core.c 142.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
55 56
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
57
static LIST_HEAD(regulator_ena_gpio_list);
58
static LIST_HEAD(regulator_supply_alias_list);
59
static bool has_full_constraints;
60

61 62
static struct dentry *debugfs_root;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator *regulator);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
112 113 114
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
115 116 117
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
118
static void _regulator_put(struct regulator *regulator);
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
159
 * @ww_ctx:		w/w mutex acquire context
160 161 162 163 164 165 166
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
167 168
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
169
{
170 171 172 173 174 175 176
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
177
			rdev->ref_cnt++;
178 179 180 181 182 183 184
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
185
		}
186 187
	} else {
		lock = true;
188 189
	}

190 191 192 193 194 195 196 197
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
198 199
}

200 201 202 203 204 205 206 207 208 209 210
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
211
{
212
	regulator_lock_nested(rdev, NULL);
213
}
214
EXPORT_SYMBOL_GPL(regulator_lock);
215 216 217 218 219 220 221 222

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
223
void regulator_unlock(struct regulator_dev *rdev)
224
{
225
	mutex_lock(&regulator_nesting_mutex);
226

227 228 229
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
230
	}
231 232 233 234

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
235
}
236
EXPORT_SYMBOL_GPL(regulator_unlock);
237

238
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
239
{
240 241 242 243 244
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
245

246 247 248 249 250 251 252
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

253 254
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
255
{
256
	struct regulator_dev *c_rdev;
257
	int i;
258

259 260
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
261 262 263 264

		if (!c_rdev)
			continue;

265
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
266 267 268
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
269

270 271
		regulator_unlock(c_rdev);
	}
272 273
}

274 275 276 277
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
278
{
279
	struct regulator_dev *c_rdev;
280
	int i, err;
281

282 283
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284

285 286
		if (!c_rdev)
			continue;
287

288 289 290 291 292 293 294
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
295

296 297 298 299 300 301 302
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

303
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
304 305 306 307 308 309 310 311
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
312 313
		}
	}
314 315 316 317 318 319 320

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
321 322
}

323
/**
324 325 326 327 328 329
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
 * Unlock all regulators related with rdev by coupling or suppling.
330
 */
331 332
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
333
{
334 335
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
336 337 338
}

/**
339 340
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
341
 * @ww_ctx:			w/w mutex acquire context
342 343 344
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
 * all regulators related with rdev by coupling or suppling.
345
 */
346 347
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
348
{
349 350 351
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
352

353
	mutex_lock(&regulator_list_mutex);
354

355
	ww_acquire_init(ww_ctx, &regulator_ww_class);
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
			if (regnode)
				return regnode;
		} else {
			return regnode;
		}
	}
	return NULL;
}

410 411 412 413 414 415
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
416
 * returns the device node corresponding to the regulator if found, else
417 418 419 420 421 422 423 424 425 426 427 428 429
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
430 431 432 433
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

434 435
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
436 437 438 439 440
		return NULL;
	}
	return regnode;
}

441 442 443 444 445 446
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

447
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
448
		rdev_err(rdev, "voltage operation not allowed\n");
449 450 451 452 453 454 455 456
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

457 458
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
459
			 *min_uV, *max_uV);
460
		return -EINVAL;
461
	}
462 463 464 465

	return 0;
}

466 467 468 469 470 471
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

472 473 474 475
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
476 477
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
478 479
{
	struct regulator *regulator;
480
	struct regulator_voltage *voltage;
481 482

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
483
		voltage = &regulator->voltage[state];
484 485 486 487
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
488
		if (!voltage->min_uV && !voltage->max_uV)
489 490
			continue;

491 492 493 494
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
495 496
	}

497
	if (*min_uV > *max_uV) {
498 499
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
500
		return -EINVAL;
501
	}
502 503 504 505

	return 0;
}

506 507 508 509 510 511
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

512
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
513
		rdev_err(rdev, "current operation not allowed\n");
514 515 516 517 518 519 520 521
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

522 523
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
524
			 *min_uA, *max_uA);
525
		return -EINVAL;
526
	}
527 528 529 530 531

	return 0;
}

/* operating mode constraint check */
532 533
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
534
{
535
	switch (*mode) {
536 537 538 539 540 541
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
542
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
543 544 545
		return -EINVAL;
	}

546
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
547
		rdev_err(rdev, "mode operation not allowed\n");
548 549
		return -EPERM;
	}
550 551 552 553 554 555 556 557

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
558
	}
559 560

	return -EINVAL;
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

581 582 583
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
584
	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 586
	ssize_t ret;

587
	regulator_lock(rdev);
588
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
589
	regulator_unlock(rdev);
590 591 592

	return ret;
}
593
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
594 595 596 597

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
598
	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 600 601

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
602
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
603

604 605
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
606 607 608
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

609
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
610
}
611
static DEVICE_ATTR_RO(name);
612

613
static const char *regulator_opmode_to_str(int mode)
614 615 616
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
617
		return "fast";
618
	case REGULATOR_MODE_NORMAL:
619
		return "normal";
620
	case REGULATOR_MODE_IDLE:
621
		return "idle";
622
	case REGULATOR_MODE_STANDBY:
623
		return "standby";
624
	}
625 626 627 628 629 630
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
631 632
}

D
David Brownell 已提交
633 634
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
635
{
636
	struct regulator_dev *rdev = dev_get_drvdata(dev);
637

D
David Brownell 已提交
638 639
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
640
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
641 642 643

static ssize_t regulator_print_state(char *buf, int state)
{
644 645 646 647 648 649 650 651
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
652 653 654 655
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
656 657
	ssize_t ret;

658
	regulator_lock(rdev);
659
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
660
	regulator_unlock(rdev);
D
David Brownell 已提交
661

662
	return ret;
D
David Brownell 已提交
663
}
664
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
665

D
David Brownell 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
699 700 701
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
702 703 704
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
705 706 707 708 709 710 711 712
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

713 714 715
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
716
	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 718 719 720 721 722

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
723
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
724 725 726 727

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
728
	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 730 731 732 733 734

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
735
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
736 737 738 739

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
740
	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 742 743 744 745 746

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
747
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
748 749 750 751

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
752
	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 754 755 756 757 758

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
759
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
760 761 762 763

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
764
	struct regulator_dev *rdev = dev_get_drvdata(dev);
765 766 767
	struct regulator *regulator;
	int uA = 0;

768
	regulator_lock(rdev);
769 770 771 772
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
773
	regulator_unlock(rdev);
774 775
	return sprintf(buf, "%d\n", uA);
}
776
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
777

