intel_dp.c 206.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_debugfs.h"
46
#include "i915_drv.h"
47
#include "intel_atomic.h"
48
#include "intel_audio.h"
49
#include "intel_connector.h"
50
#include "intel_ddi.h"
51
#include "intel_dp.h"
52
#include "intel_dp_link_training.h"
53
#include "intel_dp_mst.h"
54
#include "intel_dpio_phy.h"
55
#include "intel_drv.h"
56
#include "intel_fifo_underrun.h"
57
#include "intel_hdcp.h"
58
#include "intel_hdmi.h"
59
#include "intel_hotplug.h"
60
#include "intel_lspcon.h"
61
#include "intel_lvds.h"
62
#include "intel_panel.h"
63
#include "intel_psr.h"
64
#include "intel_sideband.h"
65
#include "intel_vdsc.h"
66

67
#define DP_DPRX_ESI_LEN 14
68

69 70
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
71 72
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
73 74 75 76 77 78 79 80 81

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

82 83 84 85 86 87
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

88
struct dp_link_dpll {
89
	int clock;
90 91 92
	struct dpll dpll;
};

93
static const struct dp_link_dpll g4x_dpll[] = {
94
	{ 162000,
95
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
96
	{ 270000,
97 98 99 100
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
101
	{ 162000,
102
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
103
	{ 270000,
104 105 106
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

107
static const struct dp_link_dpll vlv_dpll[] = {
108
	{ 162000,
C
Chon Ming Lee 已提交
109
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
110
	{ 270000,
111 112 113
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

114 115 116 117 118 119 120 121 122 123
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
124
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
125
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
126
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
127 128
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
129

130 131 132 133 134 135 136 137
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

138
/**
139
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
140 141 142 143 144
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
145
bool intel_dp_is_edp(struct intel_dp *intel_dp)
146
{
147 148 149
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
150 151
}

152 153
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
154
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
155 156
}

157 158
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
159
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
160
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
161 162
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
163
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
164
				      enum pipe pipe);
165
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
166

167 168 169
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
170
	static const int dp_rates[] = {
171
		162000, 270000, 540000, 810000
172
	};
173
	int i, max_rate;
174

175
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
176

177 178
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
179
			break;
180
		intel_dp->sink_rates[i] = dp_rates[i];
181
	}
182

183
	intel_dp->num_sink_rates = i;
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

208 209
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
210
{
211
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
212 213
}

214 215 216 217 218
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
219
	intel_wakeref_t wakeref;
220 221 222 223 224
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

225 226 227 228
	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
				DP_LANE_ASSIGNMENT_SHIFT(tc_port);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

246 247
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
248 249
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250 251
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
252
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
253

254
	return min3(source_max, sink_max, fia_max);
255 256
}

257
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
258 259 260 261
{
	return intel_dp->max_link_lane_count;
}

262
int
263
intel_dp_link_required(int pixel_clock, int bpp)
264
{
265 266
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
267 268
}

269
int
270 271
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
272 273 274 275 276 277 278
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
279 280
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

304
static int cnl_max_source_rate(struct intel_dp *intel_dp)
305 306 307 308 309 310 311 312 313
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
314
		return 540000;
315 316 317

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
318
		return 810000;
319

320
	/* For other SKUs, max rate on ports A and D is 5.4G */
321
	if (port == PORT_A || port == PORT_D)
322
		return 540000;
323

324
	return 810000;
325 326
}

327 328 329
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
330
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
331 332
	enum port port = dig_port->base.port;

333 334
	if (intel_port_is_combophy(dev_priv, port) &&
	    !intel_dp_is_edp(intel_dp))
335 336 337 338 339
		return 540000;

	return 810000;
}

340 341
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
342
{
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
359 360
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
361 362
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
363
	const int *source_rates;
364
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
365

366 367 368
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

369
	if (INTEL_GEN(dev_priv) >= 10) {
370
		source_rates = cnl_rates;
371
		size = ARRAY_SIZE(cnl_rates);
372
		if (IS_GEN(dev_priv, 10))
373 374 375
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
376 377 378
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
379
	} else if (IS_GEN9_BC(dev_priv)) {
380
		source_rates = skl_rates;
381
		size = ARRAY_SIZE(skl_rates);
382 383
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
384 385
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
386
	} else {
387 388
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
389 390
	}

391 392 393 394 395
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

396 397 398
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

399 400
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

426 427 428 429 430 431 432 433 434 435 436 437
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

438
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
439
{
440
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
441

442 443 444 445 446 447 448 449
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
450
		intel_dp->common_rates[0] = 162000;
451 452 453 454
		intel_dp->num_common_rates = 1;
	}
}

455
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
456
				       u8 lane_count)
457 458 459 460 461 462
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
463 464
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
465 466
		return false;

467 468
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
469 470 471 472 473
		return false;

	return true;
}

474 475
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
476
						     u8 lane_count)
477 478 479 480 481 482 483 484 485 486 487 488 489
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

490
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
491
					    int link_rate, u8 lane_count)
492
{
493
	int index;
494

495 496 497 498
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
499 500 501 502 503 504 505
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
506 507
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
508
	} else if (lane_count > 1) {
509 510 511 512 513 514 515
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
516
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
517
		intel_dp->max_link_lane_count = lane_count >> 1;
518 519 520 521 522 523 524 525
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

526
static enum drm_mode_status
527 528 529
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
530
	struct intel_dp *intel_dp = intel_attached_dp(connector);
531 532
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
533
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
534 535
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
536
	int max_dotclk;
537 538
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
539

540 541 542
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

543
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
544

545
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
546
		if (mode->hdisplay > fixed_mode->hdisplay)
547 548
			return MODE_PANEL;

549
		if (mode->vdisplay > fixed_mode->vdisplay)
550
			return MODE_PANEL;
551 552

		target_clock = fixed_mode->clock;
553 554
	}

555
	max_link_clock = intel_dp_max_link_rate(intel_dp);
556
	max_lanes = intel_dp_max_lane_count(intel_dp);
557 558 559 560

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

561 562 563 564 565 566 567 568 569 570 571 572
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
573
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
588
		return MODE_CLOCK_HIGH;
589 590 591 592

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

593 594 595
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

596 597 598
	return MODE_OK;
}

599
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
600
{
601 602
	int i;
	u32 v = 0;
603 604 605 606

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
607
		v |= ((u32)src[i]) << ((3 - i) * 8);
608 609 610
	return v;
}

611
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
612 613 614 615 616 617 618 619
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

620
static void
621
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
622
static void
623
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
624
					      bool force_disable_vdd);
625
static void
626
intel_dp_pps_init(struct intel_dp *intel_dp);
627

628 629
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
630
{
631
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
632
	intel_wakeref_t wakeref;
633 634

	/*
635
	 * See intel_power_sequencer_reset() why we need
636 637
	 * a power domain reference here.
	 */
638 639
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
640 641

	mutex_lock(&dev_priv->pps_mutex);
642 643

	return wakeref;
644 645
}

646 647
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
648
{
649
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
650 651

	mutex_unlock(&dev_priv->pps_mutex);
652 653 654 655
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
656 657
}

658 659 660
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

661 662 663
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
664
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
665 666
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
667 668 669
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
670
	u32 DP;
671 672

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
673
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
674
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
675 676 677
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
678
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
679 680 681 682 683 684 685 686 687

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

688
	if (IS_CHERRYVIEW(dev_priv))
689 690 691
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
692

693 694 695 696 697 698
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
699
	if (!pll_enabled) {
700
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
701 702
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

703
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
704 705 706 707 708
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
709
	}
710

711 712 713
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
714
	 * to make this power sequencer lock onto the port.
715 716 717 718 719 720 721 722 723 724
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
725

726
	if (!pll_enabled) {
727
		vlv_force_pll_off(dev_priv, pipe);
728 729 730 731

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
732 733
}

734 735 736 737 738 739 740 741 742
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
743 744
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

766 767 768
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
769
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
770
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
771
	enum pipe pipe;
772

V
Ville Syrjälä 已提交
773
	lockdep_assert_held(&dev_priv->pps_mutex);
774

775
	/* We should never land here with regular DP ports */
776
	WARN_ON(!intel_dp_is_edp(intel_dp));
777

778 779 780
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

781 782 783
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

784
	pipe = vlv_find_free_pps(dev_priv);
785 786 787 788 789

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
790
	if (WARN_ON(pipe == INVALID_PIPE))
791
		pipe = PIPE_A;
792

793
	vlv_steal_power_sequencer(dev_priv, pipe);
794
	intel_dp->pps_pipe = pipe;
795 796 797

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
798
		      port_name(intel_dig_port->base.port));
799 800

	/* init power sequencer on this pipe and port */
801 802
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
803

804 805 806 807 808
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
809 810 811 812

	return intel_dp->pps_pipe;
}

813 814 815
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
816
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
817
	int backlight_controller = dev_priv->vbt.backlight.controller;
818 819 820 821

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
822
	WARN_ON(!intel_dp_is_edp(intel_dp));
823 824

	if (!intel_dp->pps_reset)
825
		return backlight_controller;
826 827 828 829 830 831 832

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
833
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
834

835
	return backlight_controller;
836 837
}

838 839 840 841 842 843
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
844
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
845 846 847 848 849
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
850
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
851 852 853 854 855 856 857
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
858

859
static enum pipe
860 861 862
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
863 864
{
	enum pipe pipe;
865 866

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
867
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
868
			PANEL_PORT_SELECT_MASK;
869 870 871 872

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

873 874 875
		if (!pipe_check(dev_priv, pipe))
			continue;

876
		return pipe;
877 878
	}

879 880 881 882 883 884
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
885
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
886
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
887
	enum port port = intel_dig_port->base.port;
888 889 890 891

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
892 893 894 895 896 897 898 899 900 901 902
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
903 904 905 906 907 908

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
909 910
	}

911 912 913
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

914 915
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
916 917
}

918
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
919 920 921
{
	struct intel_encoder *encoder;

922
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
923
		    !IS_GEN9_LP(dev_priv)))
924 925 926 927 928 929 930 931 932 933 934 935
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

936 937
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
938

939 940 941 942 943
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

944
		if (IS_GEN9_LP(dev_priv))
945 946 947
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
948
	}
949 950
}

951 952 953 954 955 956 957 958
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

959
static void intel_pps_get_registers(struct intel_dp *intel_dp,
960 961
				    struct pps_registers *regs)
{
962
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
963 964
	int pps_idx = 0;

965 966
	memset(regs, 0, sizeof(*regs));

967
	if (IS_GEN9_LP(dev_priv))
968 969 970
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
971

972 973 974 975
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
976 977

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
978
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
979 980
		regs->pp_div = INVALID_MMIO_REG;
	else
981
		regs->pp_div = PP_DIVISOR(pps_idx);
982 983
}

