intel_dp.c 198.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drm_atomic_helper.h>
36 37
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
38
#include <drm/drm_dp_helper.h>
39
#include <drm/drm_edid.h>
40
#include <drm/drm_hdcp.h>
41
#include "intel_drv.h"
42
#include <drm/i915_drm.h>
43 44
#include "i915_drv.h"

45
#define DP_DPRX_ESI_LEN 14
46

47 48
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
49 50
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
51 52 53 54 55 56 57 58 59

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

60 61 62 63 64 65
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

66
struct dp_link_dpll {
67
	int clock;
68 69 70
	struct dpll dpll;
};

71
static const struct dp_link_dpll g4x_dpll[] = {
72
	{ 162000,
73
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
74
	{ 270000,
75 76 77 78
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
79
	{ 162000,
80
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
81
	{ 270000,
82 83 84
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

85
static const struct dp_link_dpll vlv_dpll[] = {
86
	{ 162000,
C
Chon Ming Lee 已提交
87
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
88
	{ 270000,
89 90 91
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

92 93 94 95 96 97 98 99 100 101
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
102
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
103
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
104
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
105 106
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
107

108 109 110 111 112 113 114 115
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

116
/**
117
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
118 119 120 121 122
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
123
bool intel_dp_is_edp(struct intel_dp *intel_dp)
124
{
125 126 127
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
128 129
}

130 131
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
132
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
133 134
}

135 136
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
137
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
138
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
139 140
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
141
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
142
				      enum pipe pipe);
143
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
144

145 146 147
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
148
	static const int dp_rates[] = {
149
		162000, 270000, 540000, 810000
150
	};
151
	int i, max_rate;
152

153
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
154

155 156
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
157
			break;
158
		intel_dp->sink_rates[i] = dp_rates[i];
159
	}
160

161
	intel_dp->num_sink_rates = i;
162 163
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

186 187
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
188
{
189
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

222 223
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
224 225
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
226 227
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
228
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
229

230
	return min3(source_max, sink_max, fia_max);
231 232
}

233
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
234 235 236 237
{
	return intel_dp->max_link_lane_count;
}

238
int
239
intel_dp_link_required(int pixel_clock, int bpp)
240
{
241 242
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
243 244
}

245
int
246 247
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
248 249 250 251 252 253 254
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

280
static int cnl_max_source_rate(struct intel_dp *intel_dp)
281 282 283 284 285 286 287 288 289
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
290
		return 540000;
291 292 293

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
294
		return 810000;
295

296
	/* For other SKUs, max rate on ports A and D is 5.4G */
297
	if (port == PORT_A || port == PORT_D)
298
		return 540000;
299

300
	return 810000;
301 302
}

303 304 305
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
306
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
307 308
	enum port port = dig_port->base.port;

309 310
	if (intel_port_is_combophy(dev_priv, port) &&
	    !intel_dp_is_edp(intel_dp))
311 312 313 314 315
		return 540000;

	return 810000;
}

316 317
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
318
{
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
335 336
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
337 338
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
339
	const int *source_rates;
340
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
341

342 343 344
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

345
	if (INTEL_GEN(dev_priv) >= 10) {
346
		source_rates = cnl_rates;
347
		size = ARRAY_SIZE(cnl_rates);
348
		if (IS_GEN(dev_priv, 10))
349 350 351
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
352 353 354
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
355
	} else if (IS_GEN9_BC(dev_priv)) {
356
		source_rates = skl_rates;
357
		size = ARRAY_SIZE(skl_rates);
358 359
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
360 361
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
362
	} else {
363 364
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
365 366
	}

367 368 369 370 371
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

372 373 374
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

375 376
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

402 403 404 405 406 407 408 409 410 411 412 413
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

414
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
415
{
416
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
417

418 419 420 421 422 423 424 425
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
426
		intel_dp->common_rates[0] = 162000;
427 428 429 430
		intel_dp->num_common_rates = 1;
	}
}

431 432
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
433 434 435 436 437 438
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
439 440
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
441 442
		return false;

443 444
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
445 446 447 448 449
		return false;

	return true;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
						     uint8_t lane_count)
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

466 467 468
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
469
	int index;
470

471 472 473 474
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
475 476 477 478 479 480 481
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
482 483
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
484
	} else if (lane_count > 1) {
485 486 487 488 489 490 491
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
492
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
493
		intel_dp->max_link_lane_count = lane_count >> 1;
494 495 496 497 498 499 500 501
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

502
static enum drm_mode_status
503 504 505
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
506
	struct intel_dp *intel_dp = intel_attached_dp(connector);
507 508
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
509
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
510 511
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
512
	int max_dotclk;
513 514
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
515

516 517 518
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

519
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
520

521
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
522
		if (mode->hdisplay > fixed_mode->hdisplay)
523 524
			return MODE_PANEL;

525
		if (mode->vdisplay > fixed_mode->vdisplay)
526
			return MODE_PANEL;
527 528

		target_clock = fixed_mode->clock;
529 530
	}

531
	max_link_clock = intel_dp_max_link_rate(intel_dp);
532
	max_lanes = intel_dp_max_lane_count(intel_dp);
533 534 535 536

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

537 538 539 540 541 542 543 544 545 546 547 548
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
549
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
550 551 552 553 554 555 556 557 558 559 560 561 562 563
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
564
		return MODE_CLOCK_HIGH;
565 566 567 568

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

569 570 571
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

572 573 574
	return MODE_OK;
}

575
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
576 577 578 579 580 581 582 583 584 585 586
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

587
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
588 589 590 591 592 593 594 595
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

596
static void
597
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
598
static void
599
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
600
					      bool force_disable_vdd);
601
static void
602
intel_dp_pps_init(struct intel_dp *intel_dp);
603

604 605
static void pps_lock(struct intel_dp *intel_dp)
{
606
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
607 608

	/*
609
	 * See intel_power_sequencer_reset() why we need
610 611
	 * a power domain reference here.
	 */
612 613
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)));
614 615 616 617 618 619

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
620
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
621 622 623

	mutex_unlock(&dev_priv->pps_mutex);

624 625
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)));
626 627
}

628 629 630
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
631
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
632 633
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
634 635 636
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
637 638 639
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
640
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
641
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
642 643 644
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
645
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
646 647 648 649 650 651 652 653 654

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

655
	if (IS_CHERRYVIEW(dev_priv))
656 657 658
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
659

660 661 662 663 664 665
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
666
	if (!pll_enabled) {
667
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
668 669
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

670
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
671 672 673 674 675
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
676
	}
677

678 679 680
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
681
	 * to make this power sequencer lock onto the port.
682 683 684 685 686 687 688 689 690 691
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
692

693
	if (!pll_enabled) {
694
		vlv_force_pll_off(dev_priv, pipe);
695 696 697 698

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
699 700
}

701 702 703 704 705 706 707 708 709
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
710 711
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

733 734 735
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
736
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
737
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
738
	enum pipe pipe;
739

V
Ville Syrjälä 已提交
740
	lockdep_assert_held(&dev_priv->pps_mutex);
741

742
	/* We should never land here with regular DP ports */
743
	WARN_ON(!intel_dp_is_edp(intel_dp));
744

745 746 747
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

748 749 750
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

751
	pipe = vlv_find_free_pps(dev_priv);
752 753 754 755 756

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
757
	if (WARN_ON(pipe == INVALID_PIPE))
758
		pipe = PIPE_A;
759

760
	vlv_steal_power_sequencer(dev_priv, pipe);
761
	intel_dp->pps_pipe = pipe;
762 763 764

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
765
		      port_name(intel_dig_port->base.port));
766 767

	/* init power sequencer on this pipe and port */
768 769
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
770

771 772 773 774 775
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
776 777 778 779

	return intel_dp->pps_pipe;
}

780 781 782
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
783
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
784
	int backlight_controller = dev_priv->vbt.backlight.controller;
785 786 787 788

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
789
	WARN_ON(!intel_dp_is_edp(intel_dp));
790 791

	if (!intel_dp->pps_reset)
792
		return backlight_controller;
793 794 795 796 797 798 799

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
800
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
801

802
	return backlight_controller;
803 804
}

805 806 807 808 809 810
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
811
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
812 813 814 815 816
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
817
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
818 819 820 821 822 823 824
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
825

826
static enum pipe
827 828 829
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
830 831
{
	enum pipe pipe;
832 833

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
834
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
835
			PANEL_PORT_SELECT_MASK;
836 837 838 839

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

840 841 842
		if (!pipe_check(dev_priv, pipe))
			continue;

843
		return pipe;
844 845
	}

846 847 848 849 850 851
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
852
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
853
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
854
	enum port port = intel_dig_port->base.port;
855 856 857 858

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
859 860 861 862 863 864 865 866 867 868 869
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
870 871 872 873 874 875

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
876 877
	}

878 879 880
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

881 882
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
883 884
}

885
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
886 887 888
{
	struct intel_encoder *encoder;

889
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
890
		    !IS_GEN9_LP(dev_priv)))
891 892 893 894 895 896 897 898 899 900 901 902
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

903 904
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
905

906 907 908 909 910
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

911
		if (IS_GEN9_LP(dev_priv))
912 913 914
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
915
	}
916 917
}

918 919 920 921 922 923 924 925
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

926
static void intel_pps_get_registers(struct intel_dp *intel_dp,
927 928
				    struct pps_registers *regs)
{
929
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
930 931
	int pps_idx = 0;

932 933
	memset(regs, 0, sizeof(*regs));

934
	if (IS_GEN9_LP(dev_priv))
935 936 937
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
938

939 940 941 942
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
943 944
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
945
		regs->pp_div = PP_DIVISOR(pps_idx);
946 947
}

948 949
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
950
{
951
	struct pps_registers regs;
952

953
	intel_pps_get_registers(intel_dp, &regs);
954 955

	return regs.pp_ctrl;
956 957
}

958 959
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
960
{
961
	struct pps_registers regs;
962

963
	intel_pps_get_registers(intel_dp, &regs);
964 965

	return regs.pp_stat;
966 967
}

968 969 970 971 972 973 974
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
975
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
976

977
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
978 979
		return 0;

980
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
981

982
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
983
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
984
		i915_reg_t pp_ctrl_reg, pp_div_reg;
985
		u32 pp_div;
V
Ville Syrjälä 已提交
986

987 988
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
989 990 991 992 993 994 995 996 997
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

998
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
999

1000 1001 1002
	return 0;
}

1003
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1004
{
1005
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1006

V
Ville Syrjälä 已提交
1007 1008
	lockdep_assert_held(&dev_priv->pps_mutex);

1009
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1010 1011 1012
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1013
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1014 1015
}

1016
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1017
{
1018
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1019

V
Ville Syrjälä 已提交
1020 1021
	lockdep_assert_held(&dev_priv->pps_mutex);

1022
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1023 1024 1025
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1026
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1027 1028
}