778 779
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
780
{
781
	struct regulator_dev *rdev = dev_get_drvdata(dev);
782 783
	return sprintf(buf, "%d\n", rdev->use_count);
}
784
static DEVICE_ATTR_RO(num_users);
785

786 787
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
788
{
789
	struct regulator_dev *rdev = dev_get_drvdata(dev);
790 791 792 793 794 795 796 797 798

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
799
static DEVICE_ATTR_RO(type);
800 801 802 803

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
804
	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 806 807

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
808 809
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
810 811 812 813

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
814
	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 816 817

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
818 819
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
820 821 822 823

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
824
	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 826 827

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
828 829
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
830 831 832 833

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
834
	struct regulator_dev *rdev = dev_get_drvdata(dev);
835

D
David Brownell 已提交
836 837
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
838
}
839 840
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
849
}
850 851
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
860
}
861 862
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
871
}
872 873
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
882
}
883 884
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
885 886 887 888

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
889
	struct regulator_dev *rdev = dev_get_drvdata(dev);
890

D
David Brownell 已提交
891 892
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
893
}
894 895 896
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
918

919 920
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
921
static int drms_uA_update(struct regulator_dev *rdev)
922 923 924 925 926
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

927
	lockdep_assert_held_once(&rdev->mutex.base);
928

929 930 931 932
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
933
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
934 935
		return 0;

936 937
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
938 939
		return 0;

940 941
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
942
		return -EINVAL;
943 944

	/* calc total requested load */
945 946 947 948
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
949

950 951
	current_uA += rdev->constraints->system_load;

952 953 954 955 956 957
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

976 977 978 979 980 981 982 983 984 985 986
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
987

988 989 990
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
991 992 993
	}

	return err;
994 995 996
}

static int suspend_set_state(struct regulator_dev *rdev,
997
				    suspend_state_t state)
998 999
{
	int ret = 0;
1000 1001 1002 1003
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
1004
		return 0;
1005 1006

	/* If we have no suspend mode configration don't set anything;
1007 1008
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
1009
	 */
1010 1011
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1012 1013
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1014
			rdev_warn(rdev, "No configuration\n");
1015 1016 1017
		return 0;
	}

1018 1019
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1020
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1021 1022
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1023
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1024 1025 1026
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1027
	if (ret < 0) {
1028
		rdev_err(rdev, "failed to enabled/disable\n");
1029 1030 1031 1032 1033 1034
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1035
			rdev_err(rdev, "failed to set voltage\n");
1036 1037 1038 1039 1040 1041 1042
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1043
			rdev_err(rdev, "failed to set mode\n");
1044 1045 1046 1047
			return ret;
		}
	}

1048
	return ret;
1049 1050 1051 1052 1053
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1054
	char buf[160] = "";
1055
	size_t len = sizeof(buf) - 1;
1056 1057
	int count = 0;
	int ret;
1058

1059
	if (constraints->min_uV && constraints->max_uV) {
1060
		if (constraints->min_uV == constraints->max_uV)
1061 1062
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1063
		else
1064 1065 1066 1067
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1068 1069 1070 1071 1072 1073
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1074 1075
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1076 1077
	}

1078
	if (constraints->uV_offset)
1079 1080
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1081

1082
	if (constraints->min_uA && constraints->max_uA) {
1083
		if (constraints->min_uA == constraints->max_uA)
1084 1085
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1086
		else
1087 1088 1089 1090
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1091 1092 1093 1094 1095 1096
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1097 1098
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1099
	}
1100

1101
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1102
		count += scnprintf(buf + count, len - count, "fast ");
1103
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1104
		count += scnprintf(buf + count, len - count, "normal ");
1105
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1106
		count += scnprintf(buf + count, len - count, "idle ");
1107
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1108
		count += scnprintf(buf + count, len - count, "standby");
1109

1110
	if (!count)
1111
		scnprintf(buf, len, "no parameters");
1112

1113
	rdev_dbg(rdev, "%s\n", buf);
1114 1115

	if ((constraints->min_uV != constraints->max_uV) &&
1116
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1117 1118
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1119 1120
}

1121
static int machine_constraints_voltage(struct regulator_dev *rdev,
1122
	struct regulation_constraints *constraints)
1123
{
1124
	const struct regulator_ops *ops = rdev->desc->ops;
1125 1126 1127 1128
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1129 1130
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1131
		int current_uV = _regulator_get_voltage(rdev);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1144
		if (current_uV < 0) {
1145 1146 1147
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1148 1149
			return current_uV;
		}
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1170 1171
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1172
			ret = _regulator_do_set_voltage(
1173
				rdev, target_min, target_max);
1174 1175
			if (ret < 0) {
				rdev_err(rdev,
1176 1177
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1178 1179
				return ret;
			}
1180
		}
1181
	}
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1194 1195
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1196
		if (count == 1 && !cmin) {
1197
			cmin = 1;
1198
			cmax = INT_MAX;
1199 1200
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1201 1202
		}

1203 1204
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1205
			return 0;
1206

1207
		/* else require explicit machine-level constraints */
1208
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1209
			rdev_err(rdev, "invalid voltage constraints\n");
1210
			return -EINVAL;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1230 1231 1232
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1233
			return -EINVAL;
1234 1235 1236 1237
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1238 1239
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1240 1241 1242
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1243 1244
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1245 1246 1247 1248
			constraints->max_uV = max_uV;
		}
	}

1249 1250 1251
	return 0;
}

1252 1253 1254
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1255
	const struct regulator_ops *ops = rdev->desc->ops;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1282 1283
static int _regulator_do_enable(struct regulator_dev *rdev);

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1296
	const struct regulation_constraints *constraints)
1297 1298
{
	int ret = 0;
1299
	const struct regulator_ops *ops = rdev->desc->ops;
1300

1301 1302 1303 1304 1305 1306
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1307 1308
	if (!rdev->constraints)
		return -ENOMEM;
1309

1310
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1311
	if (ret != 0)
1312
		return ret;
1313

1314
	ret = machine_constraints_current(rdev, rdev->constraints);
1315
	if (ret != 0)
1316
		return ret;
1317

1318 1319 1320 1321 1322
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1323
			return ret;
1324 1325 1326
		}
	}

1327
	/* do we need to setup our suspend state */
1328
	if (rdev->constraints->initial_state) {
1329
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1330
		if (ret < 0) {
1331
			rdev_err(rdev, "failed to set suspend state\n");
1332
			return ret;
1333 1334
		}
	}
1335

1336
	if (rdev->constraints->initial_mode) {
1337
		if (!ops->set_mode) {
1338
			rdev_err(rdev, "no set_mode operation\n");
1339
			return -EINVAL;
1340 1341
		}

