intel_dp.c 198.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drm_atomic_helper.h>
36 37
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
38
#include <drm/drm_dp_helper.h>
39
#include <drm/drm_edid.h>
40
#include <drm/drm_hdcp.h>
41
#include "intel_drv.h"
42
#include <drm/i915_drm.h>
43 44
#include "i915_drv.h"

45
#define DP_DPRX_ESI_LEN 14
46

47 48
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
49 50
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
51 52 53 54 55 56 57 58 59

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

60 61 62 63 64 65
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

66
struct dp_link_dpll {
67
	int clock;
68 69 70
	struct dpll dpll;
};

71
static const struct dp_link_dpll g4x_dpll[] = {
72
	{ 162000,
73
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
74
	{ 270000,
75 76 77 78
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
79
	{ 162000,
80
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
81
	{ 270000,
82 83 84
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

85
static const struct dp_link_dpll vlv_dpll[] = {
86
	{ 162000,
C
Chon Ming Lee 已提交
87
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
88
	{ 270000,
89 90 91
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

92 93 94 95 96 97 98 99 100 101
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
102
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
103
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
104
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
105 106
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
107

108 109 110 111 112 113 114 115
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

116
/**
117
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
118 119 120 121 122
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
123
bool intel_dp_is_edp(struct intel_dp *intel_dp)
124
{
125 126 127
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
128 129
}

130 131
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
132
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
133 134
}

135 136
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
137
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
138
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
139 140
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
141
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
142
				      enum pipe pipe);
143
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
144

145 146 147
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
148
	static const int dp_rates[] = {
149
		162000, 270000, 540000, 810000
150
	};
151
	int i, max_rate;
152

153
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
154

155 156
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
157
			break;
158
		intel_dp->sink_rates[i] = dp_rates[i];
159
	}
160

161
	intel_dp->num_sink_rates = i;
162 163
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

186 187
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
188
{
189
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

222 223
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
224 225
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
226 227
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
228
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
229

230
	return min3(source_max, sink_max, fia_max);
231 232
}

233
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
234 235 236 237
{
	return intel_dp->max_link_lane_count;
}

238
int
239
intel_dp_link_required(int pixel_clock, int bpp)
240
{
241 242
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
243 244
}

245
int
246 247
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
248 249 250 251 252 253 254
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

280
static int cnl_max_source_rate(struct intel_dp *intel_dp)
281 282 283 284 285 286 287 288 289
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
290
		return 540000;
291 292 293

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
294
		return 810000;
295

296
	/* For other SKUs, max rate on ports A and D is 5.4G */
297
	if (port == PORT_A || port == PORT_D)
298
		return 540000;
299

300
	return 810000;
301 302
}

303 304 305
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
306
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
307 308
	enum port port = dig_port->base.port;

309 310
	if (intel_port_is_combophy(dev_priv, port) &&
	    !intel_dp_is_edp(intel_dp))
311 312 313 314 315
		return 540000;

	return 810000;
}

316 317
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
318
{
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
335 336
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
337 338
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
339
	const int *source_rates;
340
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
341

342 343 344
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

345
	if (INTEL_GEN(dev_priv) >= 10) {
346
		source_rates = cnl_rates;
347
		size = ARRAY_SIZE(cnl_rates);
348
		if (IS_GEN(dev_priv, 10))
349 350 351
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
352 353 354
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
355
	} else if (IS_GEN9_BC(dev_priv)) {
356
		source_rates = skl_rates;
357
		size = ARRAY_SIZE(skl_rates);
358 359
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
360 361
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
362
	} else {
363 364
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
365 366
	}

367 368 369 370 371
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

372 373 374
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

375 376
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

402 403 404 405 406 407 408 409 410 411 412 413
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

414
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
415
{
416
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
417

418 419 420 421 422 423 424 425
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
426
		intel_dp->common_rates[0] = 162000;
427 428 429 430
		intel_dp->num_common_rates = 1;
	}
}

431 432
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
433 434 435 436 437 438
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
439 440
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
441 442
		return false;

443 444
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
445 446 447 448 449
		return false;

	return true;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
						     uint8_t lane_count)
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

466 467 468
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
469
	int index;
470

471 472 473 474
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
475 476 477 478 479 480 481
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
482 483
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
484
	} else if (lane_count > 1) {
485 486 487 488 489 490 491
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
492
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
493
		intel_dp->max_link_lane_count = lane_count >> 1;
494 495 496 497 498 499 500 501
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

502
static enum drm_mode_status
503 504 505
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
506
	struct intel_dp *intel_dp = intel_attached_dp(connector);
507 508
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
509
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
510 511
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
512
	int max_dotclk;
513 514
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
515

516 517 518
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

519
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
520

521
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
522
		if (mode->hdisplay > fixed_mode->hdisplay)
523 524
			return MODE_PANEL;

525
		if (mode->vdisplay > fixed_mode->vdisplay)
526
			return MODE_PANEL;
527 528

		target_clock = fixed_mode->clock;
529 530
	}

531
	max_link_clock = intel_dp_max_link_rate(intel_dp);
532
	max_lanes = intel_dp_max_lane_count(intel_dp);
533 534 535 536

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

537 538 539 540 541 542 543 544 545 546 547 548
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
549
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
550 551 552 553 554 555 556 557 558 559 560 561 562 563
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
564
		return MODE_CLOCK_HIGH;
565 566 567 568

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

569 570 571
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

572 573 574
	return MODE_OK;
}

575
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
576 577 578 579 580 581 582 583 584 585 586
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

587
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
588 589 590 591 592 593 594 595
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

596
static void
597
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
598
static void
599
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
600
					      bool force_disable_vdd);
601
static void
602
intel_dp_pps_init(struct intel_dp *intel_dp);
603

604 605
static void pps_lock(struct intel_dp *intel_dp)
{
606
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
607 608

	/*
609
	 * See intel_power_sequencer_reset() why we need
610 611
	 * a power domain reference here.
	 */
612 613
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)));
614 615 616 617 618 619

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
620
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
621 622 623

	mutex_unlock(&dev_priv->pps_mutex);

624 625
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
626 627
}

628 629 630
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
631
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
632 633
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
634 635 636
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
637 638 639
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
640
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
641
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
642 643 644
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
645
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
646 647 648 649 650 651 652 653 654

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

655
	if (IS_CHERRYVIEW(dev_priv))
656 657 658
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
659

660 661 662 663 664 665
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
666
	if (!pll_enabled) {
667
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
668 669
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

670
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
671 672 673 674 675
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
676
	}
677

678 679 680
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
681
	 * to make this power sequencer lock onto the port.
682 683 684 685 686 687 688 689 690 691
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
692

693
	if (!pll_enabled) {
694
		vlv_force_pll_off(dev_priv, pipe);
695 696 697 698

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
699 700
}

701 702 703 704 705 706 707 708 709
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
710 711
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

733 734 735
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
736
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
737
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
738
	enum pipe pipe;
739

V
Ville Syrjälä 已提交
740
	lockdep_assert_held(&dev_priv->pps_mutex);
741

742
	/* We should never land here with regular DP ports */
743
	WARN_ON(!intel_dp_is_edp(intel_dp));
744

745 746 747
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

748 749 750
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

751
	pipe = vlv_find_free_pps(dev_priv);
752 753 754 755 756

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
757
	if (WARN_ON(pipe == INVALID_PIPE))
758
		pipe = PIPE_A;
759

760
	vlv_steal_power_sequencer(dev_priv, pipe);
761
	intel_dp->pps_pipe = pipe;
762 763 764

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
765
		      port_name(intel_dig_port->base.port));
766 767

	/* init power sequencer on this pipe and port */
768 769
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
770

771 772 773 774 775
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
776 777 778 779

	return intel_dp->pps_pipe;
}

780 781 782
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
783
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
784
	int backlight_controller = dev_priv->vbt.backlight.controller;
785 786 787 788

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
789
	WARN_ON(!intel_dp_is_edp(intel_dp));
790 791

	if (!intel_dp->pps_reset)
792
		return backlight_controller;
793 794 795 796 797 798 799

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
800
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
801

802
	return backlight_controller;
803 804
}

805 806 807 808 809 810
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
811
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
812 813 814 815 816
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
817
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
818 819 820 821 822 823 824
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
825

826
static enum pipe
827 828 829
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
830 831
{
	enum pipe pipe;
832 833

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
834
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
835
			PANEL_PORT_SELECT_MASK;
836 837 838 839

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

840 841 842
		if (!pipe_check(dev_priv, pipe))
			continue;

843
		return pipe;
844 845
	}

846 847 848 849 850 851
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
852
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
853
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
854
	enum port port = intel_dig_port->base.port;
855 856 857 858

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
859 860 861 862 863 864 865 866 867 868 869
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
870 871 872 873 874 875

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
876 877
	}

878 879 880
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

881 882
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
883 884
}

885
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
886 887 888
{
	struct intel_encoder *encoder;

889
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
890
		    !IS_GEN9_LP(dev_priv)))
891 892 893 894 895 896 897 898 899 900 901 902
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

903 904
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
905

906 907 908 909 910
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

911
		if (IS_GEN9_LP(dev_priv))
912 913 914
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
915
	}
916 917
}

918 919 920 921 922 923 924 925
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

926
static void intel_pps_get_registers(struct intel_dp *intel_dp,
927 928
				    struct pps_registers *regs)
{
929
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
930 931
	int pps_idx = 0;

932 933
	memset(regs, 0, sizeof(*regs));

934
	if (IS_GEN9_LP(dev_priv))
935 936 937
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
938

939 940 941 942
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
943 944
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
945
		regs->pp_div = PP_DIVISOR(pps_idx);
946 947
}

948 949
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
950
{
951
	struct pps_registers regs;
952

953
	intel_pps_get_registers(intel_dp, &regs);
954 955

	return regs.pp_ctrl;
956 957
}

958 959
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
960
{
961
	struct pps_registers regs;
962

963
	intel_pps_get_registers(intel_dp, &regs);
964 965

	return regs.pp_stat;
966 967
}

968 969 970 971 972 973 974
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
975
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
976

977
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
978 979
		return 0;

980
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
981

982
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
983
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
984
		i915_reg_t pp_ctrl_reg, pp_div_reg;
985
		u32 pp_div;
V
Ville Syrjälä 已提交
986

987 988
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
989 990 991 992 993 994 995 996 997
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

998
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
999

1000 1001 1002
	return 0;
}

1003
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1004
{
1005
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1006

V
Ville Syrjälä 已提交
1007 1008
	lockdep_assert_held(&dev_priv->pps_mutex);

1009
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1010 1011 1012
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1013
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1014 1015
}

1016
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1017
{
1018
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1019

V
Ville Syrjälä 已提交
1020 1021
	lockdep_assert_held(&dev_priv->pps_mutex);

