intel_dp.c 39.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
37
#include "drm_dp_helper.h"
38

39

40 41 42 43 44
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

45 46
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)

47 48 49 50 51
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
52
	int dpms_mode;
53 54 55
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
56
	struct intel_encoder *intel_encoder;
57 58 59 60 61
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
62
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
63 64 65
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
66
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
67

68
void
69
intel_edp_link_config (struct intel_encoder *intel_encoder,
70 71
		int *lane_num, int *link_bw)
{
72
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
73 74 75 76 77 78 79 80

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

81
static int
82
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
83
{
84
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
100
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
101
{
102
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
127
intel_dp_link_required(struct drm_device *dev,
128
		       struct intel_encoder *intel_encoder, int pixel_clock)
129
{
130 131
	struct drm_i915_private *dev_priv = dev->dev_private;

132
	if (IS_eDP(intel_encoder))
133 134 135
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
136 137
}

138 139 140 141 142 143
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

144 145 146 147
static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
148 149
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
150 151
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
152

153 154 155 156 157
	/* only refuse the mode on non eDP since we have seen some wierd eDP panels
	   which are outside spec tolerances but somehow work by magic */
	if (!IS_eDP(intel_encoder) &&
	    (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

219
static int
220
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
221 222 223
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
224
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
225
	uint32_t output_reg = dp_priv->output_reg;
226
	struct drm_device *dev = intel_encoder->enc.dev;
227 228 229 230 231 232 233
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
234
	uint32_t aux_clock_divider;
235
	int try, precharge;
236 237

	/* The clock divider is based off the hrawclk,
238 239
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
240
	 */
241 242 243 244 245 246
	if (IS_eDP(intel_encoder)) {
		if (IS_GEN6(dev))
			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
		else
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
	} else if (HAS_PCH_SPLIT(dev))
247
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
248 249 250
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

251 252 253 254 255
	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

256 257 258 259
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
260
			uint32_t    d = pack_aux(send + i, send_bytes - i);
261 262 263 264 265 266 267
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
268
		       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
285
		I915_WRITE(ch_ctl, (status |
286 287 288 289 290
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
291 292 293 294
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
295
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
296
		return -EBUSY;
297 298 299 300 301
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
302
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
303
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
304 305
		return -EIO;
	}
306 307 308

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
309
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
310
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
311
		return -ETIMEDOUT;
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
332
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
333 334 335 336 337 338 339 340 341 342 343
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
344
	msg[2] = address & 0xff;
345 346 347 348
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
349
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
350 351 352 353 354 355 356
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
357
			return -EIO;
358 359 360 361 362 363
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
364
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
365 366
			    uint16_t address, uint8_t byte)
{
367
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
368 369 370 371
}

/* read bytes from a native aux channel */
static int
372
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
391
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
392
				      reply, reply_bytes);
393 394 395
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
396 397 398 399 400 401 402 403 404
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
405
			return -EIO;
406 407 408 409
	}
}

static int
410 411
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
412
{
413
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
414 415 416
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
417
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
456
	  ret = intel_dp_aux_ch(intel_encoder,
457 458 459
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
460
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
461 462 463 464 465 466 467 468 469
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
470
			DRM_DEBUG_KMS("aux_ch nack\n");
471 472
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
473
			DRM_DEBUG_KMS("aux_ch defer\n");
474 475 476 477 478 479 480
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
481 482 483
}

static int
484 485
intel_dp_i2c_init(struct intel_encoder *intel_encoder,
		  struct intel_connector *intel_connector, const char *name)
486
{
487
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
488

Z
Zhenyu Wang 已提交
489
	DRM_DEBUG_KMS("i2c_init %s\n", name);
490 491 492 493 494 495 496
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
497 498
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
499
	dp_priv->adapter.algo_data = &dp_priv->algo;
500
	dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
501 502 503 504 505 506 507 508
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
509 510
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
511
	int lane_count, clock;
512 513
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
514 515 516 517
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
518
			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
519

520
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
521
					<= link_avail) {
522 523 524
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
525 526
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
527 528 529 530 531 532
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
533 534 535 536 537 538 539 540 541 542 543 544

	if (IS_eDP(intel_encoder)) {
		/* okay we failed just pick the highest */
		dp_priv->lane_count = max_lane_count;
		dp_priv->link_bw = bws[max_clock];
		adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
			      "count %d clock %d\n",
			      dp_priv->link_bw, dp_priv->lane_count,
			      adjusted_mode->clock);
		return true;
	}
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
587
	struct drm_encoder *encoder;
588 589 590 591 592 593
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
594
	 * Find the lane count in the intel_encoder private
595
	 */
596 597 598
	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct intel_encoder *intel_encoder;
		struct intel_dp_priv *dp_priv;
599

