intel_dp.c 205.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_drv.h"
46
#include "intel_audio.h"
47
#include "intel_connector.h"
48
#include "intel_ddi.h"
49
#include "intel_dp.h"
50
#include "intel_dp_link_training.h"
51
#include "intel_drv.h"
52
#include "intel_fifo_underrun.h"
53
#include "intel_hdcp.h"
54
#include "intel_hdmi.h"
55
#include "intel_hotplug.h"
56
#include "intel_lspcon.h"
57
#include "intel_lvds.h"
58
#include "intel_panel.h"
59
#include "intel_psr.h"
60
#include "intel_sideband.h"
61

62
#define DP_DPRX_ESI_LEN 14
63

64 65
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
66 67
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
68 69 70 71 72 73 74 75 76

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

77 78 79 80 81 82
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

83
struct dp_link_dpll {
84
	int clock;
85 86 87
	struct dpll dpll;
};

88
static const struct dp_link_dpll g4x_dpll[] = {
89
	{ 162000,
90
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
91
	{ 270000,
92 93 94 95
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
96
	{ 162000,
97
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
98
	{ 270000,
99 100 101
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

102
static const struct dp_link_dpll vlv_dpll[] = {
103
	{ 162000,
C
Chon Ming Lee 已提交
104
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
105
	{ 270000,
106 107 108
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

109 110 111 112 113 114 115 116 117 118
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
119
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
120
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
121
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
122 123
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
124

125 126 127 128 129 130 131 132
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

133
/**
134
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
135 136 137 138 139
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
140
bool intel_dp_is_edp(struct intel_dp *intel_dp)
141
{
142 143 144
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
145 146
}

147 148
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
149
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
150 151
}

152 153
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
154
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
155
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
156 157
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
158
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
159
				      enum pipe pipe);
160
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
161

162 163 164
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
165
	static const int dp_rates[] = {
166
		162000, 270000, 540000, 810000
167
	};
168
	int i, max_rate;
169

170
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
171

172 173
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
174
			break;
175
		intel_dp->sink_rates[i] = dp_rates[i];
176
	}
177

178
	intel_dp->num_sink_rates = i;
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

203 204
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
205
{
206
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

239 240
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
241 242
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
243 244
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
245
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
246

247
	return min3(source_max, sink_max, fia_max);
248 249
}

250
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
251 252 253 254
{
	return intel_dp->max_link_lane_count;
}

255
int
256
intel_dp_link_required(int pixel_clock, int bpp)
257
{
258 259
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
260 261
}

262
int
263 264
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
265 266 267 268 269 270 271
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

297
static int cnl_max_source_rate(struct intel_dp *intel_dp)
298 299 300 301 302 303 304 305 306
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
307
		return 540000;
308 309 310

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
311
		return 810000;
312

313
	/* For other SKUs, max rate on ports A and D is 5.4G */
314
	if (port == PORT_A || port == PORT_D)
315
		return 540000;
316

317
	return 810000;
318 319
}

320 321 322
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
323
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
324 325
	enum port port = dig_port->base.port;

326 327
	if (intel_port_is_combophy(dev_priv, port) &&
	    !intel_dp_is_edp(intel_dp))
328 329 330 331 332
		return 540000;

	return 810000;
}

333 334
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
335
{
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
352 353
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
354 355
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
356
	const int *source_rates;
357
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
358

359 360 361
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

362
	if (INTEL_GEN(dev_priv) >= 10) {
363
		source_rates = cnl_rates;
364
		size = ARRAY_SIZE(cnl_rates);
365
		if (IS_GEN(dev_priv, 10))
366 367 368
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
369 370 371
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
372
	} else if (IS_GEN9_BC(dev_priv)) {
373
		source_rates = skl_rates;
374
		size = ARRAY_SIZE(skl_rates);
375 376
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
377 378
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
379
	} else {
380 381
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
382 383
	}

384 385 386 387 388
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

389 390 391
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

392 393
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

419 420 421 422 423 424 425 426 427 428 429 430
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

431
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
432
{
433
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
434

435 436 437 438 439 440 441 442
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
443
		intel_dp->common_rates[0] = 162000;
444 445 446 447
		intel_dp->num_common_rates = 1;
	}
}

448
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
449
				       u8 lane_count)
450 451 452 453 454 455
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
456 457
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
458 459
		return false;

460 461
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
462 463 464 465 466
		return false;

	return true;
}

467 468
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
469
						     u8 lane_count)
470 471 472 473 474 475 476 477 478 479 480 481 482
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

483
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
484
					    int link_rate, u8 lane_count)
485
{
486
	int index;
487

488 489 490 491
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
492 493 494 495 496 497 498
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
499 500
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
501
	} else if (lane_count > 1) {
502 503 504 505 506 507 508
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
509
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
510
		intel_dp->max_link_lane_count = lane_count >> 1;
511 512 513 514 515 516 517 518
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

519
static enum drm_mode_status
520 521 522
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
523
	struct intel_dp *intel_dp = intel_attached_dp(connector);
524 525
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
526
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
527 528
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
529
	int max_dotclk;
530 531
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
532

533 534 535
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

536
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
537

538
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
539
		if (mode->hdisplay > fixed_mode->hdisplay)
540 541
			return MODE_PANEL;

542
		if (mode->vdisplay > fixed_mode->vdisplay)
543
			return MODE_PANEL;
544 545

		target_clock = fixed_mode->clock;
546 547
	}

548
	max_link_clock = intel_dp_max_link_rate(intel_dp);
549
	max_lanes = intel_dp_max_lane_count(intel_dp);
550 551 552 553

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

554 555 556 557 558 559 560 561 562 563 564 565
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
566
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
567 568 569 570 571 572 573 574 575 576 577 578 579 580
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
581
		return MODE_CLOCK_HIGH;
582 583 584 585

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

586 587 588
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

589 590 591
	return MODE_OK;
}

592
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
593
{
594 595
	int i;
	u32 v = 0;
596 597 598 599

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
600
		v |= ((u32)src[i]) << ((3 - i) * 8);
601 602 603
	return v;
}

604
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
605 606 607 608 609 610 611 612
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

613
static void
614
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
615
static void
616
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
617
					      bool force_disable_vdd);
618
static void
619
intel_dp_pps_init(struct intel_dp *intel_dp);
620

621 622
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
623
{
624
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
625
	intel_wakeref_t wakeref;
626 627

	/*
628
	 * See intel_power_sequencer_reset() why we need
629 630
	 * a power domain reference here.
	 */
631 632
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
633 634

	mutex_lock(&dev_priv->pps_mutex);
635 636

	return wakeref;
637 638
}

639 640
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
641
{
642
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
643 644

	mutex_unlock(&dev_priv->pps_mutex);
645 646 647 648
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
649 650
}

651 652 653
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

654 655 656
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
657
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
658 659
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
660 661 662
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
663
	u32 DP;
664 665

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
666
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
667
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
668 669 670
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
671
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
672 673 674 675 676 677 678 679 680

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

681
	if (IS_CHERRYVIEW(dev_priv))
682 683 684
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
685

686 687 688 689 690 691
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
692
	if (!pll_enabled) {
693
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
694 695
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

696
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
697 698 699 700 701
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
702
	}
703

704 705 706
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
707
	 * to make this power sequencer lock onto the port.
708 709 710 711 712 713 714 715 716 717
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
718

719
	if (!pll_enabled) {
720
		vlv_force_pll_off(dev_priv, pipe);
721 722 723 724

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
725 726
}

727 728 729 730 731 732 733 734 735
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
736 737
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

759 760 761
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
762
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
763
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
764
	enum pipe pipe;
765

V
Ville Syrjälä 已提交
766
	lockdep_assert_held(&dev_priv->pps_mutex);
767

768
	/* We should never land here with regular DP ports */
769
	WARN_ON(!intel_dp_is_edp(intel_dp));
770

771 772 773
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

774 775 776
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

777
	pipe = vlv_find_free_pps(dev_priv);
778 779 780 781 782

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
783
	if (WARN_ON(pipe == INVALID_PIPE))
784
		pipe = PIPE_A;
785

786
	vlv_steal_power_sequencer(dev_priv, pipe);
787
	intel_dp->pps_pipe = pipe;
788 789 790

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
791
		      port_name(intel_dig_port->base.port));
792 793

	/* init power sequencer on this pipe and port */
794 795
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
796

797 798 799 800 801
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
802 803 804 805

	return intel_dp->pps_pipe;
}

806 807 808
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
809
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
810
	int backlight_controller = dev_priv->vbt.backlight.controller;
811 812 813 814

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
815
	WARN_ON(!intel_dp_is_edp(intel_dp));
816 817

	if (!intel_dp->pps_reset)
818
		return backlight_controller;
819 820 821 822 823 824 825

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
826
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
827

828
	return backlight_controller;
829 830
}

831 832 833 834 835 836
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
837
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
838 839 840 841 842
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
843
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
844 845 846 847 848 849 850
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
851

852
static enum pipe
853 854 855
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
856 857
{
	enum pipe pipe;
858 859

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
860
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
861
			PANEL_PORT_SELECT_MASK;
862 863 864 865

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

866 867 868
		if (!pipe_check(dev_priv, pipe))
			continue;

869
		return pipe;
870 871
	}

872 873 874 875 876 877
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
878
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
879
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
880
	enum port port = intel_dig_port->base.port;
881 882 883 884

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
885 886 887 888 889 890 891 892 893 894 895
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
896 897 898 899 900 901

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
902 903
	}

904 905 906
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

907 908
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
909 910
}

911
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
912 913 914
{
	struct intel_encoder *encoder;

915
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
916
		    !IS_GEN9_LP(dev_priv)))
917 918 919 920 921 922 923 924 925 926 927 928
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

929 930
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
931

932 933 934 935 936
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

937
		if (IS_GEN9_LP(dev_priv))
938 939 940
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
941
	}
942 943
}

944 945 946 947 948 949 950 951
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

952
static void intel_pps_get_registers(struct intel_dp *intel_dp,
953 954
				    struct pps_registers *regs)
{
955
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
956 957
	int pps_idx = 0;

958 959
	memset(regs, 0, sizeof(*regs));

960
	if (IS_GEN9_LP(dev_priv))
961 962 963
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
964

965 966 967 968
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
969 970

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
971
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
972 973
		regs->pp_div = INVALID_MMIO_REG;
	else
974
		regs->pp_div = PP_DIVISOR(pps_idx);
975 976
}

977 978
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
979
{
980
	struct pps_registers regs;
981

982
	intel_pps_get_registers(intel_dp, &regs);
983 984

	return regs.pp_ctrl;
985 986
}

987 988
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
989
{
990
	struct pps_registers regs;
991

