core.c 113.5 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61 62
static struct class regulator_class;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator_dev *rdev);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111 112
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
113
static void _regulator_put(struct regulator *regulator);
114

115 116 117 118
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
141
	int i;
142

143
	mutex_lock(&rdev->mutex);
144
	for (i = 1; rdev; rdev = rdev->supply->rdev, i++)
145
		mutex_lock_nested(&rdev->mutex, i);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

167 168 169 170 171 172
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
173
 * returns the device node corresponding to the regulator if found, else
174 175 176 177 178 179 180 181 182 183 184 185 186
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
187
		dev_dbg(dev, "Looking up %s property in node %s failed",
188 189 190 191 192 193
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

194 195 196 197 198 199 200 201 202 203 204
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

205 206 207 208 209 210 211
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
212
		rdev_err(rdev, "no constraints\n");
213 214 215
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
216
		rdev_err(rdev, "voltage operation not allowed\n");
217 218 219 220 221 222 223 224
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

225 226
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
227
			 *min_uV, *max_uV);
228
		return -EINVAL;
229
	}
230 231 232 233

	return 0;
}

234 235 236 237 238 239 240 241 242
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
243 244 245 246 247 248 249
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

250 251 252 253 254 255
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

256
	if (*min_uV > *max_uV) {
257 258
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
259
		return -EINVAL;
260
	}
261 262 263 264

	return 0;
}

265 266 267 268 269 270 271
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
272
		rdev_err(rdev, "no constraints\n");
273 274 275
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
276
		rdev_err(rdev, "current operation not allowed\n");
277 278 279 280 281 282 283 284
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

285 286
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
287
			 *min_uA, *max_uA);
288
		return -EINVAL;
289
	}
290 291 292 293 294

	return 0;
}

/* operating mode constraint check */
295
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
296
{
297
	switch (*mode) {
298 299 300 301 302 303
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
304
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
305 306 307
		return -EINVAL;
	}

308
	if (!rdev->constraints) {
309
		rdev_err(rdev, "no constraints\n");
310 311 312
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
313
		rdev_err(rdev, "mode operation not allowed\n");
314 315
		return -EPERM;
	}
316 317 318 319 320 321 322 323

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
324
	}
325 326

	return -EINVAL;
327 328 329 330 331 332
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
333
		rdev_err(rdev, "no constraints\n");
334 335 336
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
337
		rdev_dbg(rdev, "drms operation not allowed\n");
338 339 340 341 342 343 344 345
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
346
	struct regulator_dev *rdev = dev_get_drvdata(dev);
347 348 349 350 351 352 353 354
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
355
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
356 357 358 359

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
360
	struct regulator_dev *rdev = dev_get_drvdata(dev);
361 362 363

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
364
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
365

366 367
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
368 369 370
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

371
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
372
}
373
static DEVICE_ATTR_RO(name);
374

D
David Brownell 已提交
375
static ssize_t regulator_print_opmode(char *buf, int mode)
376 377 378 379 380 381 382 383 384 385 386 387 388 389
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
390 391
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
392
{
393
	struct regulator_dev *rdev = dev_get_drvdata(dev);
394

D
David Brownell 已提交
395 396
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
397
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
398 399 400

static ssize_t regulator_print_state(char *buf, int state)
{
401 402 403 404 405 406 407 408
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
409 410 411 412
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
413 414 415 416 417
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
418

419
	return ret;
D
David Brownell 已提交
420
}
421
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
422

D
David Brownell 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
456 457 458
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
459 460 461
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
462 463 464 465 466 467 468 469
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

470 471 472
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
473
	struct regulator_dev *rdev = dev_get_drvdata(dev);
474 475 476 477 478 479

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
480
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
481 482 483 484

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
485
	struct regulator_dev *rdev = dev_get_drvdata(dev);
486 487 488 489 490 491

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
492
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
493 494 495 496

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499 500 501 502 503

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
504
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
505 506 507 508

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
509
	struct regulator_dev *rdev = dev_get_drvdata(dev);
510 511 512 513 514 515

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
516
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
517 518 519 520

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
521
	struct regulator_dev *rdev = dev_get_drvdata(dev);
522 523 524 525 526
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
527
		uA += regulator->uA_load;
528 529 530
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
531
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
532

533 534
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
535
{
536
	struct regulator_dev *rdev = dev_get_drvdata(dev);
537 538
	return sprintf(buf, "%d\n", rdev->use_count);
}
539
static DEVICE_ATTR_RO(num_users);
540

541 542
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
543
{
544
	struct regulator_dev *rdev = dev_get_drvdata(dev);
545 546 547 548 549 550 551 552 553

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
554
static DEVICE_ATTR_RO(type);
555 556 557 558

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
559
	struct regulator_dev *rdev = dev_get_drvdata(dev);
560 561 562

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
563 564
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
565 566 567 568

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
569
	struct regulator_dev *rdev = dev_get_drvdata(dev);
570 571 572

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
573 574
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
575 576 577 578

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
579
	struct regulator_dev *rdev = dev_get_drvdata(dev);
580 581 582

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
583 584
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
585 586 587 588

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
589
	struct regulator_dev *rdev = dev_get_drvdata(dev);
590

D
David Brownell 已提交
591 592
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
593
}
594 595
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
596 597 598 599