1022
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1023 1024 1025
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1026
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1027 1028
}

1029 1030 1031
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1032
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1033

1034
	if (!intel_dp_is_edp(intel_dp))
1035
		return;
1036

1037
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1038 1039
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1040 1041
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1042 1043 1044
	}
}

1045
static uint32_t
1046
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1047
{
1048
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1049
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1050 1051 1052
	uint32_t status;
	bool done;

1053
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1054 1055
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1056
	if (!done)
1057
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1058 1059 1060 1061 1062
#undef C

	return status;
}

1063
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1064
{
1065
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1066

1067 1068 1069
	if (index)
		return 0;

1070 1071
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1072
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1073
	 */
1074
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1075 1076 1077 1078
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1079
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1080
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1081 1082 1083 1084

	if (index)
		return 0;

1085 1086 1087 1088 1089
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1090
	if (dig_port->aux_ch == AUX_CH_A)
1091
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1092 1093
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1094 1095 1096 1097
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1098
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1099
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1100

1101
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1102
		/* Workaround for non-ULT HSW */
1103 1104 1105 1106 1107
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1108
	}
1109 1110

	return ilk_get_aux_clock_divider(intel_dp, index);
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1123 1124 1125
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1126 1127
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1128 1129
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1130 1131
	uint32_t precharge, timeout;

1132
	if (IS_GEN(dev_priv, 6))
1133 1134 1135 1136
		precharge = 3;
	else
		precharge = 5;

1137
	if (IS_BROADWELL(dev_priv))
1138 1139 1140 1141 1142
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1143
	       DP_AUX_CH_CTL_DONE |
1144
	       DP_AUX_CH_CTL_INTERRUPT |
1145
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1146
	       timeout |
1147
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1148 1149
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1150
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1151 1152
}

1153 1154 1155 1156
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	uint32_t ret;

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1174 1175
}

1176
static int
1177 1178
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1179 1180
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1181 1182
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1183 1184
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1185
	i915_reg_t ch_ctl, ch_data[5];
1186
	uint32_t aux_clock_divider;
1187 1188
	int i, ret, recv_bytes;
	uint32_t status;
1189
	int try, clock = 0;
1190 1191
	bool vdd;

1192 1193 1194 1195
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1196
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1197

1198 1199 1200 1201 1202 1203
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1204
	vdd = edp_panel_vdd_on(intel_dp);
1205 1206 1207 1208 1209 1210 1211 1212

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1213

1214 1215
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1216
		status = I915_READ_NOTRACE(ch_ctl);
1217 1218 1219 1220 1221 1222
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1223 1224 1225 1226 1227 1228 1229 1230 1231
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1232 1233
		ret = -EBUSY;
		goto out;
1234 1235
	}

1236 1237 1238 1239 1240 1241
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1242
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1243 1244 1245 1246 1247
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1248

1249 1250 1251 1252
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1253
				I915_WRITE(ch_data[i >> 2],
1254 1255
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1256 1257

			/* Send the command and wait for it to complete */
1258
			I915_WRITE(ch_ctl, send_ctl);
1259

1260
			status = intel_dp_aux_wait_done(intel_dp);
1261 1262 1263 1264 1265 1266 1267 1268

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1269 1270 1271 1272 1273
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1274 1275 1276
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1277 1278
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1279
				continue;
1280
			}
1281
			if (status & DP_AUX_CH_CTL_DONE)
1282
				goto done;
1283
		}
1284 1285 1286
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1287
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1288 1289
		ret = -EBUSY;
		goto out;
1290 1291
	}

1292
done:
1293 1294 1295
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1296
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1297
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1298 1299
		ret = -EIO;
		goto out;
1300
	}
1301 1302 1303

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1304
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1305
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1306 1307
		ret = -ETIMEDOUT;
		goto out;
1308 1309 1310 1311 1312
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1326 1327
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1328

1329
	for (i = 0; i < recv_bytes; i += 4)
1330
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1331
				    recv + i, recv_bytes - i);
1332

1333 1334 1335 1336
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1337 1338 1339
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1340
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1341

1342
	return ret;
1343 1344
}

1345 1346
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1358 1359
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1360
{
1361 1362 1363
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1364 1365
	int ret;

1366
	intel_dp_aux_header(txbuf, msg);
1367

1368 1369 1370
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1371
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1372
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1373
		rxsize = 2; /* 0 or 1 data bytes */
1374

1375 1376
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1377

1378 1379
		WARN_ON(!msg->buffer != !msg->size);

1380 1381
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1382

1383
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1384
					rxbuf, rxsize, 0);
1385 1386
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1387

1388 1389 1390 1391 1392 1393 1394
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1395 1396
		}
		break;
1397

1398 1399
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1400
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1401
		rxsize = msg->size + 1;
1402

1403 1404
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1405

1406
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1407
					rxbuf, rxsize, 0);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1418
		}
1419 1420 1421 1422 1423
		break;

	default:
		ret = -EINVAL;
		break;
1424
	}
1425

1426
	return ret;
1427 1428
}

1429

1430
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1431
{
1432
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1433 1434
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1435

1436 1437 1438 1439 1440
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1441
	default:
1442 1443
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1444 1445 1446
	}
}

1447
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1448
{
1449
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1450 1451
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1452

1453 1454 1455 1456 1457
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1458
	default:
1459 1460
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1461 1462 1463
	}
}

1464
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1465
{
1466
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1467 1468
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1469

1470 1471 1472 1473 1474 1475 1476
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1477
	default:
1478 1479
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1480 1481 1482
	}
}

1483
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1484
{
1485
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1486 1487
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1488

1489 1490 1491 1492 1493 1494 1495
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1496
	default:
1497 1498
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1499 1500 1501
	}
}

1502
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1503
{
1504
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1505 1506
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1507

1508 1509 1510 1511 1512
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1513
	case AUX_CH_E:
1514 1515
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1516
	default:
1517 1518
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1519 1520 1521
	}
}

1522
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1523
{
1524
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1525 1526
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1527

1528 1529 1530 1531 1532
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1533
	case AUX_CH_E:
1534 1535
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1536
	default:
1537 1538
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1539 1540 1541
	}
}

1542 1543 1544 1545 1546 1547 1548 1549
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1550
{
1551
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1552 1553
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1565

1566 1567 1568 1569 1570 1571 1572 1573
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1574

1575 1576 1577 1578
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1579

1580
	drm_dp_aux_init(&intel_dp->aux);
1581

1582
	/* Failure to allocate our preferred name is not critical */
1583 1584
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1585
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1586 1587
}

1588
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1589
{
1590
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1591

1592
	return max_rate >= 540000;
1593 1594
}

1595 1596 1597 1598 1599 1600 1601
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1602 1603
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1604
		   struct intel_crtc_state *pipe_config)
1605
{
1606
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1607 1608
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1609

1610
	if (IS_G4X(dev_priv)) {
1611 1612
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1613
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1614 1615
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1616
	} else if (IS_CHERRYVIEW(dev_priv)) {
1617 1618
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1619
	} else if (IS_VALLEYVIEW(dev_priv)) {
1620 1621
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1622
	}
1623 1624 1625

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1626
			if (pipe_config->port_clock == divisor[i].clock) {
1627 1628 1629 1630 1631
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1632 1633 1634
	}
}

1635 1636 1637 1638 1639 1640 1641 1642
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1643
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1658 1659
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1660 1661
	DRM_DEBUG_KMS("source rates: %s\n", str);

1662 1663
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1664 1665
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1666 1667
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1668
	DRM_DEBUG_KMS("common rates: %s\n", str);
1669 1670
}

1671 1672 1673 1674 1675
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1676
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1677 1678 1679
	if (WARN_ON(len <= 0))
		return 162000;

1680
	return intel_dp->common_rates[len - 1];
1681 1682
}

1683 1684
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1685 1686
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1687 1688 1689 1690 1691

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1692 1693
}

1694 1695
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1696
{
1697 1698
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1699 1700 1701 1702 1703 1704 1705 1706 1707
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1708 1709 1710 1711 1712 1713
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1714
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1715 1716 1717 1718
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1734 1735 1736 1737 1738 1739 1740 1741

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1742 1743 1744
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1745 1746 1747 1748
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1749 1750
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1751
{
1752
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1753
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1754 1755 1756 1757 1758 1759 1760 1761
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1772 1773 1774
	return bpp;
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/* Optimize link config in order: max bpp, min lanes, min clock */
static bool
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (lane_count = limits->min_lane_count;
		     lane_count <= limits->max_lane_count;
		     lane_count <<= 1) {
			for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

static bool intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
					struct intel_crtc_state *pipe_config,
					struct drm_connector_state *conn_state,
					struct link_config_limits *limits)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;

	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
		return false;

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
		return false;
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
			return false;
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
			return false;
		}
	}
1972 1973 1974 1975 1976 1977 1978
	if (intel_dp_compute_dsc_params(intel_dp, pipe_config) < 0) {
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
		return false;
	}
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

	return true;
}

1989 1990
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
1991 1992
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
1993
{
1994
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1995
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1996
	struct link_config_limits limits;
1997
	int common_len;
1998
	bool ret;
1999

2000
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2001
						    intel_dp->max_link_rate);
2002 2003

	/* No common link rates between source and sink */
2004
	WARN_ON(common_len <= 0);
2005

2006 2007 2008 2009 2010 2011 2012 2013
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2014

2015
	if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
2016 2017
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2018 2019 2020 2021 2022 2023
		 * advertizes being capable of. The eDP 1.3 and earlier panels
		 * are generally designed to support only a single clock and
		 * lane configuration, and typically these values correspond to
		 * the native resolution of the panel. With eDP 1.4 rate select
		 * and DSC, this is decreasingly the case, and we need to be
		 * able to select less than maximum link config.
2024
		 */
2025 2026
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2027
	}
2028

2029 2030
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2031 2032 2033 2034 2035 2036
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2037
	if (intel_dp_is_edp(intel_dp))
2038 2039 2040 2041 2042 2043 2044 2045 2046
		/*
		 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
		 * section A.1: "It is recommended that the minimum number of
		 * lanes be used, using the minimum link rate allowed for that
		 * lane configuration."
		 *
		 * Note that we use the max clock and lane count for eDP 1.3 and
		 * earlier, and fast vs. wide is irrelevant.
		 */
2047 2048 2049
		ret = intel_dp_compute_link_config_fast(intel_dp, pipe_config,
							&limits);
	else
2050
		/* Optimize for slow and wide. */
2051 2052 2053 2054
		ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
							&limits);

	/* enable compression if the mode doesn't fit available BW */
2055 2056
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
	if (!ret || intel_dp->force_dsc_en) {
2057 2058
		if (!intel_dp_dsc_compute_config(intel_dp, pipe_config,
						 conn_state, &limits))
2059 2060
			return false;
	}
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	return true;
}

bool
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2095
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2096 2097 2098 2099 2100
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2101 2102
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2103 2104 2105 2106