992
	intel_pps_get_registers(intel_dp, &regs);
993 994

	return regs.pp_stat;
995 996
}

997 998 999 1000 1001 1002 1003
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1004
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1005
	intel_wakeref_t wakeref;
1006

1007
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1008 1009
		return 0;

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1023
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1024 1025
			msleep(intel_dp->panel_power_cycle_delay);
		}
1026 1027 1028 1029 1030
	}

	return 0;
}

1031
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1032
{
1033
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1034

V
Ville Syrjälä 已提交
1035 1036
	lockdep_assert_held(&dev_priv->pps_mutex);

1037
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1038 1039 1040
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1041
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1042 1043
}

1044
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1045
{
1046
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1047

V
Ville Syrjälä 已提交
1048 1049
	lockdep_assert_held(&dev_priv->pps_mutex);

1050
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1051 1052 1053
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1054
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1055 1056
}

1057 1058 1059
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1060
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1061

1062
	if (!intel_dp_is_edp(intel_dp))
1063
		return;
1064

1065
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1066 1067
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1068 1069
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1070 1071 1072
	}
}

1073
static u32
1074
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1075
{
1076
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1077
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1078
	u32 status;
1079 1080
	bool done;

1081
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1082 1083
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1084 1085 1086 1087

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1088
	if (!done)
1089
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1090 1091 1092 1093 1094
#undef C

	return status;
}

1095
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1096
{
1097
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1098

1099 1100 1101
	if (index)
		return 0;

1102 1103
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1104
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1105
	 */
1106
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1107 1108
}

1109
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1110
{
1111
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1112
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1113 1114 1115 1116

	if (index)
		return 0;

1117 1118 1119 1120 1121
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1122
	if (dig_port->aux_ch == AUX_CH_A)
1123
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1124 1125
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1126 1127
}

1128
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1129
{
1130
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1131
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1132

1133
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1134
		/* Workaround for non-ULT HSW */
1135 1136 1137 1138 1139
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1140
	}
1141 1142

	return ilk_get_aux_clock_divider(intel_dp, index);
1143 1144
}

1145
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1146 1147 1148 1149 1150 1151 1152 1153 1154
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1155 1156 1157
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1158 1159
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1160 1161
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1162
	u32 precharge, timeout;
1163

1164
	if (IS_GEN(dev_priv, 6))
1165 1166 1167 1168
		precharge = 3;
	else
		precharge = 5;

1169
	if (IS_BROADWELL(dev_priv))
1170 1171 1172 1173 1174
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1175
	       DP_AUX_CH_CTL_DONE |
1176
	       DP_AUX_CH_CTL_INTERRUPT |
1177
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1178
	       timeout |
1179
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1180 1181
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1182
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1183 1184
}

1185 1186 1187
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1188
{
1189
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1190
	u32 ret;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1206 1207
}

1208
static int
1209
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1210 1211
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1212
		  u32 aux_send_ctl_flags)
1213 1214
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1215 1216
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1217
	i915_reg_t ch_ctl, ch_data[5];
1218
	u32 aux_clock_divider;
1219
	intel_wakeref_t wakeref;
1220
	int i, ret, recv_bytes;
1221
	int try, clock = 0;
1222
	u32 status;
1223 1224
	bool vdd;

1225 1226 1227 1228
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1229
	wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1230

1231 1232 1233 1234 1235 1236
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1237
	vdd = edp_panel_vdd_on(intel_dp);
1238 1239 1240 1241 1242 1243 1244 1245

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1246

1247 1248
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1249
		status = I915_READ_NOTRACE(ch_ctl);
1250 1251 1252 1253
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1254 1255
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1256 1257

	if (try == 3) {
1258 1259 1260 1261 1262 1263 1264 1265 1266
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1267 1268
		ret = -EBUSY;
		goto out;
1269 1270
	}

1271 1272 1273 1274 1275 1276
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1277
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1278 1279 1280 1281 1282
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1283

1284 1285 1286 1287
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1288
				I915_WRITE(ch_data[i >> 2],
1289 1290
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1291 1292

			/* Send the command and wait for it to complete */
1293
			I915_WRITE(ch_ctl, send_ctl);
1294

1295
			status = intel_dp_aux_wait_done(intel_dp);
1296 1297 1298 1299 1300 1301 1302 1303

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1304 1305 1306 1307 1308
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1309 1310 1311
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1312 1313
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1314
				continue;
1315
			}
1316
			if (status & DP_AUX_CH_CTL_DONE)
1317
				goto done;
1318
		}
1319 1320 1321
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1322
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1323 1324
		ret = -EBUSY;
		goto out;
1325 1326
	}

1327
done:
1328 1329 1330
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1331
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1332
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1333 1334
		ret = -EIO;
		goto out;
1335
	}
1336 1337 1338

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1339
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1340
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1341 1342
		ret = -ETIMEDOUT;
		goto out;
1343 1344 1345 1346 1347
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1361 1362
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1363

1364
	for (i = 0; i < recv_bytes; i += 4)
1365
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1366
				    recv + i, recv_bytes - i);
1367

1368 1369 1370 1371
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1372 1373 1374
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1375
	pps_unlock(intel_dp, wakeref);
V
Ville Syrjälä 已提交
1376

1377
	return ret;
1378 1379
}

1380 1381
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1393 1394
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1395
{
1396
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1397
	u8 txbuf[20], rxbuf[20];
1398
	size_t txsize, rxsize;
1399 1400
	int ret;

1401
	intel_dp_aux_header(txbuf, msg);
1402

1403 1404 1405
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1406
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1407
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1408
		rxsize = 2; /* 0 or 1 data bytes */
1409

1410 1411
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1412

1413 1414
		WARN_ON(!msg->buffer != !msg->size);

1415 1416
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1417

1418
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1419
					rxbuf, rxsize, 0);
1420 1421
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1422

1423 1424 1425 1426 1427 1428 1429
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1430 1431
		}
		break;
1432

1433 1434
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1435
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1436
		rxsize = msg->size + 1;
1437

1438 1439
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1440

1441
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1442
					rxbuf, rxsize, 0);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1453
		}
1454 1455 1456 1457 1458
		break;

	default:
		ret = -EINVAL;
		break;
1459
	}
1460

1461
	return ret;
1462 1463
}

1464

1465
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1466
{
1467
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1468 1469
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1470

1471 1472 1473 1474 1475
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1476
	default:
1477 1478
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1479 1480 1481
	}
}

1482
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1483
{
1484
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1485 1486
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1487

1488 1489 1490 1491 1492
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1493
	default:
1494 1495
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1496 1497 1498
	}
}

1499
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1500
{
1501
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1502 1503
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1504

1505 1506 1507 1508 1509 1510 1511
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1512
	default:
1513 1514
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1515 1516 1517
	}
}

1518
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1519
{
1520
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1521 1522
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1523

1524 1525 1526 1527 1528 1529 1530
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1531
	default:
1532 1533
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1534 1535 1536
	}
}

1537
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1538
{
1539
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1540 1541
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1542

1543 1544 1545 1546 1547
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1548
	case AUX_CH_E:
1549 1550
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1551
	default:
1552 1553
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1554 1555 1556
	}
}

1557
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1558
{
1559
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1560 1561
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1562

1563 1564 1565 1566 1567
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1568
	case AUX_CH_E:
1569 1570
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1571
	default:
1572 1573
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1574 1575 1576
	}
}

1577 1578 1579 1580 1581 1582 1583 1584
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1585
{
1586
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1587 1588
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1589

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1600

1601 1602 1603 1604 1605 1606 1607 1608
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1609

1610 1611 1612 1613
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1614

1615
	drm_dp_aux_init(&intel_dp->aux);
1616

1617
	/* Failure to allocate our preferred name is not critical */
1618 1619
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1620
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1621 1622
}

1623
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1624
{
1625
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1626

1627
	return max_rate >= 540000;
1628 1629
}

1630 1631 1632 1633 1634 1635 1636
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1637 1638
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1639
		   struct intel_crtc_state *pipe_config)
1640
{
1641
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1642 1643
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1644

1645
	if (IS_G4X(dev_priv)) {
1646 1647
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1648
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1649 1650
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1651
	} else if (IS_CHERRYVIEW(dev_priv)) {
1652 1653
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1654
	} else if (IS_VALLEYVIEW(dev_priv)) {
1655 1656
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1657
	}
1658 1659 1660

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1661
			if (pipe_config->port_clock == divisor[i].clock) {
1662 1663 1664 1665 1666
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1667 1668 1669
	}
}

1670 1671 1672 1673 1674 1675 1676 1677
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1678
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1693 1694
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1695 1696
	DRM_DEBUG_KMS("source rates: %s\n", str);

1697 1698
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1699 1700
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1701 1702
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1703
	DRM_DEBUG_KMS("common rates: %s\n", str);
1704 1705
}

1706 1707 1708 1709 1710
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1711
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1712 1713 1714
	if (WARN_ON(len <= 0))
		return 162000;

1715
	return intel_dp->common_rates[len - 1];
1716 1717
}

1718 1719
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1720 1721
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1722 1723 1724 1725 1726

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1727 1728
}

1729
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1730
			   u8 *link_bw, u8 *rate_select)
1731
{
1732 1733
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1734 1735 1736 1737 1738 1739 1740 1741 1742
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1743
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1744 1745 1746 1747
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1763 1764 1765 1766 1767 1768 1769 1770

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1771 1772 1773
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1774 1775 1776 1777
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1778 1779
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1780
{
1781
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1782
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1783 1784 1785 1786 1787 1788 1789 1790
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1801 1802 1803
	return bpp;
}

1804
/* Adjust link config limits based on compliance test requests. */
1805
void
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1840
/* Optimize link config in order: max bpp, min clock, min lanes */
1841
static int
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1867
					return 0;
1868 1869 1870 1871 1872
				}
			}
		}
	}

1873
	return -EINVAL;
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1891 1892 1893 1894
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1895 1896 1897 1898 1899 1900
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1901
	int ret;
1902

1903 1904 1905
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

1906
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1907
		return -EINVAL;
1908 1909 1910 1911 1912 1913 1914

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1915
		return -EINVAL;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1949
			return -EINVAL;
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1966
			return -EINVAL;
1967 1968
		}
	}
1969 1970 1971

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
1972 1973 1974 1975
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
1976
		return ret;
1977
	}
1978

1979 1980 1981 1982 1983 1984 1985
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

1986
	return 0;
1987 1988
}

1989 1990 1991 1992 1993 1994 1995 1996
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

1997
static int
1998
intel_dp_compute_link_config(struct intel_encoder *encoder,
1999 2000
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2001
{
2002
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2003
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2004
	struct link_config_limits limits;
2005
	int common_len;
2006
	int ret;
2007

2008
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2009
						    intel_dp->max_link_rate);
2010 2011

	/* No common link rates between source and sink */
2012
	WARN_ON(common_len <= 0);
2013