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
600
	struct regulator_dev *rdev = dev_get_drvdata(dev);
601

D
David Brownell 已提交
602 603
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
604
}
605 606
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
607 608 609 610

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
611
	struct regulator_dev *rdev = dev_get_drvdata(dev);
612

D
David Brownell 已提交
613 614
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
615
}
616 617
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
618 619 620 621

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
622
	struct regulator_dev *rdev = dev_get_drvdata(dev);
623

D
David Brownell 已提交
624 625
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
626
}
627 628
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
629 630 631 632

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
633
	struct regulator_dev *rdev = dev_get_drvdata(dev);
634

D
David Brownell 已提交
635 636
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
637
}
638 639
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
640 641 642 643

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
644
	struct regulator_dev *rdev = dev_get_drvdata(dev);
645

D
David Brownell 已提交
646 647
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
648
}
649 650 651
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
673

674 675
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
676
static int drms_uA_update(struct regulator_dev *rdev)
677 678 679 680 681
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

682 683
	lockdep_assert_held_once(&rdev->mutex);

684 685 686 687
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
688
	err = regulator_check_drms(rdev);
689 690 691
	if (err < 0)
		return 0;

692 693
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
694 695
		return 0;

696 697
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
698
		return -EINVAL;
699 700

	/* get output voltage */
701
	output_uV = _regulator_get_voltage(rdev);
702 703 704 705
	if (output_uV <= 0) {
		rdev_err(rdev, "invalid output voltage found\n");
		return -EINVAL;
	}
706 707

	/* get input voltage */
708 709
	input_uV = 0;
	if (rdev->supply)
710
		input_uV = regulator_get_voltage(rdev->supply);
711
	if (input_uV <= 0)
712
		input_uV = rdev->constraints->input_uV;
713 714 715 716
	if (input_uV <= 0) {
		rdev_err(rdev, "invalid input voltage found\n");
		return -EINVAL;
	}
717 718 719

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
720
		current_uA += sibling->uA_load;
721

722 723
	current_uA += rdev->constraints->system_load;

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
741

742 743 744
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
745 746 747
	}

	return err;
748 749 750 751 752 753
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
754 755

	/* If we have no suspend mode configration don't set anything;
756 757
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
758 759
	 */
	if (!rstate->enabled && !rstate->disabled) {
760 761
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
762
			rdev_warn(rdev, "No configuration\n");
763 764 765 766
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
767
		rdev_err(rdev, "invalid configuration\n");
768 769
		return -EINVAL;
	}
770

771
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
772
		ret = rdev->desc->ops->set_suspend_enable(rdev);
773
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
774
		ret = rdev->desc->ops->set_suspend_disable(rdev);
775 776 777
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

778
	if (ret < 0) {
779
		rdev_err(rdev, "failed to enabled/disable\n");
780 781 782 783 784 785
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
786
			rdev_err(rdev, "failed to set voltage\n");
787 788 789 790 791 792 793
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
794
			rdev_err(rdev, "failed to set mode\n");
795 796 797 798 799 800 801 802 803
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
804 805
	lockdep_assert_held_once(&rdev->mutex);

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
827
	char buf[160] = "";
828
	size_t len = sizeof(buf) - 1;
829 830
	int count = 0;
	int ret;
831

832
	if (constraints->min_uV && constraints->max_uV) {
833
		if (constraints->min_uV == constraints->max_uV)
834 835
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
836
		else
837 838 839 840
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
841 842 843 844 845 846
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
847 848
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
849 850
	}

851
	if (constraints->uV_offset)
852 853
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
854

855
	if (constraints->min_uA && constraints->max_uA) {
856
		if (constraints->min_uA == constraints->max_uA)
857 858
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
859
		else
860 861 862 863
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
864 865 866 867 868 869
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
870 871
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
872
	}
873

874
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
875
		count += scnprintf(buf + count, len - count, "fast ");
876
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
877
		count += scnprintf(buf + count, len - count, "normal ");
878
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
879
		count += scnprintf(buf + count, len - count, "idle ");
880
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
881
		count += scnprintf(buf + count, len - count, "standby");
882

883
	if (!count)
884
		scnprintf(buf, len, "no parameters");
885

886
	rdev_dbg(rdev, "%s\n", buf);
887 888 889 890 891

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
892 893
}

894
static int machine_constraints_voltage(struct regulator_dev *rdev,
895
	struct regulation_constraints *constraints)
896
{
897
	const struct regulator_ops *ops = rdev->desc->ops;
898 899 900 901
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
902
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
903 904
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
905 906 907
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
908 909 910 911 912 913 914 915 916
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
917 918
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
919 920
				return ret;
			}
921
		}
922
	}
923

924 925 926 927 928 929 930 931 932 933 934
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

935 936
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
937
		if (count == 1 && !cmin) {
938
			cmin = 1;
939
			cmax = INT_MAX;
940 941
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
942 943
		}

944 945
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
946
			return 0;
947

948
		/* else require explicit machine-level constraints */
949
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950
			rdev_err(rdev, "invalid voltage constraints\n");
951
			return -EINVAL;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
971 972 973
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
974
			return -EINVAL;
975 976 977 978
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
979 980
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
981 982 983
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
984 985
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
986 987 988 989
			constraints->max_uV = max_uV;
		}
	}