984 985
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
986
{
987
	struct pps_registers regs;
988

989
	intel_pps_get_registers(intel_dp, &regs);
990 991

	return regs.pp_ctrl;
992 993
}

994 995
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
996
{
997
	struct pps_registers regs;
998

999
	intel_pps_get_registers(intel_dp, &regs);
1000 1001

	return regs.pp_stat;
1002 1003
}

1004 1005 1006 1007 1008 1009 1010
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1011
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1012
	intel_wakeref_t wakeref;
1013

1014
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1015 1016
		return 0;

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1030
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1031 1032
			msleep(intel_dp->panel_power_cycle_delay);
		}
1033 1034 1035 1036 1037
	}

	return 0;
}

1038
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1039
{
1040
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1041

V
Ville Syrjälä 已提交
1042 1043
	lockdep_assert_held(&dev_priv->pps_mutex);

1044
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1045 1046 1047
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1048
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1049 1050
}

1051
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1052
{
1053
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1054

V
Ville Syrjälä 已提交
1055 1056
	lockdep_assert_held(&dev_priv->pps_mutex);

1057
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1058 1059 1060
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1061
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1062 1063
}

1064 1065 1066
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1067
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1068

1069
	if (!intel_dp_is_edp(intel_dp))
1070
		return;
1071

1072
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1073 1074
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1075 1076
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1077 1078 1079
	}
}

1080
static u32
1081
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1082
{
1083
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1084
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1085
	u32 status;
1086 1087
	bool done;

1088
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1089 1090
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1091 1092 1093 1094

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1095
	if (!done)
1096
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1097 1098 1099 1100 1101
#undef C

	return status;
}

1102
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1103
{
1104
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1105

1106 1107 1108
	if (index)
		return 0;

1109 1110
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1111
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1112
	 */
1113
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1114 1115
}

1116
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1117
{
1118
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1119
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1120 1121 1122 1123

	if (index)
		return 0;

1124 1125 1126 1127 1128
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1129
	if (dig_port->aux_ch == AUX_CH_A)
1130
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1131 1132
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1133 1134
}

1135
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1136
{
1137
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1139

1140
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1141
		/* Workaround for non-ULT HSW */
1142 1143 1144 1145 1146
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1147
	}
1148 1149

	return ilk_get_aux_clock_divider(intel_dp, index);
1150 1151
}

1152
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1162 1163 1164
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1165 1166
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1167 1168
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1169
	u32 precharge, timeout;
1170

1171
	if (IS_GEN(dev_priv, 6))
1172 1173 1174 1175
		precharge = 3;
	else
		precharge = 5;

1176
	if (IS_BROADWELL(dev_priv))
1177 1178 1179 1180 1181
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1182
	       DP_AUX_CH_CTL_DONE |
1183
	       DP_AUX_CH_CTL_INTERRUPT |
1184
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1185
	       timeout |
1186
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1187 1188
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1189
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1190 1191
}

1192 1193 1194
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1195
{
1196
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1197
	u32 ret;
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1213 1214
}

1215
static int
1216
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1217 1218
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1219
		  u32 aux_send_ctl_flags)
1220 1221
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1222 1223
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1224
	i915_reg_t ch_ctl, ch_data[5];
1225
	u32 aux_clock_divider;
1226 1227 1228 1229
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1230
	int i, ret, recv_bytes;
1231
	int try, clock = 0;
1232
	u32 status;
1233 1234
	bool vdd;

1235 1236 1237 1238
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1239 1240
	aux_wakeref = intel_display_power_get(dev_priv, aux_domain);
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1241

1242 1243 1244 1245 1246 1247
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1248
	vdd = edp_panel_vdd_on(intel_dp);
1249 1250 1251 1252 1253 1254 1255 1256

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1257

1258 1259
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1260
		status = I915_READ_NOTRACE(ch_ctl);
1261 1262 1263 1264
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1265 1266
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1267 1268

	if (try == 3) {
1269 1270 1271 1272 1273 1274 1275 1276 1277
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1278 1279
		ret = -EBUSY;
		goto out;
1280 1281
	}

1282 1283 1284 1285 1286 1287
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1288
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1289 1290 1291 1292 1293
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1294

1295 1296 1297 1298
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1299
				I915_WRITE(ch_data[i >> 2],
1300 1301
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1302 1303

			/* Send the command and wait for it to complete */
1304
			I915_WRITE(ch_ctl, send_ctl);
1305

1306
			status = intel_dp_aux_wait_done(intel_dp);
1307 1308 1309 1310 1311 1312 1313 1314

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1315 1316 1317 1318 1319
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1320 1321 1322
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1323 1324
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1325
				continue;
1326
			}
1327
			if (status & DP_AUX_CH_CTL_DONE)
1328
				goto done;
1329
		}
1330 1331 1332
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1333
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1334 1335
		ret = -EBUSY;
		goto out;
1336 1337
	}

1338
done:
1339 1340 1341
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1342
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1343
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1344 1345
		ret = -EIO;
		goto out;
1346
	}
1347 1348 1349

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1350
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1351
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1352 1353
		ret = -ETIMEDOUT;
		goto out;
1354 1355 1356 1357 1358
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1372 1373
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1374

1375
	for (i = 0; i < recv_bytes; i += 4)
1376
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1377
				    recv + i, recv_bytes - i);
1378

1379 1380 1381 1382
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1383 1384 1385
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1386 1387
	pps_unlock(intel_dp, pps_wakeref);
	intel_display_power_put_async(dev_priv, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1388

1389
	return ret;
1390 1391
}

1392 1393
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1405 1406
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1407
{
1408
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1409
	u8 txbuf[20], rxbuf[20];
1410
	size_t txsize, rxsize;
1411 1412
	int ret;

1413
	intel_dp_aux_header(txbuf, msg);
1414

1415 1416 1417
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1418
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1419
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1420
		rxsize = 2; /* 0 or 1 data bytes */
1421

1422 1423
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1424

1425 1426
		WARN_ON(!msg->buffer != !msg->size);

1427 1428
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1429

1430
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1431
					rxbuf, rxsize, 0);
1432 1433
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1434

1435 1436 1437 1438 1439 1440 1441
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1442 1443
		}
		break;
1444

1445 1446
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1447
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1448
		rxsize = msg->size + 1;
1449

1450 1451
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1452

1453
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1454
					rxbuf, rxsize, 0);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1465
		}
1466 1467 1468 1469 1470
		break;

	default:
		ret = -EINVAL;
		break;
1471
	}
1472

1473
	return ret;
1474 1475
}

1476

1477
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1478
{
1479
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1480 1481
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1482

1483 1484 1485 1486 1487
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1488
	default:
1489 1490
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1491 1492 1493
	}
}

1494
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1495
{
1496
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1497 1498
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1499

1500 1501 1502 1503 1504
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1505
	default:
1506 1507
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1508 1509 1510
	}
}

1511
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1512
{
1513
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1514 1515
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1516

1517 1518 1519 1520 1521 1522 1523
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1524
	default:
1525 1526
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1527 1528 1529
	}
}

1530
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1531
{
1532
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1533 1534
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1535

1536 1537 1538 1539 1540 1541 1542
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1543
	default:
1544 1545
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1546 1547 1548
	}
}

1549
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1550
{
1551
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1552 1553
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1554

1555 1556 1557 1558 1559
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1560
	case AUX_CH_E:
1561 1562
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1563
	default:
1564 1565
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1566 1567 1568
	}
}

1569
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1570
{
1571
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1572 1573
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1574

1575 1576 1577 1578 1579
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1580
	case AUX_CH_E:
1581 1582
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1583
	default:
1584 1585
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1586 1587 1588
	}
}

1589 1590 1591 1592 1593 1594 1595 1596
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1597
{
1598
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1599 1600
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1601

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1612

1613 1614 1615 1616 1617 1618 1619 1620
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1621

1622 1623 1624 1625
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1626

1627
	drm_dp_aux_init(&intel_dp->aux);
1628

1629
	/* Failure to allocate our preferred name is not critical */
1630 1631
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1632
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1633 1634
}

1635
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1636
{
1637
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1638

1639
	return max_rate >= 540000;
1640 1641
}

1642 1643 1644 1645 1646 1647 1648
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1649 1650
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1651
		   struct intel_crtc_state *pipe_config)
1652
{
1653
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1654 1655
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1656

1657
	if (IS_G4X(dev_priv)) {
1658 1659
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1660
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1661 1662
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1663
	} else if (IS_CHERRYVIEW(dev_priv)) {
1664 1665
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1666
	} else if (IS_VALLEYVIEW(dev_priv)) {
1667 1668
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1669
	}
1670 1671 1672

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1673
			if (pipe_config->port_clock == divisor[i].clock) {
1674 1675 1676 1677 1678
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1679 1680 1681
	}
}

1682 1683 1684 1685 1686 1687 1688 1689
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1690
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1705 1706
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1707 1708
	DRM_DEBUG_KMS("source rates: %s\n", str);

1709 1710
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1711 1712
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1713 1714
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1715
	DRM_DEBUG_KMS("common rates: %s\n", str);
1716 1717
}

1718 1719 1720 1721 1722
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1723
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1724 1725 1726
	if (WARN_ON(len <= 0))
		return 162000;

1727
	return intel_dp->common_rates[len - 1];
1728 1729
}

1730 1731
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1732 1733
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1734 1735 1736 1737 1738

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1739 1740
}

1741
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1742
			   u8 *link_bw, u8 *rate_select)
1743
{
1744 1745
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1746 1747 1748 1749 1750 1751 1752 1753 1754
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1755
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1756 1757 1758 1759
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1775 1776 1777 1778 1779 1780 1781 1782

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1783 1784 1785
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1786 1787 1788 1789
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1790 1791
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1792
{
1793
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1794
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1795 1796 1797 1798 1799 1800 1801 1802
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1813 1814 1815
	return bpp;
}

1816
/* Adjust link config limits based on compliance test requests. */
1817
void
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1852
/* Optimize link config in order: max bpp, min clock, min lanes */
1853
static int
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1879
					return 0;
1880 1881 1882 1883 1884
				}
			}
		}
	}

1885
	return -EINVAL;
1886 1887
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1903 1904 1905 1906
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1907 1908 1909 1910 1911 1912
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1913
	int ret;
1914

1915 1916 1917
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

1918
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1919
		return -EINVAL;
1920 1921 1922 1923 1924 1925 1926

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1927
		return -EINVAL;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1961
			return -EINVAL;
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1978
			return -EINVAL;
1979 1980
		}
	}
1981 1982 1983

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
1984 1985 1986 1987
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
1988
		return ret;
1989
	}
1990

1991 1992 1993 1994 1995 1996 1997
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