2014 2015 2016 2017 2018 2019
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2020
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2021
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2022

2023
	if (intel_dp_is_edp(intel_dp)) {
2024 2025
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2026 2027 2028 2029
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2030
		 */
2031 2032
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2033
	}
2034

2035 2036
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2037 2038 2039 2040 2041 2042
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2043 2044 2045 2046 2047
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2048 2049

	/* enable compression if the mode doesn't fit available BW */
2050
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2051 2052 2053 2054 2055
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2056
	}
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2080
	return 0;
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2106
int
2107 2108 2109 2110 2111 2112 2113
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2114
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2115 2116 2117 2118 2119
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2120 2121
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2122
	int ret, output_bpp;
2123 2124 2125 2126

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2127
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2128 2129 2130
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2131 2132 2133 2134 2135 2136 2137 2138 2139
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2140 2141
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2142 2143 2144 2145 2146 2147 2148

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2149
		if (HAS_GMCH(dev_priv))
2150 2151 2152 2153 2154 2155 2156
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2157
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2158
		return -EINVAL;
2159

R
Rodrigo Vivi 已提交
2160
	if (HAS_GMCH(dev_priv) &&
2161
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2162
		return -EINVAL;
2163 2164

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2165
		return -EINVAL;
2166

2167 2168 2169
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2170

2171 2172
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2173

2174 2175
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2176
	else
2177 2178 2179 2180 2181 2182 2183 2184
		output_bpp = pipe_config->pipe_bpp;

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
			       constant_n);
2185

2186
	if (intel_connector->panel.downclock_mode != NULL &&
2187
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2188
			pipe_config->has_drrs = true;
2189
			intel_link_compute_m_n(output_bpp,
2190 2191 2192 2193
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2194
					       constant_n);
2195 2196
	}

2197
	if (!HAS_DDI(dev_priv))
2198
		intel_dp_set_clock(encoder, pipe_config);
2199

2200 2201
	intel_psr_compute_config(intel_dp, pipe_config);

2202
	return 0;
2203 2204
}

2205
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2206
			      int link_rate, u8 lane_count,
2207
			      bool link_mst)
2208
{
2209
	intel_dp->link_trained = false;
2210 2211 2212
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2213 2214
}

2215
static void intel_dp_prepare(struct intel_encoder *encoder,
2216
			     const struct intel_crtc_state *pipe_config)
2217
{
2218
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2219
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2220
	enum port port = encoder->port;
2221
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2222
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2223

2224 2225 2226 2227
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2228

2229
	/*
K
Keith Packard 已提交
2230
	 * There are four kinds of DP registers:
2231 2232
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2233 2234
	 * 	SNB CPU
	 *	IVB CPU
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2245

2246 2247 2248 2249
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2250

2251 2252
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2253
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2254

2255
	/* Split out the IBX/CPU vs CPT settings */
2256

2257
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2258 2259 2260 2261 2262 2263
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2264
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2265 2266
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2267
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2268
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2269 2270
		u32 trans_dp;

2271
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2272 2273 2274 2275 2276 2277 2278

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2279
	} else {
2280
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2281
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2282 2283 2284 2285 2286 2287 2288

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2289
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2290 2291
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2292
		if (IS_CHERRYVIEW(dev_priv))
2293 2294 2295
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2296
	}
2297 2298
}

2299 2300
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2301

2302 2303
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2304

2305 2306
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2307

2308
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2309

2310
static void wait_panel_status(struct intel_dp *intel_dp,
2311 2312
				       u32 mask,
				       u32 value)
2313
{
2314
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2315
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2316

V
Ville Syrjälä 已提交
2317 2318
	lockdep_assert_held(&dev_priv->pps_mutex);

2319
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2320

2321 2322
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2323

2324
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2325 2326 2327
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2328

2329
	if (intel_wait_for_register(&dev_priv->uncore,
2330 2331
				    pp_stat_reg, mask, value,
				    5000))
2332
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2333 2334
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2335 2336

	DRM_DEBUG_KMS("Wait complete\n");
2337
}
2338

2339
static void wait_panel_on(struct intel_dp *intel_dp)
2340 2341
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2342
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2343 2344
}

2345
static void wait_panel_off(struct intel_dp *intel_dp)
2346 2347
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2348
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2349 2350
}

2351
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2352
{
2353 2354 2355
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2356
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2357

2358 2359 2360 2361 2362
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2363 2364
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2365 2366 2367
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2368

2369
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2370 2371
}

2372
static void wait_backlight_on(struct intel_dp *intel_dp)
2373 2374 2375 2376 2377
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2378
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2379 2380 2381 2382
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2383

2384 2385 2386 2387
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2388
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2389
{
2390
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2391
	u32 control;
2392

V
Ville Syrjälä 已提交
2393 2394
	lockdep_assert_held(&dev_priv->pps_mutex);

2395
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2396 2397
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2398 2399 2400
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2401
	return control;
2402 2403
}

2404 2405 2406 2407 2408
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2409
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2410
{
2411
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2412
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2413
	u32 pp;
2414
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2415
	bool need_to_disable = !intel_dp->want_panel_vdd;
2416

V
Ville Syrjälä 已提交
2417 2418
	lockdep_assert_held(&dev_priv->pps_mutex);

2419
	if (!intel_dp_is_edp(intel_dp))
2420
		return false;
2421

2422
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2423
	intel_dp->want_panel_vdd = true;
2424

2425
	if (edp_have_panel_vdd(intel_dp))
2426
		return need_to_disable;
2427

2428 2429
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2430

V
Ville Syrjälä 已提交
2431
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2432
		      port_name(intel_dig_port->base.port));
2433

2434 2435
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2436

2437
	pp = ironlake_get_pp_control(intel_dp);
2438
	pp |= EDP_FORCE_VDD;
2439

2440 2441
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2442 2443 2444 2445 2446

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2447 2448 2449
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2450
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2451
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2452
			      port_name(intel_dig_port->base.port));
2453 2454
		msleep(intel_dp->panel_power_up_delay);
	}
2455 2456 2457 2458

	return need_to_disable;
}

2459 2460 2461 2462 2463 2464 2465
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2466
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2467
{
2468
	intel_wakeref_t wakeref;
2469
	bool vdd;
2470

2471
	if (!intel_dp_is_edp(intel_dp))
2472 2473
		return;

2474 2475 2476
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
R
Rob Clark 已提交
2477
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2478
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2479 2480
}

2481
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2482
{
2483
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2484 2485
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2486
	u32 pp;
2487
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2488

V
Ville Syrjälä 已提交
2489
	lockdep_assert_held(&dev_priv->pps_mutex);
2490

2491
	WARN_ON(intel_dp->want_panel_vdd);
2492

2493
	if (!edp_have_panel_vdd(intel_dp))
2494
		return;
2495

V
Ville Syrjälä 已提交
2496
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2497
		      port_name(intel_dig_port->base.port));
2498

2499 2500
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2501

2502 2503
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2504

2505 2506
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2507

2508 2509 2510
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2511

2512
	if ((pp & PANEL_POWER_ON) == 0)
2513
		intel_dp->panel_power_off_time = ktime_get_boottime();
2514

2515 2516
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2517
}
2518

2519
static void edp_panel_vdd_work(struct work_struct *__work)
2520
{
2521 2522 2523 2524
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2525

2526 2527 2528 2529
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2530 2531
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2545 2546 2547 2548 2549
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2550
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2551
{
2552
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2553 2554 2555

	lockdep_assert_held(&dev_priv->pps_mutex);

2556
	if (!intel_dp_is_edp(intel_dp))
2557
		return;
2558

R
Rob Clark 已提交
2559
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2560
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2561

2562 2563
	intel_dp->want_panel_vdd = false;

2564
	if (sync)
2565
		edp_panel_vdd_off_sync(intel_dp);
2566 2567
	else
		edp_panel_vdd_schedule_off(intel_dp);
2568 2569
}

2570
static void edp_panel_on(struct intel_dp *intel_dp)
2571
{
2572
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2573
	u32 pp;
2574
	i915_reg_t pp_ctrl_reg;
2575

2576 2577
	lockdep_assert_held(&dev_priv->pps_mutex);

2578
	if (!intel_dp_is_edp(intel_dp))
2579
		return;
2580

V
Ville Syrjälä 已提交
2581
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2582
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2583

2584 2585
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2586
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2587
		return;
2588

2589
	wait_panel_power_cycle(intel_dp);
2590

2591
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2592
	pp = ironlake_get_pp_control(intel_dp);
2593
	if (IS_GEN(dev_priv, 5)) {
2594 2595
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2596 2597
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2598
	}
2599

2600
	pp |= PANEL_POWER_ON;
2601
	if (!IS_GEN(dev_priv, 5))
2602 2603
		pp |= PANEL_POWER_RESET;

2604 2605
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2606

2607
	wait_panel_on(intel_dp);
2608
	intel_dp->last_power_on = jiffies;
2609

2610
	if (IS_GEN(dev_priv, 5)) {
2611
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2612 2613
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2614
	}
2615
}
V
Ville Syrjälä 已提交
2616

2617 2618
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2619 2620
	intel_wakeref_t wakeref;

2621
	if (!intel_dp_is_edp(intel_dp))
2622 2623
		return;

2624 2625
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2626 2627
}

2628 2629

static void edp_panel_off(struct intel_dp *intel_dp)
2630
{
2631
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2632
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2633
	u32 pp;
2634
	i915_reg_t pp_ctrl_reg;
2635

2636 2637
	lockdep_assert_held(&dev_priv->pps_mutex);

2638
	if (!intel_dp_is_edp(intel_dp))
2639
		return;
2640

V
Ville Syrjälä 已提交
2641
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2642
		      port_name(dig_port->base.port));
2643

V
Ville Syrjälä 已提交
2644
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2645
	     port_name(dig_port->base.port));
2646

2647
	pp = ironlake_get_pp_control(intel_dp);
2648 2649
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2650
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2651
		EDP_BLC_ENABLE);
2652

2653
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2654

2655 2656
	intel_dp->want_panel_vdd = false;

2657 2658
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2659

2660
	wait_panel_off(intel_dp);
2661
	intel_dp->panel_power_off_time = ktime_get_boottime();
2662 2663

	/* We got a reference when we enabled the VDD. */
2664
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2665
}
V
Ville Syrjälä 已提交
2666

2667 2668
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2669 2670
	intel_wakeref_t wakeref;

2671
	if (!intel_dp_is_edp(intel_dp))
2672
		return;
V
Ville Syrjälä 已提交
2673

2674 2675
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2676 2677
}

2678 2679
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2680
{
2681
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2682
	intel_wakeref_t wakeref;
2683

2684 2685 2686 2687 2688 2689
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2690
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2691