1342
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1343
		if (ret < 0) {
1344
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1345
			return ret;
1346
		}
1347 1348 1349 1350 1351
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
1352
		regulator_lock(rdev);
1353
		drms_uA_update(rdev);
1354
		regulator_unlock(rdev);
1355 1356
	}

1357 1358
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1359 1360 1361
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1362
			return ret;
1363 1364 1365
		}
	}

S
Stephen Boyd 已提交
1366 1367 1368 1369
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1370
			return ret;
S
Stephen Boyd 已提交
1371 1372 1373
		}
	}

S
Stephen Boyd 已提交
1374 1375 1376 1377
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1378
			return ret;
S
Stephen Boyd 已提交
1379 1380 1381
		}
	}

1382 1383 1384 1385 1386
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1387
			return ret;
1388 1389 1390
		}
	}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1402 1403 1404 1405
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1406 1407 1408 1409 1410 1411 1412 1413 1414
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1415 1416 1417 1418 1419
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1420
		rdev->use_count++;
1421 1422
	}

1423
	print_constraints(rdev);
1424
	return 0;
1425 1426 1427 1428
}

/**
 * set_supply - set regulator supply regulator
1429 1430
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1431 1432 1433 1434 1435 1436
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1437
		      struct regulator_dev *supply_rdev)
1438 1439 1440
{
	int err;

1441 1442
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1443 1444 1445
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1446
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1447 1448
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1449
		return err;
1450
	}
1451
	supply_rdev->open_count++;
1452 1453

	return 0;
1454 1455 1456
}

/**
1457
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1458
 * @rdev:         regulator source
1459
 * @consumer_dev_name: dev_name() string for device supply applies to
1460
 * @supply:       symbolic name for supply
1461 1462 1463 1464 1465 1466 1467
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1468 1469
				      const char *consumer_dev_name,
				      const char *supply)
1470 1471
{
	struct regulator_map *node;
1472
	int has_dev;
1473 1474 1475 1476

	if (supply == NULL)
		return -EINVAL;

1477 1478 1479 1480 1481
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1482
	list_for_each_entry(node, &regulator_map_list, list) {
1483 1484 1485 1486
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1487
			continue;
1488 1489
		}

1490 1491 1492
		if (strcmp(node->supply, supply) != 0)
			continue;

1493 1494 1495 1496 1497 1498
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1499 1500 1501
		return -EBUSY;
	}

1502
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1503 1504 1505 1506 1507 1508
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1509 1510 1511 1512 1513 1514
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1515 1516
	}

1517 1518 1519 1520
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1521 1522 1523 1524 1525 1526 1527
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1528
			kfree(node->dev_name);
1529 1530 1531 1532 1533
			kfree(node);
		}
	}
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1583
#define REG_STR_SIZE	64
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1597
	regulator_lock(rdev);
1598 1599 1600 1601
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1602 1603
		regulator->dev = dev;

1604
		/* Add a link to the device sysfs entry */
1605 1606
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1607
		if (size >= REG_STR_SIZE)
1608
			goto overflow_err;
1609 1610 1611

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1612
			goto overflow_err;
1613

1614
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1615 1616
					buf);
		if (err) {
1617
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1618
				  dev->kobj.name, err);
1619
			/* non-fatal */
1620
		}
1621
	} else {
1622
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1623
		if (regulator->supply_name == NULL)
1624
			goto overflow_err;
1625 1626 1627 1628
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1629
	if (!regulator->debugfs) {
1630
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1631 1632 1633 1634
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1635
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1636
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1637
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1638 1639 1640
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1641
	}
1642

1643 1644 1645 1646 1647
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1648
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1649 1650 1651
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1652
	regulator_unlock(rdev);
1653 1654 1655 1656
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1657
	regulator_unlock(rdev);
1658 1659 1660
	return NULL;
}

1661 1662
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1663 1664
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1665
	if (!rdev->desc->ops->enable_time)
1666
		return rdev->desc->enable_time;
1667 1668 1669
	return rdev->desc->ops->enable_time(rdev);
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1718 1719 1720 1721 1722
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1723
 */
1724
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1725
						  const char *supply)
1726
{
1727
	struct regulator_dev *r = NULL;
1728
	struct device_node *node;
1729 1730
	struct regulator_map *map;
	const char *devname = NULL;
1731

1732 1733
	regulator_supply_alias(&dev, &supply);

1734 1735 1736
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1737
		if (node) {
1738 1739 1740
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1741

1742
			/*
1743 1744
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1745
			 */
1746
			return ERR_PTR(-EPROBE_DEFER);
1747
		}
1748 1749 1750
	}

	/* if not found, try doing it non-dt way */
1751 1752 1753
	if (dev)
		devname = dev_name(dev);

1754
	mutex_lock(&regulator_list_mutex);
1755 1756 1757 1758 1759 1760
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1761 1762
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1763 1764
			r = map->regulator;
			break;
1765
		}
1766
	}
1767
	mutex_unlock(&regulator_list_mutex);
1768

1769 1770 1771 1772
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1773 1774 1775 1776
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1777 1778
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1793 1794 1795 1796
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1797 1798 1799 1800
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1801 1802
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1803
			get_device(&r->dev);
1804 1805 1806 1807 1808
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1809 1810
	}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1824 1825
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1826 1827
	if (ret < 0) {
		put_device(&r->dev);
1828
		return ret;
1829
	}
1830 1831

	ret = set_supply(rdev, r);
1832 1833
	if (ret < 0) {
		put_device(&r->dev);
1834
		return ret;
1835
	}
1836

1837 1838 1839 1840 1841 1842
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1843
		ret = regulator_enable(rdev->supply);
1844
		if (ret < 0) {
1845
			_regulator_put(rdev->supply);
1846
			rdev->supply = NULL;
1847
			return ret;
1848
		}
1849 1850 1851 1852 1853
	}

	return 0;
}

1854
/* Internal regulator request function */
1855 1856
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1857 1858
{
	struct regulator_dev *rdev;
1859
	struct regulator *regulator;
1860
	const char *devname = dev ? dev_name(dev) : "deviceless";
1861
	int ret;
1862

1863 1864 1865 1866 1867
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1868
	if (id == NULL) {
1869
		pr_err("get() with no identifier\n");
1870
		return ERR_PTR(-EINVAL);
1871 1872
	}

1873
	rdev = regulator_dev_lookup(dev, id);
1874 1875
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1876

1877 1878 1879 1880 1881 1882
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1883

1884 1885 1886 1887 1888
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1903

1904 1905 1906 1907
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1908

1909 1910 1911
		default:
			return ERR_PTR(-ENODEV);
		}
1912 1913
	}

1914 1915
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1916 1917
		put_device(&rdev->dev);
		return regulator;
1918 1919
	}