1998
	return 0;
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2009
static int
2010
intel_dp_compute_link_config(struct intel_encoder *encoder,
2011 2012
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2013
{
2014
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2015
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2016
	struct link_config_limits limits;
2017
	int common_len;
2018
	int ret;
2019

2020
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2021
						    intel_dp->max_link_rate);
2022 2023

	/* No common link rates between source and sink */
2024
	WARN_ON(common_len <= 0);
2025

2026 2027 2028 2029 2030 2031
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2032
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2033
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2034

2035
	if (intel_dp_is_edp(intel_dp)) {
2036 2037
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2038 2039 2040 2041
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2042
		 */
2043 2044
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2045
	}
2046

2047 2048
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2049 2050 2051 2052 2053 2054
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2055 2056 2057 2058 2059
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2060 2061

	/* enable compression if the mode doesn't fit available BW */
2062
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2063 2064 2065 2066 2067
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2068
	}
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2092
	return 0;
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2118
int
2119 2120 2121 2122 2123 2124 2125
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2126
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2127 2128 2129 2130 2131
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2132 2133
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2134
	int ret, output_bpp;
2135 2136 2137 2138

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2139
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2140 2141 2142
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2143 2144 2145 2146 2147 2148 2149 2150 2151
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2152 2153
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2154 2155 2156 2157 2158 2159 2160

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2161
		if (HAS_GMCH(dev_priv))
2162 2163 2164 2165 2166 2167 2168
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2169
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2170
		return -EINVAL;
2171

R
Rodrigo Vivi 已提交
2172
	if (HAS_GMCH(dev_priv) &&
2173
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2174
		return -EINVAL;
2175 2176

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2177
		return -EINVAL;
2178

2179 2180 2181
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2182

2183 2184
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2185

2186 2187
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2188
	else
2189 2190 2191 2192 2193 2194 2195 2196
		output_bpp = pipe_config->pipe_bpp;

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
			       constant_n);
2197

2198
	if (intel_connector->panel.downclock_mode != NULL &&
2199
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2200
			pipe_config->has_drrs = true;
2201
			intel_link_compute_m_n(output_bpp,
2202 2203 2204 2205
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2206
					       constant_n);
2207 2208
	}

2209
	if (!HAS_DDI(dev_priv))
2210
		intel_dp_set_clock(encoder, pipe_config);
2211

2212 2213
	intel_psr_compute_config(intel_dp, pipe_config);

2214
	return 0;
2215 2216
}

2217
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2218
			      int link_rate, u8 lane_count,
2219
			      bool link_mst)
2220
{
2221
	intel_dp->link_trained = false;
2222 2223 2224
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2225 2226
}

2227
static void intel_dp_prepare(struct intel_encoder *encoder,
2228
			     const struct intel_crtc_state *pipe_config)
2229
{
2230
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2231
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2232
	enum port port = encoder->port;
2233
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2234
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2235

2236 2237 2238 2239
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2240

2241
	/*
K
Keith Packard 已提交
2242
	 * There are four kinds of DP registers:
2243 2244
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2245 2246
	 * 	SNB CPU
	 *	IVB CPU
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2257

2258 2259 2260 2261
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2262

2263 2264
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2265
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2266

2267
	/* Split out the IBX/CPU vs CPT settings */
2268

2269
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2270 2271 2272 2273 2274 2275
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2276
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2277 2278
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2279
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2280
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2281 2282
		u32 trans_dp;

2283
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2284 2285 2286 2287 2288 2289 2290

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2291
	} else {
2292
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2293
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2294 2295 2296 2297 2298 2299 2300

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2301
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2302 2303
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2304
		if (IS_CHERRYVIEW(dev_priv))
2305 2306 2307
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2308
	}
2309 2310
}

2311 2312
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2313

2314 2315
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2316

2317 2318
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2319

2320
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2321

2322
static void wait_panel_status(struct intel_dp *intel_dp,
2323 2324
				       u32 mask,
				       u32 value)
2325
{
2326
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2327
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2328

V
Ville Syrjälä 已提交
2329 2330
	lockdep_assert_held(&dev_priv->pps_mutex);

2331
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2332

2333 2334
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2335

2336
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2337 2338 2339
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2340

2341
	if (intel_wait_for_register(&dev_priv->uncore,
2342 2343
				    pp_stat_reg, mask, value,
				    5000))
2344
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2345 2346
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2347 2348

	DRM_DEBUG_KMS("Wait complete\n");
2349
}
2350

2351
static void wait_panel_on(struct intel_dp *intel_dp)
2352 2353
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2354
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2355 2356
}

2357
static void wait_panel_off(struct intel_dp *intel_dp)
2358 2359
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2360
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2361 2362
}

2363
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2364
{
2365 2366 2367
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2368
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2369

2370 2371 2372 2373 2374
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2375 2376
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2377 2378 2379
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2380

2381
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2382 2383
}

2384
static void wait_backlight_on(struct intel_dp *intel_dp)
2385 2386 2387 2388 2389
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2390
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2391 2392 2393 2394
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2395

2396 2397 2398 2399
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2400
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2401
{
2402
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2403
	u32 control;
2404

V
Ville Syrjälä 已提交
2405 2406
	lockdep_assert_held(&dev_priv->pps_mutex);

2407
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2408 2409
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2410 2411 2412
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2413
	return control;
2414 2415
}

2416 2417 2418 2419 2420
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2421
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2422
{
2423
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2424
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2425
	u32 pp;
2426
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2427
	bool need_to_disable = !intel_dp->want_panel_vdd;
2428

V
Ville Syrjälä 已提交
2429 2430
	lockdep_assert_held(&dev_priv->pps_mutex);

2431
	if (!intel_dp_is_edp(intel_dp))
2432
		return false;
2433

2434
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2435
	intel_dp->want_panel_vdd = true;
2436

2437
	if (edp_have_panel_vdd(intel_dp))
2438
		return need_to_disable;
2439

2440 2441
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2442

V
Ville Syrjälä 已提交
2443
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2444
		      port_name(intel_dig_port->base.port));
2445

2446 2447
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2448

2449
	pp = ironlake_get_pp_control(intel_dp);
2450
	pp |= EDP_FORCE_VDD;
2451

2452 2453
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2454 2455 2456 2457 2458

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2459 2460 2461
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2462
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2463
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2464
			      port_name(intel_dig_port->base.port));
2465 2466
		msleep(intel_dp->panel_power_up_delay);
	}
2467 2468 2469 2470

	return need_to_disable;
}

2471 2472 2473 2474 2475 2476 2477
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2478
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2479
{
2480
	intel_wakeref_t wakeref;
2481
	bool vdd;
2482

2483
	if (!intel_dp_is_edp(intel_dp))
2484 2485
		return;

2486 2487 2488
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
R
Rob Clark 已提交
2489
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2490
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2491 2492
}

2493
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2494
{
2495
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2496 2497
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2498
	u32 pp;
2499
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2500

V
Ville Syrjälä 已提交
2501
	lockdep_assert_held(&dev_priv->pps_mutex);
2502

2503
	WARN_ON(intel_dp->want_panel_vdd);
2504

2505
	if (!edp_have_panel_vdd(intel_dp))
2506
		return;
2507

V
Ville Syrjälä 已提交
2508
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2509
		      port_name(intel_dig_port->base.port));
2510

2511 2512
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2513

2514 2515
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2516

2517 2518
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2519

2520 2521 2522
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2523

2524
	if ((pp & PANEL_POWER_ON) == 0)
2525
		intel_dp->panel_power_off_time = ktime_get_boottime();
2526

2527 2528
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2529
}
2530

2531
static void edp_panel_vdd_work(struct work_struct *__work)
2532
{
2533 2534 2535 2536
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2537

2538 2539 2540 2541
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2557 2558 2559 2560 2561
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2562
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2563
{
2564
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2565 2566 2567

	lockdep_assert_held(&dev_priv->pps_mutex);

2568
	if (!intel_dp_is_edp(intel_dp))
2569
		return;
2570

R
Rob Clark 已提交
2571
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2572
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2573

2574 2575
	intel_dp->want_panel_vdd = false;

2576
	if (sync)
2577
		edp_panel_vdd_off_sync(intel_dp);
2578 2579
	else
		edp_panel_vdd_schedule_off(intel_dp);
2580 2581
}

2582
static void edp_panel_on(struct intel_dp *intel_dp)
2583
{
2584
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2585
	u32 pp;
2586
	i915_reg_t pp_ctrl_reg;
2587

2588 2589
	lockdep_assert_held(&dev_priv->pps_mutex);

2590
	if (!intel_dp_is_edp(intel_dp))
2591
		return;
2592

V
Ville Syrjälä 已提交
2593
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2594
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2595

2596 2597
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2598
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2599
		return;
2600

2601
	wait_panel_power_cycle(intel_dp);
2602

2603
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2604
	pp = ironlake_get_pp_control(intel_dp);
2605
	if (IS_GEN(dev_priv, 5)) {
2606 2607
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2608 2609
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2610
	}
2611

2612
	pp |= PANEL_POWER_ON;
2613
	if (!IS_GEN(dev_priv, 5))
2614 2615
		pp |= PANEL_POWER_RESET;

2616 2617
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2618

2619
	wait_panel_on(intel_dp);
2620
	intel_dp->last_power_on = jiffies;
2621

2622
	if (IS_GEN(dev_priv, 5)) {
2623
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2624 2625
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2626
	}
2627
}
V
Ville Syrjälä 已提交
2628

2629 2630
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2631 2632
	intel_wakeref_t wakeref;

2633
	if (!intel_dp_is_edp(intel_dp))
2634 2635
		return;

2636 2637
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2638 2639
}

2640 2641

static void edp_panel_off(struct intel_dp *intel_dp)
2642
{
2643
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2644
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2645
	u32 pp;
2646
	i915_reg_t pp_ctrl_reg;
2647

2648 2649
	lockdep_assert_held(&dev_priv->pps_mutex);

2650
	if (!intel_dp_is_edp(intel_dp))
2651
		return;
2652

V
Ville Syrjälä 已提交
2653
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2654
		      port_name(dig_port->base.port));
2655

V
Ville Syrjälä 已提交
2656
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2657
	     port_name(dig_port->base.port));
2658

2659
	pp = ironlake_get_pp_control(intel_dp);
2660 2661
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2662
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2663
		EDP_BLC_ENABLE);
2664

2665
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2666

2667 2668
	intel_dp->want_panel_vdd = false;

2669 2670
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2671

2672
	wait_panel_off(intel_dp);
2673
	intel_dp->panel_power_off_time = ktime_get_boottime();
2674 2675

	/* We got a reference when we enabled the VDD. */
2676
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2677
}
V
Ville Syrjälä 已提交
2678