2692 2693 2694
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2695

2696 2697
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2698

2699 2700 2701
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2702 2703
}

2704
/* Enable backlight PWM and backlight PP control. */
2705 2706
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2707
{
2708 2709
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2710
	if (!intel_dp_is_edp(intel_dp))
2711 2712 2713 2714
		return;

	DRM_DEBUG_KMS("\n");

2715
	intel_panel_enable_backlight(crtc_state, conn_state);
2716 2717 2718 2719 2720
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2721
{
2722
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2723
	intel_wakeref_t wakeref;
2724

2725
	if (!intel_dp_is_edp(intel_dp))
2726 2727
		return;

2728 2729 2730
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2731

2732 2733
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2734

2735 2736 2737
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2738 2739

	intel_dp->last_backlight_off = jiffies;
2740
	edp_wait_backlight_off(intel_dp);
2741
}
2742

2743
/* Disable backlight PP control and backlight PWM. */
2744
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2745
{
2746 2747
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2748
	if (!intel_dp_is_edp(intel_dp))
2749 2750 2751
		return;

	DRM_DEBUG_KMS("\n");
2752

2753
	_intel_edp_backlight_off(intel_dp);
2754
	intel_panel_disable_backlight(old_conn_state);
2755
}
2756

2757 2758 2759 2760 2761 2762 2763 2764
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2765
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2766 2767
	bool is_enabled;

2768 2769 2770
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2771 2772 2773
	if (is_enabled == enable)
		return;

2774 2775
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2776 2777 2778 2779 2780 2781 2782

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2783 2784 2785 2786 2787 2788 2789 2790
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2791
			port_name(dig_port->base.port),
2792
			onoff(state), onoff(cur_state));
2793 2794 2795 2796 2797 2798 2799 2800 2801
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2802
			onoff(state), onoff(cur_state));
2803 2804 2805 2806
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2807
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2808
				const struct intel_crtc_state *pipe_config)
2809
{
2810
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2811
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2812

2813 2814 2815
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2816

2817
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2818
		      pipe_config->port_clock);
2819 2820 2821

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2822
	if (pipe_config->port_clock == 162000)
2823 2824 2825 2826 2827 2828 2829 2830
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2831 2832 2833 2834 2835 2836
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2837
	if (IS_GEN(dev_priv, 5))
2838
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2839

2840
	intel_dp->DP |= DP_PLL_ENABLE;
2841

2842
	I915_WRITE(DP_A, intel_dp->DP);
2843 2844
	POSTING_READ(DP_A);
	udelay(200);
2845 2846
}

2847 2848
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2849
{
2850
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2851
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2852

2853 2854 2855
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2856

2857 2858
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2859
	intel_dp->DP &= ~DP_PLL_ENABLE;
2860

2861
	I915_WRITE(DP_A, intel_dp->DP);
2862
	POSTING_READ(DP_A);
2863 2864 2865
	udelay(200);
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2897
/* If the sink supports it, try to set the power state appropriately */
2898
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2899 2900 2901 2902 2903 2904 2905 2906
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2907 2908 2909
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2910 2911
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2912
	} else {
2913 2914
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2915 2916 2917 2918 2919
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2920 2921
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2922 2923 2924 2925
			if (ret == 1)
				break;
			msleep(1);
		}
2926 2927 2928

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2929
	}
2930 2931 2932 2933

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2934 2935
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2982 2983
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2984
{
2985
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2986
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2987
	intel_wakeref_t wakeref;
2988
	bool ret;
2989

2990 2991 2992
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
2993 2994
		return false;

2995 2996
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2997

2998
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
2999 3000

	return ret;
3001
}
3002

3003
static void intel_dp_get_config(struct intel_encoder *encoder,
3004
				struct intel_crtc_state *pipe_config)
3005
{
3006
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3007 3008
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3009
	enum port port = encoder->port;
3010
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3011

3012 3013 3014 3015
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3016

3017
	tmp = I915_READ(intel_dp->output_reg);
3018 3019

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3020

3021
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3022 3023 3024
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3025 3026 3027
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3028

3029
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3030 3031 3032 3033
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3034
		if (tmp & DP_SYNC_HS_HIGH)
3035 3036 3037
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3038

3039
		if (tmp & DP_SYNC_VS_HIGH)
3040 3041 3042 3043
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3044

3045
	pipe_config->base.adjusted_mode.flags |= flags;
3046

3047
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3048 3049
		pipe_config->limited_color_range = true;

3050 3051 3052
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3053 3054
	intel_dp_get_m_n(crtc, pipe_config);

3055
	if (port == PORT_A) {
3056
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3057 3058 3059 3060
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3061

3062 3063 3064
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3065

3066
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3067
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3082 3083
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3084
	}
3085 3086
}

3087
static void intel_disable_dp(struct intel_encoder *encoder,
3088 3089
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3090
{
3091
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3092

3093 3094
	intel_dp->link_trained = false;

3095
	if (old_crtc_state->has_audio)
3096 3097
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3098 3099 3100

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3101
	intel_edp_panel_vdd_on(intel_dp);
3102
	intel_edp_backlight_off(old_conn_state);
3103
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3104
	intel_edp_panel_off(intel_dp);
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3119 3120
}

3121
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3122 3123
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3124
{
3125
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3126
	enum port port = encoder->port;
3127

3128 3129 3130 3131 3132 3133
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3134
	intel_dp_link_down(encoder, old_crtc_state);
3135 3136

	/* Only ilk+ has port A */
3137
	if (port == PORT_A)
3138
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3139 3140
}

3141
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3142 3143
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3144
{
3145
	intel_dp_link_down(encoder, old_crtc_state);
3146 3147
}

3148
static void chv_post_disable_dp(struct intel_encoder *encoder,
3149 3150
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3151
{
3152
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3153

3154
	intel_dp_link_down(encoder, old_crtc_state);
3155

3156
	vlv_dpio_get(dev_priv);
3157 3158

	/* Assert data lane reset */
3159
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3160

3161
	vlv_dpio_put(dev_priv);
3162 3163
}

3164 3165
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3166 3167
			 u32 *DP,
			 u8 dp_train_pat)
3168
{
3169
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3170
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3171
	enum port port = intel_dig_port->base.port;
3172
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3173

3174
	if (dp_train_pat & train_pat_mask)
3175
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3176
			      dp_train_pat & train_pat_mask);
3177

3178
	if (HAS_DDI(dev_priv)) {
3179
		u32 temp = I915_READ(DP_TP_CTL(port));
3180 3181 3182 3183 3184 3185 3186

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3187
		switch (dp_train_pat & train_pat_mask) {
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3201 3202 3203
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3204 3205 3206
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3207
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3208
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3222
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3223 3224 3225 3226 3227
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3228
		*DP &= ~DP_LINK_TRAIN_MASK;
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3241 3242
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3243 3244 3245 3246 3247
			break;
		}
	}
}

3248
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3249
				 const struct intel_crtc_state *old_crtc_state)
3250
{
3251
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3252 3253 3254

	/* enable with pattern 1 (as per spec) */

3255
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3256 3257 3258 3259 3260 3261 3262 3263

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3264
	if (old_crtc_state->has_audio)
3265
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3266 3267 3268

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3269 3270
}

3271
static void intel_enable_dp(struct intel_encoder *encoder,
3272 3273
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3274
{
3275
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3276
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3277
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3278
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3279
	enum pipe pipe = crtc->pipe;
3280
	intel_wakeref_t wakeref;
3281

3282 3283
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3284

3285 3286 3287
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3288

3289
		intel_dp_enable_port(intel_dp, pipe_config);
3290

3291 3292 3293 3294
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3295

3296
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3297 3298
		unsigned int lane_mask = 0x0;

3299
		if (IS_CHERRYVIEW(dev_priv))
3300
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3301

3302 3303
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3304
	}
3305

3306
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3307
	intel_dp_start_link_train(intel_dp);
3308
	intel_dp_stop_link_train(intel_dp);
3309

3310
	if (pipe_config->has_audio) {
3311
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3312
				 pipe_name(pipe));
3313
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3314
	}
3315
}
3316

3317
static void g4x_enable_dp(struct intel_encoder *encoder,
3318 3319
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3320
{
3321
	intel_enable_dp(encoder, pipe_config, conn_state);
3322
	intel_edp_backlight_on(pipe_config, conn_state);
3323
}
3324

3325
static void vlv_enable_dp(struct intel_encoder *encoder,
3326 3327
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3328
{
3329
	intel_edp_backlight_on(pipe_config, conn_state);
3330 3331
}

3332
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3333 3334
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3335 3336
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3337
	enum port port = encoder->port;
3338

3339
	intel_dp_prepare(encoder, pipe_config);
3340

3341
	/* Only ilk+ has port A */
3342
	if (port == PORT_A)
3343
		ironlake_edp_pll_on(intel_dp, pipe_config);
3344 3345
}

3346 3347 3348
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3349
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3350
	enum pipe pipe = intel_dp->pps_pipe;
3351
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3352

3353 3354
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3355 3356 3357
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3358 3359 3360
	edp_panel_vdd_off_sync(intel_dp);

	/*
3361
	 * VLV seems to get confused when multiple power sequencers
3362 3363 3364
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3365
	 * selected in multiple power sequencers, but let's clear the
3366 3367 3368 3369
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3370
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3371 3372 3373 3374 3375 3376
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3377
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3378 3379 3380 3381 3382 3383
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3384 3385 3386
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3387

3388 3389 3390 3391
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3392 3393 3394 3395
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3396
			      pipe_name(pipe), port_name(port));
3397 3398

		/* make sure vdd is off before we steal it */
3399
		vlv_detach_power_sequencer(intel_dp);
3400 3401 3402
	}
}

3403 3404
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3405
{
3406
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3407 3408
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3409 3410 3411

	lockdep_assert_held(&dev_priv->pps_mutex);

3412
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3413

3414 3415 3416 3417 3418 3419 3420
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3421
		vlv_detach_power_sequencer(intel_dp);
3422
	}
3423 3424 3425 3426 3427

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3428
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3429

3430 3431
	intel_dp->active_pipe = crtc->pipe;

3432
	if (!intel_dp_is_edp(intel_dp))
3433 3434
		return;

3435 3436 3437 3438
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3439
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3440 3441

	/* init power sequencer on this pipe and port */
3442 3443
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3444 3445
}

3446
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3447 3448
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3449
{
3450
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3451

3452
	intel_enable_dp(encoder, pipe_config, conn_state);
3453 3454
}

3455
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3456 3457
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3458
{
3459
	intel_dp_prepare(encoder, pipe_config);
3460

3461
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3462 3463
}

3464
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3465 3466
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3467
{
3468
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3469

3470
	intel_enable_dp(encoder, pipe_config, conn_state);
3471 3472

	/* Second common lane will stay alive on its own now */
3473
	chv_phy_release_cl2_override(encoder);
3474 3475
}