1029 1030 1031
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1032
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1033

1034
	if (!intel_dp_is_edp(intel_dp))
1035
		return;
1036

1037
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1038 1039
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1040 1041
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1042 1043 1044
	}
}

1045
static uint32_t
1046
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1047
{
1048
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1049
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1050 1051 1052
	uint32_t status;
	bool done;

1053
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1054 1055
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1056
	if (!done)
1057
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1058 1059 1060 1061 1062
#undef C

	return status;
}

1063
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1064
{
1065
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1066

1067 1068 1069
	if (index)
		return 0;

1070 1071
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1072
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1073
	 */
1074
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1075 1076 1077 1078
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1079
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1080
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1081 1082 1083 1084

	if (index)
		return 0;

1085 1086 1087 1088 1089
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1090
	if (dig_port->aux_ch == AUX_CH_A)
1091
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1092 1093
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1094 1095 1096 1097
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1098
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1099
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1100

1101
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1102
		/* Workaround for non-ULT HSW */
1103 1104 1105 1106 1107
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1108
	}
1109 1110

	return ilk_get_aux_clock_divider(intel_dp, index);
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1123 1124 1125
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1126 1127
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1128 1129
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1130 1131
	uint32_t precharge, timeout;

1132
	if (IS_GEN(dev_priv, 6))
1133 1134 1135 1136
		precharge = 3;
	else
		precharge = 5;

1137
	if (IS_BROADWELL(dev_priv))
1138 1139 1140 1141 1142
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1143
	       DP_AUX_CH_CTL_DONE |
1144
	       DP_AUX_CH_CTL_INTERRUPT |
1145
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1146
	       timeout |
1147
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1148 1149
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1150
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1151 1152
}

1153 1154 1155 1156
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	uint32_t ret;

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1174 1175
}

1176
static int
1177 1178
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1179 1180
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1181 1182
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1183 1184
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1185
	i915_reg_t ch_ctl, ch_data[5];
1186
	uint32_t aux_clock_divider;
1187 1188
	int i, ret, recv_bytes;
	uint32_t status;
1189
	int try, clock = 0;
1190 1191
	bool vdd;

1192 1193 1194 1195
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1196
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1197

1198 1199 1200 1201 1202 1203
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1204
	vdd = edp_panel_vdd_on(intel_dp);
1205 1206 1207 1208 1209 1210 1211 1212

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1213

1214 1215
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1216
		status = I915_READ_NOTRACE(ch_ctl);
1217 1218 1219 1220 1221 1222
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1223 1224 1225 1226 1227 1228 1229 1230 1231
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1232 1233
		ret = -EBUSY;
		goto out;
1234 1235
	}

1236 1237 1238 1239 1240 1241
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1242
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1243 1244 1245 1246 1247
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1248

1249 1250 1251 1252
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1253
				I915_WRITE(ch_data[i >> 2],
1254 1255
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1256 1257

			/* Send the command and wait for it to complete */
1258
			I915_WRITE(ch_ctl, send_ctl);
1259

1260
			status = intel_dp_aux_wait_done(intel_dp);
1261 1262 1263 1264 1265 1266 1267 1268

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1269 1270 1271 1272 1273
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1274 1275 1276
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1277 1278
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1279
				continue;
1280
			}
1281
			if (status & DP_AUX_CH_CTL_DONE)
1282
				goto done;
1283
		}
1284 1285 1286
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1287
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1288 1289
		ret = -EBUSY;
		goto out;
1290 1291
	}

1292
done:
1293 1294 1295
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1296
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1297
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1298 1299
		ret = -EIO;
		goto out;
1300
	}
1301 1302 1303

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1304
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1305
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1306 1307
		ret = -ETIMEDOUT;
		goto out;
1308 1309 1310 1311 1312
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1326 1327
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1328

1329
	for (i = 0; i < recv_bytes; i += 4)
1330
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1331
				    recv + i, recv_bytes - i);
1332

1333 1334 1335 1336
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1337 1338 1339
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1340
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1341

1342
	return ret;
1343 1344
}

1345 1346
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1358 1359
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1360
{
1361 1362 1363
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1364 1365
	int ret;

1366
	intel_dp_aux_header(txbuf, msg);
1367

1368 1369 1370
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1371
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1372
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1373
		rxsize = 2; /* 0 or 1 data bytes */
1374

1375 1376
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1377

1378 1379
		WARN_ON(!msg->buffer != !msg->size);

1380 1381
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1382

1383
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1384
					rxbuf, rxsize, 0);
1385 1386
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1387

1388 1389 1390 1391 1392 1393 1394
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1395 1396
		}
		break;
1397

1398 1399
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1400
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1401
		rxsize = msg->size + 1;
1402

1403 1404
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1405

1406
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1407
					rxbuf, rxsize, 0);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1418
		}
1419 1420 1421 1422 1423
		break;

	default:
		ret = -EINVAL;
		break;
1424
	}
1425

1426
	return ret;
1427 1428
}

1429

1430
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1431
{
1432
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1433 1434
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1435

1436 1437 1438 1439 1440
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1441
	default:
1442 1443
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1444 1445 1446
	}
}

1447
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1448
{
1449
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1450 1451
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1452

1453 1454 1455 1456 1457
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1458
	default:
1459 1460
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1461 1462 1463
	}
}

1464
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1465
{
1466
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1467 1468
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1469

1470 1471 1472 1473 1474 1475 1476
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1477
	default:
1478 1479
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1480 1481 1482
	}
}

1483
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1484
{
1485
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1486 1487
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1488

1489 1490 1491 1492 1493 1494 1495
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1496
	default:
1497 1498
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1499 1500 1501
	}
}

1502
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1503
{
1504
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1505 1506
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1507

1508 1509 1510 1511 1512
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1513
	case AUX_CH_E:
1514 1515
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1516
	default:
1517 1518
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1519 1520 1521
	}
}

1522
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1523
{
1524
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1525 1526
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1527

1528 1529 1530 1531 1532
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1533
	case AUX_CH_E:
1534 1535
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1536
	default:
1537 1538
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1539 1540 1541
	}
}

1542 1543 1544 1545 1546 1547 1548 1549
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1550
{
1551
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1552 1553
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1565

1566 1567 1568 1569 1570 1571 1572 1573
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1574

1575 1576 1577 1578
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1579

1580
	drm_dp_aux_init(&intel_dp->aux);
1581

1582
	/* Failure to allocate our preferred name is not critical */
1583 1584
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1585
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1586 1587
}

1588
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1589
{
1590
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1591

1592
	return max_rate >= 540000;
1593 1594
}

1595 1596 1597 1598 1599 1600 1601
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1602 1603
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1604
		   struct intel_crtc_state *pipe_config)
1605
{
1606
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1607 1608
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1609

1610
	if (IS_G4X(dev_priv)) {
1611 1612
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1613
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1614 1615
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1616
	} else if (IS_CHERRYVIEW(dev_priv)) {
1617 1618
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1619
	} else if (IS_VALLEYVIEW(dev_priv)) {
1620 1621
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1622
	}
1623 1624 1625

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1626
			if (pipe_config->port_clock == divisor[i].clock) {
1627 1628 1629 1630 1631
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1632 1633 1634
	}
}

1635 1636 1637 1638 1639 1640 1641 1642
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1643
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1658 1659
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1660 1661
	DRM_DEBUG_KMS("source rates: %s\n", str);

1662 1663
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1664 1665
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1666 1667
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1668
	DRM_DEBUG_KMS("common rates: %s\n", str);
1669 1670
}

1671 1672 1673 1674 1675
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1676
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1677 1678 1679
	if (WARN_ON(len <= 0))
		return 162000;

1680
	return intel_dp->common_rates[len - 1];
1681 1682
}

1683 1684
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1685 1686
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1687 1688 1689 1690 1691

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1692 1693
}

1694 1695
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1696
{
1697 1698
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1699 1700 1701 1702 1703 1704 1705 1706 1707
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1708 1709 1710 1711 1712 1713
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1714
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1715 1716 1717 1718
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1734 1735 1736 1737 1738 1739 1740 1741

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1742 1743 1744
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1745 1746 1747 1748
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1749 1750
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1751
{
1752
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1753
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1754 1755 1756 1757 1758 1759 1760 1761
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1772 1773 1774
	return bpp;
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1811
/* Optimize link config in order: max bpp, min clock, min lanes */
1812
static int
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1838
					return 0;
1839 1840 1841 1842 1843
				}
			}
		}
	}

1844
	return -EINVAL;
1845 1846
}

1847
/* Optimize link config in order: max bpp, min lanes, min clock */
1848
static int
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (lane_count = limits->min_lane_count;
		     lane_count <= limits->max_lane_count;
		     lane_count <<= 1) {
			for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1874
					return 0;
1875 1876 1877 1878 1879
				}
			}
		}
	}

1880
	return -EINVAL;
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1898 1899 1900 1901
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1902 1903 1904 1905 1906 1907
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1908
	int ret;
1909 1910

	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1911
		return -EINVAL;
1912 1913 1914 1915 1916 1917 1918

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1919
		return -EINVAL;
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1953
			return -EINVAL;
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1970
			return -EINVAL;
1971 1972
		}
	}
1973 1974 1975

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
1976 1977 1978 1979
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
1980
		return ret;
1981
	}
1982

1983 1984 1985 1986 1987 1988 1989
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

1990
	return 0;
1991 1992
}

1993
static int
1994
intel_dp_compute_link_config(struct intel_encoder *encoder,
1995 1996
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
1997
{
1998
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1999
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2000
	struct link_config_limits limits;
2001
	int common_len;
2002
	int ret;
2003

2004
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2005
						    intel_dp->max_link_rate);
2006 2007

	/* No common link rates between source and sink */
2008
	WARN_ON(common_len <= 0);
2009

2010 2011 2012 2013 2014 2015 2016 2017
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2018

2019
	if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
2020 2021
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2022 2023 2024 2025 2026 2027
		 * advertizes being capable of. The eDP 1.3 and earlier panels
		 * are generally designed to support only a single clock and
		 * lane configuration, and typically these values correspond to
		 * the native resolution of the panel. With eDP 1.4 rate select
		 * and DSC, this is decreasingly the case, and we need to be
		 * able to select less than maximum link config.
2028
		 */
2029 2030
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2031
	}
2032

2033 2034
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2035 2036 2037 2038 2039 2040
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2041
	if (intel_dp_is_edp(intel_dp))
2042 2043 2044 2045 2046 2047 2048 2049 2050
		/*
		 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
		 * section A.1: "It is recommended that the minimum number of
		 * lanes be used, using the minimum link rate allowed for that
		 * lane configuration."
		 *
		 * Note that we use the max clock and lane count for eDP 1.3 and
		 * earlier, and fast vs. wide is irrelevant.
		 */
2051 2052 2053
		ret = intel_dp_compute_link_config_fast(intel_dp, pipe_config,
							&limits);
	else
2054
		/* Optimize for slow and wide. */
2055 2056 2057 2058
		ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
							&limits);