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2107
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2108 2109 2110
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2111 2112 2113 2114 2115 2116 2117 2118 2119
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2120 2121
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

		if (INTEL_GEN(dev_priv) >= 9) {
			int ret;

			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2139 2140 2141
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return false;

2142
	if (HAS_GMCH_DISPLAY(dev_priv) &&
2143 2144 2145 2146 2147 2148
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

2149 2150 2151
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
				  intel_dp_supports_fec(intel_dp, pipe_config);

2152
	if (!intel_dp_compute_link_config(encoder, pipe_config, conn_state))
2153 2154
		return false;

2155
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2156 2157 2158 2159 2160
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
2161
		pipe_config->limited_color_range =
2162
			pipe_config->pipe_bpp != 18 &&
2163 2164
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
2165 2166
	} else {
		pipe_config->limited_color_range =
2167
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2168 2169
	}

2170 2171 2172 2173 2174 2175 2176 2177
	if (!pipe_config->dsc_params.compression_enable)
		intel_link_compute_m_n(pipe_config->pipe_bpp,
				       pipe_config->lane_count,
				       adjusted_mode->crtc_clock,
				       pipe_config->port_clock,
				       &pipe_config->dp_m_n,
				       constant_n);
	else
2178
		intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
2179 2180 2181 2182 2183
				       pipe_config->lane_count,
				       adjusted_mode->crtc_clock,
				       pipe_config->port_clock,
				       &pipe_config->dp_m_n,
				       constant_n);
2184

2185
	if (intel_connector->panel.downclock_mode != NULL &&
2186
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2187
			pipe_config->has_drrs = true;
2188 2189 2190 2191 2192
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2193
					       constant_n);
2194 2195
	}

2196
	if (!HAS_DDI(dev_priv))
2197
		intel_dp_set_clock(encoder, pipe_config);
2198

2199 2200
	intel_psr_compute_config(intel_dp, pipe_config);

2201
	return true;
2202 2203
}

2204
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2205 2206
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
2207
{
2208
	intel_dp->link_trained = false;
2209 2210 2211
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2212 2213
}

2214
static void intel_dp_prepare(struct intel_encoder *encoder,
2215
			     const struct intel_crtc_state *pipe_config)
2216
{
2217
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2218
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2219
	enum port port = encoder->port;
2220
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2221
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2222

2223 2224 2225 2226
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2227

2228
	/*
K
Keith Packard 已提交
2229
	 * There are four kinds of DP registers:
2230 2231
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2232 2233
	 * 	SNB CPU
	 *	IVB CPU
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2244

2245 2246 2247 2248
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2249

2250 2251
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2252
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2253

2254
	/* Split out the IBX/CPU vs CPT settings */
2255

2256
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2257 2258 2259 2260 2261 2262
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2263
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2264 2265
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2266
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2267
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2268 2269
		u32 trans_dp;

2270
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2271 2272 2273 2274 2275 2276 2277

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2278
	} else {
2279
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2280
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2281 2282 2283 2284 2285 2286 2287

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2288
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2289 2290
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2291
		if (IS_CHERRYVIEW(dev_priv))
2292 2293 2294
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2295
	}
2296 2297
}

2298 2299
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2300

2301 2302
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2303

2304 2305
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2306

2307
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2308

2309
static void wait_panel_status(struct intel_dp *intel_dp,
2310 2311
				       u32 mask,
				       u32 value)
2312
{
2313
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2314
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2315

V
Ville Syrjälä 已提交
2316 2317
	lockdep_assert_held(&dev_priv->pps_mutex);

2318
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2319

2320 2321
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2322

2323
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2324 2325 2326
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2327

2328 2329 2330
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2331
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2332 2333
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2334 2335

	DRM_DEBUG_KMS("Wait complete\n");
2336
}
2337

2338
static void wait_panel_on(struct intel_dp *intel_dp)
2339 2340
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2341
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2342 2343
}

2344
static void wait_panel_off(struct intel_dp *intel_dp)
2345 2346
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2347
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2348 2349
}

2350
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2351
{
2352 2353 2354
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2355
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2356

2357 2358 2359 2360 2361
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2362 2363
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2364 2365 2366
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2367

2368
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2369 2370
}

2371
static void wait_backlight_on(struct intel_dp *intel_dp)
2372 2373 2374 2375 2376
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2377
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2378 2379 2380 2381
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2382

2383 2384 2385 2386
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2387
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2388
{
2389
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2390
	u32 control;
2391

V
Ville Syrjälä 已提交
2392 2393
	lockdep_assert_held(&dev_priv->pps_mutex);

2394
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2395 2396
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2397 2398 2399
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2400
	return control;
2401 2402
}

2403 2404 2405 2406 2407
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2408
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2409
{
2410
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2411
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2412
	u32 pp;
2413
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2414
	bool need_to_disable = !intel_dp->want_panel_vdd;
2415

V
Ville Syrjälä 已提交
2416 2417
	lockdep_assert_held(&dev_priv->pps_mutex);

2418
	if (!intel_dp_is_edp(intel_dp))
2419
		return false;
2420

2421
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2422
	intel_dp->want_panel_vdd = true;
2423

2424
	if (edp_have_panel_vdd(intel_dp))
2425
		return need_to_disable;
2426

2427 2428
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2429

V
Ville Syrjälä 已提交
2430
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2431
		      port_name(intel_dig_port->base.port));
2432

2433 2434
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2435

2436
	pp = ironlake_get_pp_control(intel_dp);
2437
	pp |= EDP_FORCE_VDD;
2438

2439 2440
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2441 2442 2443 2444 2445

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2446 2447 2448
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2449
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2450
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2451
			      port_name(intel_dig_port->base.port));
2452 2453
		msleep(intel_dp->panel_power_up_delay);
	}
2454 2455 2456 2457

	return need_to_disable;
}

2458 2459 2460 2461 2462 2463 2464
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2465
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2466
{
2467
	bool vdd;
2468

2469
	if (!intel_dp_is_edp(intel_dp))
2470 2471
		return;

2472
	pps_lock(intel_dp);
2473
	vdd = edp_panel_vdd_on(intel_dp);
2474
	pps_unlock(intel_dp);
2475

R
Rob Clark 已提交
2476
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2477
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2478 2479
}

2480
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2481
{
2482
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2483 2484
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2485
	u32 pp;
2486
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2487

V
Ville Syrjälä 已提交
2488
	lockdep_assert_held(&dev_priv->pps_mutex);
2489

2490
	WARN_ON(intel_dp->want_panel_vdd);
2491

2492
	if (!edp_have_panel_vdd(intel_dp))
2493
		return;
2494

V
Ville Syrjälä 已提交
2495
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2496
		      port_name(intel_dig_port->base.port));
2497

2498 2499
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2500

2501 2502
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2503

2504 2505
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2506

2507 2508 2509
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2510

2511
	if ((pp & PANEL_POWER_ON) == 0)
2512
		intel_dp->panel_power_off_time = ktime_get_boottime();
2513

2514 2515
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2516
}
2517

2518
static void edp_panel_vdd_work(struct work_struct *__work)
2519 2520 2521 2522
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2523
	pps_lock(intel_dp);
2524 2525
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2526
	pps_unlock(intel_dp);
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2542 2543 2544 2545 2546
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2547
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2548
{
2549
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2550 2551 2552

	lockdep_assert_held(&dev_priv->pps_mutex);

2553
	if (!intel_dp_is_edp(intel_dp))
2554
		return;
2555

R
Rob Clark 已提交
2556
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2557
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2558

2559 2560
	intel_dp->want_panel_vdd = false;

2561
	if (sync)
2562
		edp_panel_vdd_off_sync(intel_dp);
2563 2564
	else
		edp_panel_vdd_schedule_off(intel_dp);
2565 2566
}

2567
static void edp_panel_on(struct intel_dp *intel_dp)
2568
{
2569
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2570
	u32 pp;
2571
	i915_reg_t pp_ctrl_reg;
2572

2573 2574
	lockdep_assert_held(&dev_priv->pps_mutex);

2575
	if (!intel_dp_is_edp(intel_dp))
2576
		return;
2577

V
Ville Syrjälä 已提交
2578
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2579
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2580

2581 2582
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2583
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2584
		return;
2585

2586
	wait_panel_power_cycle(intel_dp);
2587

2588
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2589
	pp = ironlake_get_pp_control(intel_dp);
2590
	if (IS_GEN(dev_priv, 5)) {
2591 2592
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2593 2594
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2595
	}
2596

2597
	pp |= PANEL_POWER_ON;
2598
	if (!IS_GEN(dev_priv, 5))
2599 2600
		pp |= PANEL_POWER_RESET;

2601 2602
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2603

2604
	wait_panel_on(intel_dp);
2605
	intel_dp->last_power_on = jiffies;
2606

2607
	if (IS_GEN(dev_priv, 5)) {
2608
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2609 2610
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2611
	}
2612
}
V
Ville Syrjälä 已提交
2613

2614 2615
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2616
	if (!intel_dp_is_edp(intel_dp))
2617 2618 2619 2620
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2621
	pps_unlock(intel_dp);
2622 2623
}

2624 2625

static void edp_panel_off(struct intel_dp *intel_dp)
2626
{
2627
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2628
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2629
	u32 pp;
2630
	i915_reg_t pp_ctrl_reg;
2631

2632 2633
	lockdep_assert_held(&dev_priv->pps_mutex);

2634
	if (!intel_dp_is_edp(intel_dp))
2635
		return;
2636

V
Ville Syrjälä 已提交
2637
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2638
		      port_name(dig_port->base.port));
2639

V
Ville Syrjälä 已提交
2640
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2641
	     port_name(dig_port->base.port));
2642

2643
	pp = ironlake_get_pp_control(intel_dp);
2644 2645
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2646
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2647
		EDP_BLC_ENABLE);
2648

2649
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2650

2651 2652
	intel_dp->want_panel_vdd = false;

2653 2654
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2655

2656
	wait_panel_off(intel_dp);
2657
	intel_dp->panel_power_off_time = ktime_get_boottime();
2658 2659

	/* We got a reference when we enabled the VDD. */
2660
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2661
}
V
Ville Syrjälä 已提交
2662

2663 2664
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2665
	if (!intel_dp_is_edp(intel_dp))
2666
		return;
V
Ville Syrjälä 已提交
2667

2668 2669
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2670
	pps_unlock(intel_dp);
2671 2672
}

2673 2674
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2675
{
2676
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2677
	u32 pp;
2678
	i915_reg_t pp_ctrl_reg;
2679

2680 2681 2682 2683 2684 2685
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2686
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2687