3476
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3477 3478
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3479
{
3480
	intel_dp_prepare(encoder, pipe_config);
3481

3482
	chv_phy_pre_pll_enable(encoder, pipe_config);
3483 3484
}

3485
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3486 3487
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3488
{
3489
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3490 3491
}

3492 3493 3494 3495
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3496
bool
3497
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3498
{
3499 3500
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3501 3502
}

3503
/* These are source-specific values. */
3504
u8
K
Keith Packard 已提交
3505
intel_dp_voltage_max(struct intel_dp *intel_dp)
3506
{
3507
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3508 3509
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3510

3511
	if (HAS_DDI(dev_priv))
3512
		return intel_ddi_dp_voltage_max(encoder);
3513
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3514
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3515
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3516
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3517
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3518
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3519
	else
3520
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3521 3522
}

3523 3524
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3525
{
3526
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3527 3528
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3529

3530 3531
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3532
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3533
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3534 3535 3536 3537 3538 3539 3540
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3541
		default:
3542
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3543
		}
3544
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3545
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3546 3547 3548 3549 3550
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3551
		default:
3552
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3553 3554 3555
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3556 3557 3558 3559 3560 3561 3562
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3563
		default:
3564
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3565
		}
3566 3567 3568
	}
}

3569
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3570
{
3571
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3572 3573
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3574
	u8 train_set = intel_dp->train_set[0];
3575 3576

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3577
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3578 3579
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3580
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3581 3582 3583
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3584
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3585 3586 3587
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3588
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3589 3590 3591
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3592
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3593 3594 3595 3596 3597 3598 3599
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3600
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3601 3602
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3603
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3604 3605 3606
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3607
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3608 3609 3610
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3611
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3612 3613 3614 3615 3616 3617 3618
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3619
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3620 3621
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3622
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3623 3624 3625
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3626
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3627 3628 3629 3630 3631 3632 3633
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3634
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3635 3636
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3637
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3649 3650
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3651 3652 3653 3654

	return 0;
}

3655
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3656
{
3657 3658 3659
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3660
	u8 train_set = intel_dp->train_set[0];
3661 3662

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3663
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3664
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3665
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3666 3667 3668
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3669
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3670 3671 3672
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3673
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3674 3675 3676
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3677
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3678 3679
			deemph_reg_value = 128;
			margin_reg_value = 154;
3680
			uniq_trans_scale = true;
3681 3682 3683 3684 3685
			break;
		default:
			return 0;
		}
		break;
3686
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3687
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3688
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3689 3690 3691
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3692
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3693 3694 3695
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3696
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3697 3698 3699 3700 3701 3702 3703
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3704
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3705
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3706
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3707 3708 3709
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3710
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3711 3712 3713 3714 3715 3716 3717
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3718
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3719
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3720
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3732 3733
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3734 3735 3736 3737

	return 0;
}

3738 3739
static u32
g4x_signal_levels(u8 train_set)
3740
{
3741
	u32 signal_levels = 0;
3742

3743
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3744
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3745 3746 3747
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3748
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3749 3750
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3751
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3752 3753
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3754
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3755 3756 3757
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3758
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3759
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3760 3761 3762
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3763
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3764 3765
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3766
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3767 3768
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3769
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3770 3771 3772 3773 3774 3775
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3776
/* SNB CPU eDP voltage swing and pre-emphasis control */
3777 3778
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3779
{
3780 3781 3782
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3783 3784
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3785
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3786
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3787
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3788 3789
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3790
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3791 3792
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3793
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3794 3795
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3796
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3797
	default:
3798 3799 3800
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3801 3802 3803
	}
}

3804
/* IVB CPU eDP voltage swing and pre-emphasis control */
3805 3806
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
3807 3808 3809 3810
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3811
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3812
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3813
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3814
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3815
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3816 3817
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3818
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3819
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3820
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3821 3822
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3823
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3824
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3825
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3826 3827 3828 3829 3830 3831 3832 3833 3834
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3835
void
3836
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3837
{
3838
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3839
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3840
	enum port port = intel_dig_port->base.port;
3841 3842
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
3843

R
Rodrigo Vivi 已提交
3844
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3845 3846
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3847
		signal_levels = ddi_signal_levels(intel_dp);
3848
		mask = DDI_BUF_EMP_MASK;
3849
	} else if (IS_CHERRYVIEW(dev_priv)) {
3850
		signal_levels = chv_signal_levels(intel_dp);
3851
	} else if (IS_VALLEYVIEW(dev_priv)) {
3852
		signal_levels = vlv_signal_levels(intel_dp);
3853
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3854
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3855
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3856
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3857
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3858 3859
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3860
		signal_levels = g4x_signal_levels(train_set);
3861 3862 3863
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3864 3865 3866 3867 3868 3869 3870 3871
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3872

3873
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3874 3875 3876

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3877 3878
}

3879
void
3880
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3881
				       u8 dp_train_pat)
3882
{
3883
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3884 3885
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3886

3887
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3888

3889
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3890
	POSTING_READ(intel_dp->output_reg);
3891 3892
}

3893
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3894
{
3895
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3896
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3897
	enum port port = intel_dig_port->base.port;
3898
	u32 val;
3899

3900
	if (!HAS_DDI(dev_priv))
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3918
	if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3919 3920 3921
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3922 3923 3924
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3925
static void
3926 3927
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3928
{
3929 3930 3931 3932
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
3933
	u32 DP = intel_dp->DP;
3934

3935
	if (WARN_ON(HAS_DDI(dev_priv)))
3936 3937
		return;

3938
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3939 3940
		return;

3941
	DRM_DEBUG_KMS("\n");
3942

3943
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3944
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3945
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3946
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3947
	} else {
3948
		DP &= ~DP_LINK_TRAIN_MASK;
3949
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3950
	}
3951
	I915_WRITE(intel_dp->output_reg, DP);
3952
	POSTING_READ(intel_dp->output_reg);
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3963
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3964 3965 3966 3967 3968 3969 3970
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3971
		/* always enable with pattern 1 (as per spec) */
3972 3973 3974
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3975 3976 3977 3978
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3979
		I915_WRITE(intel_dp->output_reg, DP);
3980
		POSTING_READ(intel_dp->output_reg);
3981

3982
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3983 3984
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3985 3986
	}

3987
	msleep(intel_dp->panel_power_down_delay);
3988 3989

	intel_dp->DP = DP;
3990 3991

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3992 3993 3994 3995
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
3996
	}
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4035
bool
4036
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4037
{
4038 4039
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4040
		return false; /* aux transfer failed */
4041

4042 4043
	intel_dp_extended_receiver_capabilities(intel_dp);

4044
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4045

4046 4047
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4048

4049 4050 4051 4052 4053 4054 4055 4056
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4057 4058 4059
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4072

4073
		/* FEC is supported only on DP 1.4 */
4074 4075 4076 4077
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4078

4079
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4080 4081 4082
	}
}

4083 4084 4085 4086 4087
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4088

4089 4090
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4091

4092
	if (!intel_dp_read_dpcd(intel_dp))
4093 4094
		return false;

4095 4096
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4097

4098 4099 4100
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4101

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4112 4113
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4114
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4115
			      intel_dp->edp_dpcd);
4116

4117 4118 4119 4120 4121 4122
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4123 4124
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4125
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4126 4127
		int i;

4128 4129
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4130

4131 4132
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4133 4134 4135 4136

			if (val == 0)
				break;

4137 4138 4139 4140 4141 4142
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4143
			intel_dp->sink_rates[i] = (val * 200) / 10;
4144
		}
4145
		intel_dp->num_sink_rates = i;
4146
	}
4147

4148 4149 4150 4151
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4152 4153 4154 4155 4156
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4157 4158
	intel_dp_set_common_rates(intel_dp);

4159 4160 4161 4162
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4173
	/* Don't clobber cached eDP rates. */
4174
	if (!intel_dp_is_edp(intel_dp)) {
4175
		intel_dp_set_sink_rates(intel_dp);
4176 4177
		intel_dp_set_common_rates(intel_dp);
	}
4178

4179
	/*
4180 4181
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4182
	 */
4183 4184 4185
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4186

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4208

4209
	if (!drm_dp_is_branch(intel_dp->dpcd))
4210 4211 4212 4213 4214
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4215 4216 4217
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4218 4219 4220
		return false; /* downstream port status fetch failed */

	return true;
4221 4222
}

4223
static bool
4224
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4225
{
4226
	u8 mstm_cap;
4227 4228 4229 4230

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4231
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4232
		return false;
4233

4234
	return mstm_cap & DP_MST_CAP;
4235 4236
}

4237 4238 4239 4240 4241 4242 4243 4244
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4245 4246 4247
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4248 4249 4250 4251 4252 4253 4254
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4255 4256 4257 4258

	if (!intel_dp->can_mst)
		return;

4259 4260
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4261 4262 4263

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4264 4265 4266 4267 4268
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4269 4270 4271
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4272 4273
}

4274
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
4341
	min_slice_count = min_t(u8, min_slice_count,
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4359
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4360
{
4361
	int status = 0;
4362
	int test_link_rate;
4363
	u8 test_lane_count, test_link_bw;
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4384 4385 4386 4387

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4388 4389 4390 4391 4392 4393
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4394 4395
}

4396
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4397
{
4398 4399
	u8 test_pattern;
	u8 test_misc;
4400 4401 4402 4403
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4404 4405
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4427 4428
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4455 4456
}

4457
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4458
{
4459
	u8 test_result = DP_TEST_ACK;
4460 4461 4462 4463
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4464
	    connector->edid_corrupt ||
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4478
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4479
	} else {
4480 4481 4482 4483 4484 4485 4486
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4487 4488
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4489 4490 4491
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4492
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4493 4494 4495
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4496
	intel_dp->compliance.test_active = 1;
4497

4498 4499 4500
	return test_result;
}

4501
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4502
{
4503
	u8 test_result = DP_TEST_NAK;
4504 4505 4506 4507 4508
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4509 4510
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4511
	int status;
4512

4513
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4514 4515 4516 4517 4518
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4519
	switch (request) {
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4537
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4538 4539 4540
		break;
	}

4541 4542 4543
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4544
update_status:
4545
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4546 4547
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4548 4549
}

4550 4551 4552 4553 4554 4555
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4556
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4557 4558 4559
		int ret = 0;
		int retry;
		bool handled;
4560 4561

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4562 4563 4564 4565 4566
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4567
			if (intel_dp->active_mst_links > 0 &&
4568
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4569 4570 4571 4572 4573
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4574
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4590
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4591 4592 4593 4594 4595 4596 4597 4598 4599
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4600 4601
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4602 4603 4604 4605 4606
		}
	}
	return -EINVAL;
}