	/* enable compression if the mode doesn't fit available BW */
2059
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2060
	if (ret || intel_dp->force_dsc_en) {
2061 2062 2063 2064
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2065
	}
2066

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2089
	return 0;
2090 2091
}

2092
int
2093 2094 2095 2096 2097 2098 2099
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2100
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2101 2102 2103 2104 2105
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2106 2107
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2108
	int ret;
2109 2110 2111 2112

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2113
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2114 2115 2116
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2117 2118 2119 2120 2121 2122 2123 2124 2125
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2126 2127
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2143
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2144
		return -EINVAL;
2145

2146
	if (HAS_GMCH_DISPLAY(dev_priv) &&
2147
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2148
		return -EINVAL;
2149 2150

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2151
		return -EINVAL;
2152

2153 2154 2155
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
				  intel_dp_supports_fec(intel_dp, pipe_config);

2156 2157 2158
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2159

2160
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2161 2162 2163 2164 2165
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
2166
		pipe_config->limited_color_range =
2167
			pipe_config->pipe_bpp != 18 &&
2168 2169
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
2170 2171
	} else {
		pipe_config->limited_color_range =
2172
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2173 2174
	}

2175 2176 2177 2178 2179 2180 2181 2182
	if (!pipe_config->dsc_params.compression_enable)
		intel_link_compute_m_n(pipe_config->pipe_bpp,
				       pipe_config->lane_count,
				       adjusted_mode->crtc_clock,
				       pipe_config->port_clock,
				       &pipe_config->dp_m_n,
				       constant_n);
	else
2183
		intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
2184 2185 2186 2187 2188
				       pipe_config->lane_count,
				       adjusted_mode->crtc_clock,
				       pipe_config->port_clock,
				       &pipe_config->dp_m_n,
				       constant_n);
2189

2190
	if (intel_connector->panel.downclock_mode != NULL &&
2191
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2192
			pipe_config->has_drrs = true;
2193 2194 2195 2196 2197
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2198
					       constant_n);
2199 2200
	}

2201
	if (!HAS_DDI(dev_priv))
2202
		intel_dp_set_clock(encoder, pipe_config);
2203

2204 2205
	intel_psr_compute_config(intel_dp, pipe_config);

2206
	return 0;
2207 2208
}

2209
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2210 2211
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
2212
{
2213
	intel_dp->link_trained = false;
2214 2215 2216
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2217 2218
}

2219
static void intel_dp_prepare(struct intel_encoder *encoder,
2220
			     const struct intel_crtc_state *pipe_config)
2221
{
2222
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2223
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2224
	enum port port = encoder->port;
2225
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2226
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2227

2228 2229 2230 2231
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2232

2233
	/*
K
Keith Packard 已提交
2234
	 * There are four kinds of DP registers:
2235 2236
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2237 2238
	 * 	SNB CPU
	 *	IVB CPU
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2249

2250 2251 2252 2253
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2254

2255 2256
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2257
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2258

2259
	/* Split out the IBX/CPU vs CPT settings */
2260

2261
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2262 2263 2264 2265 2266 2267
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2268
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2269 2270
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2271
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2272
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2273 2274
		u32 trans_dp;

2275
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2276 2277 2278 2279 2280 2281 2282

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2283
	} else {
2284
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2285
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2286 2287 2288 2289 2290 2291 2292

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2293
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2294 2295
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2296
		if (IS_CHERRYVIEW(dev_priv))
2297 2298 2299
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2300
	}
2301 2302
}

2303 2304
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2305

2306 2307
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2308

2309 2310
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2311

2312
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2313

2314
static void wait_panel_status(struct intel_dp *intel_dp,
2315 2316
				       u32 mask,
				       u32 value)
2317
{
2318
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2319
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2320

V
Ville Syrjälä 已提交
2321 2322
	lockdep_assert_held(&dev_priv->pps_mutex);

2323
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2324

2325 2326
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2327

2328
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2329 2330 2331
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2332

2333 2334 2335
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2336
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2337 2338
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2339 2340

	DRM_DEBUG_KMS("Wait complete\n");
2341
}
2342

2343
static void wait_panel_on(struct intel_dp *intel_dp)
2344 2345
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2346
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2347 2348
}

2349
static void wait_panel_off(struct intel_dp *intel_dp)
2350 2351
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2352
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2353 2354
}

2355
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2356
{
2357 2358 2359
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2360
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2361

2362 2363 2364 2365 2366
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2367 2368
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2369 2370 2371
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2372

2373
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2374 2375
}

2376
static void wait_backlight_on(struct intel_dp *intel_dp)
2377 2378 2379 2380 2381
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2382
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2383 2384 2385 2386
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2387

2388 2389 2390 2391
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2392
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2393
{
2394
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2395
	u32 control;
2396

V
Ville Syrjälä 已提交
2397 2398
	lockdep_assert_held(&dev_priv->pps_mutex);

2399
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2400 2401
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2402 2403 2404
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2405
	return control;
2406 2407
}

2408 2409 2410 2411 2412
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2413
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2414
{
2415
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2416
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2417
	u32 pp;
2418
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2419
	bool need_to_disable = !intel_dp->want_panel_vdd;
2420

V
Ville Syrjälä 已提交
2421 2422
	lockdep_assert_held(&dev_priv->pps_mutex);

2423
	if (!intel_dp_is_edp(intel_dp))
2424
		return false;
2425

2426
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2427
	intel_dp->want_panel_vdd = true;
2428

2429
	if (edp_have_panel_vdd(intel_dp))
2430
		return need_to_disable;
2431

2432 2433
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2434

V
Ville Syrjälä 已提交
2435
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2436
		      port_name(intel_dig_port->base.port));
2437

2438 2439
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2440

2441
	pp = ironlake_get_pp_control(intel_dp);
2442
	pp |= EDP_FORCE_VDD;
2443

2444 2445
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2446 2447 2448 2449 2450

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2451 2452 2453
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2454
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2455
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2456
			      port_name(intel_dig_port->base.port));
2457 2458
		msleep(intel_dp->panel_power_up_delay);
	}
2459 2460 2461 2462

	return need_to_disable;
}

2463 2464 2465 2466 2467 2468 2469
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2470
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2471
{
2472
	bool vdd;
2473

2474
	if (!intel_dp_is_edp(intel_dp))
2475 2476
		return;

2477
	pps_lock(intel_dp);
2478
	vdd = edp_panel_vdd_on(intel_dp);
2479
	pps_unlock(intel_dp);
2480

R
Rob Clark 已提交
2481
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2482
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2483 2484
}

2485
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2486
{
2487
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2488 2489
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2490
	u32 pp;
2491
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2492

V
Ville Syrjälä 已提交
2493
	lockdep_assert_held(&dev_priv->pps_mutex);
2494

2495
	WARN_ON(intel_dp->want_panel_vdd);
2496

2497
	if (!edp_have_panel_vdd(intel_dp))
2498
		return;
2499

V
Ville Syrjälä 已提交
2500
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2501
		      port_name(intel_dig_port->base.port));
2502

2503 2504
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2505

2506 2507
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2508

2509 2510
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2511

2512 2513 2514
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2515

2516
	if ((pp & PANEL_POWER_ON) == 0)
2517
		intel_dp->panel_power_off_time = ktime_get_boottime();
2518

2519 2520
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2521
}
2522

2523
static void edp_panel_vdd_work(struct work_struct *__work)
2524 2525 2526 2527
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2528
	pps_lock(intel_dp);
2529 2530
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2531
	pps_unlock(intel_dp);
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2547 2548 2549 2550 2551
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2552
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2553
{
2554
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2555 2556 2557

	lockdep_assert_held(&dev_priv->pps_mutex);

2558
	if (!intel_dp_is_edp(intel_dp))
2559
		return;
2560

R
Rob Clark 已提交
2561
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2562
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2563

2564 2565
	intel_dp->want_panel_vdd = false;

2566
	if (sync)
2567
		edp_panel_vdd_off_sync(intel_dp);
2568 2569
	else
		edp_panel_vdd_schedule_off(intel_dp);
2570 2571
}

2572
static void edp_panel_on(struct intel_dp *intel_dp)
2573
{
2574
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2575
	u32 pp;
2576
	i915_reg_t pp_ctrl_reg;
2577

2578 2579
	lockdep_assert_held(&dev_priv->pps_mutex);

2580
	if (!intel_dp_is_edp(intel_dp))
2581
		return;
2582

V
Ville Syrjälä 已提交
2583
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2584
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2585

2586 2587
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2588
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2589
		return;
2590

2591
	wait_panel_power_cycle(intel_dp);
2592

2593
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2594
	pp = ironlake_get_pp_control(intel_dp);
2595
	if (IS_GEN(dev_priv, 5)) {
2596 2597
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2598 2599
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2600
	}
2601

2602
	pp |= PANEL_POWER_ON;
2603
	if (!IS_GEN(dev_priv, 5))
2604 2605
		pp |= PANEL_POWER_RESET;

2606 2607
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2608

2609
	wait_panel_on(intel_dp);
2610
	intel_dp->last_power_on = jiffies;
2611

2612
	if (IS_GEN(dev_priv, 5)) {
2613
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2614 2615
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2616
	}
2617
}
V
Ville Syrjälä 已提交
2618

2619 2620
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2621
	if (!intel_dp_is_edp(intel_dp))
2622 2623 2624 2625
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2626
	pps_unlock(intel_dp);
2627 2628
}

2629 2630

static void edp_panel_off(struct intel_dp *intel_dp)
2631
{
2632
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2633
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2634
	u32 pp;
2635
	i915_reg_t pp_ctrl_reg;
2636

2637 2638
	lockdep_assert_held(&dev_priv->pps_mutex);

2639
	if (!intel_dp_is_edp(intel_dp))
2640
		return;
2641

V
Ville Syrjälä 已提交
2642
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2643
		      port_name(dig_port->base.port));
2644

V
Ville Syrjälä 已提交
2645
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2646
	     port_name(dig_port->base.port));
2647

2648
	pp = ironlake_get_pp_control(intel_dp);
2649 2650
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2651
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2652
		EDP_BLC_ENABLE);
2653

2654
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2655

2656 2657
	intel_dp->want_panel_vdd = false;

2658 2659
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2660

2661
	wait_panel_off(intel_dp);
2662
	intel_dp->panel_power_off_time = ktime_get_boottime();
2663 2664

	/* We got a reference when we enabled the VDD. */
2665
	intel_display_power_put(dev_priv, intel_aux_power_domain(dig_port));
2666
}
V
Ville Syrjälä 已提交
2667

2668 2669
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2670
	if (!intel_dp_is_edp(intel_dp))
2671
		return;
V
Ville Syrjälä 已提交
2672

2673 2674
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2675
	pps_unlock(intel_dp);
2676 2677
}

