intel_dp.c 183.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drmP.h>
36
#include <drm/drm_atomic_helper.h>
37 38
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include "intel_drv.h"
43
#include <drm/i915_drm.h>
44 45
#include "i915_drv.h"

46
#define DP_DPRX_ESI_LEN 14
47

48 49 50 51 52 53
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

54
struct dp_link_dpll {
55
	int clock;
56 57 58
	struct dpll dpll;
};

59
static const struct dp_link_dpll g4x_dpll[] = {
60
	{ 162000,
61
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62
	{ 270000,
63 64 65 66
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
67
	{ 162000,
68
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69
	{ 270000,
70 71 72
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

73
static const struct dp_link_dpll vlv_dpll[] = {
74
	{ 162000,
C
Chon Ming Lee 已提交
75
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76
	{ 270000,
77 78 79
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

80 81 82 83 84 85 86 87 88 89
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
90
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
91
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
93 94
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
95

96
/**
97
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98 99 100 101 102
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
103
bool intel_dp_is_edp(struct intel_dp *intel_dp)
104
{
105 106 107
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 109
}

110
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
111
{
112 113 114
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.base.dev;
115 116
}

117 118
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
119
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
120 121
}

122 123
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
124
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
125
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
126 127
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
128
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
129
				      enum pipe pipe);
130
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
131

132 133 134
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
135
	static const int dp_rates[] = {
136
		162000, 270000, 540000, 810000
137
	};
138
	int i, max_rate;
139

140
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
141

142 143
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
144
			break;
145
		intel_dp->sink_rates[i] = dp_rates[i];
146
	}
147

148
	intel_dp->num_sink_rates = i;
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

173 174
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
175
{
176
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
177 178
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

209 210
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
211 212
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
213 214
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
215
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
216

217
	return min3(source_max, sink_max, fia_max);
218 219
}

220
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
221 222 223 224
{
	return intel_dp->max_link_lane_count;
}

225
int
226
intel_dp_link_required(int pixel_clock, int bpp)
227
{
228 229
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
230 231
}

P
Paulo Zanoni 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
void icl_program_mg_dp_mode(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	u32 ln0, ln1, lane_info;

	if (tc_port == PORT_TC_NONE || intel_dig_port->tc_type == TC_PORT_TBT)
		return;

	ln0 = I915_READ(MG_DP_MODE(port, 0));
	ln1 = I915_READ(MG_DP_MODE(port, 1));

	switch (intel_dig_port->tc_type) {
	case TC_PORT_TYPEC:
		ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
		ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);

		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
			    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

		switch (lane_info) {
		case 0x1:
		case 0x4:
			break;
		case 0x2:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0x3:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0x8:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0xC:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0xF:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		default:
			MISSING_CASE(lane_info);
		}
		break;

	case TC_PORT_LEGACY:
		ln0 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		ln1 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		break;

	default:
		MISSING_CASE(intel_dig_port->tc_type);
		return;
	}

	I915_WRITE(MG_DP_MODE(port, 0), ln0);
	I915_WRITE(MG_DP_MODE(port, 1), ln1);
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
void icl_enable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val |= MG_DP_MODE_CFG_TR2PWR_GATING |
		       MG_DP_MODE_CFG_TRPWR_GATING |
		       MG_DP_MODE_CFG_CLNPWR_GATING |
		       MG_DP_MODE_CFG_DIGPWR_GATING |
		       MG_DP_MODE_CFG_GAONPWR_GATING;
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val |= MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE(3) |
	       MG_MISC_SUS0_CFG_TR2PWR_GATING |
	       MG_MISC_SUS0_CFG_CL2PWR_GATING |
	       MG_MISC_SUS0_CFG_GAONPWR_GATING |
	       MG_MISC_SUS0_CFG_TRPWR_GATING |
	       MG_MISC_SUS0_CFG_CL1PWR_GATING |
	       MG_MISC_SUS0_CFG_DGPWR_GATING;
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

void icl_disable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val &= ~(MG_DP_MODE_CFG_TR2PWR_GATING |
			 MG_DP_MODE_CFG_TRPWR_GATING |
			 MG_DP_MODE_CFG_CLNPWR_GATING |
			 MG_DP_MODE_CFG_DIGPWR_GATING |
			 MG_DP_MODE_CFG_GAONPWR_GATING);
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val &= ~(MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE_MASK |
		 MG_MISC_SUS0_CFG_TR2PWR_GATING |
		 MG_MISC_SUS0_CFG_CL2PWR_GATING |
		 MG_MISC_SUS0_CFG_GAONPWR_GATING |
		 MG_MISC_SUS0_CFG_TRPWR_GATING |
		 MG_MISC_SUS0_CFG_CL1PWR_GATING |
		 MG_MISC_SUS0_CFG_DGPWR_GATING);
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

364
int
365 366
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
367 368 369 370 371 372 373
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
374 375
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