2679 2680
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2681 2682
	intel_wakeref_t wakeref;

2683
	if (!intel_dp_is_edp(intel_dp))
2684
		return;
V
Ville Syrjälä 已提交
2685

2686 2687
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2688 2689
}

2690 2691
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2692
{
2693
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2694
	intel_wakeref_t wakeref;
2695

2696 2697 2698 2699 2700 2701
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2702
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2703

2704 2705 2706
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2707

2708 2709
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2710

2711 2712 2713
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2714 2715
}

2716
/* Enable backlight PWM and backlight PP control. */
2717 2718
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2719
{
2720 2721
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2722
	if (!intel_dp_is_edp(intel_dp))
2723 2724 2725 2726
		return;

	DRM_DEBUG_KMS("\n");

2727
	intel_panel_enable_backlight(crtc_state, conn_state);
2728 2729 2730 2731 2732
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2733
{
2734
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2735
	intel_wakeref_t wakeref;
2736

2737
	if (!intel_dp_is_edp(intel_dp))
2738 2739
		return;

2740 2741 2742
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2743

2744 2745
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2746

2747 2748 2749
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2750 2751

	intel_dp->last_backlight_off = jiffies;
2752
	edp_wait_backlight_off(intel_dp);
2753
}
2754

2755
/* Disable backlight PP control and backlight PWM. */
2756
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2757
{
2758 2759
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2760
	if (!intel_dp_is_edp(intel_dp))
2761 2762 2763
		return;

	DRM_DEBUG_KMS("\n");
2764

2765
	_intel_edp_backlight_off(intel_dp);
2766
	intel_panel_disable_backlight(old_conn_state);
2767
}
2768

2769 2770 2771 2772 2773 2774 2775 2776
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2777
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2778 2779
	bool is_enabled;

2780 2781 2782
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2783 2784 2785
	if (is_enabled == enable)
		return;

2786 2787
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2788 2789 2790 2791 2792 2793 2794

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2795 2796 2797 2798 2799 2800 2801 2802
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2803
			port_name(dig_port->base.port),
2804
			onoff(state), onoff(cur_state));
2805 2806 2807 2808 2809 2810 2811 2812 2813
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2814
			onoff(state), onoff(cur_state));
2815 2816 2817 2818
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2819
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2820
				const struct intel_crtc_state *pipe_config)
2821
{
2822
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2823
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2824

2825 2826 2827
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2828

2829
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2830
		      pipe_config->port_clock);
2831 2832 2833

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2834
	if (pipe_config->port_clock == 162000)
2835 2836 2837 2838 2839 2840 2841 2842
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2843 2844 2845 2846 2847 2848
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2849
	if (IS_GEN(dev_priv, 5))
2850
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2851

2852
	intel_dp->DP |= DP_PLL_ENABLE;
2853

2854
	I915_WRITE(DP_A, intel_dp->DP);
2855 2856
	POSTING_READ(DP_A);
	udelay(200);
2857 2858
}

2859 2860
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2861
{
2862
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2863
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2864

2865 2866 2867
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2868

2869 2870
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2871
	intel_dp->DP &= ~DP_PLL_ENABLE;
2872

2873
	I915_WRITE(DP_A, intel_dp->DP);
2874
	POSTING_READ(DP_A);
2875 2876 2877
	udelay(200);
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2909
/* If the sink supports it, try to set the power state appropriately */
2910
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2911 2912 2913 2914 2915 2916 2917 2918
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2919 2920 2921
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2922 2923
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2924
	} else {
2925 2926
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2927 2928 2929 2930 2931
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2932 2933
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2934 2935 2936 2937
			if (ret == 1)
				break;
			msleep(1);
		}
2938 2939 2940

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2941
	}
2942 2943 2944 2945

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2946 2947
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2994 2995
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2996
{
2997
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2998
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2999
	intel_wakeref_t wakeref;
3000
	bool ret;
3001

3002 3003 3004
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3005 3006
		return false;

3007 3008
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3009

3010
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3011 3012

	return ret;
3013
}
3014

3015
static void intel_dp_get_config(struct intel_encoder *encoder,
3016
				struct intel_crtc_state *pipe_config)
3017
{
3018
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3019 3020
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3021
	enum port port = encoder->port;
3022
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3023

3024 3025 3026 3027
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3028

3029
	tmp = I915_READ(intel_dp->output_reg);
3030 3031

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3032

3033
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3034 3035 3036
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3037 3038 3039
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3040

3041
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3042 3043 3044 3045
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3046
		if (tmp & DP_SYNC_HS_HIGH)
3047 3048 3049
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3050

3051
		if (tmp & DP_SYNC_VS_HIGH)
3052 3053 3054 3055
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3056

3057
	pipe_config->base.adjusted_mode.flags |= flags;
3058

3059
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3060 3061
		pipe_config->limited_color_range = true;

3062 3063 3064
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3065 3066
	intel_dp_get_m_n(crtc, pipe_config);

3067
	if (port == PORT_A) {
3068
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3069 3070 3071 3072
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3073

3074 3075 3076
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3077

3078
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3079
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3094 3095
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3096
	}
3097 3098
}

3099
static void intel_disable_dp(struct intel_encoder *encoder,
3100 3101
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3102
{
3103
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3104

3105 3106
	intel_dp->link_trained = false;

3107
	if (old_crtc_state->has_audio)
3108 3109
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3110 3111 3112

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3113
	intel_edp_panel_vdd_on(intel_dp);
3114
	intel_edp_backlight_off(old_conn_state);
3115
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3116
	intel_edp_panel_off(intel_dp);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3131 3132
}

3133
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3134 3135
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3136
{
3137
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3138
	enum port port = encoder->port;
3139

3140 3141 3142 3143 3144 3145
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3146
	intel_dp_link_down(encoder, old_crtc_state);
3147 3148

	/* Only ilk+ has port A */
3149
	if (port == PORT_A)
3150
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3151 3152
}

3153
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3154 3155
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3156
{
3157
	intel_dp_link_down(encoder, old_crtc_state);
3158 3159
}

3160
static void chv_post_disable_dp(struct intel_encoder *encoder,
3161 3162
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3163
{
3164
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3165

3166
	intel_dp_link_down(encoder, old_crtc_state);
3167

3168
	vlv_dpio_get(dev_priv);
3169 3170

	/* Assert data lane reset */
3171
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3172

3173
	vlv_dpio_put(dev_priv);
3174 3175
}

3176 3177
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3178 3179
			 u32 *DP,
			 u8 dp_train_pat)
3180
{
3181
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3182
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3183
	enum port port = intel_dig_port->base.port;
3184
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3185

3186
	if (dp_train_pat & train_pat_mask)
3187
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3188
			      dp_train_pat & train_pat_mask);
3189

3190
	if (HAS_DDI(dev_priv)) {
3191
		u32 temp = I915_READ(DP_TP_CTL(port));
3192 3193 3194 3195 3196 3197 3198

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3199
		switch (dp_train_pat & train_pat_mask) {
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3213 3214 3215
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3216 3217 3218
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3219
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3220
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3234
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3235 3236 3237 3238 3239
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3240
		*DP &= ~DP_LINK_TRAIN_MASK;
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3253 3254
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3255 3256 3257 3258 3259
			break;
		}
	}
}

3260
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3261
				 const struct intel_crtc_state *old_crtc_state)
3262
{
3263
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3264 3265 3266

	/* enable with pattern 1 (as per spec) */

3267
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3268 3269 3270 3271 3272 3273 3274 3275

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3276
	if (old_crtc_state->has_audio)
3277
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3278 3279 3280

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3281 3282
}

3283
static void intel_enable_dp(struct intel_encoder *encoder,
3284 3285
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3286
{
3287
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3288
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3289
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3290
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3291
	enum pipe pipe = crtc->pipe;
3292
	intel_wakeref_t wakeref;
3293

3294 3295
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3296

3297 3298 3299
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3300

3301
		intel_dp_enable_port(intel_dp, pipe_config);
3302

3303 3304 3305 3306
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3307

3308
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3309 3310
		unsigned int lane_mask = 0x0;

3311
		if (IS_CHERRYVIEW(dev_priv))
3312
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3313

3314 3315
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3316
	}
3317

3318
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3319
	intel_dp_start_link_train(intel_dp);
3320
	intel_dp_stop_link_train(intel_dp);
3321

3322
	if (pipe_config->has_audio) {
3323
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3324
				 pipe_name(pipe));
3325
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3326
	}
3327
}
3328

3329
static void g4x_enable_dp(struct intel_encoder *encoder,
3330 3331
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3332
{
3333
	intel_enable_dp(encoder, pipe_config, conn_state);
3334
	intel_edp_backlight_on(pipe_config, conn_state);
3335
}
3336

3337
static void vlv_enable_dp(struct intel_encoder *encoder,
3338 3339
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3340
{
3341
	intel_edp_backlight_on(pipe_config, conn_state);
3342 3343
}

3344
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3345 3346
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3347 3348
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3349
	enum port port = encoder->port;
3350

3351
	intel_dp_prepare(encoder, pipe_config);
3352

3353
	/* Only ilk+ has port A */
3354
	if (port == PORT_A)
3355
		ironlake_edp_pll_on(intel_dp, pipe_config);
3356 3357
}

3358 3359 3360
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3361
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3362
	enum pipe pipe = intel_dp->pps_pipe;
3363
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3364

3365 3366
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3367 3368 3369
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3370 3371 3372
	edp_panel_vdd_off_sync(intel_dp);

	/*
3373
	 * VLV seems to get confused when multiple power sequencers
3374 3375 3376
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3377
	 * selected in multiple power sequencers, but let's clear the
3378 3379 3380 3381
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3382
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3383 3384 3385 3386 3387 3388
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3389
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3390 3391 3392 3393 3394 3395
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3396 3397 3398
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3399

3400 3401 3402 3403
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3404 3405 3406 3407
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3408
			      pipe_name(pipe), port_name(port));
3409 3410

		/* make sure vdd is off before we steal it */
3411
		vlv_detach_power_sequencer(intel_dp);
3412 3413 3414
	}
}

3415 3416
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3417
{
3418
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3419 3420
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3421 3422 3423

	lockdep_assert_held(&dev_priv->pps_mutex);

3424
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3425

3426 3427 3428 3429 3430 3431 3432
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3433
		vlv_detach_power_sequencer(intel_dp);
3434
	}
3435 3436 3437 3438 3439

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3440
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3441

3442 3443
	intel_dp->active_pipe = crtc->pipe;

3444
	if (!intel_dp_is_edp(intel_dp))
3445 3446
		return;

3447 3448 3449 3450
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3451
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3452 3453

	/* init power sequencer on this pipe and port */
3454 3455
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3456 3457
}