2678 2679
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2680
{
2681
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2682
	u32 pp;
2683
	i915_reg_t pp_ctrl_reg;
2684

2685 2686 2687 2688 2689 2690
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2691
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2692

2693
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2694

2695
	pp = ironlake_get_pp_control(intel_dp);
2696
	pp |= EDP_BLC_ENABLE;
2697

2698
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2699 2700 2701

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2702

2703
	pps_unlock(intel_dp);
2704 2705
}

2706
/* Enable backlight PWM and backlight PP control. */
2707 2708
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2709
{
2710 2711
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2712
	if (!intel_dp_is_edp(intel_dp))
2713 2714 2715 2716
		return;

	DRM_DEBUG_KMS("\n");

2717
	intel_panel_enable_backlight(crtc_state, conn_state);
2718 2719 2720 2721 2722
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2723
{
2724
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2725
	u32 pp;
2726
	i915_reg_t pp_ctrl_reg;
2727

2728
	if (!intel_dp_is_edp(intel_dp))
2729 2730
		return;

2731
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2732

2733
	pp = ironlake_get_pp_control(intel_dp);
2734
	pp &= ~EDP_BLC_ENABLE;
2735

2736
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2737 2738 2739

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2740

2741
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2742 2743

	intel_dp->last_backlight_off = jiffies;
2744
	edp_wait_backlight_off(intel_dp);
2745
}
2746

2747
/* Disable backlight PP control and backlight PWM. */
2748
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2749
{
2750 2751
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2752
	if (!intel_dp_is_edp(intel_dp))
2753 2754 2755
		return;

	DRM_DEBUG_KMS("\n");
2756

2757
	_intel_edp_backlight_off(intel_dp);
2758
	intel_panel_disable_backlight(old_conn_state);
2759
}
2760

2761 2762 2763 2764 2765 2766 2767 2768
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2769 2770
	bool is_enabled;

2771
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2772
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2773
	pps_unlock(intel_dp);
2774 2775 2776 2777

	if (is_enabled == enable)
		return;

2778 2779
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2780 2781 2782 2783 2784 2785 2786

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2787 2788 2789 2790 2791 2792 2793 2794
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2795
			port_name(dig_port->base.port),
2796
			onoff(state), onoff(cur_state));
2797 2798 2799 2800 2801 2802 2803 2804 2805
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2806
			onoff(state), onoff(cur_state));
2807 2808 2809 2810
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2811
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2812
				const struct intel_crtc_state *pipe_config)
2813
{
2814
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2815
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2816

2817 2818 2819
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2820

2821
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2822
		      pipe_config->port_clock);
2823 2824 2825

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2826
	if (pipe_config->port_clock == 162000)
2827 2828 2829 2830 2831 2832 2833 2834
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2835 2836 2837 2838 2839 2840
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2841
	if (IS_GEN(dev_priv, 5))
2842
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2843

2844
	intel_dp->DP |= DP_PLL_ENABLE;
2845

2846
	I915_WRITE(DP_A, intel_dp->DP);
2847 2848
	POSTING_READ(DP_A);
	udelay(200);
2849 2850
}

2851 2852
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2853
{
2854
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2855
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2856

2857 2858 2859
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2860

2861 2862
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2863
	intel_dp->DP &= ~DP_PLL_ENABLE;
2864

2865
	I915_WRITE(DP_A, intel_dp->DP);
2866
	POSTING_READ(DP_A);
2867 2868 2869
	udelay(200);
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2901
/* If the sink supports it, try to set the power state appropriately */
2902
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2903 2904 2905 2906 2907 2908 2909 2910
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2911 2912 2913
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2914 2915
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2916
	} else {
2917 2918
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2919 2920 2921 2922 2923
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2924 2925
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2926 2927 2928 2929
			if (ret == 1)
				break;
			msleep(1);
		}
2930 2931 2932

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2933
	}
2934 2935 2936 2937

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2938 2939
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2986 2987
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2988
{
2989
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2990
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2991
	bool ret;
2992

2993 2994
	if (!intel_display_power_get_if_enabled(dev_priv,
						encoder->power_domain))
2995 2996
		return false;

2997 2998
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2999

3000
	intel_display_power_put(dev_priv, encoder->power_domain);
3001 3002

	return ret;
3003
}
3004

3005
static void intel_dp_get_config(struct intel_encoder *encoder,
3006
				struct intel_crtc_state *pipe_config)
3007
{
3008
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3009 3010
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3011
	enum port port = encoder->port;
3012
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3013

3014 3015 3016 3017
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3018

3019
	tmp = I915_READ(intel_dp->output_reg);
3020 3021

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3022

3023
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3024 3025 3026
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3027 3028 3029
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3030

3031
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3032 3033 3034 3035
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3036
		if (tmp & DP_SYNC_HS_HIGH)
3037 3038 3039
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3040

3041
		if (tmp & DP_SYNC_VS_HIGH)
3042 3043 3044 3045
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3046

3047
	pipe_config->base.adjusted_mode.flags |= flags;
3048

3049
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3050 3051
		pipe_config->limited_color_range = true;

3052 3053 3054
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3055 3056
	intel_dp_get_m_n(crtc, pipe_config);

3057
	if (port == PORT_A) {
3058
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3059 3060 3061 3062
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3063

3064 3065 3066
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3067

3068
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3069
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3084 3085
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3086
	}
3087 3088
}

3089
static void intel_disable_dp(struct intel_encoder *encoder,
3090 3091
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3092
{
3093
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3094

3095 3096
	intel_dp->link_trained = false;

3097
	if (old_crtc_state->has_audio)
3098 3099
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3100 3101 3102

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3103
	intel_edp_panel_vdd_on(intel_dp);
3104
	intel_edp_backlight_off(old_conn_state);
3105
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3106
	intel_edp_panel_off(intel_dp);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3121 3122
}

3123
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3124 3125
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3126
{
3127
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3128
	enum port port = encoder->port;
3129

3130 3131 3132 3133 3134 3135
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3136
	intel_dp_link_down(encoder, old_crtc_state);
3137 3138

	/* Only ilk+ has port A */
3139
	if (port == PORT_A)
3140
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3141 3142
}

3143
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3144 3145
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3146
{
3147
	intel_dp_link_down(encoder, old_crtc_state);
3148 3149
}

3150
static void chv_post_disable_dp(struct intel_encoder *encoder,
3151 3152
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3153
{
3154
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3155

3156
	intel_dp_link_down(encoder, old_crtc_state);
3157 3158 3159 3160

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3161
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3162

V
Ville Syrjälä 已提交
3163
	mutex_unlock(&dev_priv->sb_lock);
3164 3165
}

3166 3167 3168 3169 3170
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
3171
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3172
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3173
	enum port port = intel_dig_port->base.port;
3174
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3175

3176
	if (dp_train_pat & train_pat_mask)
3177
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3178
			      dp_train_pat & train_pat_mask);
3179

3180
	if (HAS_DDI(dev_priv)) {
3181 3182 3183 3184 3185 3186 3187 3188
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3189
		switch (dp_train_pat & train_pat_mask) {
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3203 3204 3205
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3206 3207 3208
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3209
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3210
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3224
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3225 3226 3227 3228 3229
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3230
		*DP &= ~DP_LINK_TRAIN_MASK;
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3243 3244
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3245 3246 3247 3248 3249
			break;
		}
	}
}

3250
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3251
				 const struct intel_crtc_state *old_crtc_state)
3252
{
3253
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3254 3255 3256

	/* enable with pattern 1 (as per spec) */

3257
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3258 3259 3260 3261 3262 3263 3264 3265

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3266
	if (old_crtc_state->has_audio)
3267
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3268 3269 3270

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3271 3272
}

3273
static void intel_enable_dp(struct intel_encoder *encoder,
3274 3275
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3276
{
3277
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3278
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3279
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3280
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3281
	enum pipe pipe = crtc->pipe;
3282

3283 3284
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3285

3286 3287
	pps_lock(intel_dp);

3288
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3289
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3290

3291
	intel_dp_enable_port(intel_dp, pipe_config);
3292 3293 3294 3295 3296 3297 3298

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3299
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3300 3301
		unsigned int lane_mask = 0x0;

3302
		if (IS_CHERRYVIEW(dev_priv))
3303
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3304

3305 3306
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3307
	}
3308

3309
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3310
	intel_dp_start_link_train(intel_dp);
3311
	intel_dp_stop_link_train(intel_dp);
3312

3313
	if (pipe_config->has_audio) {
3314
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3315
				 pipe_name(pipe));
3316
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3317
	}
3318
}
3319

3320
static void g4x_enable_dp(struct intel_encoder *encoder,
3321 3322
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3323
{
3324
	intel_enable_dp(encoder, pipe_config, conn_state);
3325
	intel_edp_backlight_on(pipe_config, conn_state);
3326
}
3327

3328
static void vlv_enable_dp(struct intel_encoder *encoder,
3329 3330
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3331
{
3332
	intel_edp_backlight_on(pipe_config, conn_state);
3333 3334
}

3335
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3336 3337
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3338 3339
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3340
	enum port port = encoder->port;
3341

3342
	intel_dp_prepare(encoder, pipe_config);
3343

3344
	/* Only ilk+ has port A */
3345
	if (port == PORT_A)
3346
		ironlake_edp_pll_on(intel_dp, pipe_config);
3347 3348
}

3349 3350 3351
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3352
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3353
	enum pipe pipe = intel_dp->pps_pipe;
3354
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3355

3356 3357
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3358 3359 3360
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3361 3362 3363
	edp_panel_vdd_off_sync(intel_dp);

	/*
3364
	 * VLV seems to get confused when multiple power sequencers
3365 3366 3367
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3368
	 * selected in multiple power sequencers, but let's clear the
3369 3370 3371 3372
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3373
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3374 3375 3376 3377 3378 3379
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3380
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3381 3382 3383 3384 3385 3386
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3387 3388 3389
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3390

3391 3392 3393 3394
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3395 3396 3397 3398
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3399
			      pipe_name(pipe), port_name(port));
3400 3401

		/* make sure vdd is off before we steal it */
3402
		vlv_detach_power_sequencer(intel_dp);
3403 3404 3405
	}
}

3406 3407
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3408
{
3409
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3410 3411
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3412 3413 3414

	lockdep_assert_held(&dev_priv->pps_mutex);

3415
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3416

3417 3418 3419 3420 3421 3422 3423
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3424
		vlv_detach_power_sequencer(intel_dp);
3425
	}
3426 3427 3428 3429 3430

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3431
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3432

3433 3434
	intel_dp->active_pipe = crtc->pipe;

3435
	if (!intel_dp_is_edp(intel_dp))
3436 3437
		return;

3438 3439 3440 3441
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3442
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3443 3444

	/* init power sequencer on this pipe and port */
3445 3446
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3447 3448
}