2688
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2689

2690
	pp = ironlake_get_pp_control(intel_dp);
2691
	pp |= EDP_BLC_ENABLE;
2692

2693
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2694 2695 2696

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2697

2698
	pps_unlock(intel_dp);
2699 2700
}

2701
/* Enable backlight PWM and backlight PP control. */
2702 2703
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2704
{
2705 2706
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2707
	if (!intel_dp_is_edp(intel_dp))
2708 2709 2710 2711
		return;

	DRM_DEBUG_KMS("\n");

2712
	intel_panel_enable_backlight(crtc_state, conn_state);
2713 2714 2715 2716 2717
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2718
{
2719
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2720
	u32 pp;
2721
	i915_reg_t pp_ctrl_reg;
2722

2723
	if (!intel_dp_is_edp(intel_dp))
2724 2725
		return;

2726
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2727

2728
	pp = ironlake_get_pp_control(intel_dp);
2729
	pp &= ~EDP_BLC_ENABLE;
2730

2731
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2732 2733 2734

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2735

2736
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2737 2738

	intel_dp->last_backlight_off = jiffies;
2739
	edp_wait_backlight_off(intel_dp);
2740
}
2741

2742
/* Disable backlight PP control and backlight PWM. */
2743
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2744
{
2745 2746
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2747
	if (!intel_dp_is_edp(intel_dp))
2748 2749 2750
		return;

	DRM_DEBUG_KMS("\n");
2751

2752
	_intel_edp_backlight_off(intel_dp);
2753
	intel_panel_disable_backlight(old_conn_state);
2754
}
2755

2756 2757 2758 2759 2760 2761 2762 2763
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2764 2765
	bool is_enabled;

2766
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2767
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2768
	pps_unlock(intel_dp);
2769 2770 2771 2772

	if (is_enabled == enable)
		return;

2773 2774
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2775 2776 2777 2778 2779 2780 2781

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2782 2783 2784 2785 2786 2787 2788 2789
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2790
			port_name(dig_port->base.port),
2791
			onoff(state), onoff(cur_state));
2792 2793 2794 2795 2796 2797 2798 2799 2800
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2801
			onoff(state), onoff(cur_state));
2802 2803 2804 2805
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2806
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2807
				const struct intel_crtc_state *pipe_config)
2808
{
2809
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2810
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2811

2812 2813 2814
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2815

2816
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2817
		      pipe_config->port_clock);
2818 2819 2820

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2821
	if (pipe_config->port_clock == 162000)
2822 2823 2824 2825 2826 2827 2828 2829
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2830 2831 2832 2833 2834 2835
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2836
	if (IS_GEN(dev_priv, 5))
2837
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2838

2839
	intel_dp->DP |= DP_PLL_ENABLE;
2840

2841
	I915_WRITE(DP_A, intel_dp->DP);
2842 2843
	POSTING_READ(DP_A);
	udelay(200);
2844 2845
}

2846 2847
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2848
{
2849
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2850
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2851

2852 2853 2854
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2855

2856 2857
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2858
	intel_dp->DP &= ~DP_PLL_ENABLE;
2859

2860
	I915_WRITE(DP_A, intel_dp->DP);
2861
	POSTING_READ(DP_A);
2862 2863 2864
	udelay(200);
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2896
/* If the sink supports it, try to set the power state appropriately */
2897
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2898 2899 2900 2901 2902 2903 2904 2905
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2906 2907 2908
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2909 2910
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2911
	} else {
2912 2913
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2914 2915 2916 2917 2918
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2919 2920
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2921 2922 2923 2924
			if (ret == 1)
				break;
			msleep(1);
		}
2925 2926 2927

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2928
	}
2929 2930 2931 2932

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2933 2934
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2981 2982
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2983
{
2984
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2985
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2986
	intel_wakeref_t wakeref;
2987
	bool ret;
2988

2989 2990 2991
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
2992 2993
		return false;

2994 2995
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2996

2997
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
2998 2999

	return ret;
3000
}
3001

3002
static void intel_dp_get_config(struct intel_encoder *encoder,
3003
				struct intel_crtc_state *pipe_config)
3004
{
3005
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3006 3007
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3008
	enum port port = encoder->port;
3009
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3010

3011 3012 3013 3014
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3015

3016
	tmp = I915_READ(intel_dp->output_reg);
3017 3018

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3019

3020
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3021 3022 3023
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3024 3025 3026
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3027

3028
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3029 3030 3031 3032
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3033
		if (tmp & DP_SYNC_HS_HIGH)
3034 3035 3036
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3037

3038
		if (tmp & DP_SYNC_VS_HIGH)
3039 3040 3041 3042
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3043

3044
	pipe_config->base.adjusted_mode.flags |= flags;
3045

3046
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3047 3048
		pipe_config->limited_color_range = true;

3049 3050 3051
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3052 3053
	intel_dp_get_m_n(crtc, pipe_config);

3054
	if (port == PORT_A) {
3055
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3056 3057 3058 3059
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3060

3061 3062 3063
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3064

3065
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3066
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3081 3082
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3083
	}
3084 3085
}

3086
static void intel_disable_dp(struct intel_encoder *encoder,
3087 3088
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3089
{
3090
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3091

3092 3093
	intel_dp->link_trained = false;

3094
	if (old_crtc_state->has_audio)
3095 3096
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3097 3098 3099

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3100
	intel_edp_panel_vdd_on(intel_dp);
3101
	intel_edp_backlight_off(old_conn_state);
3102
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3103
	intel_edp_panel_off(intel_dp);
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3118 3119
}

3120
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3121 3122
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3123
{
3124
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3125
	enum port port = encoder->port;
3126

3127 3128 3129 3130 3131 3132
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3133
	intel_dp_link_down(encoder, old_crtc_state);
3134 3135

	/* Only ilk+ has port A */
3136
	if (port == PORT_A)
3137
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3138 3139
}

3140
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3141 3142
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3143
{
3144
	intel_dp_link_down(encoder, old_crtc_state);
3145 3146
}

3147
static void chv_post_disable_dp(struct intel_encoder *encoder,
3148 3149
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3150
{
3151
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3152

3153
	intel_dp_link_down(encoder, old_crtc_state);
3154 3155 3156 3157

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3158
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3159

V
Ville Syrjälä 已提交
3160
	mutex_unlock(&dev_priv->sb_lock);
3161 3162
}

3163 3164 3165 3166 3167
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
3168
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3169
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3170
	enum port port = intel_dig_port->base.port;
3171
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3172

3173
	if (dp_train_pat & train_pat_mask)
3174
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3175
			      dp_train_pat & train_pat_mask);
3176

3177
	if (HAS_DDI(dev_priv)) {
3178 3179 3180 3181 3182 3183 3184 3185
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3186
		switch (dp_train_pat & train_pat_mask) {
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3200 3201 3202
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3203 3204 3205
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3206
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3207
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3221
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3222 3223 3224 3225 3226
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3227
		*DP &= ~DP_LINK_TRAIN_MASK;
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3240 3241
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3242 3243 3244 3245 3246
			break;
		}
	}
}

3247
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3248
				 const struct intel_crtc_state *old_crtc_state)
3249
{
3250
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3251 3252 3253

	/* enable with pattern 1 (as per spec) */

3254
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3255 3256 3257 3258 3259 3260 3261 3262

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3263
	if (old_crtc_state->has_audio)
3264
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3265 3266 3267

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3268 3269
}

3270
static void intel_enable_dp(struct intel_encoder *encoder,
3271 3272
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3273
{
3274
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3275
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3276
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3277
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3278
	enum pipe pipe = crtc->pipe;
3279

3280 3281
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3282

3283 3284
	pps_lock(intel_dp);

3285
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3286
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3287

3288
	intel_dp_enable_port(intel_dp, pipe_config);
3289 3290 3291 3292 3293 3294 3295

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3296
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3297 3298
		unsigned int lane_mask = 0x0;

3299
		if (IS_CHERRYVIEW(dev_priv))
3300
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3301

3302 3303
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3304
	}
3305

3306
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3307
	intel_dp_start_link_train(intel_dp);
3308
	intel_dp_stop_link_train(intel_dp);
3309

3310
	if (pipe_config->has_audio) {
3311
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3312
				 pipe_name(pipe));
3313
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3314
	}
3315
}
3316

3317
static void g4x_enable_dp(struct intel_encoder *encoder,
3318 3319
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3320
{
3321
	intel_enable_dp(encoder, pipe_config, conn_state);
3322
	intel_edp_backlight_on(pipe_config, conn_state);
3323
}
3324

3325
static void vlv_enable_dp(struct intel_encoder *encoder,
3326 3327
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3328
{
3329
	intel_edp_backlight_on(pipe_config, conn_state);
3330 3331
}

3332
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3333 3334
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3335 3336
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3337
	enum port port = encoder->port;
3338

3339
	intel_dp_prepare(encoder, pipe_config);
3340

3341
	/* Only ilk+ has port A */
3342
	if (port == PORT_A)
3343
		ironlake_edp_pll_on(intel_dp, pipe_config);
3344 3345
}

3346 3347 3348
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3349
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3350
	enum pipe pipe = intel_dp->pps_pipe;
3351
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3352

3353 3354
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3355 3356 3357
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3358 3359 3360
	edp_panel_vdd_off_sync(intel_dp);

	/*
3361
	 * VLV seems to get confused when multiple power sequencers
3362 3363 3364
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3365
	 * selected in multiple power sequencers, but let's clear the
3366 3367 3368 3369
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3370
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3371 3372 3373 3374 3375 3376
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3377
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3378 3379 3380 3381 3382 3383
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3384 3385 3386
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3387

3388 3389 3390 3391
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3392 3393 3394 3395
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3396
			      pipe_name(pipe), port_name(port));
3397 3398

		/* make sure vdd is off before we steal it */
3399
		vlv_detach_power_sequencer(intel_dp);
3400 3401 3402
	}
}

3403 3404
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3405
{
3406
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3407 3408
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3409 3410 3411

	lockdep_assert_held(&dev_priv->pps_mutex);

3412
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3413

3414 3415 3416 3417 3418 3419 3420
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3421
		vlv_detach_power_sequencer(intel_dp);
3422
	}
3423 3424 3425 3426 3427

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3428
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3429

3430 3431
	intel_dp->active_pipe = crtc->pipe;

3432
	if (!intel_dp_is_edp(intel_dp))
3433 3434
		return;

3435 3436 3437 3438
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3439
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3440 3441

	/* init power sequencer on this pipe and port */
3442 3443
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3444 3445
}

3446
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3447 3448
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3449
{
3450
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3451

3452
	intel_enable_dp(encoder, pipe_config, conn_state);
3453 3454
}

3455
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3456 3457
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3458
{
3459
	intel_dp_prepare(encoder, pipe_config);
3460

3461
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3462 3463
}

3464
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3465 3466
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3467
{
3468
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3469