1920
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1921
		regulator = ERR_PTR(-EBUSY);
1922 1923
		put_device(&rdev->dev);
		return regulator;
1924 1925
	}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1936 1937 1938
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1939 1940
		put_device(&rdev->dev);
		return regulator;
1941 1942
	}

1943
	if (!try_module_get(rdev->owner)) {
1944
		regulator = ERR_PTR(-EPROBE_DEFER);
1945 1946 1947
		put_device(&rdev->dev);
		return regulator;
	}
1948

1949 1950 1951
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1952
		put_device(&rdev->dev);
1953
		module_put(rdev->owner);
1954
		return regulator;
1955 1956
	}

1957
	rdev->open_count++;
1958
	if (get_type == EXCLUSIVE_GET) {
1959 1960 1961 1962 1963 1964 1965 1966 1967
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1968 1969
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1970 1971
	return regulator;
}
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1988
	return _regulator_get(dev, id, NORMAL_GET);
1989
}
1990 1991
EXPORT_SYMBOL_GPL(regulator_get);

1992 1993 1994 1995 1996 1997 1998
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1999 2000 2001
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2015
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2016 2017 2018
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2019 2020 2021 2022 2023 2024
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2025
 * or IS_ERR() condition containing errno.
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2041
	return _regulator_get(dev, id, OPTIONAL_GET);
2042 2043 2044
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2045
/* regulator_list_mutex lock held by regulator_put() */
2046
static void _regulator_put(struct regulator *regulator)
2047 2048 2049
{
	struct regulator_dev *rdev;

2050
	if (IS_ERR_OR_NULL(regulator))
2051 2052
		return;

2053 2054
	lockdep_assert_held_once(&regulator_list_mutex);

2055 2056 2057
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2058 2059
	rdev = regulator->rdev;

2060 2061
	debugfs_remove_recursive(regulator->debugfs);

2062
	if (regulator->dev) {
2063
		device_link_remove(regulator->dev, &rdev->dev);
2064 2065

		/* remove any sysfs entries */
2066
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2067 2068
	}

2069
	regulator_lock(rdev);
2070 2071
	list_del(&regulator->list);

2072 2073
	rdev->open_count--;
	rdev->exclusive = 0;
2074
	put_device(&rdev->dev);
2075
	regulator_unlock(rdev);
2076

2077
	kfree_const(regulator->supply_name);
2078 2079
	kfree(regulator);

2080
	module_put(rdev->owner);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2095 2096 2097 2098
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2176 2177
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2178
					 struct device *alias_dev,
2179
					 const char *const *alias_id,
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2217
					    const char *const *id,
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2228 2229 2230 2231 2232
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2233
	struct gpio_desc *gpiod;
2234 2235
	int ret;

2236 2237 2238 2239
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2240

2241
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2242
		if (pin->gpiod == gpiod) {
2243 2244 2245 2246 2247 2248
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2249 2250 2251 2252 2253 2254 2255
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2256 2257 2258

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2259 2260
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2261 2262 2263
		return -ENOMEM;
	}

2264
	pin->gpiod = gpiod;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2283
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2284 2285
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2286
				gpiod_put(pin->gpiod);
2287 2288
				list_del(&pin->list);
				kfree(pin);
2289 2290
				rdev->ena_pin = NULL;
				return;
2291 2292 2293 2294 2295 2296 2297
			} else {
				pin->request_count--;
			}
		}
	}
}

2298
/**
2299 2300 2301 2302
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2316 2317
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2328 2329
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2330 2331 2332 2333 2334 2335 2336
			pin->enable_count = 0;
		}
	}

	return 0;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2416
	if (rdev->ena_pin) {
2417 2418 2419 2420 2421 2422
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2423
	} else if (rdev->desc->ops->enable) {
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2436
	_regulator_enable_delay(delay);
2437 2438 2439 2440 2441 2442

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2502
/* locks held by regulator_enable() */
2503
static int _regulator_enable(struct regulator *regulator)
2504
{
2505
	struct regulator_dev *rdev = regulator->rdev;
2506
	int ret;
2507

2508 2509
	lockdep_assert_held_once(&rdev->mutex.base);

2510
	if (rdev->use_count == 0 && rdev->supply) {
2511
		ret = _regulator_enable(rdev->supply);
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2522

2523 2524 2525
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2526

2527 2528 2529 2530
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2531
			if (!regulator_ops_is_valid(rdev,
2532 2533
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2534
				goto err_consumer_disable;
2535
			}
2536

2537
			ret = _regulator_do_enable(rdev);
2538
			if (ret < 0)
2539
				goto err_consumer_disable;
2540

2541 2542
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2543
		} else if (ret < 0) {
2544
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2545
			goto err_consumer_disable;
2546
		}
2547
		/* Fallthrough on positive return values - already enabled */
2548 2549
	}

2550 2551 2552
	rdev->use_count++;

	return 0;
2553

2554 2555 2556
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2557
err_disable_supply:
2558
	if (rdev->use_count == 0 && rdev->supply)
2559
		_regulator_disable(rdev->supply);
2560 2561

	return ret;
2562 2563 2564 2565 2566 2567
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2568 2569 2570 2571
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2572
 * NOTE: the output value can be set by other drivers, boot loader or may be
2573
 * hardwired in the regulator.
2574 2575 2576
 */
int regulator_enable(struct regulator *regulator)
{
2577
	struct regulator_dev *rdev = regulator->rdev;
2578
	struct ww_acquire_ctx ww_ctx;
2579
	int ret;
2580

2581
	regulator_lock_dependent(rdev, &ww_ctx);
2582
	ret = _regulator_enable(regulator);
2583
	regulator_unlock_dependent(rdev, &ww_ctx);
2584

2585 2586 2587 2588
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2589 2590 2591 2592 2593 2594
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2595
	if (rdev->ena_pin) {
2596 2597 2598 2599 2600 2601
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2602 2603 2604 2605 2606 2607 2608

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2609 2610 2611 2612 2613 2614
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2615 2616 2617 2618 2619
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2620
/* locks held by regulator_disable() */
2621
static int _regulator_disable(struct regulator *regulator)
2622
{
2623
	struct regulator_dev *rdev = regulator->rdev;
2624 2625
	int ret = 0;

2626
	lockdep_assert_held_once(&rdev->mutex.base);
2627

D
David Brownell 已提交
2628
	if (WARN(rdev->use_count <= 0,
2629
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2630 2631
		return -EIO;

2632
	/* are we the last user and permitted to disable ? */
2633 2634
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2635 2636