3458
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3459 3460
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3461
{
3462
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3463

3464
	intel_enable_dp(encoder, pipe_config, conn_state);
3465 3466
}

3467
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3468 3469
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3470
{
3471
	intel_dp_prepare(encoder, pipe_config);
3472

3473
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3474 3475
}

3476
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3477 3478
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3479
{
3480
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3481

3482
	intel_enable_dp(encoder, pipe_config, conn_state);
3483 3484

	/* Second common lane will stay alive on its own now */
3485
	chv_phy_release_cl2_override(encoder);
3486 3487
}

3488
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3489 3490
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3491
{
3492
	intel_dp_prepare(encoder, pipe_config);
3493

3494
	chv_phy_pre_pll_enable(encoder, pipe_config);
3495 3496
}

3497
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3498 3499
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3500
{
3501
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3502 3503
}

3504 3505 3506 3507
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3508
bool
3509
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3510
{
3511 3512
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3513 3514
}

3515
/* These are source-specific values. */
3516
u8
K
Keith Packard 已提交
3517
intel_dp_voltage_max(struct intel_dp *intel_dp)
3518
{
3519
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3520 3521
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3522

3523
	if (HAS_DDI(dev_priv))
3524
		return intel_ddi_dp_voltage_max(encoder);
3525
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3526
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3527
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3528
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3529
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3530
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3531
	else
3532
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3533 3534
}

3535 3536
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3537
{
3538
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3539 3540
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3541

3542 3543
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3544
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3545
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3546 3547 3548 3549 3550 3551 3552
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3553
		default:
3554
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3555
		}
3556
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3557
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3558 3559 3560 3561 3562
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3563
		default:
3564
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3565 3566 3567
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3568 3569 3570 3571 3572 3573 3574
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3575
		default:
3576
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3577
		}
3578 3579 3580
	}
}

3581
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3582
{
3583
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3584 3585
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3586
	u8 train_set = intel_dp->train_set[0];
3587 3588

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3589
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3590 3591
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3592
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3593 3594 3595
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3596
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3597 3598 3599
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3600
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3601 3602 3603
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3604
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3605 3606 3607 3608 3609 3610 3611
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3612
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3613 3614
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3615
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3616 3617 3618
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3619
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3620 3621 3622
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3623
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3624 3625 3626 3627 3628 3629 3630
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3631
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3632 3633
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3634
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3635 3636 3637
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3638
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3639 3640 3641 3642 3643 3644 3645
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3646
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3647 3648
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3649
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3661 3662
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3663 3664 3665 3666

	return 0;
}

3667
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3668
{
3669 3670 3671
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3672
	u8 train_set = intel_dp->train_set[0];
3673 3674

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3675
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3676
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3677
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3678 3679 3680
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3681
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3682 3683 3684
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3685
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3686 3687 3688
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3689
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3690 3691
			deemph_reg_value = 128;
			margin_reg_value = 154;
3692
			uniq_trans_scale = true;
3693 3694 3695 3696 3697
			break;
		default:
			return 0;
		}
		break;
3698
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3699
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3700
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3701 3702 3703
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3704
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3705 3706 3707
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3708
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3709 3710 3711 3712 3713 3714 3715
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3716
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3717
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3718
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3719 3720 3721
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3722
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3723 3724 3725 3726 3727 3728 3729
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3730
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3731
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3732
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3744 3745
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3746 3747 3748 3749

	return 0;
}

3750 3751
static u32
g4x_signal_levels(u8 train_set)
3752
{
3753
	u32 signal_levels = 0;
3754

3755
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3756
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3757 3758 3759
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3760
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3761 3762
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3763
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3764 3765
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3766
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3767 3768 3769
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3770
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3771
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3772 3773 3774
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3775
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3776 3777
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3778
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3779 3780
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3781
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3782 3783 3784 3785 3786 3787
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3788
/* SNB CPU eDP voltage swing and pre-emphasis control */
3789 3790
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3791
{
3792 3793 3794
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3795 3796
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3797
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3798
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3799
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3800 3801
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3802
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3803 3804
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3805
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3806 3807
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3808
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3809
	default:
3810 3811 3812
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3813 3814 3815
	}
}

3816
/* IVB CPU eDP voltage swing and pre-emphasis control */
3817 3818
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
3819 3820 3821 3822
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3823
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3824
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3825
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3826
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3827
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3828 3829
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3830
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3831
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3832
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3833 3834
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3835
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3836
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3837
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3838 3839 3840 3841 3842 3843 3844 3845 3846
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3847
void
3848
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3849
{
3850
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3851
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3852
	enum port port = intel_dig_port->base.port;
3853 3854
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
3855

R
Rodrigo Vivi 已提交
3856
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3857 3858
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3859
		signal_levels = ddi_signal_levels(intel_dp);
3860
		mask = DDI_BUF_EMP_MASK;
3861
	} else if (IS_CHERRYVIEW(dev_priv)) {
3862
		signal_levels = chv_signal_levels(intel_dp);
3863
	} else if (IS_VALLEYVIEW(dev_priv)) {
3864
		signal_levels = vlv_signal_levels(intel_dp);
3865
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3866
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3867
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3868
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3869
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3870 3871
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3872
		signal_levels = g4x_signal_levels(train_set);
3873 3874 3875
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3876 3877 3878 3879 3880 3881 3882 3883
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3884

3885
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3886 3887 3888

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3889 3890
}

3891
void
3892
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3893
				       u8 dp_train_pat)
3894
{
3895
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3896 3897
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3898

3899
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3900

3901
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3902
	POSTING_READ(intel_dp->output_reg);
3903 3904
}

3905
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3906
{
3907
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3908
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3909
	enum port port = intel_dig_port->base.port;
3910
	u32 val;
3911

3912
	if (!HAS_DDI(dev_priv))
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3930
	if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3931 3932 3933
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3934 3935 3936
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3937
static void
3938 3939
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3940
{
3941 3942 3943 3944
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
3945
	u32 DP = intel_dp->DP;
3946

3947
	if (WARN_ON(HAS_DDI(dev_priv)))
3948 3949
		return;

3950
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3951 3952
		return;

3953
	DRM_DEBUG_KMS("\n");
3954

3955
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3956
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3957
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3958
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3959
	} else {
3960
		DP &= ~DP_LINK_TRAIN_MASK;
3961
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3962
	}
3963
	I915_WRITE(intel_dp->output_reg, DP);
3964
	POSTING_READ(intel_dp->output_reg);
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3975
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3976 3977 3978 3979 3980 3981 3982
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3983
		/* always enable with pattern 1 (as per spec) */
3984 3985 3986
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3987 3988 3989 3990
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3991
		I915_WRITE(intel_dp->output_reg, DP);
3992
		POSTING_READ(intel_dp->output_reg);
3993

3994
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3995 3996
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3997 3998
	}

3999
	msleep(intel_dp->panel_power_down_delay);
4000 4001

	intel_dp->DP = DP;
4002 4003

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4004 4005 4006 4007
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4008
	}
4009 4010
}

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4047
bool
4048
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4049
{
4050 4051
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4052
		return false; /* aux transfer failed */
4053

4054 4055
	intel_dp_extended_receiver_capabilities(intel_dp);

4056
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4057

4058 4059
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4060

4061 4062 4063 4064 4065 4066 4067 4068
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4069 4070 4071
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4084

4085
		/* FEC is supported only on DP 1.4 */
4086 4087 4088 4089
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4090

4091
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4092 4093 4094
	}
}

4095 4096 4097 4098 4099
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4100

4101 4102
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4103

4104
	if (!intel_dp_read_dpcd(intel_dp))
4105 4106
		return false;

4107 4108
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4109

4110 4111 4112
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4113

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4124 4125
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4126
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4127
			      intel_dp->edp_dpcd);
4128

4129 4130 4131 4132 4133 4134
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4135 4136
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4137
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4138 4139
		int i;

4140 4141
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4142

4143 4144
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4145 4146 4147 4148

			if (val == 0)
				break;

4149 4150 4151 4152 4153 4154
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4155
			intel_dp->sink_rates[i] = (val * 200) / 10;
4156
		}
4157
		intel_dp->num_sink_rates = i;
4158
	}
4159

4160 4161 4162 4163
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4164 4165 4166 4167 4168
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4169 4170
	intel_dp_set_common_rates(intel_dp);

4171 4172 4173 4174
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4185
	/* Don't clobber cached eDP rates. */
4186
	if (!intel_dp_is_edp(intel_dp)) {
4187
		intel_dp_set_sink_rates(intel_dp);
4188 4189
		intel_dp_set_common_rates(intel_dp);
	}
4190

4191
	/*
4192 4193
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4194
	 */
4195 4196 4197
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4198

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4220

4221
	if (!drm_dp_is_branch(intel_dp->dpcd))
4222 4223 4224 4225 4226
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4227 4228 4229
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4230 4231 4232
		return false; /* downstream port status fetch failed */

	return true;
4233 4234
}

4235
static bool
4236
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4237
{
4238
	u8 mstm_cap;
4239 4240 4241 4242

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4243
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4244
		return false;
4245

4246
	return mstm_cap & DP_MST_CAP;
4247 4248
}

4249 4250 4251 4252 4253 4254 4255 4256
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4257 4258 4259
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4260 4261 4262 4263 4264 4265 4266
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4267 4268 4269 4270

	if (!intel_dp->can_mst)
		return;

4271 4272
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4273 4274 4275

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4276 4277 4278 4279 4280
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4281 4282 4283
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4284 4285
}

4286
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
4353
	min_slice_count = min_t(u8, min_slice_count,
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4371
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4372
{
4373
	int status = 0;
4374
	int test_link_rate;
4375
	u8 test_lane_count, test_link_bw;
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4396 4397 4398 4399

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4400 4401 4402 4403 4404 4405
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4406 4407
}

4408
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4409
{
4410 4411
	u8 test_pattern;
	u8 test_misc;
4412 4413 4414 4415
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4416 4417
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4439 4440
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4467 4468
}

4469
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4470
{
4471
	u8 test_result = DP_TEST_ACK;
4472 4473 4474 4475
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4476
	    connector->edid_corrupt ||
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4490
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4491
	} else {
4492 4493 4494 4495 4496 4497 4498
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4499 4500
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4501 4502 4503
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4504
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4505 4506 4507
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4508
	intel_dp->compliance.test_active = 1;
4509

4510 4511 4512
	return test_result;
}

4513
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4514
{
4515
	u8 test_result = DP_TEST_NAK;
4516 4517 4518 4519 4520
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4521 4522
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4523
	int status;
4524

4525
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4526 4527 4528 4529 4530
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4531
	switch (request) {
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4549
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4550 4551 4552
		break;
	}