3470
	intel_enable_dp(encoder, pipe_config, conn_state);
3471 3472

	/* Second common lane will stay alive on its own now */
3473
	chv_phy_release_cl2_override(encoder);
3474 3475
}

3476
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3477 3478
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3479
{
3480
	intel_dp_prepare(encoder, pipe_config);
3481

3482
	chv_phy_pre_pll_enable(encoder, pipe_config);
3483 3484
}

3485
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3486 3487
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3488
{
3489
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3490 3491
}

3492 3493 3494 3495
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3496
bool
3497
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3498
{
3499 3500
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3501 3502
}

3503
/* These are source-specific values. */
3504
uint8_t
K
Keith Packard 已提交
3505
intel_dp_voltage_max(struct intel_dp *intel_dp)
3506
{
3507
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3508 3509
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3510

3511
	if (HAS_DDI(dev_priv))
3512
		return intel_ddi_dp_voltage_max(encoder);
3513
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3514
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3515
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3516
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3517
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3518
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3519
	else
3520
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3521 3522
}

3523
uint8_t
K
Keith Packard 已提交
3524 3525
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3526
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3527 3528
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3529

3530 3531
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3532
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3533
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3534 3535 3536 3537 3538 3539 3540
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3541
		default:
3542
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3543
		}
3544
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3545
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3546 3547 3548 3549 3550
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3551
		default:
3552
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3553 3554 3555
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3556 3557 3558 3559 3560 3561 3562
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3563
		default:
3564
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3565
		}
3566 3567 3568
	}
}

3569
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3570
{
3571
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3572 3573 3574 3575 3576
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3577
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3578 3579
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3580
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3581 3582 3583
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3584
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3585 3586 3587
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3588
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3589 3590 3591
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3592
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3593 3594 3595 3596 3597 3598 3599
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3600
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3601 3602
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3603
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3604 3605 3606
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3607
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3608 3609 3610
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3611
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3612 3613 3614 3615 3616 3617 3618
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3619
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3620 3621
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3622
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3623 3624 3625
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3626
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3627 3628 3629 3630 3631 3632 3633
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3634
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3635 3636
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3637
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3649 3650
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3651 3652 3653 3654

	return 0;
}

3655
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3656
{
3657 3658 3659
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3660 3661 3662
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3663
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3664
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3665
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3666 3667 3668
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3669
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3670 3671 3672
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3673
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3674 3675 3676
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3677
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3678 3679
			deemph_reg_value = 128;
			margin_reg_value = 154;
3680
			uniq_trans_scale = true;
3681 3682 3683 3684 3685
			break;
		default:
			return 0;
		}
		break;
3686
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3687
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3688
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3689 3690 3691
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3692
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3693 3694 3695
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3696
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3697 3698 3699 3700 3701 3702 3703
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3704
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3705
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3706
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3707 3708 3709
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3710
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3711 3712 3713 3714 3715 3716 3717
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3718
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3719
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3720
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3732 3733
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3734 3735 3736 3737

	return 0;
}

3738
static uint32_t
3739
g4x_signal_levels(uint8_t train_set)
3740
{
3741
	uint32_t	signal_levels = 0;
3742

3743
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3744
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3745 3746 3747
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3748
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3749 3750
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3751
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3752 3753
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3754
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3755 3756 3757
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3758
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3759
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3760 3761 3762
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3763
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3764 3765
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3766
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3767 3768
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3769
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3770 3771 3772 3773 3774 3775
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3776
/* SNB CPU eDP voltage swing and pre-emphasis control */
3777
static uint32_t
3778
snb_cpu_edp_signal_levels(uint8_t train_set)
3779
{
3780 3781 3782
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3783 3784
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3785
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3786
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3787
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3788 3789
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3790
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3791 3792
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3793
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3794 3795
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3796
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3797
	default:
3798 3799 3800
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3801 3802 3803
	}
}

3804
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3805
static uint32_t
3806
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3807 3808 3809 3810
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3811
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3812
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3813
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3814
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3815
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3816 3817
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3818
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3819
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3820
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3821 3822
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3823
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3824
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3825
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3826 3827 3828 3829 3830 3831 3832 3833 3834
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3835
void
3836
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3837
{
3838
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3839
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3840
	enum port port = intel_dig_port->base.port;
3841
	uint32_t signal_levels, mask = 0;
3842 3843
	uint8_t train_set = intel_dp->train_set[0];

R
Rodrigo Vivi 已提交
3844
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3845 3846
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3847
		signal_levels = ddi_signal_levels(intel_dp);
3848
		mask = DDI_BUF_EMP_MASK;
3849
	} else if (IS_CHERRYVIEW(dev_priv)) {
3850
		signal_levels = chv_signal_levels(intel_dp);
3851
	} else if (IS_VALLEYVIEW(dev_priv)) {
3852
		signal_levels = vlv_signal_levels(intel_dp);
3853
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3854
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3855
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3856
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3857
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3858 3859
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3860
		signal_levels = g4x_signal_levels(train_set);
3861 3862 3863
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3864 3865 3866 3867 3868 3869 3870 3871
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3872

3873
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3874 3875 3876

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3877 3878
}

3879
void
3880 3881
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3882
{
3883
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3884 3885
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3886

3887
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3888

3889
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3890
	POSTING_READ(intel_dp->output_reg);
3891 3892
}

3893
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3894
{
3895
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3896
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3897
	enum port port = intel_dig_port->base.port;
3898 3899
	uint32_t val;

3900
	if (!HAS_DDI(dev_priv))
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3918 3919 3920 3921
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3922 3923 3924
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3925
static void
3926 3927
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3928
{
3929 3930 3931 3932
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3933
	uint32_t DP = intel_dp->DP;
3934

3935
	if (WARN_ON(HAS_DDI(dev_priv)))
3936 3937
		return;

3938
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3939 3940
		return;

3941
	DRM_DEBUG_KMS("\n");
3942

3943
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3944
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3945
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3946
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3947
	} else {
3948
		DP &= ~DP_LINK_TRAIN_MASK;
3949
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3950
	}
3951
	I915_WRITE(intel_dp->output_reg, DP);
3952
	POSTING_READ(intel_dp->output_reg);
3953

3954 3955 3956 3957 3958 3959 3960 3961 3962
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3963
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3964 3965 3966 3967 3968 3969 3970
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3971
		/* always enable with pattern 1 (as per spec) */
3972 3973 3974
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3975 3976 3977 3978
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3979
		I915_WRITE(intel_dp->output_reg, DP);
3980
		POSTING_READ(intel_dp->output_reg);
3981

3982
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3983 3984
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3985 3986
	}

3987
	msleep(intel_dp->panel_power_down_delay);
3988 3989

	intel_dp->DP = DP;
3990 3991 3992 3993 3994 3995

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3996 3997
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4034
bool
4035
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4036
{
4037 4038
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4039
		return false; /* aux transfer failed */
4040

4041 4042
	intel_dp_extended_receiver_capabilities(intel_dp);

4043
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4044

4045 4046
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4047

4048 4049 4050 4051 4052 4053 4054 4055
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4056 4057 4058
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4071

4072
		/* FEC is supported only on DP 1.4 */
4073 4074 4075 4076
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4077

4078
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4079 4080 4081
	}
}

4082 4083 4084 4085 4086
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4087

4088 4089
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4090

4091
	if (!intel_dp_read_dpcd(intel_dp))
4092 4093
		return false;

4094 4095
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4096

4097 4098 4099
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4111 4112
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4113
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4114
			      intel_dp->edp_dpcd);
4115

4116 4117 4118 4119 4120 4121
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4122 4123
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4124
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4125 4126
		int i;

4127 4128
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4129

4130 4131
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4132 4133 4134 4135

			if (val == 0)
				break;

4136 4137 4138 4139 4140 4141
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4142
			intel_dp->sink_rates[i] = (val * 200) / 10;
4143
		}
4144
		intel_dp->num_sink_rates = i;
4145
	}
4146

4147 4148 4149 4150
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4151 4152 4153 4154 4155
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4156 4157
	intel_dp_set_common_rates(intel_dp);

4158 4159 4160 4161
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4172
	/* Don't clobber cached eDP rates. */
4173
	if (!intel_dp_is_edp(intel_dp)) {
4174
		intel_dp_set_sink_rates(intel_dp);
4175 4176
		intel_dp_set_common_rates(intel_dp);
	}
4177

4178
	/*
4179 4180
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4181
	 */
4182 4183 4184
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4185

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4207

4208
	if (!drm_dp_is_branch(intel_dp->dpcd))
4209 4210 4211 4212 4213
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4214 4215 4216
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4217 4218 4219
		return false; /* downstream port status fetch failed */

	return true;
4220 4221
}

4222
static bool
4223
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4224
{
4225
	u8 mstm_cap;
4226 4227 4228 4229

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4230
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4231
		return false;
4232

4233
	return mstm_cap & DP_MST_CAP;
4234 4235
}

4236 4237 4238 4239 4240 4241 4242 4243
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4244 4245 4246
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4247 4248 4249 4250 4251 4252 4253
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4254 4255 4256 4257

	if (!intel_dp->can_mst)
		return;

4258 4259
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4260 4261 4262

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4263 4264 4265 4266 4267
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4268 4269 4270
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4271 4272
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
u16 intel_dp_dsc_get_output_bpp(int link_clock, uint8_t lane_count,
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(uint8_t, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4358 4359
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
4360
	int status = 0;
4361
	int test_link_rate;
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4383 4384 4385 4386

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4387 4388 4389 4390 4391 4392
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4393 4394 4395 4396
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
4397
	uint8_t test_pattern;
4398
	uint8_t test_misc;
4399 4400 4401 4402
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4403 4404
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4426 4427
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4454 4455 4456
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4457
{
4458
	uint8_t test_result = DP_TEST_ACK;
4459 4460 4461 4462
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4463
	    connector->edid_corrupt ||
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4477
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4478
	} else {
4479 4480 4481 4482 4483 4484 4485
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4486 4487
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4488 4489 4490
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4491
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4492 4493 4494
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4495
	intel_dp->compliance.test_active = 1;
4496

4497 4498 4499 4500
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4501
{
4502 4503 4504 4505 4506 4507 4508
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4509 4510
	uint8_t request = 0;
	int status;
4511

4512
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4513 4514 4515 4516 4517
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4518
	switch (request) {
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4536
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4537 4538 4539
		break;
	}

4540 4541 4542
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4543
update_status:
4544
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4545 4546
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4547 4548
}

4549 4550 4551 4552 4553 4554
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4555
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4556 4557 4558
		int ret = 0;
		int retry;
		bool handled;
4559 4560

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4561 4562 4563 4564 4565
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4566
			if (intel_dp->active_mst_links > 0 &&
4567
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4568 4569 4570 4571 4572
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4573
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4589
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4608 4609 4610 4611 4612
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4613
	if (!intel_dp->link_trained)
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4625 4626 4627
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4644 4645
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4686 4687 4688