		/* we are last user */
2637
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2638 2639 2640 2641 2642 2643
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2644
			ret = _regulator_do_disable(rdev);
2645
			if (ret < 0) {
2646
				rdev_err(rdev, "failed to disable\n");
2647 2648 2649
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2650 2651
				return ret;
			}
2652 2653
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2654 2655 2656 2657 2658 2659
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2660

2661 2662 2663
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2664 2665 2666
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2667
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2668
		ret = _regulator_disable(rdev->supply);
2669

2670 2671 2672 2673 2674 2675 2676
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2677 2678 2679
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2680
 *
2681
 * NOTE: this will only disable the regulator output if no other consumer
2682 2683
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2684 2685 2686
 */
int regulator_disable(struct regulator *regulator)
{
2687
	struct regulator_dev *rdev = regulator->rdev;
2688
	struct ww_acquire_ctx ww_ctx;
2689
	int ret;
2690

2691
	regulator_lock_dependent(rdev, &ww_ctx);
2692
	ret = _regulator_disable(regulator);
2693
	regulator_unlock_dependent(rdev, &ww_ctx);
2694

2695 2696 2697 2698 2699
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2700
static int _regulator_force_disable(struct regulator_dev *rdev)
2701 2702 2703
{
	int ret = 0;

2704
	lockdep_assert_held_once(&rdev->mutex.base);
2705

2706 2707 2708 2709 2710
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2711 2712 2713
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2714 2715
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2716
		return ret;
2717 2718
	}

2719 2720 2721 2722
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2736
	struct regulator_dev *rdev = regulator->rdev;
2737
	struct ww_acquire_ctx ww_ctx;
2738 2739
	int ret;

2740
	regulator_lock_dependent(rdev, &ww_ctx);
2741

2742
	ret = _regulator_force_disable(regulator->rdev);
2743

2744 2745
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2746 2747 2748 2749 2750 2751

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2752 2753
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2754

2755
	regulator_unlock_dependent(rdev, &ww_ctx);
2756

2757 2758 2759 2760
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2761 2762 2763 2764
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2765
	struct ww_acquire_ctx ww_ctx;
2766
	int count, i, ret;
2767 2768
	struct regulator *regulator;
	int total_count = 0;
2769

2770
	regulator_lock_dependent(rdev, &ww_ctx);
2771

2772 2773 2774 2775 2776 2777 2778 2779
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2794
	}
2795
	WARN_ON(!total_count);
2796

2797 2798 2799 2800
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2819 2820 2821
	if (!ms)
		return regulator_disable(regulator);

2822
	regulator_lock(rdev);
2823
	regulator->deferred_disables++;
2824 2825
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2826
	regulator_unlock(rdev);
2827

2828
	return 0;
2829 2830 2831
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2832 2833
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2834
	/* A GPIO control always takes precedence */
2835
	if (rdev->ena_pin)
2836 2837
		return rdev->ena_gpio_state;

2838
	/* If we don't know then assume that the regulator is always on */
2839
	if (!rdev->desc->ops->is_enabled)
2840
		return 1;
2841

2842
	return rdev->desc->ops->is_enabled(rdev);
2843 2844
}

2845 2846
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2858
			regulator_lock(rdev);
2859 2860
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2861
			regulator_unlock(rdev);
2862
	} else if (rdev->is_switch && rdev->supply) {
2863 2864
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2879 2880 2881 2882
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2883 2884 2885 2886 2887 2888 2889
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2890 2891 2892
 */
int regulator_is_enabled(struct regulator *regulator)
{
2893 2894
	int ret;

2895 2896 2897
	if (regulator->always_on)
		return 1;

2898
	regulator_lock(regulator->rdev);
2899
	ret = _regulator_is_enabled(regulator->rdev);
2900
	regulator_unlock(regulator->rdev);
2901 2902

	return ret;
2903 2904 2905
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2918 2919 2920
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2921
	if (!rdev->is_switch || !rdev->supply)
2922 2923 2924
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2935
 * zero if this selector code can't be used on this system, or a
2936 2937 2938 2939
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2940
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2941 2942 2943
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2976 2977
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2978 2979 2980 2981

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2982 2983
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3003 3004
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3042
	struct regulator_dev *rdev = regulator->rdev;
3043 3044
	int i, voltages, ret;

3045
	/* If we can't change voltage check the current voltage */
3046
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3047 3048
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3049
			return min_uV <= ret && ret <= max_uV;
3050 3051 3052 3053
		else
			return ret;
	}

3054 3055 3056 3057 3058
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3073
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3074

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3089 3090 3091 3092 3093
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3094 3095 3096
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3146 3147 3148 3149 3150 3151 3152 3153 3154
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3155 3156
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3157 3158 3159 3160 3161 3162
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3163 3164

	if (ramp_delay == 0) {
3165
		rdev_dbg(rdev, "ramp_delay not set\n");
3166 3167 3168 3169 3170 3171
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3172 3173 3174 3175
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3176
	int delay = 0;
3177
	int best_val = 0;
3178
	unsigned int selector;
3179
	int old_selector = -1;
3180
	const struct regulator_ops *ops = rdev->desc->ops;
3181
	int old_uV = _regulator_get_voltage(rdev);
3182 3183 3184

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3185 3186 3187
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3188 3189 3190 3191
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3192
	if (_regulator_is_enabled(rdev) &&
3193 3194
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3195 3196 3197 3198
		if (old_selector < 0)
			return old_selector;
	}

3199
	if (ops->set_voltage) {
3200 3201
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3202 3203

		if (ret >= 0) {
3204 3205 3206
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3207 3208 3209 3210
			else
				best_val = _regulator_get_voltage(rdev);
		}

3211
	} else if (ops->set_voltage_sel) {
3212
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3213
		if (ret >= 0) {
3214
			best_val = ops->list_voltage(rdev, ret);
3215 3216
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3217 3218 3219
				if (old_selector == selector)
					ret = 0;
				else
3220 3221
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3222 3223 3224
			} else {
				ret = -EINVAL;
			}
3225
		}
3226 3227 3228
	} else {
		ret = -EINVAL;
	}
3229

3230 3231
	if (ret)
		goto out;
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3250
		}
3251
	}
3252

3253 3254 3255
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3256 3257
	}

3258 3259 3260 3261 3262 3263
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3264 3265
	}

3266
	if (best_val >= 0) {
3267 3268
		unsigned long data = best_val;

3269
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3270 3271
				     (void *)data);
	}
3272

3273
out:
3274
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3275 3276 3277 3278

	return ret;
}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3305
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3306 3307
					  int min_uV, int max_uV,
					  suspend_state_t state)
3308 3309
{
	struct regulator_dev *rdev = regulator->rdev;
3310
	struct regulator_voltage *voltage = &regulator->voltage[state];
3311
	int ret = 0;
3312
	int old_min_uV, old_max_uV;
3313
	int current_uV;
3314