4553 4554 4555
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4556
update_status:
4557
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4558 4559
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4560 4561
}

4562 4563 4564 4565 4566 4567
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4568
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4569 4570 4571
		int ret = 0;
		int retry;
		bool handled;
4572 4573

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4574 4575 4576 4577 4578
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4579
			if (intel_dp->active_mst_links > 0 &&
4580
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4581 4582 4583 4584 4585
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4586
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4602
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4603 4604 4605 4606 4607 4608 4609 4610 4611
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4612 4613
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4614 4615 4616 4617 4618
		}
	}
	return -EINVAL;
}

4619 4620 4621 4622 4623
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4624
	if (!intel_dp->link_trained)
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4636 4637 4638
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4655 4656
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4697 4698 4699

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4700
	if (crtc_state->has_pch_encoder)
4701 4702 4703 4704 4705 4706 4707
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4708
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4709 4710

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4711
	if (crtc_state->has_pch_encoder)
4712 4713
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4714 4715

	return 0;
4716 4717
}

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4732
{
4733 4734 4735
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4736

4737
	changed = intel_encoder_hotplug(encoder, connector);
4738

4739
	drm_modeset_acquire_init(&ctx, 0);
4740

4741 4742
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4743

4744 4745 4746 4747
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4748

4749 4750
		break;
	}
4751

4752 4753 4754
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4755

4756
	return changed;
4757 4758
}

4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4775
	if (val & DP_CP_IRQ)
4776
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4777 4778 4779

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4780 4781
}

4782 4783 4784 4785 4786 4787 4788
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4789 4790 4791 4792 4793
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4794
 */
4795
static bool
4796
intel_dp_short_pulse(struct intel_dp *intel_dp)
4797
{
4798
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4799 4800
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4801

4802 4803 4804 4805
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4806
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4807

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4819 4820
	}

4821
	intel_dp_check_service_irq(intel_dp);
4822

4823 4824 4825
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4826 4827 4828
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4829

4830 4831
	intel_psr_short_pulse(intel_dp);

4832 4833 4834
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4835
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4836
	}
4837 4838

	return true;
4839 4840
}

4841
/* XXX this is probably wrong for multiple downstream ports */
4842
static enum drm_connector_status
4843
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4844
{
4845
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4846 4847
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
4848

4849 4850 4851
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

4852 4853 4854
	if (lspcon->active)
		lspcon_resume(lspcon);

4855 4856 4857 4858
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
4859
	if (!drm_dp_is_branch(dpcd))
4860
		return connector_status_connected;
4861 4862

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4863 4864
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4865

4866 4867
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4868 4869
	}

4870 4871 4872
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4873
	/* If no HPD, poke DDC gently */
4874
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4875
		return connector_status_connected;
4876 4877

	/* Well we tried, say unknown for unreliable port types */
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4890 4891 4892

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4893
	return connector_status_disconnected;
4894 4895
}

4896 4897 4898
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4899
	return connector_status_connected;
4900 4901
}

4902
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4903
{
4904
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4905
	u32 bit;
4906

4907 4908
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4909 4910
		bit = SDE_PORTB_HOTPLUG;
		break;
4911
	case HPD_PORT_C:
4912 4913
		bit = SDE_PORTC_HOTPLUG;
		break;
4914
	case HPD_PORT_D:
4915 4916 4917
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4918
		MISSING_CASE(encoder->hpd_pin);
4919 4920 4921 4922 4923 4924
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4925
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4926
{
4927
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4928 4929
	u32 bit;

4930 4931
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4932 4933
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4934
	case HPD_PORT_C:
4935 4936
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4937
	case HPD_PORT_D:
4938 4939
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4940
	default:
4941
		MISSING_CASE(encoder->hpd_pin);
4942 4943 4944 4945 4946 4947
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4948
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4949
{
4950
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4951 4952
	u32 bit;

4953 4954
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4955 4956
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4957
	case HPD_PORT_E:
4958 4959
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4960
	default:
4961
		return cpt_digital_port_connected(encoder);
4962
	}
4963

4964
	return I915_READ(SDEISR) & bit;
4965 4966
}

4967
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4968
{
4969
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4970
	u32 bit;
4971

4972 4973
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4974 4975
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4976
	case HPD_PORT_C:
4977 4978
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4979
	case HPD_PORT_D:
4980 4981 4982
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4983
		MISSING_CASE(encoder->hpd_pin);
4984 4985 4986 4987 4988 4989
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4990
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4991
{
4992
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4993 4994
	u32 bit;

4995 4996
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4997
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4998
		break;
4999
	case HPD_PORT_C:
5000
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5001
		break;
5002
	case HPD_PORT_D:
5003
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5004 5005
		break;
	default:
5006
		MISSING_CASE(encoder->hpd_pin);
5007
		return false;
5008 5009
	}

5010
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5011 5012
}

5013
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5014
{
5015 5016 5017
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5018 5019
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5020
		return ibx_digital_port_connected(encoder);
5021 5022
}

5023
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5024
{
5025 5026 5027
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5028 5029
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5030
		return cpt_digital_port_connected(encoder);
5031 5032
}

5033
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5034
{
5035 5036 5037
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5038 5039
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5040
		return cpt_digital_port_connected(encoder);
5041 5042
}

5043
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5044
{
5045 5046 5047
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5048 5049
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5050
		return cpt_digital_port_connected(encoder);
5051 5052
}

5053
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5054
{
5055
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5056 5057
	u32 bit;

5058 5059
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5060 5061
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5062
	case HPD_PORT_B:
5063 5064
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5065
	case HPD_PORT_C:
5066 5067 5068
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5069
		MISSING_CASE(encoder->hpd_pin);
5070 5071 5072 5073 5074 5075
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5076 5077 5078 5079 5080 5081 5082 5083
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5099 5100 5101 5102 5103 5104 5105 5106 5107
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5108
	if (is_legacy)
5109
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5110
	else if (is_typec)
5111
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5112
	else if (is_tbt)
5113
		intel_dig_port->tc_type = TC_PORT_TBT;
5114
	else
5115 5116 5117 5118 5119 5120 5121 5122
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5123
			      tc_type_name(intel_dig_port->tc_type));
5124 5125
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5160
		WARN_ON(dig_port->tc_legacy_port);
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5181
		icl_tc_phy_disconnect(dev_priv, dig_port);
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5192 5193
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5194 5195 5196
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5197
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5198 5199 5200
		return;

	/*
5201 5202
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5203
	 */
5204 5205 5206 5207 5208
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5209 5210 5211
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5212

5213 5214 5215 5216
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5217
	dig_port->tc_type = TC_PORT_UNKNOWN;
5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5230 5231 5232 5233 5234 5235 5236 5237
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5238
	/*
5239
	 * Complain if we got a legacy port HPD, but VBT didn't mark the port as
5240 5241
	 * legacy. Treat the port as legacy from now on.
	 */
5242 5243 5244 5245
	if (!intel_dig_port->tc_legacy_port &&
	    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)) {
		DRM_ERROR("VBT incorrectly claims port %c is not TypeC legacy\n",
			  port_name(port));
5246
		intel_dig_port->tc_legacy_port = true;
5247
	}
5248
	is_legacy = intel_dig_port->tc_legacy_port;
5249 5250 5251 5252 5253 5254 5255 5256 5257

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5258 5259
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5260

5261
		return false;
5262
	}
5263 5264 5265

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5266

5267 5268 5269
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5270
	return true;
5271 5272 5273 5274 5275 5276 5277
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5278
	if (intel_port_is_combophy(dev_priv, encoder->port))
5279
		return icl_combo_port_connected(dev_priv, dig_port);
5280
	else if (intel_port_is_tc(dev_priv, encoder->port))
5281
		return icl_tc_port_connected(dev_priv, dig_port);
5282
	else
5283
		MISSING_CASE(encoder->hpd_pin);
5284 5285

	return false;
5286 5287
}

5288 5289
/*
 * intel_digital_port_connected - is the specified port connected?
5290
 * @encoder: intel_encoder
5291
 *
5292 5293 5294 5295 5296
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5297
 * Return %true if port is connected, %false otherwise.
5298
 */
5299
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5300
{
5301 5302
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5303
	if (HAS_GMCH(dev_priv)) {
5304
		if (IS_GM45(dev_priv))
5305
			return gm45_digital_port_connected(encoder);
5306
		else
5307
			return g4x_digital_port_connected(encoder);
5308 5309
	}

5310 5311
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5312
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5313
		return spt_digital_port_connected(encoder);
5314
	else if (IS_GEN9_LP(dev_priv))
5315
		return bxt_digital_port_connected(encoder);
5316
	else if (IS_GEN(dev_priv, 8))
5317
		return bdw_digital_port_connected(encoder);
5318
	else if (IS_GEN(dev_priv, 7))
5319
		return ivb_digital_port_connected(encoder);
5320
	else if (IS_GEN(dev_priv, 6))
5321
		return snb_digital_port_connected(encoder);
5322
	else if (IS_GEN(dev_priv, 5))
5323 5324 5325 5326
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5327 5328
}

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	intel_wakeref_t wakeref;
	bool is_connected;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

5341
static struct edid *
5342
intel_dp_get_edid(struct intel_dp *intel_dp)
5343
{
5344
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5345

5346 5347 5348 5349
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5350 5351
			return NULL;

J
Jani Nikula 已提交
5352
		return drm_edid_duplicate(intel_connector->edid);
5353 5354 5355 5356
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5357

5358 5359 5360 5361 5362
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5363

5364
	intel_dp_unset_edid(intel_dp);
5365 5366 5367
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5368
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5369
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5370 5371
}

5372 5373
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5374
{
5375
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5376

5377
	drm_dp_cec_unset_edid(&intel_dp->aux);
5378 5379
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5380

5381 5382
	intel_dp->has_audio = false;
}
5383

5384
static int
5385 5386 5387
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5388
{
5389 5390
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5391 5392
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5393 5394
	enum drm_connector_status status;

5395 5396
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5397
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5398

5399
	/* Can't disconnect eDP */
5400
	if (intel_dp_is_edp(intel_dp))
5401
		status = edp_detect(intel_dp);
5402
	else if (intel_digital_port_connected(encoder))
5403
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5404
	else
5405 5406
		status = connector_status_disconnected;

5407
	if (status == connector_status_disconnected) {
5408
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5409
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5410

5411 5412 5413 5414 5415 5416 5417 5418 5419
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5420
		goto out;
5421
	}
Z
Zhenyu Wang 已提交
5422

5423
	if (intel_dp->reset_link_params) {
5424 5425
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5426

5427 5428
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5429 5430 5431

		intel_dp->reset_link_params = false;
	}
5432

5433 5434
	intel_dp_print_rates(intel_dp);

5435 5436 5437 5438
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5439 5440
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5441