990 991 992
	return 0;
}

993 994 995
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
996
	const struct regulator_ops *ops = rdev->desc->ops;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1023 1024
static int _regulator_do_enable(struct regulator_dev *rdev);

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1037
	const struct regulation_constraints *constraints)
1038 1039
{
	int ret = 0;
1040
	const struct regulator_ops *ops = rdev->desc->ops;
1041

1042 1043 1044 1045 1046 1047
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1048 1049
	if (!rdev->constraints)
		return -ENOMEM;
1050

1051
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1052 1053 1054
	if (ret != 0)
		goto out;

1055
	ret = machine_constraints_current(rdev, rdev->constraints);
1056 1057 1058
	if (ret != 0)
		goto out;

1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
			goto out;
		}
	}

1068
	/* do we need to setup our suspend state */
1069
	if (rdev->constraints->initial_state) {
1070
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071
		if (ret < 0) {
1072
			rdev_err(rdev, "failed to set suspend state\n");
1073 1074 1075
			goto out;
		}
	}
1076

1077
	if (rdev->constraints->initial_mode) {
1078
		if (!ops->set_mode) {
1079
			rdev_err(rdev, "no set_mode operation\n");
1080 1081 1082 1083
			ret = -EINVAL;
			goto out;
		}

1084
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085
		if (ret < 0) {
1086
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087 1088 1089 1090
			goto out;
		}
	}

1091 1092 1093
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1094 1095 1096
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1097
			rdev_err(rdev, "failed to enable\n");
1098 1099 1100 1101
			goto out;
		}
	}

1102 1103
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1104 1105 1106 1107 1108 1109 1110
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1111 1112 1113 1114 1115 1116 1117 1118
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
			goto out;
		}
	}

S
Stephen Boyd 已提交
1119 1120 1121 1122 1123 1124 1125 1126
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
			goto out;
		}
	}

1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
			goto out;
		}
	}

1136
	print_constraints(rdev);
1137
	return 0;
1138
out:
1139 1140
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1141 1142 1143 1144 1145
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1146 1147
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1148 1149 1150 1151 1152 1153
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1154
		      struct regulator_dev *supply_rdev)
1155 1156 1157
{
	int err;

1158 1159
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1160 1161 1162
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1163
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1164 1165
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1166
		return err;
1167
	}
1168
	supply_rdev->open_count++;
1169 1170

	return 0;
1171 1172 1173
}

/**
1174
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1175
 * @rdev:         regulator source
1176
 * @consumer_dev_name: dev_name() string for device supply applies to
1177
 * @supply:       symbolic name for supply
1178 1179 1180 1181 1182 1183 1184
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1185 1186
				      const char *consumer_dev_name,
				      const char *supply)
1187 1188
{
	struct regulator_map *node;
1189
	int has_dev;
1190 1191 1192 1193

	if (supply == NULL)
		return -EINVAL;

1194 1195 1196 1197 1198
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1199
	list_for_each_entry(node, &regulator_map_list, list) {
1200 1201 1202 1203
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1204
			continue;
1205 1206
		}

1207 1208 1209
		if (strcmp(node->supply, supply) != 0)
			continue;

1210 1211 1212 1213 1214 1215
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1216 1217 1218
		return -EBUSY;
	}

1219
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1220 1221 1222 1223 1224 1225
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1226 1227 1228 1229 1230 1231
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1232 1233
	}

1234 1235 1236 1237
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1238 1239 1240 1241 1242 1243 1244
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1245
			kfree(node->dev_name);
1246 1247 1248 1249 1250
			kfree(node);
		}
	}
}

1251
#define REG_STR_SIZE	64
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1270 1271
		regulator->dev = dev;

1272
		/* Add a link to the device sysfs entry */
1273 1274 1275
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1276
			goto overflow_err;
1277 1278 1279

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1280
			goto overflow_err;
1281

1282
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1283 1284
					buf);
		if (err) {
1285
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1286
				  dev->kobj.name, err);
1287
			/* non-fatal */
1288
		}
1289 1290 1291
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1292
			goto overflow_err;
1293 1294 1295 1296
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1297
	if (!regulator->debugfs) {
1298
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1299 1300 1301 1302 1303 1304 1305
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1306
	}
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1317 1318 1319 1320 1321 1322 1323 1324 1325
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1326 1327
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1328 1329
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1330
	if (!rdev->desc->ops->enable_time)
1331
		return rdev->desc->enable_time;
1332 1333 1334
	return rdev->desc->ops->enable_time(rdev);
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static int of_node_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, np, of_node_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
 * lookup could succeed in the future.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
 * @supply and with the embedded struct device refcount incremented by one,
 * or NULL on failure. The refcount must be dropped by calling put_device().
 */
1402
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1403 1404
						  const char *supply,
						  int *ret)
1405 1406 1407
{
	struct regulator_dev *r;
	struct device_node *node;
1408 1409
	struct regulator_map *map;
	const char *devname = NULL;
1410

1411 1412
	regulator_supply_alias(&dev, &supply);

1413 1414 1415
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1416
		if (node) {
1417 1418 1419
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1420 1421
			*ret = -EPROBE_DEFER;
			return NULL;
1422 1423 1424 1425 1426 1427 1428 1429 1430
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1431 1432 1433
	}

	/* if not found, try doing it non-dt way */
1434 1435 1436
	if (dev)
		devname = dev_name(dev);