3449
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3450 3451
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3452
{
3453
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3454

3455
	intel_enable_dp(encoder, pipe_config, conn_state);
3456 3457
}

3458
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3459 3460
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3461
{
3462
	intel_dp_prepare(encoder, pipe_config);
3463

3464
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3465 3466
}

3467
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3468 3469
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3470
{
3471
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3472

3473
	intel_enable_dp(encoder, pipe_config, conn_state);
3474 3475

	/* Second common lane will stay alive on its own now */
3476
	chv_phy_release_cl2_override(encoder);
3477 3478
}

3479
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3480 3481
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3482
{
3483
	intel_dp_prepare(encoder, pipe_config);
3484

3485
	chv_phy_pre_pll_enable(encoder, pipe_config);
3486 3487
}

3488
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3489 3490
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3491
{
3492
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3493 3494
}

3495 3496 3497 3498
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3499
bool
3500
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3501
{
3502 3503
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3504 3505
}

3506
/* These are source-specific values. */
3507
uint8_t
K
Keith Packard 已提交
3508
intel_dp_voltage_max(struct intel_dp *intel_dp)
3509
{
3510
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3511 3512
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3513

3514
	if (HAS_DDI(dev_priv))
3515
		return intel_ddi_dp_voltage_max(encoder);
3516
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3517
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3518
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3519
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3520
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3521
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3522
	else
3523
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3524 3525
}

3526
uint8_t
K
Keith Packard 已提交
3527 3528
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3529
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3530 3531
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3532

3533 3534
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3535
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3536
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3537 3538 3539 3540 3541 3542 3543
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3544
		default:
3545
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3546
		}
3547
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3548
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3549 3550 3551 3552 3553
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3554
		default:
3555
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3556 3557 3558
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3559 3560 3561 3562 3563 3564 3565
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3566
		default:
3567
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3568
		}
3569 3570 3571
	}
}

3572
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3573
{
3574
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3575 3576 3577 3578 3579
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3580
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3581 3582
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3583
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3584 3585 3586
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3587
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3588 3589 3590
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3591
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3592 3593 3594
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3595
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3596 3597 3598 3599 3600 3601 3602
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3603
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3604 3605
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3606
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3607 3608 3609
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3610
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3611 3612 3613
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3614
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3615 3616 3617 3618 3619 3620 3621
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3622
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3623 3624
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3625
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3626 3627 3628
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3629
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3630 3631 3632 3633 3634 3635 3636
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3637
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3638 3639
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3640
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3652 3653
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3654 3655 3656 3657

	return 0;
}

3658
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3659
{
3660 3661 3662
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3663 3664 3665
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3666
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3667
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3668
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3669 3670 3671
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3672
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3673 3674 3675
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3676
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3677 3678 3679
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3680
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3681 3682
			deemph_reg_value = 128;
			margin_reg_value = 154;
3683
			uniq_trans_scale = true;
3684 3685 3686 3687 3688
			break;
		default:
			return 0;
		}
		break;
3689
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3690
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3691
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3692 3693 3694
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3695
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3696 3697 3698
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3699
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3700 3701 3702 3703 3704 3705 3706
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3707
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3708
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3709
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3710 3711 3712
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3713
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3714 3715 3716 3717 3718 3719 3720
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3721
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3722
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3723
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3735 3736
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3737 3738 3739 3740

	return 0;
}

3741
static uint32_t
3742
g4x_signal_levels(uint8_t train_set)
3743
{
3744
	uint32_t	signal_levels = 0;
3745

3746
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3747
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3748 3749 3750
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3751
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3752 3753
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3754
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3755 3756
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3757
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3758 3759 3760
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3761
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3762
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3763 3764 3765
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3766
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3767 3768
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3769
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3770 3771
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3772
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3773 3774 3775 3776 3777 3778
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3779
/* SNB CPU eDP voltage swing and pre-emphasis control */
3780
static uint32_t
3781
snb_cpu_edp_signal_levels(uint8_t train_set)
3782
{
3783 3784 3785
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3786 3787
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3788
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3789
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3790
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3791 3792
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3793
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3794 3795
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3796
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3797 3798
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3799
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3800
	default:
3801 3802 3803
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3804 3805 3806
	}
}

3807
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3808
static uint32_t
3809
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3810 3811 3812 3813
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3814
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3815
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3816
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3817
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3818
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3819 3820
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3821
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3822
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3823
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3824 3825
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3826
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3827
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3828
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3838
void
3839
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3840
{
3841
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3842
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3843
	enum port port = intel_dig_port->base.port;
3844
	uint32_t signal_levels, mask = 0;
3845 3846
	uint8_t train_set = intel_dp->train_set[0];

R
Rodrigo Vivi 已提交
3847
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3848 3849
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3850
		signal_levels = ddi_signal_levels(intel_dp);
3851
		mask = DDI_BUF_EMP_MASK;
3852
	} else if (IS_CHERRYVIEW(dev_priv)) {
3853
		signal_levels = chv_signal_levels(intel_dp);
3854
	} else if (IS_VALLEYVIEW(dev_priv)) {
3855
		signal_levels = vlv_signal_levels(intel_dp);
3856
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3857
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3858
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3859
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3860
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3861 3862
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3863
		signal_levels = g4x_signal_levels(train_set);
3864 3865 3866
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3867 3868 3869 3870 3871 3872 3873 3874
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3875

3876
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3877 3878 3879

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3880 3881
}

3882
void
3883 3884
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3885
{
3886
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3887 3888
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3889

3890
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3891

3892
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3893
	POSTING_READ(intel_dp->output_reg);
3894 3895
}

3896
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3897
{
3898
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3899
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3900
	enum port port = intel_dig_port->base.port;
3901 3902
	uint32_t val;

3903
	if (!HAS_DDI(dev_priv))
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3921 3922 3923 3924
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3925 3926 3927
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3928
static void
3929 3930
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3931
{
3932 3933 3934 3935
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3936
	uint32_t DP = intel_dp->DP;
3937

3938
	if (WARN_ON(HAS_DDI(dev_priv)))
3939 3940
		return;

3941
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3942 3943
		return;

3944
	DRM_DEBUG_KMS("\n");
3945

3946
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3947
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3948
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3949
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3950
	} else {
3951
		DP &= ~DP_LINK_TRAIN_MASK;
3952
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3953
	}
3954
	I915_WRITE(intel_dp->output_reg, DP);
3955
	POSTING_READ(intel_dp->output_reg);
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3966
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3967 3968 3969 3970 3971 3972 3973
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3974
		/* always enable with pattern 1 (as per spec) */
3975 3976 3977
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3978 3979 3980 3981
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3982
		I915_WRITE(intel_dp->output_reg, DP);
3983
		POSTING_READ(intel_dp->output_reg);
3984

3985
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3986 3987
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3988 3989
	}

3990
	msleep(intel_dp->panel_power_down_delay);
3991 3992

	intel_dp->DP = DP;
3993 3994 3995 3996 3997 3998

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3999 4000
}

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4037
bool
4038
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4039
{
4040 4041
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4042
		return false; /* aux transfer failed */
4043

4044 4045
	intel_dp_extended_receiver_capabilities(intel_dp);

4046
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4047

4048 4049
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4050

4051 4052 4053 4054 4055 4056 4057 4058
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4059 4060 4061
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4074

4075
		/* FEC is supported only on DP 1.4 */
4076 4077 4078 4079
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4080

4081
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4082 4083 4084
	}
}

4085 4086 4087 4088 4089
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4090

4091 4092
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4093

4094
	if (!intel_dp_read_dpcd(intel_dp))
4095 4096
		return false;

4097 4098
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4099

4100 4101 4102
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4103

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4114 4115
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4116
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4117
			      intel_dp->edp_dpcd);
4118

4119 4120 4121 4122 4123 4124
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4125 4126
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4127
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4128 4129
		int i;

4130 4131
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4132

4133 4134
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4135 4136 4137 4138

			if (val == 0)
				break;

4139 4140 4141 4142 4143 4144
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4145
			intel_dp->sink_rates[i] = (val * 200) / 10;
4146
		}
4147
		intel_dp->num_sink_rates = i;
4148
	}
4149

4150 4151 4152 4153
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4154 4155 4156 4157 4158
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4159 4160
	intel_dp_set_common_rates(intel_dp);

4161 4162 4163 4164
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4175
	/* Don't clobber cached eDP rates. */
4176
	if (!intel_dp_is_edp(intel_dp)) {
4177
		intel_dp_set_sink_rates(intel_dp);
4178 4179
		intel_dp_set_common_rates(intel_dp);
	}
4180

4181
	/*
4182 4183
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4184
	 */
4185 4186 4187
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4188

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4210

4211
	if (!drm_dp_is_branch(intel_dp->dpcd))
4212 4213 4214 4215 4216
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4217 4218 4219
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4220 4221 4222
		return false; /* downstream port status fetch failed */

	return true;
4223 4224
}

4225
static bool
4226
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4227
{
4228
	u8 mstm_cap;
4229 4230 4231 4232

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4233
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4234
		return false;
4235

4236
	return mstm_cap & DP_MST_CAP;
4237 4238
}

4239 4240 4241 4242 4243 4244 4245 4246
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4247 4248 4249
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4250 4251 4252 4253 4254 4255 4256
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4257 4258 4259 4260

	if (!intel_dp->can_mst)
		return;

4261 4262
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4263 4264 4265

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4266 4267 4268 4269 4270
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4271 4272 4273
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4274 4275
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
u16 intel_dp_dsc_get_output_bpp(int link_clock, uint8_t lane_count,
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(uint8_t, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4361 4362
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
4363
	int status = 0;
4364
	int test_link_rate;
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4386 4387 4388 4389

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4390 4391 4392 4393 4394 4395
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4396 4397 4398 4399
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
4400
	uint8_t test_pattern;
4401
	uint8_t test_misc;
4402 4403 4404 4405
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4406 4407
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4429 4430
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4457 4458 4459
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4460
{
4461
	uint8_t test_result = DP_TEST_ACK;
4462 4463 4464 4465
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4466
	    connector->edid_corrupt ||
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4480
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4481
	} else {
4482 4483 4484 4485 4486 4487 4488
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4489 4490
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4491 4492 4493
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4494
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4495 4496 4497
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4498
	intel_dp->compliance.test_active = 1;
4499

4500 4501 4502 4503
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4504
{
4505 4506 4507 4508 4509 4510 4511
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4512 4513
	uint8_t request = 0;
	int status;
4514

4515
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4516 4517 4518 4519 4520
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4521
	switch (request) {
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4539
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4540 4541 4542
		break;
	}

4543 4544 4545
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4546
update_status:
4547
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4548 4549
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4550 4551
}

4552 4553 4554 4555 4556 4557
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4558
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4559 4560 4561
		int ret = 0;
		int retry;
		bool handled;
4562 4563