4607 4608 4609 4610 4611
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4612
	if (!intel_dp->link_trained)
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4624 4625 4626
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4643 4644
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4685 4686 4687

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4688
	if (crtc_state->has_pch_encoder)
4689 4690 4691 4692 4693 4694 4695
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4696
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4697 4698

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4699
	if (crtc_state->has_pch_encoder)
4700 4701
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4702 4703

	return 0;
4704 4705
}

4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4720
{
4721 4722 4723
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4724

4725
	changed = intel_encoder_hotplug(encoder, connector);
4726

4727
	drm_modeset_acquire_init(&ctx, 0);
4728

4729 4730
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4731

4732 4733 4734 4735
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4736

4737 4738
		break;
	}
4739

4740 4741 4742
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4743

4744
	return changed;
4745 4746
}

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4763
	if (val & DP_CP_IRQ)
4764
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4765 4766 4767

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4768 4769
}

4770 4771 4772 4773 4774 4775 4776
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4777 4778 4779 4780 4781
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4782
 */
4783
static bool
4784
intel_dp_short_pulse(struct intel_dp *intel_dp)
4785
{
4786
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4787 4788
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4789

4790 4791 4792 4793
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4794
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4795

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4807 4808
	}

4809
	intel_dp_check_service_irq(intel_dp);
4810

4811 4812 4813
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4814 4815 4816
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4817

4818 4819
	intel_psr_short_pulse(intel_dp);

4820 4821 4822
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4823
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4824
	}
4825 4826

	return true;
4827 4828
}

4829
/* XXX this is probably wrong for multiple downstream ports */
4830
static enum drm_connector_status
4831
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4832
{
4833
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4834 4835
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
4836

4837 4838 4839
	if (lspcon->active)
		lspcon_resume(lspcon);

4840 4841 4842
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4843
	if (intel_dp_is_edp(intel_dp))
4844 4845
		return connector_status_connected;

4846
	/* if there's no downstream port, we're done */
4847
	if (!drm_dp_is_branch(dpcd))
4848
		return connector_status_connected;
4849 4850

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4851 4852
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4853

4854 4855
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4856 4857
	}

4858 4859 4860
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4861
	/* If no HPD, poke DDC gently */
4862
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4863
		return connector_status_connected;
4864 4865

	/* Well we tried, say unknown for unreliable port types */
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4878 4879 4880

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4881
	return connector_status_disconnected;
4882 4883
}

4884 4885 4886
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4887
	return connector_status_connected;
4888 4889
}

4890
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4891
{
4892
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4893
	u32 bit;
4894

4895 4896
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4897 4898
		bit = SDE_PORTB_HOTPLUG;
		break;
4899
	case HPD_PORT_C:
4900 4901
		bit = SDE_PORTC_HOTPLUG;
		break;
4902
	case HPD_PORT_D:
4903 4904 4905
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4906
		MISSING_CASE(encoder->hpd_pin);
4907 4908 4909 4910 4911 4912
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4913
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4914
{
4915
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4916 4917
	u32 bit;

4918 4919
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4920 4921
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4922
	case HPD_PORT_C:
4923 4924
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4925
	case HPD_PORT_D:
4926 4927
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4928
	default:
4929
		MISSING_CASE(encoder->hpd_pin);
4930 4931 4932 4933 4934 4935
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4936
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4937
{
4938
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4939 4940
	u32 bit;

4941 4942
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4943 4944
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4945
	case HPD_PORT_E:
4946 4947
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4948
	default:
4949
		return cpt_digital_port_connected(encoder);
4950
	}
4951

4952
	return I915_READ(SDEISR) & bit;
4953 4954
}

4955
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4956
{
4957
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4958
	u32 bit;
4959

4960 4961
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4962 4963
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4964
	case HPD_PORT_C:
4965 4966
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4967
	case HPD_PORT_D:
4968 4969 4970
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4971
		MISSING_CASE(encoder->hpd_pin);
4972 4973 4974 4975 4976 4977
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4978
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4979
{
4980
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4981 4982
	u32 bit;

4983 4984
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4985
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4986
		break;
4987
	case HPD_PORT_C:
4988
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4989
		break;
4990
	case HPD_PORT_D:
4991
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4992 4993
		break;
	default:
4994
		MISSING_CASE(encoder->hpd_pin);
4995
		return false;
4996 4997
	}

4998
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4999 5000
}

5001
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5002
{
5003 5004 5005
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5006 5007
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5008
		return ibx_digital_port_connected(encoder);
5009 5010
}

5011
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5012
{
5013 5014 5015
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5016 5017
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5018
		return cpt_digital_port_connected(encoder);
5019 5020
}

5021
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5022
{
5023 5024 5025
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5026 5027
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5028
		return cpt_digital_port_connected(encoder);
5029 5030
}

5031
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5032
{
5033 5034 5035
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5036 5037
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5038
		return cpt_digital_port_connected(encoder);
5039 5040
}

5041
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5042
{
5043
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5044 5045
	u32 bit;

5046 5047
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5048 5049
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5050
	case HPD_PORT_B:
5051 5052
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5053
	case HPD_PORT_C:
5054 5055 5056
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5057
		MISSING_CASE(encoder->hpd_pin);
5058 5059 5060 5061 5062 5063
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5064 5065 5066 5067 5068 5069 5070 5071
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5087 5088 5089 5090 5091 5092 5093 5094 5095
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5096
	if (is_legacy)
5097
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5098
	else if (is_typec)
5099
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5100
	else if (is_tbt)
5101
		intel_dig_port->tc_type = TC_PORT_TBT;
5102
	else
5103 5104 5105 5106 5107 5108 5109 5110
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5111
			      tc_type_name(intel_dig_port->tc_type));
5112 5113
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5148
		WARN_ON(dig_port->tc_legacy_port);
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5169
		icl_tc_phy_disconnect(dev_priv, dig_port);
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5180 5181
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5182 5183 5184
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5185
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5186 5187 5188
		return;

	/*
5189 5190
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5191
	 */
5192 5193 5194 5195 5196
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5197 5198 5199
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5200

5201 5202 5203 5204
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5205
	dig_port->tc_type = TC_PORT_UNKNOWN;
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5218 5219 5220 5221 5222 5223 5224 5225
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5226 5227 5228 5229 5230 5231 5232 5233
	/*
	 * WARN if we got a legacy port HPD, but VBT didn't mark the port as
	 * legacy. Treat the port as legacy from now on.
	 */
	if (WARN_ON(!intel_dig_port->tc_legacy_port &&
		    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
		intel_dig_port->tc_legacy_port = true;
	is_legacy = intel_dig_port->tc_legacy_port;
5234 5235 5236 5237 5238 5239 5240 5241 5242

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5243 5244
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5245

5246
		return false;
5247
	}
5248 5249 5250

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5251

5252 5253 5254
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5255
	return true;
5256 5257 5258 5259 5260 5261 5262
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5263
	if (intel_port_is_combophy(dev_priv, encoder->port))
5264
		return icl_combo_port_connected(dev_priv, dig_port);
5265
	else if (intel_port_is_tc(dev_priv, encoder->port))
5266
		return icl_tc_port_connected(dev_priv, dig_port);
5267
	else
5268
		MISSING_CASE(encoder->hpd_pin);
5269 5270

	return false;
5271 5272
}

5273 5274
/*
 * intel_digital_port_connected - is the specified port connected?
5275
 * @encoder: intel_encoder
5276
 *
5277 5278 5279 5280 5281
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5282
 * Return %true if port is connected, %false otherwise.
5283
 */
5284
bool intel_digital_port_connected(struct intel_encoder *encoder)
5285
{
5286 5287
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5288
	if (HAS_GMCH(dev_priv)) {
5289
		if (IS_GM45(dev_priv))
5290
			return gm45_digital_port_connected(encoder);
5291
		else
5292
			return g4x_digital_port_connected(encoder);
5293 5294
	}

5295 5296
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5297
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5298
		return spt_digital_port_connected(encoder);
5299
	else if (IS_GEN9_LP(dev_priv))
5300
		return bxt_digital_port_connected(encoder);
5301
	else if (IS_GEN(dev_priv, 8))
5302
		return bdw_digital_port_connected(encoder);
5303
	else if (IS_GEN(dev_priv, 7))
5304
		return ivb_digital_port_connected(encoder);
5305
	else if (IS_GEN(dev_priv, 6))
5306
		return snb_digital_port_connected(encoder);
5307
	else if (IS_GEN(dev_priv, 5))
5308 5309 5310 5311
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5312 5313
}

5314
static struct edid *
5315
intel_dp_get_edid(struct intel_dp *intel_dp)
5316
{
5317
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5318

5319 5320 5321 5322
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5323 5324
			return NULL;

J
Jani Nikula 已提交
5325
		return drm_edid_duplicate(intel_connector->edid);
5326 5327 5328 5329
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5330

5331 5332 5333 5334 5335
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5336

5337
	intel_dp_unset_edid(intel_dp);
5338 5339 5340
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5341
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5342
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5343 5344
}

5345 5346
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5347
{
5348
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5349

5350
	drm_dp_cec_unset_edid(&intel_dp->aux);
5351 5352
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5353

5354 5355
	intel_dp->has_audio = false;
}
5356

5357
static int
5358 5359 5360
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5361
{
5362 5363
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5364 5365
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5366
	enum drm_connector_status status;
5367 5368
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5369
	intel_wakeref_t wakeref;
Z
Zhenyu Wang 已提交
5370

5371 5372
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5373
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5374

5375
	wakeref = intel_display_power_get(dev_priv, aux_domain);
Z
Zhenyu Wang 已提交
5376

5377
	/* Can't disconnect eDP */
5378
	if (intel_dp_is_edp(intel_dp))
5379
		status = edp_detect(intel_dp);
5380
	else if (intel_digital_port_connected(encoder))
5381
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5382
	else
5383 5384
		status = connector_status_disconnected;

5385
	if (status == connector_status_disconnected) {
5386
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5387
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5388

5389 5390 5391 5392 5393 5394 5395 5396 5397
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5398
		goto out;
5399
	}
Z
Zhenyu Wang 已提交
5400

5401
	if (intel_dp->reset_link_params) {
5402 5403
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5404

5405 5406
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5407 5408 5409

		intel_dp->reset_link_params = false;
	}
5410

5411 5412
	intel_dp_print_rates(intel_dp);

5413 5414 5415 5416
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5417 5418
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5419

5420 5421 5422
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5423 5424 5425 5426 5427
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5428 5429
		status = connector_status_disconnected;
		goto out;
5430 5431 5432 5433 5434 5435
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5436 5437 5438 5439 5440
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
5441
			intel_display_power_put(dev_priv, aux_domain, wakeref);
5442 5443 5444
			return ret;
		}
	}
5445