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4689
	if (crtc_state->has_pch_encoder)
4690 4691 4692 4693 4694 4695 4696
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4697
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4698 4699

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4700
	if (crtc_state->has_pch_encoder)
4701 4702
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4703 4704

	return 0;
4705 4706
}

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4721
{
4722 4723 4724
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4725

4726
	changed = intel_encoder_hotplug(encoder, connector);
4727

4728
	drm_modeset_acquire_init(&ctx, 0);
4729

4730 4731
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4732

4733 4734 4735 4736
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4737

4738 4739
		break;
	}
4740

4741 4742 4743
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4744

4745
	return changed;
4746 4747
}

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4764 4765 4766 4767 4768
	if (val & DP_CP_IRQ)
		intel_hdcp_check_link(intel_dp->attached_connector);

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4769 4770
}

4771 4772 4773 4774 4775 4776 4777
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4778 4779 4780 4781 4782
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4783
 */
4784
static bool
4785
intel_dp_short_pulse(struct intel_dp *intel_dp)
4786
{
4787
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4788 4789
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4790

4791 4792 4793 4794
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4795
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4796

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4808 4809
	}

4810
	intel_dp_check_service_irq(intel_dp);
4811

4812 4813 4814
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4815 4816 4817
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4818

4819 4820
	intel_psr_short_pulse(intel_dp);

4821 4822 4823
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4824
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4825
	}
4826 4827

	return true;
4828 4829
}

4830
/* XXX this is probably wrong for multiple downstream ports */
4831
static enum drm_connector_status
4832
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4833
{
4834
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4835 4836 4837
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4838 4839 4840
	if (lspcon->active)
		lspcon_resume(lspcon);

4841 4842 4843
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4844
	if (intel_dp_is_edp(intel_dp))
4845 4846
		return connector_status_connected;

4847
	/* if there's no downstream port, we're done */
4848
	if (!drm_dp_is_branch(dpcd))
4849
		return connector_status_connected;
4850 4851

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4852 4853
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4854

4855 4856
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4857 4858
	}

4859 4860 4861
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4862
	/* If no HPD, poke DDC gently */
4863
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4864
		return connector_status_connected;
4865 4866

	/* Well we tried, say unknown for unreliable port types */
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4879 4880 4881

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4882
	return connector_status_disconnected;
4883 4884
}

4885 4886 4887
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4888
	return connector_status_connected;
4889 4890
}

4891
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4892
{
4893
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4894
	u32 bit;
4895

4896 4897
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4898 4899
		bit = SDE_PORTB_HOTPLUG;
		break;
4900
	case HPD_PORT_C:
4901 4902
		bit = SDE_PORTC_HOTPLUG;
		break;
4903
	case HPD_PORT_D:
4904 4905 4906
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4907
		MISSING_CASE(encoder->hpd_pin);
4908 4909 4910 4911 4912 4913
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4914
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4915
{
4916
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4917 4918
	u32 bit;

4919 4920
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4921 4922
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4923
	case HPD_PORT_C:
4924 4925
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4926
	case HPD_PORT_D:
4927 4928
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4929
	default:
4930
		MISSING_CASE(encoder->hpd_pin);
4931 4932 4933 4934 4935 4936
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4937
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4938
{
4939
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4940 4941
	u32 bit;

4942 4943
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4944 4945
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4946
	case HPD_PORT_E:
4947 4948
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4949
	default:
4950
		return cpt_digital_port_connected(encoder);
4951
	}
4952

4953
	return I915_READ(SDEISR) & bit;
4954 4955
}

4956
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4957
{
4958
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4959
	u32 bit;
4960

4961 4962
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4963 4964
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4965
	case HPD_PORT_C:
4966 4967
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4968
	case HPD_PORT_D:
4969 4970 4971
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4972
		MISSING_CASE(encoder->hpd_pin);
4973 4974 4975 4976 4977 4978
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4979
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4980
{
4981
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4982 4983
	u32 bit;

4984 4985
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4986
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4987
		break;
4988
	case HPD_PORT_C:
4989
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4990
		break;
4991
	case HPD_PORT_D:
4992
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4993 4994
		break;
	default:
4995
		MISSING_CASE(encoder->hpd_pin);
4996
		return false;
4997 4998
	}

4999
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5000 5001
}

5002
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5003
{
5004 5005 5006
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5007 5008
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5009
		return ibx_digital_port_connected(encoder);
5010 5011
}

5012
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5013
{
5014 5015 5016
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5017 5018
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5019
		return cpt_digital_port_connected(encoder);
5020 5021
}

5022
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5023
{
5024 5025 5026
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5027 5028
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5029
		return cpt_digital_port_connected(encoder);
5030 5031
}

5032
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5033
{
5034 5035 5036
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5037 5038
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5039
		return cpt_digital_port_connected(encoder);
5040 5041
}

5042
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5043
{
5044
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5045 5046
	u32 bit;

5047 5048
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5049 5050
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5051
	case HPD_PORT_B:
5052 5053
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5054
	case HPD_PORT_C:
5055 5056 5057
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5058
		MISSING_CASE(encoder->hpd_pin);
5059 5060 5061 5062 5063 5064
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5065 5066 5067 5068 5069 5070 5071 5072
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5088 5089 5090 5091 5092 5093 5094 5095 5096
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5097
	if (is_legacy)
5098
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5099
	else if (is_typec)
5100
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5101
	else if (is_tbt)
5102
		intel_dig_port->tc_type = TC_PORT_TBT;
5103
	else
5104 5105 5106 5107 5108 5109 5110 5111
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5112
			      tc_type_name(intel_dig_port->tc_type));
5113 5114
}

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5149
		WARN_ON(dig_port->tc_legacy_port);
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5170
		icl_tc_phy_disconnect(dev_priv, dig_port);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5181 5182
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5183 5184 5185
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5186
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5187 5188 5189
		return;

	/*
5190 5191
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5192
	 */
5193 5194 5195 5196 5197
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5198 5199 5200
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5201

5202 5203 5204 5205
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5206
	dig_port->tc_type = TC_PORT_UNKNOWN;
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5219 5220 5221 5222 5223 5224 5225 5226
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5227 5228 5229 5230 5231 5232 5233 5234
	/*
	 * WARN if we got a legacy port HPD, but VBT didn't mark the port as
	 * legacy. Treat the port as legacy from now on.
	 */
	if (WARN_ON(!intel_dig_port->tc_legacy_port &&
		    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
		intel_dig_port->tc_legacy_port = true;
	is_legacy = intel_dig_port->tc_legacy_port;
5235 5236 5237 5238 5239 5240 5241 5242 5243

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5244 5245
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5246

5247
		return false;
5248
	}
5249 5250 5251

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5252

5253 5254 5255
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5256
	return true;
5257 5258 5259 5260 5261 5262 5263
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5264
	if (intel_port_is_combophy(dev_priv, encoder->port))
5265
		return icl_combo_port_connected(dev_priv, dig_port);
5266
	else if (intel_port_is_tc(dev_priv, encoder->port))
5267
		return icl_tc_port_connected(dev_priv, dig_port);
5268
	else
5269
		MISSING_CASE(encoder->hpd_pin);
5270 5271

	return false;
5272 5273
}

5274 5275
/*
 * intel_digital_port_connected - is the specified port connected?
5276
 * @encoder: intel_encoder
5277
 *
5278 5279 5280 5281 5282
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5283
 * Return %true if port is connected, %false otherwise.
5284
 */
5285
bool intel_digital_port_connected(struct intel_encoder *encoder)
5286
{
5287 5288
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

5289 5290
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
5291
			return gm45_digital_port_connected(encoder);
5292
		else
5293
			return g4x_digital_port_connected(encoder);
5294 5295
	}

5296 5297
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5298
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5299
		return spt_digital_port_connected(encoder);
5300
	else if (IS_GEN9_LP(dev_priv))
5301
		return bxt_digital_port_connected(encoder);
5302
	else if (IS_GEN(dev_priv, 8))
5303
		return bdw_digital_port_connected(encoder);
5304
	else if (IS_GEN(dev_priv, 7))
5305
		return ivb_digital_port_connected(encoder);
5306
	else if (IS_GEN(dev_priv, 6))
5307
		return snb_digital_port_connected(encoder);
5308
	else if (IS_GEN(dev_priv, 5))
5309 5310 5311 5312
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5313 5314
}

5315
static struct edid *
5316
intel_dp_get_edid(struct intel_dp *intel_dp)
5317
{
5318
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5319

5320 5321 5322 5323
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5324 5325
			return NULL;

J
Jani Nikula 已提交
5326
		return drm_edid_duplicate(intel_connector->edid);
5327 5328 5329 5330
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5331

5332 5333 5334 5335 5336
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5337

5338
	intel_dp_unset_edid(intel_dp);
5339 5340 5341
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5342
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5343
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5344 5345
}

5346 5347
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5348
{
5349
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5350

5351
	drm_dp_cec_unset_edid(&intel_dp->aux);
5352 5353
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5354

5355 5356
	intel_dp->has_audio = false;
}
5357

5358
static int
5359 5360 5361
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5362
{
5363 5364
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5365 5366
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5367
	enum drm_connector_status status;
5368 5369
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5370
	intel_wakeref_t wakeref;
Z
Zhenyu Wang 已提交
5371

5372 5373
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5374
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5375

5376
	wakeref = intel_display_power_get(dev_priv, aux_domain);
Z
Zhenyu Wang 已提交
5377

5378
	/* Can't disconnect eDP */
5379
	if (intel_dp_is_edp(intel_dp))
5380
		status = edp_detect(intel_dp);
5381
	else if (intel_digital_port_connected(encoder))
5382
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5383
	else
5384 5385
		status = connector_status_disconnected;

5386
	if (status == connector_status_disconnected) {
5387
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5388
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5389

5390 5391 5392 5393 5394 5395 5396 5397 5398
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5399
		goto out;
5400
	}
Z
Zhenyu Wang 已提交
5401

5402
	if (intel_dp->reset_link_params) {
5403 5404
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5405

5406 5407
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5408 5409 5410

		intel_dp->reset_link_params = false;
	}
5411

5412 5413
	intel_dp_print_rates(intel_dp);

5414 5415 5416 5417
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5418 5419
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5420

5421 5422 5423
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5424 5425 5426 5427 5428
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5429 5430
		status = connector_status_disconnected;
		goto out;
5431 5432 5433 5434 5435 5436
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5437 5438 5439 5440 5441
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
5442
			intel_display_power_put(dev_priv, aux_domain, wakeref);
5443 5444 5445
			return ret;
		}
	}
5446

5447 5448 5449 5450 5451 5452 5453 5454
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5455
	intel_dp_set_edid(intel_dp);
5456 5457
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5458
		status = connector_status_connected;
5459