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4564 4565 4566 4567 4568
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4569
			if (intel_dp->active_mst_links > 0 &&
4570
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4571 4572 4573 4574 4575
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4576
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4592
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4611 4612 4613 4614 4615
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4616
	if (!intel_dp->link_trained)
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4628 4629 4630
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4647 4648
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4689 4690 4691

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4692
	if (crtc_state->has_pch_encoder)
4693 4694 4695 4696 4697 4698 4699
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4700
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4701 4702

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4703
	if (crtc_state->has_pch_encoder)
4704 4705
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4706 4707

	return 0;
4708 4709
}

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4724
{
4725 4726 4727
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4728

4729
	changed = intel_encoder_hotplug(encoder, connector);
4730

4731
	drm_modeset_acquire_init(&ctx, 0);
4732

4733 4734
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4735

4736 4737 4738 4739
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4740

4741 4742
		break;
	}
4743

4744 4745 4746
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4747

4748
	return changed;
4749 4750
}

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4767 4768 4769 4770 4771
	if (val & DP_CP_IRQ)
		intel_hdcp_check_link(intel_dp->attached_connector);

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4772 4773
}

4774 4775 4776 4777 4778 4779 4780
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4781 4782 4783 4784 4785
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4786
 */
4787
static bool
4788
intel_dp_short_pulse(struct intel_dp *intel_dp)
4789
{
4790
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4791 4792
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4793

4794 4795 4796 4797
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4798
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4799

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4811 4812
	}

4813
	intel_dp_check_service_irq(intel_dp);
4814

4815 4816 4817
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4818 4819 4820
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4821

4822 4823
	intel_psr_short_pulse(intel_dp);

4824 4825 4826
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4827
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4828
	}
4829 4830

	return true;
4831 4832
}

4833
/* XXX this is probably wrong for multiple downstream ports */
4834
static enum drm_connector_status
4835
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4836
{
4837
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4838 4839 4840
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4841 4842 4843
	if (lspcon->active)
		lspcon_resume(lspcon);

4844 4845 4846
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4847
	if (intel_dp_is_edp(intel_dp))
4848 4849
		return connector_status_connected;

4850
	/* if there's no downstream port, we're done */
4851
	if (!drm_dp_is_branch(dpcd))
4852
		return connector_status_connected;
4853 4854

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4855 4856
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4857

4858 4859
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4860 4861
	}

4862 4863 4864
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4865
	/* If no HPD, poke DDC gently */
4866
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4867
		return connector_status_connected;
4868 4869

	/* Well we tried, say unknown for unreliable port types */
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4882 4883 4884

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4885
	return connector_status_disconnected;
4886 4887
}

4888 4889 4890
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4891
	return connector_status_connected;
4892 4893
}

4894
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4895
{
4896
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4897
	u32 bit;
4898

4899 4900
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4901 4902
		bit = SDE_PORTB_HOTPLUG;
		break;
4903
	case HPD_PORT_C:
4904 4905
		bit = SDE_PORTC_HOTPLUG;
		break;
4906
	case HPD_PORT_D:
4907 4908 4909
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4910
		MISSING_CASE(encoder->hpd_pin);
4911 4912 4913 4914 4915 4916
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4917
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4918
{
4919
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4920 4921
	u32 bit;

4922 4923
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4924 4925
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4926
	case HPD_PORT_C:
4927 4928
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4929
	case HPD_PORT_D:
4930 4931
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4932
	default:
4933
		MISSING_CASE(encoder->hpd_pin);
4934 4935 4936 4937 4938 4939
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4940
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4941
{
4942
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4943 4944
	u32 bit;

4945 4946
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4947 4948
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4949
	case HPD_PORT_E:
4950 4951
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4952
	default:
4953
		return cpt_digital_port_connected(encoder);
4954
	}
4955

4956
	return I915_READ(SDEISR) & bit;
4957 4958
}

4959
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4960
{
4961
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4962
	u32 bit;
4963

4964 4965
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4966 4967
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4968
	case HPD_PORT_C:
4969 4970
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4971
	case HPD_PORT_D:
4972 4973 4974
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4975
		MISSING_CASE(encoder->hpd_pin);
4976 4977 4978 4979 4980 4981
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4982
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4983
{
4984
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4985 4986
	u32 bit;

4987 4988
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4989
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4990
		break;
4991
	case HPD_PORT_C:
4992
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4993
		break;
4994
	case HPD_PORT_D:
4995
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4996 4997
		break;
	default:
4998
		MISSING_CASE(encoder->hpd_pin);
4999
		return false;
5000 5001
	}

5002
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5003 5004
}

5005
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5006
{
5007 5008 5009
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5010 5011
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5012
		return ibx_digital_port_connected(encoder);
5013 5014
}

5015
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5016
{
5017 5018 5019
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5020 5021
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5022
		return cpt_digital_port_connected(encoder);
5023 5024
}

5025
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5026
{
5027 5028 5029
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5030 5031
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5032
		return cpt_digital_port_connected(encoder);
5033 5034
}

5035
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5036
{
5037 5038 5039
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5040 5041
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5042
		return cpt_digital_port_connected(encoder);
5043 5044
}

5045
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5046
{
5047
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5048 5049
	u32 bit;

5050 5051
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5052 5053
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5054
	case HPD_PORT_B:
5055 5056
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5057
	case HPD_PORT_C:
5058 5059 5060
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5061
		MISSING_CASE(encoder->hpd_pin);
5062 5063 5064 5065 5066 5067
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5068 5069 5070 5071 5072 5073 5074 5075
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5091 5092 5093 5094 5095 5096 5097 5098 5099
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5100
	if (is_legacy)
5101
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5102
	else if (is_typec)
5103
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5104
	else if (is_tbt)
5105
		intel_dig_port->tc_type = TC_PORT_TBT;
5106
	else
5107 5108 5109 5110 5111 5112 5113 5114
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5115
			      tc_type_name(intel_dig_port->tc_type));
5116 5117
}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5152
		WARN_ON(dig_port->tc_legacy_port);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5173
		icl_tc_phy_disconnect(dev_priv, dig_port);
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5184 5185
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5186 5187 5188
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5189
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5190 5191 5192
		return;

	/*
5193 5194
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5195
	 */
5196 5197 5198 5199 5200
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5201 5202 5203
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5204

5205 5206 5207 5208
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5209
	dig_port->tc_type = TC_PORT_UNKNOWN;
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5222 5223 5224 5225 5226 5227 5228 5229
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5230 5231 5232 5233 5234 5235 5236 5237
	/*
	 * WARN if we got a legacy port HPD, but VBT didn't mark the port as
	 * legacy. Treat the port as legacy from now on.
	 */
	if (WARN_ON(!intel_dig_port->tc_legacy_port &&
		    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
		intel_dig_port->tc_legacy_port = true;
	is_legacy = intel_dig_port->tc_legacy_port;
5238 5239 5240 5241 5242 5243 5244 5245 5246

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5247 5248
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5249

5250
		return false;
5251
	}
5252 5253 5254

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5255

5256 5257 5258
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5259
	return true;
5260 5261 5262 5263 5264 5265 5266
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5267
	if (intel_port_is_combophy(dev_priv, encoder->port))
5268
		return icl_combo_port_connected(dev_priv, dig_port);
5269
	else if (intel_port_is_tc(dev_priv, encoder->port))
5270
		return icl_tc_port_connected(dev_priv, dig_port);
5271
	else
5272
		MISSING_CASE(encoder->hpd_pin);
5273 5274

	return false;
5275 5276
}

5277 5278
/*
 * intel_digital_port_connected - is the specified port connected?
5279
 * @encoder: intel_encoder
5280
 *
5281 5282 5283 5284 5285
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5286
 * Return %true if port is connected, %false otherwise.
5287
 */
5288
bool intel_digital_port_connected(struct intel_encoder *encoder)
5289
{
5290 5291
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

5292 5293
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
5294
			return gm45_digital_port_connected(encoder);
5295
		else
5296
			return g4x_digital_port_connected(encoder);
5297 5298
	}

5299 5300
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5301
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5302
		return spt_digital_port_connected(encoder);
5303
	else if (IS_GEN9_LP(dev_priv))
5304
		return bxt_digital_port_connected(encoder);
5305
	else if (IS_GEN(dev_priv, 8))
5306
		return bdw_digital_port_connected(encoder);
5307
	else if (IS_GEN(dev_priv, 7))
5308
		return ivb_digital_port_connected(encoder);
5309
	else if (IS_GEN(dev_priv, 6))
5310
		return snb_digital_port_connected(encoder);
5311
	else if (IS_GEN(dev_priv, 5))
5312 5313 5314 5315
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5316 5317
}

5318
static struct edid *
5319
intel_dp_get_edid(struct intel_dp *intel_dp)
5320
{
5321
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5322

5323 5324 5325 5326
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5327 5328
			return NULL;

J
Jani Nikula 已提交
5329
		return drm_edid_duplicate(intel_connector->edid);
5330 5331 5332 5333
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5334

5335 5336 5337 5338 5339
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5340

5341
	intel_dp_unset_edid(intel_dp);
5342 5343 5344
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5345
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5346
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5347 5348
}

5349 5350
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5351
{
5352
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5353

5354
	drm_dp_cec_unset_edid(&intel_dp->aux);
5355 5356
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5357

5358 5359
	intel_dp->has_audio = false;
}
5360

5361
static int
5362 5363 5364
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5365
{
5366 5367
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5368 5369
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5370
	enum drm_connector_status status;
5371 5372
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
Z
Zhenyu Wang 已提交
5373

5374 5375
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5376
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5377

5378
	intel_display_power_get(dev_priv, aux_domain);
Z
Zhenyu Wang 已提交
5379

5380
	/* Can't disconnect eDP */
5381
	if (intel_dp_is_edp(intel_dp))
5382
		status = edp_detect(intel_dp);
5383
	else if (intel_digital_port_connected(encoder))
5384
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5385
	else
5386 5387
		status = connector_status_disconnected;

5388
	if (status == connector_status_disconnected) {
5389
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5390
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5391

5392 5393 5394 5395 5396 5397 5398 5399 5400
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5401
		goto out;
5402
	}
Z
Zhenyu Wang 已提交
5403

5404
	if (intel_dp->reset_link_params) {
5405 5406
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5407

5408 5409
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5410 5411 5412

		intel_dp->reset_link_params = false;
	}
5413

5414 5415
	intel_dp_print_rates(intel_dp);

5416 5417 5418 5419
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5420 5421
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5422

5423 5424 5425
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5426 5427 5428 5429 5430
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5431 5432
		status = connector_status_disconnected;
		goto out;
5433 5434 5435 5436 5437 5438
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5439 5440 5441 5442 5443
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
5444
			intel_display_power_put(dev_priv, aux_domain);
5445 5446 5447
			return ret;
		}
	}
5448

5449 5450 5451 5452 5453 5454 5455 5456
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5457
	intel_dp_set_edid(intel_dp);
5458 5459
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5460
		status = connector_status_connected;
5461