5442 5443 5444
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5445 5446 5447 5448 5449
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5450 5451
		status = connector_status_disconnected;
		goto out;
5452 5453 5454 5455 5456 5457
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5458 5459 5460 5461
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
5462
		if (ret)
5463 5464
			return ret;
	}
5465

5466 5467 5468 5469 5470 5471 5472 5473
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5474
	intel_dp_set_edid(intel_dp);
5475 5476
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5477
		status = connector_status_connected;
5478

5479
	intel_dp_check_service_irq(intel_dp);
5480

5481
out:
5482
	if (status != connector_status_connected && !intel_dp->is_mst)
5483
		intel_dp_unset_edid(intel_dp);
5484

5485
	return status;
5486 5487
}

5488 5489
static void
intel_dp_force(struct drm_connector *connector)
5490
{
5491
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5492 5493
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5494
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5495 5496
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5497
	intel_wakeref_t wakeref;
5498

5499 5500 5501
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5502

5503 5504
	if (connector->status != connector_status_connected)
		return;
5505

5506
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5507 5508 5509

	intel_dp_set_edid(intel_dp);

5510
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5524

5525
	/* if eDP has no EDID, fall back to fixed mode */
5526
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5527
	    intel_connector->panel.fixed_mode) {
5528
		struct drm_display_mode *mode;
5529 5530

		mode = drm_mode_duplicate(connector->dev,
5531
					  intel_connector->panel.fixed_mode);
5532
		if (mode) {
5533 5534 5535 5536
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5537

5538
	return 0;
5539 5540
}

5541 5542 5543 5544
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5545
	struct drm_device *dev = connector->dev;
5546 5547 5548 5549 5550
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5551 5552 5553 5554 5555 5556 5557

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5558 5559 5560 5561 5562
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5563 5564
}

5565 5566 5567
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5568 5569 5570 5571
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5572 5573 5574
	intel_connector_unregister(connector);
}

5575
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5576
{
5577 5578
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5579

5580
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5581
	if (intel_dp_is_edp(intel_dp)) {
5582 5583
		intel_wakeref_t wakeref;

5584
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5585 5586 5587 5588
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5589 5590
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5591

5592 5593 5594 5595
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5596
	}
5597 5598

	intel_dp_aux_fini(intel_dp);
5599 5600 5601 5602 5603
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5604

5605
	drm_encoder_cleanup(encoder);
5606
	kfree(enc_to_dig_port(encoder));
5607 5608
}

5609
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5610 5611
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5612
	intel_wakeref_t wakeref;
5613

5614
	if (!intel_dp_is_edp(intel_dp))
5615 5616
		return;

5617 5618 5619 5620
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5621
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5622 5623
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5624 5625
}

5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5638 5639 5640 5641 5642
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5643 5644 5645 5646 5647
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5648
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5649 5650 5651 5652 5653 5654 5655
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5656 5657
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5658 5659 5660 5661 5662 5663 5664 5665 5666
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5667
	intel_dp_aux_header(txbuf, &msg);
5668

5669
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5670 5671
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5672
	if (ret < 0) {
5673
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5674 5675
		return ret;
	} else if (ret == 0) {
5676
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5677 5678 5679 5680
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5681 5682 5683 5684 5685 5686
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5687 5688 5689 5690 5691 5692 5693 5694 5695
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5696
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5714
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5715 5716 5717 5718 5719 5720
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5721 5722
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5723 5724
{
	ssize_t ret;
5725

5726
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5727
			       bcaps, 1);
5728
	if (ret != 1) {
5729
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5730 5731
		return ret >= 0 ? -EIO : ret;
	}
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5759
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5774
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5796 5797
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5817
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5836

5837 5838 5839
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5840
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5841
		return false;
5842
	}
5843

5844 5845 5846
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

static struct hdcp2_dp_msg_data {
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
	} hdcp2_msg_data[] = {
		{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
				false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
		{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
				true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
				HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
		{HDCP_2_2_AKE_SEND_PAIRING_INFO,
				DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
				HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
		{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
				false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
		{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_SEND_RECVID_LIST,
				DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
				HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
		{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_MANAGE,
				DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
				false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
		{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
				DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
				0, 0},
		};

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
			    struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
5982 5983 5984 5985 5986 5987 5988
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
		if (hdcp2_msg_data[i].msg_id == msg_id)
			return &hdcp2_msg_data[i];

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6015 6016
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6032 6033
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6203
	.hdcp_capable = intel_dp_hdcp_capable,
6204 6205 6206 6207 6208 6209
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6210 6211
};

6212 6213
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6214
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6215
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6229
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6230 6231 6232 6233

	edp_panel_vdd_schedule_off(intel_dp);
}

6234 6235
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6236
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6237 6238
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6239

6240 6241 6242
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6243

6244
	return INVALID_PIPE;
6245 6246
}

6247
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6248
{
6249
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6250 6251
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6252
	intel_wakeref_t wakeref;
6253 6254 6255

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6256

6257
	if (lspcon->active)
6258 6259
		lspcon_resume(lspcon);

6260 6261
	intel_dp->reset_link_params = true;

6262 6263 6264 6265
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

6266 6267 6268
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6269

6270 6271 6272 6273 6274 6275 6276 6277
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6278
	}
6279 6280
}

6281
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6282
	.force = intel_dp_force,
6283
	.fill_modes = drm_helper_probe_single_connector_modes,
6284 6285
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6286
	.late_register = intel_dp_connector_register,
6287
	.early_unregister = intel_dp_connector_unregister,
6288
	.destroy = intel_connector_destroy,
6289
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6290
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6291 6292 6293
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6294
	.detect_ctx = intel_dp_detect,
6295 6296
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6297
	.atomic_check = intel_digital_connector_atomic_check,
6298 6299 6300
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6301
	.reset = intel_dp_encoder_reset,
6302
	.destroy = intel_dp_encoder_destroy,
6303 6304
};

6305
enum irqreturn
6306 6307 6308
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6309

6310 6311 6312 6313 6314 6315 6316 6317
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6318
			      port_name(intel_dig_port->base.port));
6319
		return IRQ_HANDLED;
6320 6321
	}

6322
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6323
		      port_name(intel_dig_port->base.port),
6324
		      long_hpd ? "long" : "short");
6325

6326
	if (long_hpd) {
6327
		intel_dp->reset_link_params = true;
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
6342 6343

			return IRQ_NONE;
6344
		}
6345
	}
6346

6347
	if (!intel_dp->is_mst) {
6348
		bool handled;
6349 6350 6351

		handled = intel_dp_short_pulse(intel_dp);

6352
		if (!handled)
6353
			return IRQ_NONE;
6354
	}
6355

6356
	return IRQ_HANDLED;
6357 6358
}

6359
/* check the VBT to see whether the eDP is on another port */
6360
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6361
{
6362 6363 6364 6365
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6366
	if (INTEL_GEN(dev_priv) < 5)
6367 6368
		return false;

6369
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6370 6371
		return true;

6372
	return intel_bios_is_port_edp(dev_priv, port);
6373 6374
}

6375
static void
6376 6377
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6378
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6379 6380 6381 6382
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6383

6384
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6385
	if (HAS_GMCH(dev_priv))
6386 6387 6388
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6389

6390
	if (intel_dp_is_edp(intel_dp)) {
6391 6392 6393
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6394
		if (!HAS_GMCH(dev_priv))
6395 6396 6397 6398
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6399
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6400

6401
	}
6402 6403
}

6404 6405
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6406
	intel_dp->panel_power_off_time = ktime_get_boottime();
6407 6408 6409 6410
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6411
static void
6412
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6413
{
6414
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6415
	u32 pp_on, pp_off, pp_ctl;
6416
	struct pps_registers regs;
6417

6418
	intel_pps_get_registers(intel_dp, &regs);
6419

6420
	pp_ctl = ironlake_get_pp_control(intel_dp);
6421

6422 6423 6424 6425
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6426 6427
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6428 6429

	/* Pull timing values out of registers */
6430 6431 6432 6433
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6434

6435 6436 6437 6438 6439
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6440
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6441
	} else {
6442
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6443
	}
6444 6445
}

I
Imre Deak 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6455
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6456 6457 6458 6459
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6460
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6470
static void
6471
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6472
{
6473
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6474 6475 6476 6477 6478 6479 6480 6481 6482
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6483
	intel_pps_readout_hw_state(intel_dp, &cur);
6484

I
Imre Deak 已提交
6485
	intel_pps_dump_state("cur", &cur);
6486

6487
	vbt = dev_priv->vbt.edp.pps;
6488 6489 6490 6491 6492 6493
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6494
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6495 6496 6497
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6498 6499 6500 6501 6502
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6516
	intel_pps_dump_state("vbt", &vbt);
6517 6518 6519

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6520
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6521 6522 6523 6524 6525 6526 6527 6528 6529
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6530
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6531 6532 6533 6534 6535 6536 6537
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6538 6539 6540 6541 6542 6543
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6554 6555 6556 6557 6558 6559

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6560 6561 6562
}

static void
6563
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6564
					      bool force_disable_vdd)
6565
{
6566
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6567
	u32 pp_on, pp_off, port_sel = 0;
6568
	int div = dev_priv->rawclk_freq / 1000;
6569
	struct pps_registers regs;
6570
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6571
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6572

V
Ville Syrjälä 已提交
6573
	lockdep_assert_held(&dev_priv->pps_mutex);
6574

6575
	intel_pps_get_registers(intel_dp, &regs);
6576

6577 6578
	/*
	 * On some VLV machines the BIOS can leave the VDD
6579
	 * enabled even on power sequencers which aren't
6580 6581 6582 6583 6584 6585 6586
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6587
	 * soon as the new power sequencer gets initialized.
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6602 6603 6604 6605
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6606 6607 6608

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6609
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6610
		port_sel = PANEL_PORT_SELECT_VLV(port);
6611
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6612 6613
		switch (port) {
		case PORT_A:
6614
			port_sel = PANEL_PORT_SELECT_DPA;
6615 6616 6617 6618 6619
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6620
			port_sel = PANEL_PORT_SELECT_DPD;
6621 6622 6623 6624 6625
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6626 6627
	}

6628 6629
	pp_on |= port_sel;

6630 6631
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6632 6633 6634 6635 6636

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6637 6638 6639
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6640 6641 6642 6643 6644
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6645
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6646 6647
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6648 6649

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6650 6651
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6652 6653 6654
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6655 6656
}

6657
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6658
{
6659
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6660 6661

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6662 6663
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6664 6665
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6666 6667 6668
	}
}