600
		if (encoder->crtc != crtc)
601 602
			continue;

603 604 605
		intel_encoder = enc_to_intel_encoder(encoder);
		dp_priv = intel_encoder->dev_priv;

606
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
607 608 609 610 611 612 613 614 615 616 617 618 619
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

620
	if (HAS_PCH_SPLIT(dev)) {
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
636
	} else {
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
654 655 656 657 658 659 660
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
661
	struct drm_device *dev = encoder->dev;
662 663 664
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
665 666
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

667
	dp_priv->DP = (DP_VOLTAGE_0_4 |
668 669 670 671 672 673
		       DP_PRE_EMPHASIS_0);

	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
		dp_priv->DP |= DP_SYNC_HS_HIGH;
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
		dp_priv->DP |= DP_SYNC_VS_HIGH;
674

675 676 677 678
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
	else
		dp_priv->DP |= DP_LINK_TRAIN_OFF;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
699
	 * Check for DPCD version > 1.1 and enhanced framing support
700
	 */
701
	if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
702 703 704 705
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

706 707
	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
708
		dp_priv->DP |= DP_PIPEB_SELECT;
709

710
	if (IS_eDP(intel_encoder)) {
711 712 713 714 715 716 717
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
718 719
}

720
static void ironlake_edp_backlight_on (struct drm_device *dev)
721 722 723 724
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

725
	DRM_DEBUG_KMS("\n");
726 727 728 729 730
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

731
static void ironlake_edp_backlight_off (struct drm_device *dev)
732 733 734 735
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

736
	DRM_DEBUG_KMS("\n");
737 738 739 740
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
741 742 743 744

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
745 746
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
747
	struct drm_device *dev = encoder->dev;
748 749 750 751
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
752
		if (dp_reg & DP_PORT_EN) {
753 754
			intel_dp_link_down(intel_encoder, dp_priv->DP);
			if (IS_eDP(intel_encoder))
755
				ironlake_edp_backlight_off(dev);
756
		}
757
	} else {
758
		if (!(dp_reg & DP_PORT_EN)) {
759 760
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
			if (IS_eDP(intel_encoder))
761
				ironlake_edp_backlight_on(dev);
762
		}
763
	}
764
	dp_priv->dpms_mode = mode;
765 766 767 768 769 770 771
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
772
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
773 774 775 776
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

777
	ret = intel_dp_aux_native_read(intel_encoder,
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
854
intel_get_adjust_train(struct intel_encoder *intel_encoder,
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
	switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	}
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
990
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
991 992 993 994 995
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
996
	struct drm_device *dev = intel_encoder->enc.dev;
997
	struct drm_i915_private *dev_priv = dev->dev_private;
998
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
999 1000 1001 1002 1003 1004 1005
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

1006
	intel_dp_aux_native_write_1(intel_encoder,
1007 1008 1009
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

1010
	ret = intel_dp_aux_native_write(intel_encoder,
1011 1012 1013 1014 1015 1016 1017 1018
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
1019
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
1020 1021
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
1022
	struct drm_device *dev = intel_encoder->enc.dev;
1023
	struct drm_i915_private *dev_priv = dev->dev_private;
1024
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1025 1026 1027 1028 1029 1030 1031 1032
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;
1033
	u32 reg;
1034 1035

	/* Write the link configuration data */
1036
	intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
1037 1038 1039
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
1040 1041 1042 1043
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
	else
		DP &= ~DP_LINK_TRAIN_MASK;
1044 1045 1046 1047 1048 1049
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1050 1051 1052 1053 1054 1055 1056 1057
		uint32_t    signal_levels;
		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}
1058

1059 1060 1061 1062 1063 1064
		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_1;

		if (!intel_dp_set_link_train(intel_encoder, reg,
1065 1066 1067 1068 1069 1070
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
1071
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1096
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1097 1098 1099 1100 1101 1102 1103
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		uint32_t    signal_levels;

		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_2;
1118 1119

		/* channel eq pattern */
1120
		if (!intel_dp_set_link_train(intel_encoder, reg,
1121 1122 1123 1124 1125
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1126
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1139
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1140 1141 1142
		++tries;
	}

1143 1144 1145 1146 1147 1148
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		reg = DP | DP_LINK_TRAIN_OFF_CPT;
	else
		reg = DP | DP_LINK_TRAIN_OFF;

