static int gen8_emit_flush(struct i915_request *request, u32 mode)
1868
{
1869
	u32 cmd, *cs;
1870

1871 1872 1873
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1874 1875 1876

	cmd = MI_FLUSH_DW + 1;

1877 1878 1879 1880 1881 1882 1883
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1884
	if (mode & EMIT_INVALIDATE) {
1885
		cmd |= MI_INVALIDATE_TLB;
1886
		if (request->engine->id == VCS)
1887
			cmd |= MI_INVALIDATE_BSD;
1888 1889
	}

1890 1891 1892 1893 1894
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1895 1896 1897 1898

	return 0;
}

1899
static int gen8_emit_flush_render(struct i915_request *request,
1900
				  u32 mode)
1901
{
1902
	struct intel_engine_cs *engine = request->engine;
1903 1904
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1905
	bool vf_flush_wa = false, dc_flush_wa = false;
1906
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1907
	int len;
1908 1909 1910

	flags |= PIPE_CONTROL_CS_STALL;

1911
	if (mode & EMIT_FLUSH) {
1912 1913
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1914
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1915
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1916 1917
	}

1918
	if (mode & EMIT_INVALIDATE) {
1919 1920 1921 1922 1923 1924 1925 1926 1927
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1928 1929 1930 1931
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1932
		if (IS_GEN9(request->i915))
1933
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1934 1935 1936 1937

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1938
	}
1939

M
Mika Kuoppala 已提交
1940 1941 1942 1943 1944 1945 1946 1947
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1948 1949 1950
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1951

1952 1953
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1954

1955 1956 1957
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1958

1959
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1960

1961 1962
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1963

1964
	intel_ring_advance(request, cs);
1965 1966 1967 1968

	return 0;
}

1969 1970 1971 1972 1973
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1974
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1975
{
C
Chris Wilson 已提交
1976 1977
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1978 1979
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1980
}
1981

1982
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
1983
{
1984 1985
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1986

1987 1988
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1989 1990 1991
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1992
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1993

1994
	gen8_emit_wa_tail(request, cs);
1995
}
1996 1997
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1998
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
1999
{
2000 2001 2002
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2003 2004
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2005 2006 2007
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
2008
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2009

2010
	gen8_emit_wa_tail(request, cs);
2011
}
2012
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2013

2014
static int gen8_init_rcs_context(struct i915_request *rq)
2015 2016 2017
{
	int ret;

2018
	ret = intel_ring_workarounds_emit(rq);
2019 2020 2021
	if (ret)
		return ret;

2022
	ret = intel_rcs_context_init_mocs(rq);
2023 2024 2025 2026 2027 2028 2029
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2030
	return i915_gem_render_state_emit(rq);
2031 2032
}

2033 2034
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2035
 * @engine: Engine Command Streamer.
2036
 */
2037
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2038
{
2039
	struct drm_i915_private *dev_priv;
2040

2041 2042 2043 2044
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2045 2046 2047
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2048

2049
	dev_priv = engine->i915;
2050

2051 2052
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2053
	}
2054

2055 2056
	if (engine->cleanup)
		engine->cleanup(engine);
2057

2058
	intel_engine_cleanup_common(engine);
2059

2060
	lrc_destroy_wa_ctx(engine);
2061

2062
	engine->i915 = NULL;
2063 2064
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2065 2066
}

2067
static void execlists_set_default_submission(struct intel_engine_cs *engine)
2068
{
2069
	engine->submit_request = execlists_submit_request;
2070
	engine->cancel_requests = execlists_cancel_requests;
2071
	engine->schedule = execlists_schedule;
2072
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2073 2074 2075

	engine->park = NULL;
	engine->unpark = NULL;
2076 2077

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2078 2079 2080 2081

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2082
	if (engine->i915->preempt_context)
2083
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2084 2085
}

2086
static void
2087
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2088 2089
{
	/* Default vfuncs which can be overriden by each engine. */
2090
	engine->init_hw = gen8_init_common_ring;
2091
	engine->reset_hw = reset_common_ring;
2092 2093 2094 2095

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

2096 2097
	engine->request_alloc = execlists_request_alloc;

2098
	engine->emit_flush = gen8_emit_flush;
2099
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2100
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2101 2102

	engine->set_default_submission = execlists_set_default_submission;
2103

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2115
	engine->emit_bb_start = gen8_emit_bb_start;
2116 2117
}

2118
static inline void
2119
logical_ring_default_irqs(struct intel_engine_cs *engine)
2120
{
2121
	unsigned shift = engine->irq_shift;
2122 2123
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2124 2125
}

2126 2127 2128 2129 2130 2131
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

2132 2133
	intel_engine_setup_common(engine);

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

2149
	engine->execlists.fw_domains = fw_domains;
2150

2151 2152
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2153 2154 2155 2156 2157

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2158
static int logical_ring_init(struct intel_engine_cs *engine)
2159 2160 2161
{
	int ret;