5460
	intel_dp_check_service_irq(intel_dp);
5461

5462
out:
5463
	if (status != connector_status_connected && !intel_dp->is_mst)
5464
		intel_dp_unset_edid(intel_dp);
5465

5466
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5467
	return status;
5468 5469
}

5470 5471
static void
intel_dp_force(struct drm_connector *connector)
5472
{
5473
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5474 5475
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5476
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5477 5478
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5479
	intel_wakeref_t wakeref;
5480

5481 5482 5483
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5484

5485 5486
	if (connector->status != connector_status_connected)
		return;
5487

5488
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5489 5490 5491

	intel_dp_set_edid(intel_dp);

5492
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5506

5507
	/* if eDP has no EDID, fall back to fixed mode */
5508
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5509
	    intel_connector->panel.fixed_mode) {
5510
		struct drm_display_mode *mode;
5511 5512

		mode = drm_mode_duplicate(connector->dev,
5513
					  intel_connector->panel.fixed_mode);
5514
		if (mode) {
5515 5516 5517 5518
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5519

5520
	return 0;
5521 5522
}

5523 5524 5525 5526
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5527
	struct drm_device *dev = connector->dev;
5528 5529 5530 5531 5532
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5533 5534 5535 5536 5537 5538 5539

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5540 5541 5542 5543 5544
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5545 5546
}

5547 5548 5549
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5550 5551 5552 5553
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5554 5555 5556
	intel_connector_unregister(connector);
}

5557
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5558
{
5559 5560
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5561

5562
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5563
	if (intel_dp_is_edp(intel_dp)) {
5564
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5565 5566 5567 5568
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5569
		pps_lock(intel_dp);
5570
		edp_panel_vdd_off_sync(intel_dp);
5571 5572
		pps_unlock(intel_dp);

5573 5574 5575 5576
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5577
	}
5578 5579

	intel_dp_aux_fini(intel_dp);
5580 5581 5582 5583 5584
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5585

5586
	drm_encoder_cleanup(encoder);
5587
	kfree(enc_to_dig_port(encoder));
5588 5589
}

5590
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5591 5592 5593
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5594
	if (!intel_dp_is_edp(intel_dp))
5595 5596
		return;

5597 5598 5599 5600
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5601
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5602
	pps_lock(intel_dp);
5603
	edp_panel_vdd_off_sync(intel_dp);
5604
	pps_unlock(intel_dp);
5605 5606
}

5607 5608 5609 5610 5611
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5612 5613 5614 5615 5616 5617
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5618 5619 5620 5621 5622 5623 5624
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5625 5626
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5627 5628 5629 5630 5631 5632 5633 5634 5635
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5636
	intel_dp_aux_header(txbuf, &msg);
5637

5638
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5639 5640
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5641
	if (ret < 0) {
5642
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5643 5644
		return ret;
	} else if (ret == 0) {
5645
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5646 5647 5648 5649
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5650 5651 5652 5653 5654 5655
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5656 5657 5658 5659 5660 5661 5662 5663 5664
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5665
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5683
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5684 5685 5686 5687 5688 5689
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5690 5691
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5692 5693
{
	ssize_t ret;
5694

5695
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5696
			       bcaps, 1);
5697
	if (ret != 1) {
5698
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5699 5700
		return ret >= 0 ? -EIO : ret;
	}
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5728
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5743
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5765 5766
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5786
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5805

5806 5807 5808
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5809
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5810
		return false;
5811
	}
5812

5813 5814 5815
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5842
	.hdcp_capable = intel_dp_hdcp_capable,
5843 5844
};

5845 5846
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5847
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5848
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5862
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
5863 5864 5865 5866

	edp_panel_vdd_schedule_off(intel_dp);
}

5867 5868
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
5869
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5870 5871
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5872

5873 5874 5875
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5876

5877
	return INVALID_PIPE;
5878 5879
}

5880
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5881
{
5882
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5883 5884
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5885 5886 5887

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5888

5889
	if (lspcon->active)
5890 5891
		lspcon_resume(lspcon);

5892 5893
	intel_dp->reset_link_params = true;

5894 5895
	pps_lock(intel_dp);

5896 5897 5898
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5899
	if (intel_dp_is_edp(intel_dp)) {
5900
		/* Reinit the power sequencer, in case BIOS did something with it. */
5901
		intel_dp_pps_init(intel_dp);
5902 5903
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5904 5905

	pps_unlock(intel_dp);
5906 5907
}

5908
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5909
	.force = intel_dp_force,
5910
	.fill_modes = drm_helper_probe_single_connector_modes,
5911 5912
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5913
	.late_register = intel_dp_connector_register,
5914
	.early_unregister = intel_dp_connector_unregister,
5915
	.destroy = intel_connector_destroy,
5916
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5917
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5918 5919 5920
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5921
	.detect_ctx = intel_dp_detect,
5922 5923
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5924
	.atomic_check = intel_digital_connector_atomic_check,
5925 5926 5927
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5928
	.reset = intel_dp_encoder_reset,
5929
	.destroy = intel_dp_encoder_destroy,
5930 5931
};

5932
enum irqreturn
5933 5934 5935
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5936
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5937
	enum irqreturn ret = IRQ_NONE;
5938
	intel_wakeref_t wakeref;
5939

5940 5941 5942 5943 5944 5945 5946 5947
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5948
			      port_name(intel_dig_port->base.port));
5949
		return IRQ_HANDLED;
5950 5951
	}

5952
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5953
		      port_name(intel_dig_port->base.port),
5954
		      long_hpd ? "long" : "short");
5955

5956
	if (long_hpd) {
5957
		intel_dp->reset_link_params = true;
5958 5959 5960
		return IRQ_NONE;
	}

5961 5962
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
5963

5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
5976
		}
5977
	}
5978

5979
	if (!intel_dp->is_mst) {
5980
		bool handled;
5981 5982 5983

		handled = intel_dp_short_pulse(intel_dp);

5984
		if (!handled)
5985
			goto put_power;
5986
	}
5987 5988 5989

	ret = IRQ_HANDLED;

5990
put_power:
5991
	intel_display_power_put(dev_priv,
5992 5993
				intel_aux_power_domain(intel_dig_port),
				wakeref);
5994 5995

	return ret;
5996 5997
}

5998
/* check the VBT to see whether the eDP is on another port */
5999
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6000
{
6001 6002 6003 6004
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6005
	if (INTEL_GEN(dev_priv) < 5)
6006 6007
		return false;

6008
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6009 6010
		return true;

6011
	return intel_bios_is_port_edp(dev_priv, port);
6012 6013
}

6014
static void
6015 6016
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6017
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6018 6019 6020 6021
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6022

6023
	intel_attach_broadcast_rgb_property(connector);
6024 6025 6026 6027
	if (HAS_GMCH_DISPLAY(dev_priv))
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6028

6029
	if (intel_dp_is_edp(intel_dp)) {
6030 6031 6032 6033 6034 6035 6036 6037
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6038
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6039

6040
	}
6041 6042
}

6043 6044
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6045
	intel_dp->panel_power_off_time = ktime_get_boottime();
6046 6047 6048 6049
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6050
static void
6051
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6052
{
6053
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6054
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
6055
	struct pps_registers regs;
6056

6057
	intel_pps_get_registers(intel_dp, &regs);
6058 6059 6060

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
6061
	pp_ctl = ironlake_get_pp_control(intel_dp);
6062

6063 6064
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6065 6066
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
6067 6068
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
6069
	}
6070 6071

	/* Pull timing values out of registers */
6072 6073
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
6074

6075 6076
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
6077

6078 6079
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
6080

6081 6082
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
6083

6084 6085
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
6086 6087
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
6088
	} else {
6089
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
6090
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
6091
	}
6092 6093
}

I
Imre Deak 已提交
6094 6095 6096 6097 6098 6099 6100 6101 6102
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6103
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6104 6105 6106 6107
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6108
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6109 6110 6111 6112 6113 6114 6115 6116 6117

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6118
static void
6119
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6120
{
6121
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6122 6123 6124 6125 6126 6127 6128 6129 6130
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6131
	intel_pps_readout_hw_state(intel_dp, &cur);
6132

I
Imre Deak 已提交
6133
	intel_pps_dump_state("cur", &cur);
6134

6135
	vbt = dev_priv->vbt.edp.pps;
6136 6137 6138 6139 6140 6141
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6142
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6143 6144 6145
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6146 6147 6148 6149 6150
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6164
	intel_pps_dump_state("vbt", &vbt);
6165 6166 6167

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6168
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6169 6170 6171 6172 6173 6174 6175 6176 6177
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6178
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6179 6180 6181 6182 6183 6184 6185
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6186 6187 6188 6189 6190 6191
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6202 6203 6204 6205 6206 6207

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6208 6209 6210
}

static void
6211
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6212
					      bool force_disable_vdd)
6213
{
6214
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6215
	u32 pp_on, pp_off, pp_div, port_sel = 0;
6216
	int div = dev_priv->rawclk_freq / 1000;
6217
	struct pps_registers regs;
6218
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6219
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6220

V
Ville Syrjälä 已提交
6221
	lockdep_assert_held(&dev_priv->pps_mutex);
6222

6223
	intel_pps_get_registers(intel_dp, &regs);
6224

6225 6226
	/*
	 * On some VLV machines the BIOS can leave the VDD
6227
	 * enabled even on power sequencers which aren't
6228 6229 6230 6231 6232 6233 6234
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6235
	 * soon as the new power sequencer gets initialized.
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6250
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
6251 6252
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
6253
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
6254 6255
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
6256 6257
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
6258
		pp_div = I915_READ(regs.pp_ctrl);
6259
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
6260
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
6261 6262 6263 6264 6265 6266
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
6267 6268 6269

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6270
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6271
		port_sel = PANEL_PORT_SELECT_VLV(port);
6272
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6273 6274
		switch (port) {
		case PORT_A:
6275
			port_sel = PANEL_PORT_SELECT_DPA;
6276 6277 6278 6279 6280
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6281
			port_sel = PANEL_PORT_SELECT_DPD;
6282 6283 6284 6285 6286
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6287 6288
	}

6289 6290
	pp_on |= port_sel;

6291 6292
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6293 6294
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
6295
		I915_WRITE(regs.pp_ctrl, pp_div);
6296
	else
6297
		I915_WRITE(regs.pp_div, pp_div);
6298 6299

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6300 6301
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6302 6303
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
6304 6305
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
6306 6307
}

6308
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6309
{
6310
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6311 6312

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6313 6314
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6315 6316
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6317 6318 6319
	}
}

6320 6321
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6322
 * @dev_priv: i915 device
6323
 * @crtc_state: a pointer to the active intel_crtc_state
6324 6325 6326 6327 6328 6329 6330 6331 6332
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6333
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6334
				    const struct intel_crtc_state *crtc_state,
6335
				    int refresh_rate)
6336 6337
{
	struct intel_encoder *encoder;
6338 6339
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6341
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6342 6343 6344 6345 6346 6347