3315 3316 3317 3318
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3319
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3320 3321
		goto out;

3322
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3323
	 * return successfully even though the regulator does not support
3324 3325
	 * changing the voltage.
	 */
3326
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3327 3328
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3329 3330
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3331 3332 3333 3334
			goto out;
		}
	}

3335
	/* sanity check */
3336 3337
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3338 3339 3340 3341 3342 3343 3344 3345
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3346

3347
	/* restore original values in case of error */
3348 3349 3350 3351
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3352

3353 3354
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3355
	if (ret < 0)
3356
		goto out2;
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3374 3375 3376
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3377 3378
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3379 3380 3381 3382 3383 3384
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3385
			goto out;
3386 3387
		}

M
Mark Brown 已提交
3388
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3389 3390
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3391
			goto out;
3392 3393 3394 3395 3396 3397 3398
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3399
			goto out;
3400 3401 3402 3403 3404 3405 3406
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3407
				best_supply_uV, INT_MAX, state);
3408 3409 3410
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3411
			goto out;
3412 3413 3414
		}
	}

3415 3416 3417 3418 3419
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3420
	if (ret < 0)
3421
		goto out;
3422

3423 3424
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3425
				best_supply_uV, INT_MAX, state);
3426 3427 3428 3429 3430 3431 3432
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3433
out:
3434
	return ret;
3435 3436
}

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3514
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3690

3691 3692
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3693

3694 3695 3696 3697 3698 3699 3700 3701
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
3702 3703 3704
	return ret;
}

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3725 3726
	struct ww_acquire_ctx ww_ctx;
	int ret;
3727

3728
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3729

3730 3731
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3732

3733
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3734

3735 3736 3737 3738
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3751
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3805 3806
	struct ww_acquire_ctx ww_ctx;
	int ret;
3807 3808 3809 3810 3811

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3812
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3813 3814 3815 3816

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3817
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3818 3819 3820 3821 3822

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3836 3837
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3838 3839 3840 3841 3842
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3843 3844 3845 3846 3847
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3848
	/* Currently requires operations to do this */
3849
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3872
/**
3873 3874
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3875 3876 3877 3878 3879 3880
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3881
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3882
 * set_voltage_time_sel() operation.
3883 3884 3885 3886 3887
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3888
	int old_volt, new_volt;
3889

3890 3891 3892
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3893

3894 3895 3896
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3897 3898 3899 3900 3901
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3902
}
3903
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3904

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3916
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3917 3918
	int ret, min_uV, max_uV;

3919
	regulator_lock(rdev);
3920 3921 3922 3923 3924 3925 3926 3927

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3928
	if (!voltage->min_uV && !voltage->max_uV) {
3929 3930 3931 3932
		ret = -EINVAL;
		goto out;
	}

3933 3934
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3935 3936 3937 3938 3939 3940

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3941
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3942 3943 3944 3945 3946 3947
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3948
	regulator_unlock(rdev);
3949 3950 3951 3952
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3953 3954
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3955
	int sel, ret;
3956 3957 3958 3959 3960 3961 3962 3963
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3964 3965 3966 3967 3968
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3969 3970 3971 3972

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3973 3974 3975 3976 3977

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3978
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3979
	} else if (rdev->desc->ops->get_voltage) {
3980
		ret = rdev->desc->ops->get_voltage(rdev);
3981 3982
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3983 3984
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3985
	} else if (rdev->supply) {
3986
		ret = _regulator_get_voltage(rdev->supply->rdev);
3987
	} else {
3988
		return -EINVAL;
3989
	}
3990

3991 3992
	if (ret < 0)
		return ret;
3993
	return ret - rdev->constraints->uV_offset;
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4007
	struct ww_acquire_ctx ww_ctx;
4008 4009
	int ret;

4010
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4011
	ret = _regulator_get_voltage(regulator->rdev);
4012
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4013 4014 4015 4016 4017 4018 4019 4020

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4021
 * @min_uA: Minimum supported current in uA
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4040
	regulator_lock(rdev);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4055
	regulator_unlock(rdev);
4056 4057 4058 4059
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4060 4061 4062 4063 4064 4065 4066 4067 4068
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4069 4070 4071 4072
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4073
	regulator_lock(rdev);
4074
	ret = _regulator_get_current_limit_unlocked(rdev);
4075
	regulator_unlock(rdev);
4076

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4110
	int regulator_curr_mode;
4111

4112
	regulator_lock(rdev);
4113 4114 4115 4116 4117 4118 4119

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4120 4121 4122 4123 4124 4125 4126 4127 4128
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4129
	/* constraints check */
4130
	ret = regulator_mode_constrain(rdev, &mode);
4131 4132 4133 4134 4135
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4136
	regulator_unlock(rdev);
4137 4138 4139 4140
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4141 4142 4143 4144 4145 4146 4147 4148 4149
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4150 4151 4152 4153
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4154
	regulator_lock(rdev);
4155
	ret = _regulator_get_mode_unlocked(rdev);
4156
	regulator_unlock(rdev);
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4173 4174 4175 4176 4177
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4178
	regulator_lock(rdev);
4179 4180 4181 4182 4183 4184 4185 4186 4187

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4188
	regulator_unlock(rdev);
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4206
/**
4207
 * regulator_set_load - set regulator load
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4230 4231 4232 4233 4234 4235 4236 4237
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4238
 * On error a negative errno is returned.
4239
 */
4240
int regulator_set_load(struct regulator *regulator, int uA_load)
4241 4242
{
	struct regulator_dev *rdev = regulator->rdev;
4243 4244
	int old_uA_load;
	int ret = 0;
4245

4246
	regulator_lock(rdev);
4247
	old_uA_load = regulator->uA_load;
4248
	regulator->uA_load = uA_load;
4249 4250 4251 4252 4253
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4254
	regulator_unlock(rdev);
4255

4256 4257
	return ret;
}
4258
EXPORT_SYMBOL_GPL(regulator_set_load);
4259

4260 4261 4262 4263
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4264
 * @enable: enable or disable bypass mode
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4279
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4280 4281
		return 0;

4282
	regulator_lock(rdev);
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4306
	regulator_unlock(rdev);
4307 4308 4309 4310 4311

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4312 4313 4314
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4315
 * @nb: notifier block
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4330
 * @nb: notifier block
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4342 4343 4344
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4345
static int _notifier_call_chain(struct regulator_dev *rdev,
4346 4347 4348
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4349
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4376 4377
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4378 4379
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4380 4381
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4382 4383 4384 4385 4386 4387 4388 4389
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4390
	while (--i >= 0)
4391 4392 4393 4394 4395 4396
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4397 4398 4399 4400 4401 4402 4403
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4419
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4420
	int i;
4421
	int ret = 0;
4422