1437 1438 1439
	r = regulator_lookup_by_name(supply);
	if (r)
		return r;
1440

1441
	mutex_lock(&regulator_list_mutex);
1442 1443 1444 1445 1446 1447
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1448 1449 1450
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
			mutex_unlock(&regulator_list_mutex);
1451
			return map->regulator;
1452
		}
1453
	}
1454
	mutex_unlock(&regulator_list_mutex);
1455

1456 1457 1458
	return NULL;
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (!r) {
1475 1476 1477 1478 1479 1480 1481 1482
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			return 0;
		}

1483 1484 1485 1486
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1487 1488
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1489
			get_device(&r->dev);
1490 1491 1492 1493 1494
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1495 1496 1497 1498
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1499 1500
	if (ret < 0) {
		put_device(&r->dev);
1501
		return ret;
1502
	}
1503 1504

	ret = set_supply(rdev, r);
1505 1506
	if (ret < 0) {
		put_device(&r->dev);
1507
		return ret;
1508
	}
1509 1510

	/* Cascade always-on state to supply */
1511
	if (_regulator_is_enabled(rdev) && rdev->supply) {
1512
		ret = regulator_enable(rdev->supply);
1513
		if (ret < 0) {
1514
			_regulator_put(rdev->supply);
1515
			return ret;
1516
		}
1517 1518 1519 1520 1521
	}

	return 0;
}

1522 1523
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1524
					bool exclusive, bool allow_dummy)
1525 1526
{
	struct regulator_dev *rdev;
1527
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1528
	const char *devname = NULL;
1529
	int ret;
1530 1531

	if (id == NULL) {
1532
		pr_err("get() with no identifier\n");
1533
		return ERR_PTR(-EINVAL);
1534 1535
	}

1536 1537 1538
	if (dev)
		devname = dev_name(dev);

1539 1540 1541 1542 1543
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1544
	rdev = regulator_dev_lookup(dev, id, &ret);
1545 1546 1547
	if (rdev)
		goto found;

1548 1549
	regulator = ERR_PTR(ret);

1550 1551 1552 1553
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1554
	if (ret && ret != -ENODEV)
1555
		return regulator;
1556

1557 1558 1559
	if (!devname)
		devname = "deviceless";

1560 1561 1562
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1563
	 */
1564
	if (have_full_constraints() && allow_dummy) {
1565 1566
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1567

1568
		rdev = dummy_regulator_rdev;
1569
		get_device(&rdev->dev);
1570
		goto found;
1571 1572
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1573
		dev_warn(dev, "dummy supplies not allowed\n");
1574 1575
	}

1576 1577 1578
	return regulator;

found:
1579 1580
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1581 1582
		put_device(&rdev->dev);
		return regulator;
1583 1584 1585 1586
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
1587 1588
		put_device(&rdev->dev);
		return regulator;
1589 1590
	}

1591 1592 1593
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1594 1595
		put_device(&rdev->dev);
		return regulator;
1596 1597
	}

1598 1599 1600 1601
	if (!try_module_get(rdev->owner)) {
		put_device(&rdev->dev);
		return regulator;
	}
1602

1603 1604 1605
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1606
		put_device(&rdev->dev);
1607
		module_put(rdev->owner);
1608
		return regulator;
1609 1610
	}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1622 1623
	return regulator;
}
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1640
	return _regulator_get(dev, id, false, true);
1641
}
1642 1643
EXPORT_SYMBOL_GPL(regulator_get);

1644 1645 1646 1647 1648 1649 1650
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1651 1652 1653
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1667
	return _regulator_get(dev, id, true, false);
1668 1669 1670
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1671 1672 1673 1674 1675 1676
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1677
 * or IS_ERR() condition containing errno.
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1693
	return _regulator_get(dev, id, false, false);
1694 1695 1696
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1697
/* regulator_list_mutex lock held by regulator_put() */
1698
static void _regulator_put(struct regulator *regulator)
1699 1700 1701
{
	struct regulator_dev *rdev;

1702
	if (IS_ERR_OR_NULL(regulator))
1703 1704
		return;

1705 1706
	lockdep_assert_held_once(&regulator_list_mutex);

1707 1708
	rdev = regulator->rdev;

1709 1710
	debugfs_remove_recursive(regulator->debugfs);

1711
	/* remove any sysfs entries */
1712
	if (regulator->dev)
1713
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1714
	mutex_lock(&rdev->mutex);
1715 1716
	list_del(&regulator->list);

1717 1718
	rdev->open_count--;
	rdev->exclusive = 0;
1719
	put_device(&rdev->dev);
1720
	mutex_unlock(&rdev->mutex);
1721

1722 1723 1724
	kfree(regulator->supply_name);
	kfree(regulator);

1725
	module_put(rdev->owner);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1740 1741 1742 1743
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1821 1822
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1823
					 struct device *alias_dev,
1824
					 const char *const *alias_id,
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1862
					    const char *const *id,
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1873 1874 1875 1876 1877
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1878
	struct gpio_desc *gpiod;
1879 1880
	int ret;

1881 1882
	gpiod = gpio_to_desc(config->ena_gpio);