	I915_WRITE(dp_priv->output_reg, reg);
1149
	POSTING_READ(dp_priv->output_reg);
1150
	intel_dp_aux_native_write_1(intel_encoder,
1151 1152 1153 1154
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1155
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1156
{
1157
	struct drm_device *dev = intel_encoder->enc.dev;
1158
	struct drm_i915_private *dev_priv = dev->dev_private;
1159
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1160

1161
	DRM_DEBUG_KMS("\n");
1162

1163
	if (IS_eDP(intel_encoder)) {
1164 1165 1166 1167 1168 1169
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
		POSTING_READ(dp_priv->output_reg);
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
		POSTING_READ(dp_priv->output_reg);
	}
1179 1180 1181

	udelay(17000);

1182
	if (IS_eDP(intel_encoder))
1183
		DP |= DP_LINK_TRAIN_OFF;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1198
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1199
{
1200
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1201 1202
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1203
	if (!intel_encoder->enc.crtc)
1204 1205
		return;

1206 1207
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1208 1209 1210 1211
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1212
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1213 1214
}

1215
static enum drm_connector_status
1216
ironlake_dp_detect(struct drm_connector *connector)
1217
{
1218 1219
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1220
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1221 1222 1223
	enum drm_connector_status status;

	status = connector_status_disconnected;
1224
	if (intel_dp_aux_native_read(intel_encoder,
1225 1226 1227 1228 1229 1230
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
1231 1232
	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
		      dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
1233 1234 1235
	return status;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1245 1246 1247
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1248
	struct drm_i915_private *dev_priv = dev->dev_private;
1249
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1250 1251 1252 1253 1254
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1255
	if (HAS_PCH_SPLIT(dev))
1256
		return ironlake_dp_detect(connector);
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1278
	if (intel_dp_aux_native_read(intel_encoder,
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1290 1291 1292
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1293 1294
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;
1295 1296 1297 1298

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1299
	ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1300 1301 1302 1303
	if (ret)
		return ret;

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1304
	if (IS_eDP(intel_encoder)) {
1305 1306 1307 1308 1309 1310 1311 1312
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1313 1314 1315 1316 1317 1318 1319
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1320
	kfree(connector);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
1341
	.best_encoder = intel_attached_encoder,
1342 1343 1344 1345
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
1346 1347 1348 1349
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);

	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1350
	drm_encoder_cleanup(encoder);
1351
	kfree(intel_encoder);
1352 1353 1354 1355 1356 1357
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1358
void
1359
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1360
{
1361
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1362 1363

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1364
		intel_dp_check_link_status(intel_encoder);
1365
}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;
	struct intel_encoder *intel_encoder = NULL;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1377
		if (encoder->crtc != crtc)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
			struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
			return dp_priv->output_reg;
		}
	}
	return -1;
}

1389 1390 1391 1392 1393
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1394
	struct intel_encoder *intel_encoder;
1395
	struct intel_connector *intel_connector;
1396
	struct intel_dp_priv *dp_priv;
1397
	const char *name = NULL;
1398

1399
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1400
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1401
	if (!intel_encoder)
1402 1403
		return;

1404 1405 1406 1407 1408 1409
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_encoder);
		return;
	}

1410
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1411

1412
	connector = &intel_connector->base;
1413 1414 1415 1416
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1417 1418
	connector->polled = DRM_CONNECTOR_POLL_HPD;

1419
	if (output_reg == DP_A)
1420
		intel_encoder->type = INTEL_OUTPUT_EDP;
1421
	else
1422
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1423

1424
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1425
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1426
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1427
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1428
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1429
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1430

1431 1432
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1433

1434
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1435 1436 1437
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1438
	dp_priv->intel_encoder = intel_encoder;
1439 1440
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1441
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1442
	intel_encoder->dev_priv = dp_priv;
1443

1444
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1445
			 DRM_MODE_ENCODER_TMDS);
1446
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1447

1448
	drm_mode_connector_attach_encoder(&intel_connector->base,
1449
					  &intel_encoder->enc);
1450 1451 1452
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1453
	switch (output_reg) {
1454 1455 1456
		case DP_A:
			name = "DPDDC-A";
			break;
1457 1458
		case DP_B:
		case PCH_DP_B:
1459 1460
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1461 1462 1463 1464
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1465 1466
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1467 1468 1469 1470
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1471 1472
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1473 1474 1475 1476
			name = "DPDDC-D";
			break;
	}

1477
	intel_dp_i2c_init(intel_encoder, intel_connector, name);
1478

1479 1480
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (output_reg == DP_A) {
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1494 1495 1496 1497 1498 1499 1500 1501 1502
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}