5462
	intel_dp_check_service_irq(intel_dp);
5463

5464
out:
5465
	if (status != connector_status_connected && !intel_dp->is_mst)
5466
		intel_dp_unset_edid(intel_dp);
5467

5468
	intel_display_power_put(dev_priv, aux_domain);
5469
	return status;
5470 5471
}

5472 5473
static void
intel_dp_force(struct drm_connector *connector)
5474
{
5475
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5476 5477
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5478
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5479 5480
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5481

5482 5483 5484
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5485

5486 5487
	if (connector->status != connector_status_connected)
		return;
5488

5489
	intel_display_power_get(dev_priv, aux_domain);
5490 5491 5492

	intel_dp_set_edid(intel_dp);

5493
	intel_display_power_put(dev_priv, aux_domain);
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5507

5508
	/* if eDP has no EDID, fall back to fixed mode */
5509
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5510
	    intel_connector->panel.fixed_mode) {
5511
		struct drm_display_mode *mode;
5512 5513

		mode = drm_mode_duplicate(connector->dev,
5514
					  intel_connector->panel.fixed_mode);
5515
		if (mode) {
5516 5517 5518 5519
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5520

5521
	return 0;
5522 5523
}

5524 5525 5526 5527
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5528
	struct drm_device *dev = connector->dev;
5529 5530 5531 5532 5533
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5534 5535 5536 5537 5538 5539 5540

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5541 5542 5543 5544 5545
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5546 5547
}

5548 5549 5550
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5551 5552 5553 5554
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5555 5556 5557
	intel_connector_unregister(connector);
}

5558
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5559
{
5560 5561
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5562

5563
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5564
	if (intel_dp_is_edp(intel_dp)) {
5565
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5566 5567 5568 5569
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5570
		pps_lock(intel_dp);
5571
		edp_panel_vdd_off_sync(intel_dp);
5572 5573
		pps_unlock(intel_dp);

5574 5575 5576 5577
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5578
	}
5579 5580

	intel_dp_aux_fini(intel_dp);
5581 5582 5583 5584 5585
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5586

5587
	drm_encoder_cleanup(encoder);
5588
	kfree(enc_to_dig_port(encoder));
5589 5590
}

5591
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5592 5593 5594
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5595
	if (!intel_dp_is_edp(intel_dp))
5596 5597
		return;

5598 5599 5600 5601
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5602
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5603
	pps_lock(intel_dp);
5604
	edp_panel_vdd_off_sync(intel_dp);
5605
	pps_unlock(intel_dp);
5606 5607
}

5608 5609 5610 5611 5612
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5613 5614 5615 5616 5617 5618
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5619 5620 5621 5622 5623 5624 5625
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5626 5627
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5628 5629 5630 5631 5632 5633 5634 5635 5636
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5637
	intel_dp_aux_header(txbuf, &msg);
5638

5639
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5640 5641
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5642
	if (ret < 0) {
5643
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5644 5645
		return ret;
	} else if (ret == 0) {
5646
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5647 5648 5649 5650
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5651 5652 5653 5654 5655 5656
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5657 5658 5659 5660 5661 5662 5663 5664 5665
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5666
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5684
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5685 5686 5687 5688 5689 5690
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5691 5692
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5693 5694
{
	ssize_t ret;
5695

5696
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5697
			       bcaps, 1);
5698
	if (ret != 1) {
5699
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5700 5701
		return ret >= 0 ? -EIO : ret;
	}
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5729
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5744
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5766 5767
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5787
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5806

5807 5808 5809
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5810
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5811
		return false;
5812
	}
5813

5814 5815 5816
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5843
	.hdcp_capable = intel_dp_hdcp_capable,
5844 5845
};

5846 5847
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5848
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5849
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5863
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
5864 5865 5866 5867

	edp_panel_vdd_schedule_off(intel_dp);
}

5868 5869
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
5870
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5871 5872
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5873

5874 5875 5876
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5877

5878
	return INVALID_PIPE;
5879 5880
}

5881
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5882
{
5883
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5884 5885
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5886 5887 5888

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5889

5890
	if (lspcon->active)
5891 5892
		lspcon_resume(lspcon);

5893 5894
	intel_dp->reset_link_params = true;

5895 5896
	pps_lock(intel_dp);

5897 5898 5899
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5900
	if (intel_dp_is_edp(intel_dp)) {
5901
		/* Reinit the power sequencer, in case BIOS did something with it. */
5902
		intel_dp_pps_init(intel_dp);
5903 5904
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5905 5906

	pps_unlock(intel_dp);
5907 5908
}

5909
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5910
	.force = intel_dp_force,
5911
	.fill_modes = drm_helper_probe_single_connector_modes,
5912 5913
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5914
	.late_register = intel_dp_connector_register,
5915
	.early_unregister = intel_dp_connector_unregister,
5916
	.destroy = intel_connector_destroy,
5917
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5918
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5919 5920 5921
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5922
	.detect_ctx = intel_dp_detect,
5923 5924
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5925
	.atomic_check = intel_digital_connector_atomic_check,
5926 5927 5928
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5929
	.reset = intel_dp_encoder_reset,
5930
	.destroy = intel_dp_encoder_destroy,
5931 5932
};

5933
enum irqreturn
5934 5935 5936
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5937
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5938
	enum irqreturn ret = IRQ_NONE;
5939

5940 5941 5942 5943 5944 5945 5946 5947
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5948
			      port_name(intel_dig_port->base.port));
5949
		return IRQ_HANDLED;
5950 5951
	}

5952
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5953
		      port_name(intel_dig_port->base.port),
5954
		      long_hpd ? "long" : "short");
5955

5956
	if (long_hpd) {
5957
		intel_dp->reset_link_params = true;
5958 5959 5960
		return IRQ_NONE;
	}

5961 5962
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
5963

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
5976
		}
5977
	}
5978

5979
	if (!intel_dp->is_mst) {
5980
		bool handled;
5981 5982 5983

		handled = intel_dp_short_pulse(intel_dp);

5984
		if (!handled)
5985
			goto put_power;
5986
	}
5987 5988 5989

	ret = IRQ_HANDLED;

5990
put_power:
5991 5992
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(intel_dig_port));
5993 5994

	return ret;
5995 5996
}

5997
/* check the VBT to see whether the eDP is on another port */
5998
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5999
{
6000 6001 6002 6003
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6004
	if (INTEL_GEN(dev_priv) < 5)
6005 6006
		return false;

6007
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6008 6009
		return true;

6010
	return intel_bios_is_port_edp(dev_priv, port);
6011 6012
}

6013
static void
6014 6015
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6016
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6017 6018 6019 6020
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6021

6022
	intel_attach_broadcast_rgb_property(connector);
6023 6024 6025 6026
	if (HAS_GMCH_DISPLAY(dev_priv))
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6027

6028
	if (intel_dp_is_edp(intel_dp)) {
6029 6030 6031 6032 6033 6034 6035 6036
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6037
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6038

6039
	}
6040 6041
}

6042 6043
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6044
	intel_dp->panel_power_off_time = ktime_get_boottime();
6045 6046 6047 6048
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6049
static void
6050
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6051
{
6052
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6053
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
6054
	struct pps_registers regs;
6055

6056
	intel_pps_get_registers(intel_dp, &regs);
6057 6058 6059

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
6060
	pp_ctl = ironlake_get_pp_control(intel_dp);
6061

6062 6063
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6064 6065
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
6066 6067
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
6068
	}
6069 6070

	/* Pull timing values out of registers */
6071 6072
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
6073

6074 6075
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
6076

6077 6078
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
6079

6080 6081
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
6082

6083 6084
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
6085 6086
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
6087
	} else {
6088
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
6089
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
6090
	}
6091 6092
}

I
Imre Deak 已提交
6093 6094 6095 6096 6097 6098 6099 6100 6101
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6102
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6103 6104 6105 6106
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6107
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6108 6109 6110 6111 6112 6113 6114 6115 6116

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6117
static void
6118
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6119
{
6120
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6121 6122 6123 6124 6125 6126 6127 6128 6129
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6130
	intel_pps_readout_hw_state(intel_dp, &cur);
6131

I
Imre Deak 已提交
6132
	intel_pps_dump_state("cur", &cur);
6133

6134
	vbt = dev_priv->vbt.edp.pps;
6135 6136 6137 6138 6139 6140
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6141
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6142 6143 6144
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6145 6146 6147 6148 6149
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6163
	intel_pps_dump_state("vbt", &vbt);
6164 6165 6166

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6167
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6168 6169 6170 6171 6172 6173 6174 6175 6176
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6177
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6178 6179 6180 6181 6182 6183 6184
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6185 6186 6187 6188 6189 6190
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6201 6202 6203 6204 6205 6206

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6207 6208 6209
}

static void
6210
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6211
					      bool force_disable_vdd)
6212
{
6213
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6214
	u32 pp_on, pp_off, pp_div, port_sel = 0;
6215
	int div = dev_priv->rawclk_freq / 1000;
6216
	struct pps_registers regs;
6217
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6218
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6219

V
Ville Syrjälä 已提交
6220
	lockdep_assert_held(&dev_priv->pps_mutex);
6221

6222
	intel_pps_get_registers(intel_dp, &regs);
6223

6224 6225
	/*
	 * On some VLV machines the BIOS can leave the VDD
6226
	 * enabled even on power sequencers which aren't
6227 6228 6229 6230 6231 6232 6233
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6234
	 * soon as the new power sequencer gets initialized.
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6249
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
6250 6251
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
6252
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
6253 6254
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
6255 6256
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
6257
		pp_div = I915_READ(regs.pp_ctrl);
6258
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
6259
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
6260 6261 6262 6263 6264 6265
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
6266 6267 6268

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6269
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6270
		port_sel = PANEL_PORT_SELECT_VLV(port);
6271
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6272 6273
		switch (port) {
		case PORT_A:
6274
			port_sel = PANEL_PORT_SELECT_DPA;
6275 6276 6277 6278 6279
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6280
			port_sel = PANEL_PORT_SELECT_DPD;
6281 6282 6283 6284 6285
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6286 6287
	}

6288 6289
	pp_on |= port_sel;

6290 6291
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6292 6293
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
6294
		I915_WRITE(regs.pp_ctrl, pp_div);
6295
	else
6296
		I915_WRITE(regs.pp_div, pp_div);
6297 6298

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6299 6300
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6301 6302
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
6303 6304
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
6305 6306
}

6307
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6308
{
6309
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6310 6311

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6312 6313
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6314 6315
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6316 6317 6318
	}
}

6319 6320
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6321
 * @dev_priv: i915 device
6322
 * @crtc_state: a pointer to the active intel_crtc_state
6323 6324 6325 6326 6327 6328 6329 6330 6331
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6332
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6333
				    const struct intel_crtc_state *crtc_state,
6334
				    int refresh_rate)
6335 6336
{
	struct intel_encoder *encoder;
6337 6338
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6339
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6340
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6341 6342 6343 6344 6345 6346