1883
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1884
		if (pin->gpiod == gpiod) {
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1903
	pin->gpiod = gpiod;
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1922
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1923 1924
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1925
				gpiod_put(pin->gpiod);
1926 1927
				list_del(&pin->list);
				kfree(pin);
1928 1929
				rdev->ena_pin = NULL;
				return;
1930 1931 1932 1933 1934 1935 1936
			} else {
				pin->request_count--;
			}
		}
	}
}

1937
/**
1938 1939 1940 1941
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1955 1956
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1967 1968
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1969 1970 1971 1972 1973 1974 1975
			pin->enable_count = 0;
		}
	}

	return 0;
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2055
	if (rdev->ena_pin) {
2056 2057 2058 2059 2060 2061
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2062
	} else if (rdev->desc->ops->enable) {
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2075
	_regulator_enable_delay(delay);
2076 2077 2078 2079 2080 2081

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2082 2083 2084
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2085
	int ret;
2086

2087 2088
	lockdep_assert_held_once(&rdev->mutex);

2089
	/* check voltage and requested load before enabling */
2090 2091 2092
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
2093

2094 2095 2096 2097 2098 2099 2100
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

2101
			ret = _regulator_do_enable(rdev);
2102 2103 2104
			if (ret < 0)
				return ret;

2105
		} else if (ret < 0) {
2106
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2107 2108
			return ret;
		}
2109
		/* Fallthrough on positive return values - already enabled */
2110 2111
	}

2112 2113 2114
	rdev->use_count++;

	return 0;
2115 2116 2117 2118 2119 2120
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2121 2122 2123 2124
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2125
 * NOTE: the output value can be set by other drivers, boot loader or may be
2126
 * hardwired in the regulator.
2127 2128 2129
 */
int regulator_enable(struct regulator *regulator)
{
2130 2131
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2132

2133 2134 2135
	if (regulator->always_on)
		return 0;

2136 2137 2138 2139 2140 2141
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2142
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2143
	ret = _regulator_enable(rdev);
2144
	mutex_unlock(&rdev->mutex);
2145

2146
	if (ret != 0 && rdev->supply)
2147 2148
		regulator_disable(rdev->supply);

2149 2150 2151 2152
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2153 2154 2155 2156 2157 2158
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2159
	if (rdev->ena_pin) {
2160 2161 2162 2163 2164 2165
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2166 2167 2168 2169 2170 2171 2172

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2173 2174 2175 2176 2177 2178
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2179 2180 2181 2182 2183
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2184
/* locks held by regulator_disable() */
2185
static int _regulator_disable(struct regulator_dev *rdev)
2186 2187 2188
{
	int ret = 0;

2189 2190
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2191
	if (WARN(rdev->use_count <= 0,
2192
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2193 2194
		return -EIO;

2195
	/* are we the last user and permitted to disable ? */
2196 2197
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2198 2199

		/* we are last user */
2200
		if (_regulator_can_change_status(rdev)) {
2201 2202 2203 2204 2205 2206
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2207
			ret = _regulator_do_disable(rdev);
2208
			if (ret < 0) {
2209
				rdev_err(rdev, "failed to disable\n");
2210 2211 2212
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2213 2214
				return ret;
			}
2215 2216
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2229

2230 2231 2232 2233 2234 2235 2236
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2237 2238 2239
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2240
 *
2241
 * NOTE: this will only disable the regulator output if no other consumer
2242 2243
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2244 2245 2246
 */
int regulator_disable(struct regulator *regulator)
{
2247 2248
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2249

2250 2251 2252
	if (regulator->always_on)
		return 0;

2253
	mutex_lock(&rdev->mutex);
2254
	ret = _regulator_disable(rdev);
2255
	mutex_unlock(&rdev->mutex);
2256

2257 2258
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2259

2260 2261 2262 2263 2264
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2265
static int _regulator_force_disable(struct regulator_dev *rdev)
2266 2267 2268
{
	int ret = 0;

2269 2270
	lockdep_assert_held_once(&rdev->mutex);

2271 2272 2273 2274 2275
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2276 2277 2278
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2279 2280
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2281
		return ret;
2282 2283
	}

2284 2285 2286 2287
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2301
	struct regulator_dev *rdev = regulator->rdev;
2302 2303
	int ret;

2304
	mutex_lock(&rdev->mutex);
2305
	regulator->uA_load = 0;
2306
	ret = _regulator_force_disable(regulator->rdev);
2307
	mutex_unlock(&rdev->mutex);
2308

2309 2310 2311
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2312

2313 2314 2315 2316
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2364
	int ret;
2365

2366 2367 2368
	if (regulator->always_on)
		return 0;

2369 2370 2371
	if (!ms)
		return regulator_disable(regulator);

2372 2373 2374 2375
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2376 2377 2378
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2379 2380 2381 2382
	if (ret < 0)
		return ret;
	else
		return 0;
2383 2384 2385
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2386 2387
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2388
	/* A GPIO control always takes precedence */
2389
	if (rdev->ena_pin)
2390 2391
		return rdev->ena_gpio_state;

2392
	/* If we don't know then assume that the regulator is always on */
2393
	if (!rdev->desc->ops->is_enabled)
2394
		return 1;
2395

2396
	return rdev->desc->ops->is_enabled(rdev);
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2433 2434 2435 2436
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2437 2438 2439 2440 2441 2442 2443
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2444 2445 2446
 */
int regulator_is_enabled(struct regulator *regulator)
{
2447 2448
	int ret;

2449 2450 2451
	if (regulator->always_on)
		return 1;