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6348 6349
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6350 6351 6352
		return;
	}

6353 6354
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6355 6356 6357 6358 6359 6360

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6361
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6362 6363 6364 6365
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6366 6367
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6368 6369
		index = DRRS_LOW_RR;

6370
	if (index == dev_priv->drrs.refresh_rate_type) {
6371 6372 6373 6374 6375
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6376
	if (!crtc_state->base.active) {
6377 6378 6379 6380
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6381
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6382 6383
		switch (index) {
		case DRRS_HIGH_RR:
6384
			intel_dp_set_m_n(crtc_state, M1_N1);
6385 6386
			break;
		case DRRS_LOW_RR:
6387
			intel_dp_set_m_n(crtc_state, M2_N2);
6388 6389 6390 6391 6392
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6393 6394
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6395
		u32 val;
6396

6397
		val = I915_READ(reg);
6398
		if (index > DRRS_HIGH_RR) {
6399
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6400 6401 6402
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6403
		} else {
6404
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6405 6406 6407
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6408 6409 6410 6411
		}
		I915_WRITE(reg, val);
	}

6412 6413 6414 6415 6416
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6417 6418 6419
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6420
 * @crtc_state: A pointer to the active crtc state.
6421 6422 6423
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6424
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6425
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6426
{
6427
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6428

6429
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6430 6431 6432 6433
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6434 6435 6436 6437 6438
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6439
	mutex_lock(&dev_priv->drrs.mutex);
6440 6441
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6453 6454 6455
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6456
 * @old_crtc_state: Pointer to old crtc_state.
6457 6458
 *
 */
6459
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6460
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6461
{
6462
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6463

6464
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6465 6466 6467 6468 6469 6470 6471 6472 6473
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6474 6475
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6476 6477 6478 6479 6480 6481 6482

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6496
	/*
6497 6498
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6499 6500
	 */

6501 6502
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6503

6504 6505 6506 6507 6508 6509
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6510

6511 6512
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6513 6514
}

6515
/**
6516
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6517
 * @dev_priv: i915 device
6518 6519
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6520 6521
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6522 6523 6524
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6525 6526
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6527 6528 6529 6530
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6531
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6532 6533
		return;

6534
	cancel_delayed_work(&dev_priv->drrs.work);
6535

6536
	mutex_lock(&dev_priv->drrs.mutex);
6537 6538 6539 6540 6541
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6542 6543 6544
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6545 6546 6547
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6548
	/* invalidate means busy screen hence upclock */
6549
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6550 6551
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6552 6553 6554 6555

	mutex_unlock(&dev_priv->drrs.mutex);
}

6556
/**
6557
 * intel_edp_drrs_flush - Restart Idleness DRRS
6558
 * @dev_priv: i915 device
6559 6560
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6561 6562 6563 6564
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6565 6566 6567
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6568 6569
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6570 6571 6572 6573
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6574
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6575 6576
		return;

6577
	cancel_delayed_work(&dev_priv->drrs.work);
6578

6579
	mutex_lock(&dev_priv->drrs.mutex);
6580 6581 6582 6583 6584
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6585 6586
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6587 6588

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6589 6590
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6591
	/* flush means busy screen hence upclock */
6592
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6593 6594
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6595 6596 6597 6598 6599 6600

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6601 6602 6603 6604 6605
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6629 6630 6631 6632 6633 6634 6635 6636
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6637 6638 6639 6640 6641 6642 6643 6644
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6645
 * @connector: eDP connector
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6656
static struct drm_display_mode *
6657 6658
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6659
{
6660
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6661 6662
	struct drm_display_mode *downclock_mode = NULL;

6663 6664 6665
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6666
	if (INTEL_GEN(dev_priv) <= 6) {
6667 6668 6669 6670 6671
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6672
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6673 6674 6675
		return NULL;
	}

6676 6677
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6678 6679

	if (!downclock_mode) {
6680
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6681 6682 6683
		return NULL;
	}

6684
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6685

6686
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6687
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6688 6689 6690
	return downclock_mode;
}

6691
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6692
				     struct intel_connector *intel_connector)
6693
{
6694 6695
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
6696
	struct drm_connector *connector = &intel_connector->base;
6697
	struct drm_display_mode *fixed_mode = NULL;
6698
	struct drm_display_mode *downclock_mode = NULL;
6699 6700 6701
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6702
	enum pipe pipe = INVALID_PIPE;
6703

6704
	if (!intel_dp_is_edp(intel_dp))
6705 6706
		return true;

6707 6708
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

6709 6710 6711 6712 6713 6714
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6715
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6716 6717 6718 6719 6720 6721
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6722
	pps_lock(intel_dp);
6723 6724

	intel_dp_init_panel_power_timestamps(intel_dp);
6725
	intel_dp_pps_init(intel_dp);
6726
	intel_edp_panel_vdd_sanitize(intel_dp);
6727

6728
	pps_unlock(intel_dp);
6729

6730
	/* Cache DPCD and EDID for edp. */
6731
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6732

6733
	if (!has_dpcd) {
6734 6735
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6736
		goto out_vdd_off;
6737 6738
	}

6739
	mutex_lock(&dev->mode_config.mutex);
6740
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6741 6742
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6743
			drm_connector_update_edid_property(connector,
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6754
	/* prefer fixed mode from EDID if available */
6755 6756 6757
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6758 6759
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6760
			break;
6761 6762 6763 6764 6765 6766 6767
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6768
		if (fixed_mode) {
6769
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6770 6771 6772
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6773
	}
6774
	mutex_unlock(&dev->mode_config.mutex);
6775

6776
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6777 6778
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6779 6780 6781 6782 6783 6784

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6785
		pipe = vlv_active_pipe(intel_dp);
6786 6787 6788 6789 6790 6791 6792 6793 6794

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6795 6796
	}

6797
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6798
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6799
	intel_panel_setup_backlight(connector, pipe);
6800

6801 6802 6803 6804
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

6805
	return true;
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6818 6819
}

6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6836 6837
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6838 6839 6840 6841 6842
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6843
bool
6844 6845
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6846
{
6847 6848 6849 6850
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6851
	struct drm_i915_private *dev_priv = to_i915(dev);
6852
	enum port port = intel_encoder->port;
6853
	int type;
6854

6855 6856 6857 6858
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6859 6860 6861 6862 6863
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6864 6865
	intel_dp_set_source_rates(intel_dp);

6866
	intel_dp->reset_link_params = true;
6867
	intel_dp->pps_pipe = INVALID_PIPE;
6868
	intel_dp->active_pipe = INVALID_PIPE;
6869

6870
	/* intel_dp vfuncs */
6871
	if (HAS_DDI(dev_priv))
6872 6873
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6874 6875
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6876
	intel_dp->attached_connector = intel_connector;
6877

6878
	if (intel_dp_is_port_edp(dev_priv, port))
6879
		type = DRM_MODE_CONNECTOR_eDP;
6880 6881
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6882

6883 6884 6885
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6886 6887 6888 6889 6890 6891 6892 6893
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6894
	/* eDP only on port B and/or C on vlv/chv */
6895
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6896 6897
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6898 6899
		return false;

6900 6901 6902 6903
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6904
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6905 6906
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6907
	if (!HAS_GMCH_DISPLAY(dev_priv))
6908
		connector->interlace_allowed = true;
6909 6910
	connector->doublescan_allowed = 0;

6911
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6912

6913
	intel_dp_aux_init(intel_dp);
6914

6915
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6916

6917
	if (HAS_DDI(dev_priv))
6918 6919 6920 6921
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6922
	/* init MST on ports that can support it */
6923
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6924 6925
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6926 6927
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6928

6929
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6930 6931 6932
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6933
	}
6934

6935
	intel_dp_add_properties(intel_dp, connector);
6936

6937
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6938 6939 6940 6941
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6942

6943 6944 6945 6946
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6947
	if (IS_G45(dev_priv)) {
6948 6949 6950
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6951 6952

	return true;
6953 6954 6955 6956 6957

fail:
	drm_connector_cleanup(connector);

	return false;
6958
}
6959

6960
bool intel_dp_init(struct drm_i915_private *dev_priv,
6961 6962
		   i915_reg_t output_reg,
		   enum port port)
6963 6964 6965 6966 6967 6968
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6969
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6970
	if (!intel_dig_port)
6971
		return false;
6972

6973
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6974 6975
	if (!intel_connector)
		goto err_connector_alloc;
6976 6977 6978 6979

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6980 6981 6982
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6983
		goto err_encoder_init;
6984

6985
	intel_encoder->hotplug = intel_dp_hotplug;
6986
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6987
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6988
	intel_encoder->get_config = intel_dp_get_config;
6989
	intel_encoder->suspend = intel_dp_encoder_suspend;
6990
	if (IS_CHERRYVIEW(dev_priv)) {
6991
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6992 6993
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6994
		intel_encoder->disable = vlv_disable_dp;
6995
		intel_encoder->post_disable = chv_post_disable_dp;
6996
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6997
	} else if (IS_VALLEYVIEW(dev_priv)) {
6998
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6999 7000
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7001
		intel_encoder->disable = vlv_disable_dp;
7002
		intel_encoder->post_disable = vlv_post_disable_dp;
7003
	} else {
7004 7005
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7006
		intel_encoder->disable = g4x_disable_dp;
7007
		intel_encoder->post_disable = g4x_post_disable_dp;
7008
	}
7009 7010

	intel_dig_port->dp.output_reg = output_reg;
7011
	intel_dig_port->max_lanes = 4;
7012

7013
	intel_encoder->type = INTEL_OUTPUT_DP;
7014
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7015
	if (IS_CHERRYVIEW(dev_priv)) {
7016 7017 7018 7019 7020 7021 7022
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7023
	intel_encoder->cloneable = 0;
7024
	intel_encoder->port = port;
7025

7026 7027
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7028 7029 7030
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7031
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7032 7033 7034
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7035
	return true;
S
Sudip Mukherjee 已提交
7036 7037 7038

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7039
err_encoder_init:
S
Sudip Mukherjee 已提交
7040 7041 7042
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7043
	return false;
7044
}
7045

7046
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7047
{
7048 7049 7050 7051
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7052

7053 7054
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7055

7056
		intel_dp = enc_to_intel_dp(&encoder->base);
7057

7058
		if (!intel_dp->can_mst)
7059 7060
			continue;

7061 7062
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7063 7064 7065
	}
}

7066
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7067
{
7068
	struct intel_encoder *encoder;
7069

7070 7071
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7072
		int ret;
7073

7074 7075 7076 7077 7078 7079
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7080
			continue;
7081

7082
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7083
		if (ret)
7084
			intel_dp_check_mst_status(intel_dp);
7085 7086
	}
}