5446 5447 5448 5449 5450 5451 5452 5453
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5454
	intel_dp_set_edid(intel_dp);
5455 5456
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5457
		status = connector_status_connected;
5458

5459
	intel_dp_check_service_irq(intel_dp);
5460

5461
out:
5462
	if (status != connector_status_connected && !intel_dp->is_mst)
5463
		intel_dp_unset_edid(intel_dp);
5464

5465
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5466
	return status;
5467 5468
}

5469 5470
static void
intel_dp_force(struct drm_connector *connector)
5471
{
5472
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5473 5474
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5475
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5476 5477
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5478
	intel_wakeref_t wakeref;
5479

5480 5481 5482
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5483

5484 5485
	if (connector->status != connector_status_connected)
		return;
5486

5487
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5488 5489 5490

	intel_dp_set_edid(intel_dp);

5491
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5505

5506
	/* if eDP has no EDID, fall back to fixed mode */
5507
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5508
	    intel_connector->panel.fixed_mode) {
5509
		struct drm_display_mode *mode;
5510 5511

		mode = drm_mode_duplicate(connector->dev,
5512
					  intel_connector->panel.fixed_mode);
5513
		if (mode) {
5514 5515 5516 5517
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5518

5519
	return 0;
5520 5521
}

5522 5523 5524 5525
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5526
	struct drm_device *dev = connector->dev;
5527 5528 5529 5530 5531
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5532 5533 5534 5535 5536 5537 5538

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5539 5540 5541 5542 5543
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5544 5545
}

5546 5547 5548
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5549 5550 5551 5552
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5553 5554 5555
	intel_connector_unregister(connector);
}

5556
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5557
{
5558 5559
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5560

5561
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5562
	if (intel_dp_is_edp(intel_dp)) {
5563 5564
		intel_wakeref_t wakeref;

5565
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5566 5567 5568 5569
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5570 5571
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5572

5573 5574 5575 5576
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5577
	}
5578 5579

	intel_dp_aux_fini(intel_dp);
5580 5581 5582 5583 5584
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5585

5586
	drm_encoder_cleanup(encoder);
5587
	kfree(enc_to_dig_port(encoder));
5588 5589
}

5590
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5591 5592
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5593
	intel_wakeref_t wakeref;
5594

5595
	if (!intel_dp_is_edp(intel_dp))
5596 5597
		return;

5598 5599 5600 5601
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5602
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5603 5604
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5605 5606
}

5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5619 5620 5621 5622 5623
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5624 5625 5626 5627 5628
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5629
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5630 5631 5632 5633 5634 5635 5636
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5637 5638
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5639 5640 5641 5642 5643 5644 5645 5646 5647
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5648
	intel_dp_aux_header(txbuf, &msg);
5649

5650
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5651 5652
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5653
	if (ret < 0) {
5654
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5655 5656
		return ret;
	} else if (ret == 0) {
5657
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5658 5659 5660 5661
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5662 5663 5664 5665 5666 5667
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5668 5669 5670 5671 5672 5673 5674 5675 5676
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5677
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5695
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5696 5697 5698 5699 5700 5701
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5702 5703
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5704 5705
{
	ssize_t ret;
5706

5707
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5708
			       bcaps, 1);
5709
	if (ret != 1) {
5710
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5711 5712
		return ret >= 0 ? -EIO : ret;
	}
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5740
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5755
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5777 5778
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5798
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5817

5818 5819 5820
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5821
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5822
		return false;
5823
	}
5824

5825 5826 5827
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

static struct hdcp2_dp_msg_data {
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
	} hdcp2_msg_data[] = {
		{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
				false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
		{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
				true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
				HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
		{HDCP_2_2_AKE_SEND_PAIRING_INFO,
				DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
				HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
		{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
				false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
		{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_SEND_RECVID_LIST,
				DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
				HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
		{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_MANAGE,
				DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
				false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
		{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
				DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
				0, 0},
		};

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
			    struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
5963 5964 5965 5966 5967 5968 5969
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
		if (hdcp2_msg_data[i].msg_id == msg_id)
			return &hdcp2_msg_data[i];

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
5996 5997
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6013 6014
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6184
	.hdcp_capable = intel_dp_hdcp_capable,
6185 6186 6187 6188 6189 6190
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6191 6192
};

6193 6194
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6195
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6196
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6210
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6211 6212 6213 6214

	edp_panel_vdd_schedule_off(intel_dp);
}

6215 6216
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6217
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6218 6219
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6220

6221 6222 6223
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6224

6225
	return INVALID_PIPE;
6226 6227
}

6228
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6229
{
6230
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6231 6232
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6233
	intel_wakeref_t wakeref;
6234 6235 6236

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6237

6238
	if (lspcon->active)
6239 6240
		lspcon_resume(lspcon);

6241 6242
	intel_dp->reset_link_params = true;

6243 6244 6245
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6246

6247 6248 6249 6250 6251 6252 6253 6254
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6255
	}
6256 6257
}

6258
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6259
	.force = intel_dp_force,
6260
	.fill_modes = drm_helper_probe_single_connector_modes,
6261 6262
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6263
	.late_register = intel_dp_connector_register,
6264
	.early_unregister = intel_dp_connector_unregister,
6265
	.destroy = intel_connector_destroy,
6266
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6267
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6268 6269 6270
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6271
	.detect_ctx = intel_dp_detect,
6272 6273
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6274
	.atomic_check = intel_digital_connector_atomic_check,
6275 6276 6277
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6278
	.reset = intel_dp_encoder_reset,
6279
	.destroy = intel_dp_encoder_destroy,
6280 6281
};

6282
enum irqreturn
6283 6284 6285
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6286
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6287
	enum irqreturn ret = IRQ_NONE;
6288
	intel_wakeref_t wakeref;
6289

6290 6291 6292 6293 6294 6295 6296 6297
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6298
			      port_name(intel_dig_port->base.port));
6299
		return IRQ_HANDLED;
6300 6301
	}

6302
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6303
		      port_name(intel_dig_port->base.port),
6304
		      long_hpd ? "long" : "short");
6305

6306
	if (long_hpd) {
6307
		intel_dp->reset_link_params = true;
6308 6309 6310
		return IRQ_NONE;
	}

6311 6312
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
6313

6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
6326
		}
6327
	}
6328

6329
	if (!intel_dp->is_mst) {
6330
		bool handled;
6331 6332 6333

		handled = intel_dp_short_pulse(intel_dp);

6334
		if (!handled)
6335
			goto put_power;
6336
	}
6337 6338 6339

	ret = IRQ_HANDLED;

6340
put_power:
6341
	intel_display_power_put(dev_priv,
6342 6343
				intel_aux_power_domain(intel_dig_port),
				wakeref);
6344 6345

	return ret;
6346 6347
}

6348
/* check the VBT to see whether the eDP is on another port */
6349
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6350
{
6351 6352 6353 6354
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6355
	if (INTEL_GEN(dev_priv) < 5)
6356 6357
		return false;

6358
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6359 6360
		return true;

6361
	return intel_bios_is_port_edp(dev_priv, port);
6362 6363
}

6364
static void
6365 6366
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6367
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6368 6369 6370 6371
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6372

6373
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6374
	if (HAS_GMCH(dev_priv))
6375 6376 6377
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6378

6379
	if (intel_dp_is_edp(intel_dp)) {
6380 6381 6382
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6383
		if (!HAS_GMCH(dev_priv))
6384 6385 6386 6387
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6388
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6389

6390
	}
6391 6392
}

6393 6394
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6395
	intel_dp->panel_power_off_time = ktime_get_boottime();
6396 6397 6398 6399
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6400
static void
6401
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6402
{
6403
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6404
	u32 pp_on, pp_off, pp_ctl;
6405
	struct pps_registers regs;
6406

6407
	intel_pps_get_registers(intel_dp, &regs);
6408

6409
	pp_ctl = ironlake_get_pp_control(intel_dp);
6410

6411 6412 6413 6414
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6415 6416
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6417 6418

	/* Pull timing values out of registers */
6419 6420 6421 6422
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6423

6424 6425 6426 6427 6428
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6429
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6430
	} else {
6431
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6432
	}
6433 6434
}

I
Imre Deak 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6444
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6445 6446 6447 6448
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6449
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6450 6451 6452 6453 6454 6455 6456 6457 6458

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6459
static void
6460
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6461
{
6462
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6463 6464 6465 6466 6467 6468 6469 6470 6471
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6472
	intel_pps_readout_hw_state(intel_dp, &cur);
6473

I
Imre Deak 已提交
6474
	intel_pps_dump_state("cur", &cur);
6475

6476
	vbt = dev_priv->vbt.edp.pps;
6477 6478 6479 6480 6481 6482
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6483
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6484 6485 6486
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6487 6488 6489 6490 6491
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6505
	intel_pps_dump_state("vbt", &vbt);
6506 6507 6508

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6509
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6510 6511 6512 6513 6514 6515 6516 6517 6518
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6519
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6520 6521 6522 6523 6524 6525 6526
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6527 6528 6529 6530 6531 6532
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6543 6544 6545 6546 6547 6548

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6549 6550 6551
}

static void
6552
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6553
					      bool force_disable_vdd)
6554
{
6555
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6556
	u32 pp_on, pp_off, port_sel = 0;
6557
	int div = dev_priv->rawclk_freq / 1000;
6558
	struct pps_registers regs;
6559
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6560
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6561

V
Ville Syrjälä 已提交
6562
	lockdep_assert_held(&dev_priv->pps_mutex);
6563

6564
	intel_pps_get_registers(intel_dp, &regs);
6565

6566 6567
	/*
	 * On some VLV machines the BIOS can leave the VDD
6568
	 * enabled even on power sequencers which aren't
6569 6570 6571 6572 6573 6574 6575
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6576
	 * soon as the new power sequencer gets initialized.
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6591 6592 6593 6594
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6595 6596 6597

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6598
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6599
		port_sel = PANEL_PORT_SELECT_VLV(port);
6600
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6601 6602
		switch (port) {
		case PORT_A:
6603
			port_sel = PANEL_PORT_SELECT_DPA;
6604 6605 6606 6607 6608
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6609
			port_sel = PANEL_PORT_SELECT_DPD;
6610 6611 6612 6613 6614
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6615 6616
	}

6617 6618
	pp_on |= port_sel;

6619 6620
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6621 6622 6623 6624 6625

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6626 6627 6628
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6629 6630 6631 6632 6633
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6634
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6635 6636
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6637 6638

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6639 6640
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6641 6642 6643
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6644 6645
}

6646
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6647
{
6648
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6649 6650

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6651 6652
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6653 6654
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6655 6656 6657
	}
}