2452 2453 2454 2455 2456
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2457 2458 2459
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2460 2461 2462 2463 2464
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2465
 * can change its voltage, false otherwise. Useful for detecting fixed
2466 2467 2468 2469 2470 2471 2472 2473
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2474 2475 2476 2477 2478 2479 2480 2481 2482
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2483 2484 2485 2486 2487

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2500 2501 2502 2503 2504 2505 2506
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2517
 * zero if this selector code can't be used on this system, or a
2518 2519 2520 2521
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2522
	return _regulator_list_voltage(regulator, selector, 1);
2523 2524 2525
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2558 2559
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2585 2586
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2624
	struct regulator_dev *rdev = regulator->rdev;
2625 2626
	int i, voltages, ret;

2627 2628 2629 2630
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2631
			return min_uV <= ret && ret <= max_uV;
2632 2633 2634 2635
		else
			return ret;
	}

2636 2637 2638 2639 2640
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2655
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2656

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2723 2724 2725 2726
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2727
	int delay = 0;
2728
	int best_val = 0;
2729
	unsigned int selector;
2730
	int old_selector = -1;
2731 2732 2733

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2734 2735 2736
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2737 2738 2739 2740
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2741 2742
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2743 2744 2745 2746 2747 2748
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2749
	if (rdev->desc->ops->set_voltage) {
2750 2751
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2752 2753 2754 2755 2756 2757 2758 2759 2760

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2761
	} else if (rdev->desc->ops->set_voltage_sel) {
2762
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2763
		if (ret >= 0) {
2764 2765 2766
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2767 2768 2769
				if (old_selector == selector)
					ret = 0;
				else
2770 2771
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2772 2773 2774
			} else {
				ret = -EINVAL;
			}
2775
		}
2776 2777 2778
	} else {
		ret = -EINVAL;
	}
2779

2780
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2781 2782
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2783

2784 2785 2786 2787 2788 2789
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2790
		}
2791

2792 2793 2794 2795 2796 2797 2798
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2799 2800
	}

2801 2802 2803
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2804
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2805 2806
				     (void *)data);
	}
2807

2808
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2809 2810 2811 2812

	return ret;
}

2813 2814
static int regulator_set_voltage_unlocked(struct regulator *regulator,
					  int min_uV, int max_uV)
2815 2816
{
	struct regulator_dev *rdev = regulator->rdev;
2817
	int ret = 0;
2818
	int old_min_uV, old_max_uV;
2819
	int current_uV;
2820 2821
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2822

2823 2824 2825 2826 2827 2828 2829
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2830
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2831
	 * return successfully even though the regulator does not support
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2843
	/* sanity check */
2844 2845
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2846 2847 2848 2849 2850 2851 2852 2853
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2854

2855 2856 2857
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2858 2859
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2860

2861 2862
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2863
		goto out2;
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	if (rdev->supply && (rdev->desc->min_dropout_uV ||
				!rdev->desc->ops->get_voltage)) {
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

2903
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2904 2905
	if (ret < 0)
		goto out2;
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

2917 2918
out:
	return ret;
2919 2920 2921
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

2948
	regulator_lock_supply(regulator->rdev);
2949 2950 2951

	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);

2952
	regulator_unlock_supply(regulator->rdev);
2953

2954 2955 2956 2957
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2971 2972
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3003
/**
3004 3005
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3006 3007 3008 3009 3010 3011
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3012
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3013
 * set_voltage_time_sel() operation.
3014 3015 3016 3017 3018
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3019
	unsigned int ramp_delay = 0;
3020
	int old_volt, new_volt;
3021 3022 3023 3024 3025 3026 3027

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
3028
		rdev_warn(rdev, "ramp_delay not set\n");
3029
		return 0;
3030
	}
3031

3032 3033 3034
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3035

3036 3037 3038 3039
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3040
}
3041
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3042

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3090 3091
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3092
	int sel, ret;
3093 3094 3095 3096 3097

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3098
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3099
	} else if (rdev->desc->ops->get_voltage) {
3100
		ret = rdev->desc->ops->get_voltage(rdev);
3101 3102
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3103 3104
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3105
	} else if (rdev->supply) {
3106
		ret = _regulator_get_voltage(rdev->supply->rdev);
3107
	} else {
3108
		return -EINVAL;
3109
	}
3110

3111 3112
	if (ret < 0)
		return ret;
3113
	return ret - rdev->constraints->uV_offset;
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3129
	regulator_lock_supply(regulator->rdev);
3130 3131 3132

	ret = _regulator_get_voltage(regulator->rdev);

3133
	regulator_unlock_supply(regulator->rdev);
3134 3135 3136 3137 3138 3139 3140 3141

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3142
 * @min_uA: Minimum supported current in uA
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3229
	int regulator_curr_mode;
3230 3231 3232 3233 3234 3235 3236 3237 3238

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3239 3240 3241 3242 3243 3244 3245 3246 3247
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3248
	/* constraints check */
3249
	ret = regulator_mode_constrain(rdev, &mode);
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3291
 * regulator_set_load - set regulator load
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3314
 * On error a negative errno is returned.
3315
 */
3316
int regulator_set_load(struct regulator *regulator, int uA_load)
3317 3318
{
	struct regulator_dev *rdev = regulator->rdev;
3319
	int ret;
3320