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6347 6348
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6349 6350 6351
		return;
	}

6352 6353
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6354 6355 6356 6357 6358 6359

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6360
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6361 6362 6363 6364
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6365 6366
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6367 6368
		index = DRRS_LOW_RR;

6369
	if (index == dev_priv->drrs.refresh_rate_type) {
6370 6371 6372 6373 6374
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6375
	if (!crtc_state->base.active) {
6376 6377 6378 6379
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6380
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6381 6382
		switch (index) {
		case DRRS_HIGH_RR:
6383
			intel_dp_set_m_n(crtc_state, M1_N1);
6384 6385
			break;
		case DRRS_LOW_RR:
6386
			intel_dp_set_m_n(crtc_state, M2_N2);
6387 6388 6389 6390 6391
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6392 6393
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6394
		u32 val;
6395

6396
		val = I915_READ(reg);
6397
		if (index > DRRS_HIGH_RR) {
6398
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6399 6400 6401
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6402
		} else {
6403
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6404 6405 6406
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6407 6408 6409 6410
		}
		I915_WRITE(reg, val);
	}

6411 6412 6413 6414 6415
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6416 6417 6418
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6419
 * @crtc_state: A pointer to the active crtc state.
6420 6421 6422
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6423
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6424
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6425
{
6426
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6427

6428
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6429 6430 6431 6432
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6433 6434 6435 6436 6437
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6438
	mutex_lock(&dev_priv->drrs.mutex);
6439 6440
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6452 6453 6454
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6455
 * @old_crtc_state: Pointer to old crtc_state.
6456 6457
 *
 */
6458
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6459
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6460
{
6461
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6462

6463
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6464 6465 6466 6467 6468 6469 6470 6471 6472
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6473 6474
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6475 6476 6477 6478 6479 6480 6481

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6495
	/*
6496 6497
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6498 6499
	 */

6500 6501
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6502

6503 6504 6505 6506 6507 6508
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6509

6510 6511
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6512 6513
}

6514
/**
6515
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6516
 * @dev_priv: i915 device
6517 6518
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6519 6520
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6521 6522 6523
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6524 6525
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6526 6527 6528 6529
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6530
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6531 6532
		return;

6533
	cancel_delayed_work(&dev_priv->drrs.work);
6534

6535
	mutex_lock(&dev_priv->drrs.mutex);
6536 6537 6538 6539 6540
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6541 6542 6543
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6544 6545 6546
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6547
	/* invalidate means busy screen hence upclock */
6548
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6549 6550
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6551 6552 6553 6554

	mutex_unlock(&dev_priv->drrs.mutex);
}

6555
/**
6556
 * intel_edp_drrs_flush - Restart Idleness DRRS
6557
 * @dev_priv: i915 device
6558 6559
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6560 6561 6562 6563
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6564 6565 6566
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6567 6568
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6569 6570 6571 6572
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6573
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6574 6575
		return;

6576
	cancel_delayed_work(&dev_priv->drrs.work);
6577

6578
	mutex_lock(&dev_priv->drrs.mutex);
6579 6580 6581 6582 6583
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6584 6585
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6586 6587

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6588 6589
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6590
	/* flush means busy screen hence upclock */
6591
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6592 6593
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6594 6595 6596 6597 6598 6599

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6600 6601 6602 6603 6604
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6628 6629 6630 6631 6632 6633 6634 6635
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6636 6637 6638 6639 6640 6641 6642 6643
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6644
 * @connector: eDP connector
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6655
static struct drm_display_mode *
6656 6657
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6658
{
6659
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6660 6661
	struct drm_display_mode *downclock_mode = NULL;

6662 6663 6664
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6665
	if (INTEL_GEN(dev_priv) <= 6) {
6666 6667 6668 6669 6670
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6671
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6672 6673 6674
		return NULL;
	}

6675 6676
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6677 6678

	if (!downclock_mode) {
6679
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6680 6681 6682
		return NULL;
	}

6683
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6684

6685
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6686
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6687 6688 6689
	return downclock_mode;
}

6690
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6691
				     struct intel_connector *intel_connector)
6692
{
6693 6694
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
6695
	struct drm_connector *connector = &intel_connector->base;
6696
	struct drm_display_mode *fixed_mode = NULL;
6697
	struct drm_display_mode *downclock_mode = NULL;
6698 6699 6700
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6701
	enum pipe pipe = INVALID_PIPE;
6702

6703
	if (!intel_dp_is_edp(intel_dp))
6704 6705
		return true;

6706 6707
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

6708 6709 6710 6711 6712 6713
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6714
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6715 6716 6717 6718 6719 6720
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6721
	pps_lock(intel_dp);
6722 6723

	intel_dp_init_panel_power_timestamps(intel_dp);
6724
	intel_dp_pps_init(intel_dp);
6725
	intel_edp_panel_vdd_sanitize(intel_dp);
6726

6727
	pps_unlock(intel_dp);
6728

6729
	/* Cache DPCD and EDID for edp. */
6730
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6731

6732
	if (!has_dpcd) {
6733 6734
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6735
		goto out_vdd_off;
6736 6737
	}

6738
	mutex_lock(&dev->mode_config.mutex);
6739
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6740 6741
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6742
			drm_connector_update_edid_property(connector,
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6753
	/* prefer fixed mode from EDID if available */
6754 6755 6756
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6757 6758
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6759
			break;
6760 6761 6762 6763 6764 6765 6766
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6767
		if (fixed_mode) {
6768
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6769 6770 6771
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6772
	}
6773
	mutex_unlock(&dev->mode_config.mutex);
6774

6775
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6776 6777
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6778 6779 6780 6781 6782 6783

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6784
		pipe = vlv_active_pipe(intel_dp);
6785 6786 6787 6788 6789 6790 6791 6792 6793

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6794 6795
	}

6796
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6797
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6798
	intel_panel_setup_backlight(connector, pipe);
6799

6800 6801 6802 6803
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

6804
	return true;
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6817 6818
}

6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6835 6836
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6837 6838 6839 6840 6841
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6842
bool
6843 6844
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6845
{
6846 6847 6848 6849
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6850
	struct drm_i915_private *dev_priv = to_i915(dev);
6851
	enum port port = intel_encoder->port;
6852
	int type;
6853

6854 6855 6856 6857
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6858 6859 6860 6861 6862
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6863 6864
	intel_dp_set_source_rates(intel_dp);

6865
	intel_dp->reset_link_params = true;
6866
	intel_dp->pps_pipe = INVALID_PIPE;
6867
	intel_dp->active_pipe = INVALID_PIPE;
6868

6869
	/* intel_dp vfuncs */
6870
	if (HAS_DDI(dev_priv))
6871 6872
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6873 6874
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6875
	intel_dp->attached_connector = intel_connector;
6876

6877
	if (intel_dp_is_port_edp(dev_priv, port))
6878
		type = DRM_MODE_CONNECTOR_eDP;
6879 6880
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6881

6882 6883 6884
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6885 6886 6887 6888 6889 6890 6891 6892
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6893
	/* eDP only on port B and/or C on vlv/chv */
6894
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6895 6896
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6897 6898
		return false;

6899 6900 6901 6902
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6903
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6904 6905
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6906
	if (!HAS_GMCH_DISPLAY(dev_priv))
6907
		connector->interlace_allowed = true;
6908 6909
	connector->doublescan_allowed = 0;

6910
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6911

6912
	intel_dp_aux_init(intel_dp);
6913

6914
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6915

6916
	if (HAS_DDI(dev_priv))
6917 6918 6919 6920
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6921
	/* init MST on ports that can support it */
6922
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6923 6924
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6925 6926
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6927

6928
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6929 6930 6931
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6932
	}
6933

6934
	intel_dp_add_properties(intel_dp, connector);
6935

6936
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6937 6938 6939 6940
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6941

6942 6943 6944 6945
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6946
	if (IS_G45(dev_priv)) {
6947 6948 6949
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6950 6951

	return true;
6952 6953 6954 6955 6956

fail:
	drm_connector_cleanup(connector);

	return false;
6957
}
6958

6959
bool intel_dp_init(struct drm_i915_private *dev_priv,
6960 6961
		   i915_reg_t output_reg,
		   enum port port)
6962 6963 6964 6965 6966 6967
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6968
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6969
	if (!intel_dig_port)
6970
		return false;
6971

6972
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6973 6974
	if (!intel_connector)
		goto err_connector_alloc;
6975 6976 6977 6978

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6979 6980 6981
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6982
		goto err_encoder_init;
6983

6984
	intel_encoder->hotplug = intel_dp_hotplug;
6985
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6986
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6987
	intel_encoder->get_config = intel_dp_get_config;
6988
	intel_encoder->suspend = intel_dp_encoder_suspend;
6989
	if (IS_CHERRYVIEW(dev_priv)) {
6990
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6991 6992
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6993
		intel_encoder->disable = vlv_disable_dp;
6994
		intel_encoder->post_disable = chv_post_disable_dp;
6995
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6996
	} else if (IS_VALLEYVIEW(dev_priv)) {
6997
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6998 6999
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7000
		intel_encoder->disable = vlv_disable_dp;
7001
		intel_encoder->post_disable = vlv_post_disable_dp;
7002
	} else {
7003 7004
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7005
		intel_encoder->disable = g4x_disable_dp;
7006
		intel_encoder->post_disable = g4x_post_disable_dp;
7007
	}
7008 7009

	intel_dig_port->dp.output_reg = output_reg;
7010
	intel_dig_port->max_lanes = 4;
7011

7012
	intel_encoder->type = INTEL_OUTPUT_DP;
7013
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7014
	if (IS_CHERRYVIEW(dev_priv)) {
7015 7016 7017 7018 7019 7020 7021
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7022
	intel_encoder->cloneable = 0;
7023
	intel_encoder->port = port;
7024

7025 7026
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7027 7028 7029
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7030
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7031 7032 7033
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7034
	return true;
S
Sudip Mukherjee 已提交
7035 7036 7037

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7038
err_encoder_init:
S
Sudip Mukherjee 已提交
7039 7040 7041
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7042
	return false;
7043
}
7044

7045
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7046
{
7047 7048 7049 7050
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7051

7052 7053
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7054

7055
		intel_dp = enc_to_intel_dp(&encoder->base);
7056

7057
		if (!intel_dp->can_mst)
7058 7059
			continue;

7060 7061
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7062 7063 7064
	}
}

7065
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7066
{
7067
	struct intel_encoder *encoder;
7068

7069 7070
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7071
		int ret;
7072

7073 7074 7075 7076 7077 7078
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7079
			continue;
7080

7081
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7082
		if (ret)
7083
			intel_dp_check_mst_status(intel_dp);
7084 7085
	}
}