6658 6659
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6660
 * @dev_priv: i915 device
6661
 * @crtc_state: a pointer to the active intel_crtc_state
6662 6663 6664 6665 6666 6667 6668 6669 6670
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6671
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6672
				    const struct intel_crtc_state *crtc_state,
6673
				    int refresh_rate)
6674 6675
{
	struct intel_encoder *encoder;
6676 6677
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6678
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6679
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6680 6681 6682 6683 6684 6685

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6686 6687
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6688 6689 6690
		return;
	}

6691 6692
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6693 6694 6695 6696 6697 6698

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6699
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6700 6701 6702 6703
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6704 6705
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6706 6707
		index = DRRS_LOW_RR;

6708
	if (index == dev_priv->drrs.refresh_rate_type) {
6709 6710 6711 6712 6713
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6714
	if (!crtc_state->base.active) {
6715 6716 6717 6718
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6719
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6720 6721
		switch (index) {
		case DRRS_HIGH_RR:
6722
			intel_dp_set_m_n(crtc_state, M1_N1);
6723 6724
			break;
		case DRRS_LOW_RR:
6725
			intel_dp_set_m_n(crtc_state, M2_N2);
6726 6727 6728 6729 6730
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6731 6732
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6733
		u32 val;
6734

6735
		val = I915_READ(reg);
6736
		if (index > DRRS_HIGH_RR) {
6737
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6738 6739 6740
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6741
		} else {
6742
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6743 6744 6745
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6746 6747 6748 6749
		}
		I915_WRITE(reg, val);
	}

6750 6751 6752 6753 6754
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6755 6756 6757
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6758
 * @crtc_state: A pointer to the active crtc state.
6759 6760 6761
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6762
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6763
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6764
{
6765
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6766

6767
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6768 6769 6770 6771
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6772 6773 6774 6775 6776
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6777
	mutex_lock(&dev_priv->drrs.mutex);
6778 6779
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6791 6792 6793
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6794
 * @old_crtc_state: Pointer to old crtc_state.
6795 6796
 *
 */
6797
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6798
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6799
{
6800
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6801

6802
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6803 6804 6805 6806 6807 6808 6809 6810 6811
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6812 6813
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6814 6815 6816 6817 6818 6819 6820

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6834
	/*
6835 6836
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6837 6838
	 */

6839 6840
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6841

6842 6843 6844 6845 6846 6847
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6848

6849 6850
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6851 6852
}

6853
/**
6854
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6855
 * @dev_priv: i915 device
6856 6857
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6858 6859
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6860 6861 6862
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6863 6864
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6865 6866 6867 6868
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6869
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6870 6871
		return;

6872
	cancel_delayed_work(&dev_priv->drrs.work);
6873

6874
	mutex_lock(&dev_priv->drrs.mutex);
6875 6876 6877 6878 6879
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6880 6881 6882
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6883 6884 6885
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6886
	/* invalidate means busy screen hence upclock */
6887
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6888 6889
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6890 6891 6892 6893

	mutex_unlock(&dev_priv->drrs.mutex);
}

6894
/**
6895
 * intel_edp_drrs_flush - Restart Idleness DRRS
6896
 * @dev_priv: i915 device
6897 6898
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6899 6900 6901 6902
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6903 6904 6905
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6906 6907
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6908 6909 6910 6911
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6912
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6913 6914
		return;

6915
	cancel_delayed_work(&dev_priv->drrs.work);
6916

6917
	mutex_lock(&dev_priv->drrs.mutex);
6918 6919 6920 6921 6922
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6923 6924
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6925 6926

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6927 6928
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6929
	/* flush means busy screen hence upclock */
6930
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6931 6932
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6933 6934 6935 6936 6937 6938

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6939 6940 6941 6942 6943
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6967 6968 6969 6970 6971 6972 6973 6974
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6975 6976 6977 6978 6979 6980 6981 6982
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6983
 * @connector: eDP connector
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6994
static struct drm_display_mode *
6995 6996
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6997
{
6998
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6999 7000
	struct drm_display_mode *downclock_mode = NULL;

7001 7002 7003
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7004
	if (INTEL_GEN(dev_priv) <= 6) {
7005 7006 7007 7008 7009
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7010
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7011 7012 7013
		return NULL;
	}

7014
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7015
	if (!downclock_mode) {
7016
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7017 7018 7019
		return NULL;
	}

7020
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7021

7022
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7023
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7024 7025 7026
	return downclock_mode;
}

7027
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7028
				     struct intel_connector *intel_connector)
7029
{
7030 7031
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7032
	struct drm_connector *connector = &intel_connector->base;
7033
	struct drm_display_mode *fixed_mode = NULL;
7034
	struct drm_display_mode *downclock_mode = NULL;
7035
	bool has_dpcd;
7036
	enum pipe pipe = INVALID_PIPE;
7037 7038
	intel_wakeref_t wakeref;
	struct edid *edid;
7039

7040
	if (!intel_dp_is_edp(intel_dp))
7041 7042
		return true;

7043 7044
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7045 7046 7047 7048 7049 7050
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7051
	if (intel_get_lvds_encoder(dev_priv)) {
7052 7053 7054 7055 7056 7057
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7058 7059 7060 7061 7062
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7063

7064
	/* Cache DPCD and EDID for edp. */
7065
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7066

7067
	if (!has_dpcd) {
7068 7069
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7070
		goto out_vdd_off;
7071 7072
	}

7073
	mutex_lock(&dev->mode_config.mutex);
7074
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7075 7076
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7077
			drm_connector_update_edid_property(connector,
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7088 7089 7090
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7091 7092

	/* fallback to VBT if available for eDP */
7093 7094
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7095
	mutex_unlock(&dev->mode_config.mutex);
7096

7097
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7098 7099
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7100 7101 7102 7103 7104 7105

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7106
		pipe = vlv_active_pipe(intel_dp);
7107 7108 7109 7110 7111 7112 7113 7114 7115

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7116 7117
	}

7118
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7119
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7120
	intel_panel_setup_backlight(connector, pipe);
7121

7122 7123 7124 7125
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7126
	return true;
7127 7128 7129 7130 7131 7132 7133

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7134 7135
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7136 7137

	return false;
7138 7139
}

7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7156 7157
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7158 7159 7160 7161 7162
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7163
bool
7164 7165
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7166
{
7167 7168 7169 7170
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7171
	struct drm_i915_private *dev_priv = to_i915(dev);
7172
	enum port port = intel_encoder->port;
7173
	int type;
7174

7175 7176 7177 7178
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7179 7180 7181 7182 7183
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

7184 7185
	intel_dp_set_source_rates(intel_dp);

7186
	intel_dp->reset_link_params = true;
7187
	intel_dp->pps_pipe = INVALID_PIPE;
7188
	intel_dp->active_pipe = INVALID_PIPE;
7189

7190
	/* intel_dp vfuncs */
7191
	if (HAS_DDI(dev_priv))
7192 7193
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

7194 7195
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7196
	intel_dp->attached_connector = intel_connector;
7197

7198
	if (intel_dp_is_port_edp(dev_priv, port))
7199
		type = DRM_MODE_CONNECTOR_eDP;
7200 7201
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
7202

7203 7204 7205
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7206 7207 7208 7209 7210 7211 7212 7213
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7214
	/* eDP only on port B and/or C on vlv/chv */
7215
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7216 7217
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7218 7219
		return false;

7220 7221 7222 7223
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

7224
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7225 7226
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7227
	if (!HAS_GMCH(dev_priv))
7228
		connector->interlace_allowed = true;
7229 7230
	connector->doublescan_allowed = 0;

7231
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7232

7233
	intel_dp_aux_init(intel_dp);
7234

7235
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7236

7237
	if (HAS_DDI(dev_priv))
7238 7239 7240 7241
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7242
	/* init MST on ports that can support it */
7243
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7244 7245
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7246 7247
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7248

7249
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7250 7251 7252
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7253
	}
7254

7255
	intel_dp_add_properties(intel_dp, connector);
7256

7257
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7258 7259 7260 7261
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7262

7263 7264 7265 7266
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7267
	if (IS_G45(dev_priv)) {
7268 7269 7270
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7271 7272

	return true;
7273 7274 7275 7276 7277

fail:
	drm_connector_cleanup(connector);

	return false;
7278
}
7279

7280
bool intel_dp_init(struct drm_i915_private *dev_priv,
7281 7282
		   i915_reg_t output_reg,
		   enum port port)
7283 7284 7285 7286 7287 7288
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7289
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7290
	if (!intel_dig_port)
7291
		return false;
7292

7293
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7294 7295
	if (!intel_connector)
		goto err_connector_alloc;
7296 7297 7298 7299

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7300 7301 7302
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7303
		goto err_encoder_init;
7304

7305
	intel_encoder->hotplug = intel_dp_hotplug;
7306
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7307
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7308
	intel_encoder->get_config = intel_dp_get_config;
7309
	intel_encoder->update_pipe = intel_panel_update_backlight;
7310
	intel_encoder->suspend = intel_dp_encoder_suspend;
7311
	if (IS_CHERRYVIEW(dev_priv)) {
7312
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7313 7314
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7315
		intel_encoder->disable = vlv_disable_dp;
7316
		intel_encoder->post_disable = chv_post_disable_dp;
7317
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7318
	} else if (IS_VALLEYVIEW(dev_priv)) {
7319
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7320 7321
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7322
		intel_encoder->disable = vlv_disable_dp;
7323
		intel_encoder->post_disable = vlv_post_disable_dp;
7324
	} else {
7325 7326
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7327
		intel_encoder->disable = g4x_disable_dp;
7328
		intel_encoder->post_disable = g4x_post_disable_dp;
7329
	}
7330 7331

	intel_dig_port->dp.output_reg = output_reg;
7332
	intel_dig_port->max_lanes = 4;
7333

7334
	intel_encoder->type = INTEL_OUTPUT_DP;
7335
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7336
	if (IS_CHERRYVIEW(dev_priv)) {
7337 7338 7339 7340 7341 7342 7343
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7344
	intel_encoder->cloneable = 0;
7345
	intel_encoder->port = port;
7346

7347 7348
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7349 7350 7351
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7352
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7353 7354 7355
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7356
	return true;
S
Sudip Mukherjee 已提交
7357 7358 7359

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7360
err_encoder_init:
S
Sudip Mukherjee 已提交
7361 7362 7363
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7364
	return false;
7365
}
7366

7367
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7368
{
7369 7370 7371 7372
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7373

7374 7375
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7376

7377
		intel_dp = enc_to_intel_dp(&encoder->base);
7378

7379
		if (!intel_dp->can_mst)
7380 7381
			continue;

7382 7383
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7384 7385 7386
	}
}

7387
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7388
{
7389
	struct intel_encoder *encoder;
7390

7391 7392
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7393
		int ret;
7394

7395 7396 7397 7398 7399 7400
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7401
			continue;
7402

7403
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7404 7405 7406 7407 7408
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7409 7410
	}
}