6669 6670
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6671
 * @dev_priv: i915 device
6672
 * @crtc_state: a pointer to the active intel_crtc_state
6673 6674 6675 6676 6677 6678 6679 6680 6681
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6682
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6683
				    const struct intel_crtc_state *crtc_state,
6684
				    int refresh_rate)
6685 6686
{
	struct intel_encoder *encoder;
6687 6688
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6689
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6690
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6691 6692 6693 6694 6695 6696

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6697 6698
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6699 6700 6701
		return;
	}

6702 6703
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6704 6705 6706 6707 6708 6709

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6710
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6711 6712 6713 6714
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6715 6716
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6717 6718
		index = DRRS_LOW_RR;

6719
	if (index == dev_priv->drrs.refresh_rate_type) {
6720 6721 6722 6723 6724
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6725
	if (!crtc_state->base.active) {
6726 6727 6728 6729
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6730
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6731 6732
		switch (index) {
		case DRRS_HIGH_RR:
6733
			intel_dp_set_m_n(crtc_state, M1_N1);
6734 6735
			break;
		case DRRS_LOW_RR:
6736
			intel_dp_set_m_n(crtc_state, M2_N2);
6737 6738 6739 6740 6741
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6742 6743
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6744
		u32 val;
6745

6746
		val = I915_READ(reg);
6747
		if (index > DRRS_HIGH_RR) {
6748
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6749 6750 6751
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6752
		} else {
6753
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6754 6755 6756
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6757 6758 6759 6760
		}
		I915_WRITE(reg, val);
	}

6761 6762 6763 6764 6765
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6766 6767 6768
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6769
 * @crtc_state: A pointer to the active crtc state.
6770 6771 6772
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6773
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6774
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6775
{
6776
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6777

6778
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6779 6780 6781 6782
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6783 6784 6785 6786 6787
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6788
	mutex_lock(&dev_priv->drrs.mutex);
6789 6790
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6802 6803 6804
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6805
 * @old_crtc_state: Pointer to old crtc_state.
6806 6807
 *
 */
6808
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6809
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6810
{
6811
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6812

6813
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6823 6824
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6825 6826 6827 6828 6829 6830 6831

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6845
	/*
6846 6847
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6848 6849
	 */

6850 6851
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6852

6853 6854 6855 6856 6857 6858
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6859

6860 6861
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6862 6863
}

6864
/**
6865
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6866
 * @dev_priv: i915 device
6867 6868
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6869 6870
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6871 6872 6873
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6874 6875
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6876 6877 6878 6879
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6880
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6881 6882
		return;

6883
	cancel_delayed_work(&dev_priv->drrs.work);
6884

6885
	mutex_lock(&dev_priv->drrs.mutex);
6886 6887 6888 6889 6890
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6891 6892 6893
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6894 6895 6896
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6897
	/* invalidate means busy screen hence upclock */
6898
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6899 6900
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6901 6902 6903 6904

	mutex_unlock(&dev_priv->drrs.mutex);
}

6905
/**
6906
 * intel_edp_drrs_flush - Restart Idleness DRRS
6907
 * @dev_priv: i915 device
6908 6909
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6910 6911 6912 6913
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6914 6915 6916
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6917 6918
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6919 6920 6921 6922
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6923
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6924 6925
		return;

6926
	cancel_delayed_work(&dev_priv->drrs.work);
6927

6928
	mutex_lock(&dev_priv->drrs.mutex);
6929 6930 6931 6932 6933
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6934 6935
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6936 6937

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6938 6939
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6940
	/* flush means busy screen hence upclock */
6941
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6942 6943
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6944 6945 6946 6947 6948 6949

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6950 6951 6952 6953 6954
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6978 6979 6980 6981 6982 6983 6984 6985
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6986 6987 6988 6989 6990 6991 6992 6993
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6994
 * @connector: eDP connector
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7005
static struct drm_display_mode *
7006 7007
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7008
{
7009
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7010 7011
	struct drm_display_mode *downclock_mode = NULL;

7012 7013 7014
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7015
	if (INTEL_GEN(dev_priv) <= 6) {
7016 7017 7018 7019 7020
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7021
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7022 7023 7024
		return NULL;
	}

7025
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7026
	if (!downclock_mode) {
7027
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7028 7029 7030
		return NULL;
	}

7031
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7032

7033
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7034
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7035 7036 7037
	return downclock_mode;
}

7038
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7039
				     struct intel_connector *intel_connector)
7040
{
7041 7042
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7043
	struct drm_connector *connector = &intel_connector->base;
7044
	struct drm_display_mode *fixed_mode = NULL;
7045
	struct drm_display_mode *downclock_mode = NULL;
7046
	bool has_dpcd;
7047
	enum pipe pipe = INVALID_PIPE;
7048 7049
	intel_wakeref_t wakeref;
	struct edid *edid;
7050

7051
	if (!intel_dp_is_edp(intel_dp))
7052 7053
		return true;

7054 7055
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7056 7057 7058 7059 7060 7061
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7062
	if (intel_get_lvds_encoder(dev_priv)) {
7063 7064 7065 7066 7067 7068
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7069 7070 7071 7072 7073
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7074

7075
	/* Cache DPCD and EDID for edp. */
7076
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7077

7078
	if (!has_dpcd) {
7079 7080
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7081
		goto out_vdd_off;
7082 7083
	}

7084
	mutex_lock(&dev->mode_config.mutex);
7085
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7086 7087
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7088
			drm_connector_update_edid_property(connector,
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7099 7100 7101
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7102 7103

	/* fallback to VBT if available for eDP */
7104 7105
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7106
	mutex_unlock(&dev->mode_config.mutex);
7107

7108
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7109 7110
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7111 7112 7113 7114 7115 7116

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7117
		pipe = vlv_active_pipe(intel_dp);
7118 7119 7120 7121 7122 7123 7124 7125 7126

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7127 7128
	}

7129
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7130
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7131
	intel_panel_setup_backlight(connector, pipe);
7132

7133 7134 7135 7136
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7137
	return true;
7138 7139 7140 7141 7142 7143 7144

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7145 7146
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7147 7148

	return false;
7149 7150
}

7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7167 7168
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7169 7170 7171 7172 7173
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7174
bool
7175 7176
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7177
{
7178 7179 7180 7181
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7182
	struct drm_i915_private *dev_priv = to_i915(dev);
7183
	enum port port = intel_encoder->port;
7184
	int type;
7185

7186 7187 7188 7189
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7190 7191 7192 7193 7194
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

7195 7196
	intel_dp_set_source_rates(intel_dp);

7197
	intel_dp->reset_link_params = true;
7198
	intel_dp->pps_pipe = INVALID_PIPE;
7199
	intel_dp->active_pipe = INVALID_PIPE;
7200

7201
	/* intel_dp vfuncs */
7202
	if (HAS_DDI(dev_priv))
7203 7204
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

7205 7206
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7207
	intel_dp->attached_connector = intel_connector;
7208

7209
	if (intel_dp_is_port_edp(dev_priv, port))
7210
		type = DRM_MODE_CONNECTOR_eDP;
7211 7212
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
7213

7214 7215 7216
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7217 7218 7219 7220 7221 7222 7223 7224
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7225
	/* eDP only on port B and/or C on vlv/chv */
7226
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7227 7228
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7229 7230
		return false;

7231 7232 7233 7234
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

7235
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7236 7237
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7238
	if (!HAS_GMCH(dev_priv))
7239
		connector->interlace_allowed = true;
7240 7241
	connector->doublescan_allowed = 0;

7242
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7243

7244
	intel_dp_aux_init(intel_dp);
7245

7246
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7247

7248
	if (HAS_DDI(dev_priv))
7249 7250 7251 7252
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7253
	/* init MST on ports that can support it */
7254
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7255 7256
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7257 7258
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7259

7260
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7261 7262 7263
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7264
	}
7265

7266
	intel_dp_add_properties(intel_dp, connector);
7267

7268
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7269 7270 7271 7272
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7273

7274 7275 7276 7277
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7278
	if (IS_G45(dev_priv)) {
7279 7280 7281
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7282 7283

	return true;
7284 7285 7286 7287 7288

fail:
	drm_connector_cleanup(connector);

	return false;
7289
}
7290

7291
bool intel_dp_init(struct drm_i915_private *dev_priv,
7292 7293
		   i915_reg_t output_reg,
		   enum port port)
7294 7295 7296 7297 7298 7299
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7300
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7301
	if (!intel_dig_port)
7302
		return false;
7303

7304
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7305 7306
	if (!intel_connector)
		goto err_connector_alloc;
7307 7308 7309 7310

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7311 7312 7313
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7314
		goto err_encoder_init;
7315

7316
	intel_encoder->hotplug = intel_dp_hotplug;
7317
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7318
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7319
	intel_encoder->get_config = intel_dp_get_config;
7320
	intel_encoder->update_pipe = intel_panel_update_backlight;
7321
	intel_encoder->suspend = intel_dp_encoder_suspend;
7322
	if (IS_CHERRYVIEW(dev_priv)) {
7323
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7324 7325
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7326
		intel_encoder->disable = vlv_disable_dp;
7327
		intel_encoder->post_disable = chv_post_disable_dp;
7328
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7329
	} else if (IS_VALLEYVIEW(dev_priv)) {
7330
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7331 7332
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7333
		intel_encoder->disable = vlv_disable_dp;
7334
		intel_encoder->post_disable = vlv_post_disable_dp;
7335
	} else {
7336 7337
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7338
		intel_encoder->disable = g4x_disable_dp;
7339
		intel_encoder->post_disable = g4x_post_disable_dp;
7340
	}
7341 7342

	intel_dig_port->dp.output_reg = output_reg;
7343
	intel_dig_port->max_lanes = 4;
7344

7345
	intel_encoder->type = INTEL_OUTPUT_DP;
7346
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7347
	if (IS_CHERRYVIEW(dev_priv)) {
7348 7349 7350 7351 7352 7353 7354
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7355
	intel_encoder->cloneable = 0;
7356
	intel_encoder->port = port;
7357

7358 7359
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7360 7361 7362
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7363
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7364 7365 7366
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7367
	return true;
S
Sudip Mukherjee 已提交
7368 7369 7370

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7371
err_encoder_init:
S
Sudip Mukherjee 已提交
7372 7373 7374
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7375
	return false;
7376
}
7377

7378
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7379
{
7380 7381 7382 7383
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7384

7385 7386
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7387

7388
		intel_dp = enc_to_intel_dp(&encoder->base);
7389

7390
		if (!intel_dp->can_mst)
7391 7392
			continue;

7393 7394
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7395 7396 7397
	}
}

7398
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7399
{
7400
	struct intel_encoder *encoder;
7401

7402 7403
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7404
		int ret;
7405

7406 7407 7408 7409 7410 7411
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7412
			continue;
7413

7414
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7415 7416 7417 7418 7419
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7420 7421
	}
}