399
static int cnl_max_source_rate(struct intel_dp *intel_dp)
400 401 402 403 404 405 406 407 408
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
409
		return 540000;
410 411 412

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
413
		return 810000;
414

415
	/* For other SKUs, max rate on ports A and D is 5.4G */
416
	if (port == PORT_A || port == PORT_D)
417
		return 540000;
418

419
	return 810000;
420 421
}

422 423 424 425 426 427 428 429 430 431 432
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum port port = dig_port->base.port;

	if (port == PORT_B)
		return 540000;

	return 810000;
}

433 434
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
435
{
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
452 453
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
454 455
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
456
	const int *source_rates;
457
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
458

459 460 461
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

462
	if (INTEL_GEN(dev_priv) >= 10) {
463
		source_rates = cnl_rates;
464
		size = ARRAY_SIZE(cnl_rates);
465 466 467 468
		if (INTEL_GEN(dev_priv) == 10)
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
469 470 471
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
472
	} else if (IS_GEN9_BC(dev_priv)) {
473
		source_rates = skl_rates;
474
		size = ARRAY_SIZE(skl_rates);
475 476
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
477 478
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
479
	} else {
480 481
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
482 483
	}

484 485 486 487 488
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

489 490 491
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

492 493
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

519 520 521 522 523 524 525 526 527 528 529 530
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

531
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
532
{
533
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
534

535 536 537 538 539 540 541 542
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
543
		intel_dp->common_rates[0] = 162000;
544 545 546 547
		intel_dp->num_common_rates = 1;
	}
}

548 549
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
550 551 552 553 554 555
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
556 557
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
558 559
		return false;

560 561
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
562 563 564 565 566
		return false;

	return true;
}

567 568 569
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
570
	int index;
571

572 573 574 575
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
576 577
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
578
	} else if (lane_count > 1) {
579
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
580
		intel_dp->max_link_lane_count = lane_count >> 1;
581 582 583 584 585 586 587 588
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

589
static enum drm_mode_status
590 591 592
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
593
	struct intel_dp *intel_dp = intel_attached_dp(connector);
594 595
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
596 597
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
598 599
	int max_dotclk;

600 601 602
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

603
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
604

605
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
606
		if (mode->hdisplay > fixed_mode->hdisplay)
607 608
			return MODE_PANEL;

609
		if (mode->vdisplay > fixed_mode->vdisplay)
610
			return MODE_PANEL;
611 612

		target_clock = fixed_mode->clock;
613 614
	}

615
	max_link_clock = intel_dp_max_link_rate(intel_dp);
616
	max_lanes = intel_dp_max_lane_count(intel_dp);
617 618 619 620

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

621
	if (mode_rate > max_rate || target_clock > max_dotclk)
622
		return MODE_CLOCK_HIGH;
623 624 625 626

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

627 628 629
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

630 631 632
	return MODE_OK;
}

633
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
634 635 636 637 638 639 640 641 642 643 644
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

645
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
646 647 648 649 650 651 652 653
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

654
static void
655
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
656
static void
657
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
658
					      bool force_disable_vdd);
659
static void
660
intel_dp_pps_init(struct intel_dp *intel_dp);
661

662 663
static void pps_lock(struct intel_dp *intel_dp)
{
664
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
665 666

	/*
667
	 * See intel_power_sequencer_reset() why we need
668 669
	 * a power domain reference here.
	 */
670
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
671 672 673 674 675 676

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
677
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
678 679 680

	mutex_unlock(&dev_priv->pps_mutex);

681
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
682 683
}

684 685 686
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
687
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
688 689
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
690 691 692
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
693 694 695
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
696
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
697
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
698 699 700
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
701
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
702 703 704 705 706 707 708 709 710

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

711
	if (IS_CHERRYVIEW(dev_priv))
712 713 714
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
715

716 717 718 719 720 721
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
722
	if (!pll_enabled) {
723
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
724 725
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

726
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
727 728 729 730 731
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
732
	}
733

734 735 736
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
737
	 * to make this power sequencer lock onto the port.
738 739 740 741 742 743 744 745 746 747
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
748

749
	if (!pll_enabled) {
750
		vlv_force_pll_off(dev_priv, pipe);
751 752 753 754

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
755 756
}

757 758 759 760 761 762 763 764 765
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
766 767
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

789 790 791
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
792
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
793
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794
	enum pipe pipe;
795

V
Ville Syrjälä 已提交
796
	lockdep_assert_held(&dev_priv->pps_mutex);
797

798
	/* We should never land here with regular DP ports */
799
	WARN_ON(!intel_dp_is_edp(intel_dp));
800

801 802 803
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

804 805 806
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

807
	pipe = vlv_find_free_pps(dev_priv);
808 809 810 811 812

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
813
	if (WARN_ON(pipe == INVALID_PIPE))
814
		pipe = PIPE_A;
815

816
	vlv_steal_power_sequencer(dev_priv, pipe);
817
	intel_dp->pps_pipe = pipe;
818 819 820

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
821
		      port_name(intel_dig_port->base.port));
822 823