4423
	for (i = 0; i < num_consumers; i++) {
4424 4425
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4426
	}
4427 4428 4429 4430

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4431
	for (i = 0; i < num_consumers; i++) {
4432 4433
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4434
			goto err;
4435
		}
4436 4437 4438 4439 4440
	}

	return 0;

err:
4441 4442 4443 4444 4445 4446 4447
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4461 4462
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4463 4464 4465 4466 4467 4468
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4469
	int ret, r;
4470

4471
	for (i = num_consumers - 1; i >= 0; --i) {
4472 4473 4474 4475 4476 4477 4478 4479
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4480
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4481 4482 4483
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4484
			pr_err("Failed to re-enable %s: %d\n",
4485 4486
			       consumers[i].supply, r);
	}
4487 4488 4489 4490 4491

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4510
	int ret = 0;
4511

4512
	for (i = 0; i < num_consumers; i++) {
4513 4514 4515
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4516 4517
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4518 4519 4520 4521 4522 4523 4524
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4548
 * @rdev: regulator source
4549
 * @event: notifier block
4550
 * @data: callback-specific data.
4551 4552 4553
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4554
 * Note lock must be held by caller.
4555 4556 4557 4558
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4559
	lockdep_assert_held_once(&rdev->mutex.base);
4560

4561 4562 4563 4564 4565 4566
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4583
	case REGULATOR_MODE_STANDBY:
4584 4585
		return REGULATOR_STATUS_STANDBY;
	default:
4586
		return REGULATOR_STATUS_UNDEFINED;
4587 4588 4589 4590
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4618 4619 4620 4621
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4622 4623
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4624
{
4625
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4626
	struct regulator_dev *rdev = dev_to_rdev(dev);
4627
	const struct regulator_ops *ops = rdev->desc->ops;
4628 4629 4630 4631 4632 4633 4634
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4635 4636

	/* some attributes need specific methods to be displayed */
4637 4638 4639 4640 4641 4642 4643
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4644
	}
4645

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4661
	/* constraints need specific supporting methods */
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4697

4698 4699 4700
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4701 4702 4703

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4704
	kfree(rdev);
4705 4706
}

4707 4708
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4721
	if (!rdev->debugfs) {
4722 4723 4724 4725 4726 4727 4728 4729
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4730 4731
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4732 4733
}

4734 4735
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4736 4737 4738 4739 4740 4741
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4742 4743
}

4744
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4758 4759
		if (!c_rdev)
			continue;
4760

4761
		regulator_lock(c_rdev);
4762

4763 4764
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4765

4766
		regulator_unlock(c_rdev);
4767

4768 4769
		regulator_resolve_coupling(c_rdev);
	}
4770 4771
}

4772
static void regulator_remove_coupling(struct regulator_dev *rdev)
4773
{
4774 4775 4776 4777
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4778

4779
	n_coupled = c_desc->n_coupled;
4780

4781 4782
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4783

4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4807 4808
}

4809
static int regulator_init_coupling(struct regulator_dev *rdev)
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4852 4853
/**
 * regulator_register - register regulator
4854
 * @regulator_desc: regulator to register
4855
 * @cfg: runtime configuration for regulator
4856 4857
 *
 * Called by regulator drivers to register a regulator.
4858 4859
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4860
 */
4861 4862
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4863
		   const struct regulator_config *cfg)
4864
{
4865
	const struct regulation_constraints *constraints = NULL;
4866
	const struct regulator_init_data *init_data;
4867
	struct regulator_config *config = NULL;
4868
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4869
	struct regulator_dev *rdev;
4870 4871
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4872
	struct device *dev;
4873
	int ret, i;
4874

4875
	if (cfg == NULL)
4876
		return ERR_PTR(-EINVAL);
4877 4878 4879 4880 4881 4882
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4883

4884
	dev = cfg->dev;
4885
	WARN_ON(!dev);
4886

4887 4888 4889 4890
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4891

4892
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4893 4894 4895 4896
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
4897

4898 4899 4900
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4901 4902
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4903 4904 4905 4906

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4907 4908
		ret = -EINVAL;
		goto rinse;
4909
	}
4910 4911
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4912 4913
		ret = -EINVAL;
		goto rinse;
4914
	}
4915

4916
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4917 4918 4919 4920
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
4921

4922 4923 4924 4925 4926 4927 4928
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
4929 4930
		ret = -ENOMEM;
		goto rinse;
4931 4932
	}

4933
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4934
					       &rdev->dev.of_node);
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
	 * a descriptor, we definately got one from parsing the device
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
4945 4946 4947 4948 4949
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4950
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4951
	rdev->reg_data = config->driver_data;
4952 4953
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4954 4955
	if (config->regmap)
		rdev->regmap = config->regmap;
4956
	else if (dev_get_regmap(dev, NULL))
4957
		rdev->regmap = dev_get_regmap(dev, NULL);
4958 4959
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4960 4961 4962
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4963
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4964

4965
	/* preform any regulator specific init */
4966
	if (init_data && init_data->regulator_init) {
4967
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4968 4969
		if (ret < 0)
			goto clean;
4970 4971
	}

4972 4973 4974
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4975
		mutex_lock(&regulator_list_mutex);
4976
		ret = regulator_ena_gpio_request(rdev, config);
4977
		mutex_unlock(&regulator_list_mutex);
4978 4979 4980
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4981
			goto clean;
4982
		}
4983 4984 4985
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
4986 4987
	}

4988
	/* register with sysfs */
4989
	rdev->dev.class = &regulator_class;
4990
	rdev->dev.parent = dev;
4991
	dev_set_name(&rdev->dev, "regulator.%lu",
4992
		    (unsigned long) atomic_inc_return(&regulator_no));
4993

4994
	/* set regulator constraints */
4995 4996 4997 4998
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4999
		rdev->supply_name = init_data->supply_regulator;
5000
	else if (regulator_desc->supply_name)
5001
		rdev->supply_name = regulator_desc->supply_name;
5002

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5015 5016
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5017 5018
		goto wash;

5019
	/* add consumers devices */
5020
	if (init_data) {
5021
		mutex_lock(&regulator_list_mutex);
5022 5023 5024
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5025
				init_data->consumer_supplies[i].supply);
5026
			if (ret < 0) {
5027
				mutex_unlock(&regulator_list_mutex);
5028 5029 5030 5031
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5032
		}
5033
		mutex_unlock(&regulator_list_mutex);
5034
	}
5035