2162
	ret = intel_engine_init_common(engine);
2163 2164 2165
	if (ret)
		goto error;

2166 2167 2168 2169 2170 2171 2172 2173 2174
	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
		engine->execlists.ctrl_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
		engine->execlists.submit_reg = engine->i915->regs +
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2175

2176 2177 2178 2179 2180
	engine->execlists.preempt_complete_status = ~0u;
	if (engine->i915->preempt_context)
		engine->execlists.preempt_complete_status =
			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);

2181 2182 2183 2184 2185 2186 2187
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2188
int logical_render_ring_init(struct intel_engine_cs *engine)
2189 2190 2191 2192
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2193 2194
	logical_ring_setup(engine);

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2205 2206
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2207

2208
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2223
	return logical_ring_init(engine);
2224 2225
}

2226
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2227 2228 2229 2230
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2231 2232
}

2233
static u32
2234
make_rpcs(struct drm_i915_private *dev_priv)
2235 2236 2237 2238 2239 2240 2241
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2242
	if (INTEL_GEN(dev_priv) < 9)
2243 2244 2245 2246 2247 2248 2249 2250
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2251
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2252
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2253
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2254 2255 2256 2257
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2258
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2259
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2260
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2261 2262 2263 2264
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2265 2266
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2267
			GEN8_RPCS_EU_MIN_SHIFT;
2268
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2269 2270 2271 2272 2273 2274 2275
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2276
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2277 2278 2279
{
	u32 indirect_ctx_offset;

2280
	switch (INTEL_GEN(engine->i915)) {
2281
	default:
2282
		MISSING_CASE(INTEL_GEN(engine->i915));
2283
		/* fall through */
2284 2285 2286 2287
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2288 2289 2290 2291
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2305
static void execlists_init_reg_state(u32 *regs,
2306 2307 2308
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2309
{
2310 2311
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2326 2327
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2343 2344
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2345 2346 2347
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2348
		if (wa_ctx->indirect_ctx.size) {
2349
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2350

2351
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2352 2353
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2354

2355
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2356
				intel_lr_indirect_ctx_offset(engine) << 6;
2357 2358 2359 2360 2361
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2362

2363
			regs[CTX_BB_PER_CTX_PTR + 1] =
2364
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2365
		}
2366
	}
2367 2368 2369 2370

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2371
	/* PDP values well be assigned later if needed */
2372 2373 2374 2375 2376 2377 2378 2379
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2380

2381
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2382 2383 2384 2385
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2386
		ASSIGN_CTX_PML4(ppgtt, regs);
2387 2388
	}

2389 2390 2391 2392
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2393 2394

		i915_oa_init_reg_state(engine, ctx, regs);
2395
	}
2396 2397 2398 2399 2400 2401 2402 2403 2404
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2405
	u32 *regs;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2420
	ctx_obj->mm.dirty = true;
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2440 2441
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2442 2443 2444 2445 2446
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2447
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2448 2449 2450
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2451

2452
	i915_gem_object_unpin_map(ctx_obj);
2453 2454 2455 2456

	return 0;
}

2457
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2458
					    struct intel_engine_cs *engine)
2459
{
2460
	struct drm_i915_gem_object *ctx_obj;
2461
	struct intel_context *ce = &ctx->engine[engine->id];
2462
	struct i915_vma *vma;
2463
	uint32_t context_size;
2464
	struct intel_ring *ring;
2465 2466
	int ret;

2467 2468
	if (ce->state)
		return 0;
2469

2470
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2471

2472 2473 2474 2475 2476
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2477

2478
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2479
	if (IS_ERR(ctx_obj)) {
2480
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2481
		return PTR_ERR(ctx_obj);
2482 2483
	}

2484
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2485 2486 2487 2488 2489
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2490
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2491 2492
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2493
		goto error_deref_obj;
2494 2495
	}

2496
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2497 2498
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2499
		goto error_ring_free;
2500 2501
	}

2502
	ce->ring = ring;
2503
	ce->state = vma;
2504 2505

	return 0;
2506

2507
error_ring_free:
2508
	intel_ring_free(ring);
2509
error_deref_obj:
2510
	i915_gem_object_put(ctx_obj);
2511
	return ret;
2512
}
2513

2514
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2515
{
2516
	struct intel_engine_cs *engine;
2517
	struct i915_gem_context *ctx;
2518
	enum intel_engine_id id;
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2530
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2531
		for_each_engine(engine, dev_priv, id) {
2532 2533
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2534

2535 2536
			if (!ce->state)
				continue;
2537

2538 2539 2540 2541
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2542

2543 2544 2545
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2546

C
Chris Wilson 已提交
2547
			ce->state->obj->mm.dirty = true;
2548
			i915_gem_object_unpin_map(ce->state->obj);
2549

2550
			intel_ring_reset(ce->ring, 0);
2551
		}
2552 2553
	}
}