3321 3322
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3323
	ret = drms_uA_update(rdev);
3324
	mutex_unlock(&rdev->mutex);
3325

3326 3327
	return ret;
}
3328
EXPORT_SYMBOL_GPL(regulator_set_load);
3329

3330 3331 3332 3333
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3334
 * @enable: enable or disable bypass mode
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3383 3384 3385
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3386
 * @nb: notifier block
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3401
 * @nb: notifier block
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3413 3414 3415
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3416
static int _notifier_call_chain(struct regulator_dev *rdev,
3417 3418 3419
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3420
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3451 3452
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3453 3454 3455 3456 3457 3458 3459 3460
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3461
	while (--i >= 0)
3462 3463 3464 3465 3466 3467
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3468 3469 3470 3471 3472 3473 3474
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3490
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3491
	int i;
3492
	int ret = 0;
3493

3494 3495 3496 3497 3498 3499 3500
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3501 3502 3503 3504

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3505
	for (i = 0; i < num_consumers; i++) {
3506 3507
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3508
			goto err;
3509
		}
3510 3511 3512 3513 3514
	}

	return 0;

err:
3515 3516 3517 3518 3519 3520 3521
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3535 3536
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3537 3538 3539 3540 3541 3542
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3543
	int ret, r;
3544

3545
	for (i = num_consumers - 1; i >= 0; --i) {
3546 3547 3548 3549 3550 3551 3552 3553
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3554
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3555 3556 3557 3558 3559 3560
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3561 3562 3563 3564 3565

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3626
 * @rdev: regulator source
3627
 * @event: notifier block
3628
 * @data: callback-specific data.
3629 3630 3631
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3632
 * Note lock must be held by caller.
3633 3634 3635 3636
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3637 3638
	lockdep_assert_held_once(&rdev->mutex);

3639 3640 3641 3642 3643 3644
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3661
	case REGULATOR_MODE_STANDBY:
3662 3663
		return REGULATOR_STATUS_STANDBY;
	default:
3664
		return REGULATOR_STATUS_UNDEFINED;
3665 3666 3667 3668
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3696 3697 3698 3699
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3700 3701
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3702
{
3703 3704
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3705
	const struct regulator_ops *ops = rdev->desc->ops;
3706 3707 3708 3709 3710 3711 3712
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3713 3714

	/* some attributes need specific methods to be displayed */
3715 3716 3717 3718 3719 3720 3721
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3722
	}
3723

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3739
	/* some attributes are type-specific */
3740 3741
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3742 3743

	/* constraints need specific supporting methods */
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3779

3780 3781 3782
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3783 3784 3785

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3786
	kfree(rdev);
3787 3788
}

3789 3790 3791 3792 3793 3794
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3795 3796
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3809
	if (!rdev->debugfs) {
3810 3811 3812 3813 3814 3815 3816 3817
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3818 3819
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3820 3821
}

3822 3823
/**
 * regulator_register - register regulator
3824
 * @regulator_desc: regulator to register
3825
 * @cfg: runtime configuration for regulator
3826 3827
 *
 * Called by regulator drivers to register a regulator.
3828 3829
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3830
 */
3831 3832
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3833
		   const struct regulator_config *cfg)
3834
{
3835
	const struct regulation_constraints *constraints = NULL;
3836
	const struct regulator_init_data *init_data;
3837
	struct regulator_config *config = NULL;
3838
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3839
	struct regulator_dev *rdev;
3840
	struct device *dev;
3841
	int ret, i;
3842

3843
	if (regulator_desc == NULL || cfg == NULL)
3844 3845
		return ERR_PTR(-EINVAL);

3846
	dev = cfg->dev;
3847
	WARN_ON(!dev);
3848

3849 3850 3851
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3852 3853
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3854 3855
		return ERR_PTR(-EINVAL);

3856 3857 3858
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3859 3860
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3861 3862 3863 3864 3865 3866

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3867 3868 3869 3870
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3871

3872 3873 3874 3875
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3886
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3887 3888 3889 3890 3891 3892
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3893 3894 3895
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3896
	rdev->reg_data = config->driver_data;
3897 3898
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3899 3900
	if (config->regmap)
		rdev->regmap = config->regmap;
3901
	else if (dev_get_regmap(dev, NULL))
3902
		rdev->regmap = dev_get_regmap(dev, NULL);
3903 3904
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3905 3906 3907
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3908
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3909

3910
	/* preform any regulator specific init */
3911
	if (init_data && init_data->regulator_init) {
3912
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3913 3914
		if (ret < 0)
			goto clean;
3915 3916 3917
	}

	/* register with sysfs */
3918
	rdev->dev.class = &regulator_class;
3919
	rdev->dev.parent = dev;
3920
	dev_set_name(&rdev->dev, "regulator.%lu",
3921
		    (unsigned long) atomic_inc_return(&regulator_no));
3922
	ret = device_register(&rdev->dev);
3923 3924
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3925
		goto clean;
3926
	}
3927 3928 3929

	dev_set_drvdata(&rdev->dev, rdev);

3930 3931
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3932
		ret = regulator_ena_gpio_request(rdev, config);
3933 3934 3935
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3936
			goto wash;
3937 3938 3939
		}
	}

3940
	/* set regulator constraints */
3941 3942 3943 3944
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3945 3946 3947
	if (ret < 0)
		goto scrub;