5036 5037 5038 5039 5040
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5041
	dev_set_drvdata(&rdev->dev, rdev);
5042 5043 5044 5045 5046 5047
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5048
	rdev_init_debugfs(rdev);
5049

5050 5051 5052 5053 5054
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5055 5056 5057
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5058
	kfree(config);
5059
	return rdev;
D
David Brownell 已提交
5060

5061
unset_supplies:
5062
	mutex_lock(&regulator_list_mutex);
5063
	unset_regulator_supplies(rdev);
5064
	mutex_unlock(&regulator_list_mutex);
5065
wash:
5066
	kfree(rdev->constraints);
5067
	mutex_lock(&regulator_list_mutex);
5068
	regulator_ena_gpio_free(rdev);
5069
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5070
clean:
5071 5072
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5073
	kfree(rdev);
5074
	kfree(config);
5075 5076 5077
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5078
	return ERR_PTR(ret);
5079 5080 5081 5082 5083
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5084
 * @rdev: regulator to unregister
5085 5086 5087 5088 5089 5090 5091 5092
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5093 5094 5095
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5096
		regulator_put(rdev->supply);
5097
	}
5098

5099
	mutex_lock(&regulator_list_mutex);
5100

5101
	debugfs_remove_recursive(rdev->debugfs);
5102
	flush_work(&rdev->disable_work.work);
5103
	WARN_ON(rdev->open_count);
5104
	regulator_remove_coupling(rdev);
5105
	unset_regulator_supplies(rdev);
5106
	list_del(&rdev->list);
5107
	regulator_ena_gpio_free(rdev);
5108
	device_unregister(&rdev->dev);
5109 5110

	mutex_unlock(&regulator_list_mutex);
5111 5112 5113
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5114
#ifdef CONFIG_SUSPEND
5115
/**
5116
 * regulator_suspend - prepare regulators for system wide suspend
5117
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5118 5119 5120
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5121
static int regulator_suspend(struct device *dev)
5122
{
5123
	struct regulator_dev *rdev = dev_to_rdev(dev);
5124
	suspend_state_t state = pm_suspend_target_state;
5125 5126 5127 5128 5129
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5130

5131
	return ret;
5132
}
5133

5134
static int regulator_resume(struct device *dev)
5135
{
5136
	suspend_state_t state = pm_suspend_target_state;
5137
	struct regulator_dev *rdev = dev_to_rdev(dev);
5138
	struct regulator_state *rstate;
5139
	int ret = 0;
5140

5141
	rstate = regulator_get_suspend_state(rdev, state);
5142
	if (rstate == NULL)
5143
		return 0;
5144

5145
	regulator_lock(rdev);
5146

5147
	if (rdev->desc->ops->resume &&
5148 5149
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5150
		ret = rdev->desc->ops->resume(rdev);
5151

5152
	regulator_unlock(rdev);
5153

5154
	return ret;
5155
}
5156 5157
#else /* !CONFIG_SUSPEND */

5158 5159
#define regulator_suspend	NULL
#define regulator_resume	NULL
5160 5161 5162 5163 5164

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5165 5166
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5167 5168 5169
};
#endif

M
Mark Brown 已提交
5170
struct class regulator_class = {
5171 5172 5173 5174 5175 5176 5177
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5195 5196
/**
 * rdev_get_drvdata - get rdev regulator driver data
5197
 * @rdev: regulator
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5234
 * @rdev: regulator
5235 5236 5237 5238 5239 5240 5241
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5254
#ifdef CONFIG_DEBUG_FS
5255
static int supply_map_show(struct seq_file *sf, void *data)
5256 5257 5258 5259
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5260 5261 5262
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5263 5264
	}

5265 5266
	return 0;
}
5267
DEFINE_SHOW_ATTRIBUTE(supply_map);
5268

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5291 5292 5293 5294 5295 5296
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5297
	struct summary_data summary_data;
5298
	unsigned int opmode;
5299 5300 5301 5302

	if (!rdev)
		return;

5303
	opmode = _regulator_get_mode_unlocked(rdev);
5304
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5305 5306
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5307
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5308
		   regulator_opmode_to_str(opmode));
5309

5310
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5311 5312
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5331
		if (consumer->dev && consumer->dev->class == &regulator_class)
5332 5333 5334 5335
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5336 5337
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5338 5339 5340

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5341 5342
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5343
				   consumer->uA_load / 1000,
5344 5345
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5346 5347
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5348 5349 5350 5351 5352 5353 5354 5355
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5356 5357 5358
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5359

5360 5361
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5399 5400

	regulator_unlock(rdev);
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5431 5432
	mutex_lock(&regulator_list_mutex);

5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5459 5460

	mutex_unlock(&regulator_list_mutex);
5461 5462
}

5463
static int regulator_summary_show_roots(struct device *dev, void *data)
5464
{
5465 5466
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5467

5468 5469
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5470

5471 5472
	return 0;
}
5473

5474 5475
static int regulator_summary_show(struct seq_file *s, void *data)
{
5476 5477
	struct ww_acquire_ctx ww_ctx;

5478 5479
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5480

5481 5482
	regulator_summary_lock(&ww_ctx);

5483 5484
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5485

5486 5487
	regulator_summary_unlock(&ww_ctx);

5488 5489
	return 0;
}
5490 5491
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5492

5493 5494
static int __init regulator_init(void)
{
5495 5496 5497 5498
	int ret;

	ret = class_register(&regulator_class);

5499
	debugfs_root = debugfs_create_dir("regulator", NULL);
5500
	if (!debugfs_root)
5501
		pr_warn("regulator: Failed to create debugfs directory\n");
5502

5503
#ifdef CONFIG_DEBUG_FS
5504 5505
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5506

5507
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5508
			    NULL, &regulator_summary_fops);
5509
#endif
5510 5511 5512
	regulator_dummy_init();

	return ret;
5513 5514 5515 5516
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5517

5518
static int __init regulator_late_cleanup(struct device *dev, void *data)
5519
{
5520 5521 5522
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5523 5524
	int enabled, ret;

5525 5526 5527
	if (c && c->always_on)
		return 0;

5528
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5529 5530
		return 0;

5531
	regulator_lock(rdev);
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5562
	regulator_unlock(rdev);
5563 5564 5565 5566 5567 5568

	return 0;
}

static int __init regulator_init_complete(void)
{
5569 5570 5571 5572 5573 5574 5575 5576 5577
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5588
	/* If we have a full configuration then disable any regulators
5589 5590 5591
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5592
	 */
5593 5594
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5595 5596 5597

	return 0;
}
5598
late_initcall_sync(regulator_init_complete);