3948
	if (init_data && init_data->supply_regulator)
3949
		rdev->supply_name = init_data->supply_regulator;
3950
	else if (regulator_desc->supply_name)
3951
		rdev->supply_name = regulator_desc->supply_name;
3952

3953
	/* add consumers devices */
3954 3955 3956 3957
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3958
				init_data->consumer_supplies[i].supply);
3959 3960 3961 3962 3963
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3964
		}
3965
	}
3966

3967
	rdev_init_debugfs(rdev);
3968
out:
3969
	mutex_unlock(&regulator_list_mutex);
3970
	kfree(config);
3971
	return rdev;
D
David Brownell 已提交
3972

3973 3974 3975
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3976
scrub:
3977
	regulator_ena_gpio_free(rdev);
3978
	kfree(rdev->constraints);
3979
wash:
D
David Brownell 已提交
3980
	device_unregister(&rdev->dev);
3981 3982 3983 3984
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3985 3986 3987 3988
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3989 3990 3991 3992 3993
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3994
 * @rdev: regulator to unregister
3995 3996 3997 3998 3999 4000 4001 4002
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4003 4004 4005
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4006
		regulator_put(rdev->supply);
4007
	}
4008
	mutex_lock(&regulator_list_mutex);
4009
	debugfs_remove_recursive(rdev->debugfs);
4010
	flush_work(&rdev->disable_work.work);
4011
	WARN_ON(rdev->open_count);
4012
	unset_regulator_supplies(rdev);
4013
	list_del(&rdev->list);
4014
	mutex_unlock(&regulator_list_mutex);
4015
	regulator_ena_gpio_free(rdev);
4016
	device_unregister(&rdev->dev);
4017 4018 4019
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
static int _regulator_suspend_prepare(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const suspend_state_t *state = data;
	int ret;

	mutex_lock(&rdev->mutex);
	ret = suspend_prepare(rdev, *state);
	mutex_unlock(&rdev->mutex);

	return ret;
}

4033
/**
4034
 * regulator_suspend_prepare - prepare regulators for system wide suspend
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

4046 4047 4048 4049
	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_suspend_prepare);
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4050

4051 4052 4053 4054
static int _regulator_suspend_finish(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	int ret;
4055

4056 4057 4058 4059 4060 4061 4062 4063
	mutex_lock(&rdev->mutex);
	if (rdev->use_count > 0  || rdev->constraints->always_on) {
		if (!_regulator_is_enabled(rdev)) {
			ret = _regulator_do_enable(rdev);
			if (ret)
				dev_err(dev,
					"Failed to resume regulator %d\n",
					ret);
4064
		}
4065 4066 4067 4068 4069 4070 4071 4072 4073
	} else {
		if (!have_full_constraints())
			goto unlock;
		if (!_regulator_is_enabled(rdev))
			goto unlock;

		ret = _regulator_do_disable(rdev);
		if (ret)
			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4074
	}
4075 4076 4077 4078 4079
unlock:
	mutex_unlock(&rdev->mutex);

	/* Keep processing regulators in spite of any errors */
	return 0;
4080 4081
}

4082 4083 4084 4085 4086 4087 4088 4089
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
4090 4091
	return class_for_each_device(&regulator_class, NULL, NULL,
				     _regulator_suspend_finish);
4092 4093 4094
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4112 4113
/**
 * rdev_get_drvdata - get rdev regulator driver data
4114
 * @rdev: regulator
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4151
 * @rdev: regulator
4152 4153 4154 4155 4156 4157 4158
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4201
#endif
4202 4203

static const struct file_operations supply_map_fops = {
4204
#ifdef CONFIG_DEBUG_FS
4205 4206 4207
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4208
};
4209

4210
#ifdef CONFIG_DEBUG_FS
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4233 4234 4235 4236 4237 4238
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4239
	struct summary_data summary_data;
4240 4241 4242 4243 4244 4245 4246 4247 4248

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4249 4250
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4278
			seq_printf(s, "%37dmV %5dmV",
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4289 4290 4291
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4292

4293 4294
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4295 4296
}

4297
static int regulator_summary_show_roots(struct device *dev, void *data)
4298
{
4299 4300
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4301

4302 4303
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4304

4305 4306
	return 0;
}
4307

4308 4309 4310 4311
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4312

4313 4314
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4334 4335
static int __init regulator_init(void)
{
4336 4337 4338 4339
	int ret;

	ret = class_register(&regulator_class);

4340
	debugfs_root = debugfs_create_dir("regulator", NULL);
4341
	if (!debugfs_root)
4342
		pr_warn("regulator: Failed to create debugfs directory\n");
4343

4344 4345
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4346

4347
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4348
			    NULL, &regulator_summary_fops);
4349

4350 4351 4352
	regulator_dummy_init();

	return ret;
4353 4354 4355 4356
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4357

4358
static int __init regulator_late_cleanup(struct device *dev, void *data)
4359
{
4360 4361 4362
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4363 4364
	int enabled, ret;

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
	if (c && c->always_on)
		return 0;

	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4409 4410 4411 4412 4413 4414 4415 4416 4417
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4418
	/* If we have a full configuration then disable any regulators
4419 4420 4421
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4422
	 */
4423 4424
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4425 4426 4427

	return 0;
}
4428
late_initcall_sync(regulator_init_complete);