	/* init power sequencer on this pipe and port */
824 825
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
826

827 828 829 830 831
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
832 833 834 835

	return intel_dp->pps_pipe;
}

836 837 838
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
839
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
840
	int backlight_controller = dev_priv->vbt.backlight.controller;
841 842 843 844

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
845
	WARN_ON(!intel_dp_is_edp(intel_dp));
846 847

	if (!intel_dp->pps_reset)
848
		return backlight_controller;
849 850 851 852 853 854 855

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
856
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
857

858
	return backlight_controller;
859 860
}

861 862 863 864 865 866
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
867
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
868 869 870 871 872
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
873
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
874 875 876 877 878 879 880
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
881

882
static enum pipe
883 884 885
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
886 887
{
	enum pipe pipe;
888 889

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
890
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
891
			PANEL_PORT_SELECT_MASK;
892 893 894 895

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

896 897 898
		if (!pipe_check(dev_priv, pipe))
			continue;

899
		return pipe;
900 901
	}

902 903 904 905 906 907
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
908
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
909
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
910
	enum port port = intel_dig_port->base.port;
911 912 913 914

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
915 916 917 918 919 920 921 922 923 924 925
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
926 927 928 929 930 931

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
932 933
	}

934 935 936
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

937 938
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
939 940
}

941
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
942 943 944
{
	struct intel_encoder *encoder;

945
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
946
		    !IS_GEN9_LP(dev_priv)))
947 948 949 950 951 952 953 954 955 956 957 958
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

959 960
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
961

962 963 964 965 966
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

967
		if (IS_GEN9_LP(dev_priv))
968 969 970
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
971
	}
972 973
}

974 975 976 977 978 979 980 981
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

982
static void intel_pps_get_registers(struct intel_dp *intel_dp,
983 984
				    struct pps_registers *regs)
{
985
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
986 987
	int pps_idx = 0;

988 989
	memset(regs, 0, sizeof(*regs));

990
	if (IS_GEN9_LP(dev_priv))
991 992 993
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
994

995 996 997 998
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
999 1000
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
1001
		regs->pp_div = PP_DIVISOR(pps_idx);
1002 1003
}

1004 1005
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1006
{
1007
	struct pps_registers regs;
1008

1009
	intel_pps_get_registers(intel_dp, &regs);
1010 1011

	return regs.pp_ctrl;
1012 1013
}

1014 1015
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1016
{
1017
	struct pps_registers regs;
1018

1019
	intel_pps_get_registers(intel_dp, &regs);
1020 1021

	return regs.pp_stat;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1031
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1032

1033
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1034 1035
		return 0;

1036
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1037

1038
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
1039
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1040
		i915_reg_t pp_ctrl_reg, pp_div_reg;
1041
		u32 pp_div;
V
Ville Syrjälä 已提交
1042

1043 1044
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
1045 1046 1047 1048 1049 1050 1051 1052 1053
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

1054
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1055

1056 1057 1058
	return 0;
}

1059
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1060
{
1061
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1062

V
Ville Syrjälä 已提交
1063 1064
	lockdep_assert_held(&dev_priv->pps_mutex);

1065
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1066 1067 1068
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1069
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1070 1071
}

1072
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1073
{
1074
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1075

V
Ville Syrjälä 已提交
1076 1077
	lockdep_assert_held(&dev_priv->pps_mutex);

1078
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1079 1080 1081
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1082
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1083 1084
}

1085 1086 1087
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1088
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1089

1090
	if (!intel_dp_is_edp(intel_dp))
1091
		return;
1092

1093
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1094 1095
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1096 1097
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1098 1099 1100
	}
}

1101
static uint32_t
1102
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1103
{
1104
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1105
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1106 1107 1108
	uint32_t status;
	bool done;

1109
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1110 1111
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1112
	if (!done)
1113
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1114 1115 1116 1117 1118
#undef C

	return status;
}

1119
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1120
{
1121
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1122

1123 1124 1125
	if (index)
		return 0;

1126 1127
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1128
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1129
	 */
1130
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1131 1132 1133 1134
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1135
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1136 1137 1138 1139

	if (index)
		return 0;

1140 1141 1142 1143 1144
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1145
	if (intel_dp->aux_ch == AUX_CH_A)
1146
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1147 1148
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1149 1150 1151 1152
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1153
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1154

1155
	if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1156
		/* Workaround for non-ULT HSW */
1157 1158 1159 1160 1161
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1162
	}
1163 1164

	return ilk_get_aux_clock_divider(intel_dp, index);
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1177 1178 1179
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1180 1181
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1182 1183
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1184 1185
	uint32_t precharge, timeout;

1186
	if (IS_GEN6(dev_priv))
1187 1188 1189 1190
		precharge = 3;
	else
		precharge = 5;

1191
	if (IS_BROADWELL(dev_priv))
1192 1193 1194 1195 1196
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1197
	       DP_AUX_CH_CTL_DONE |
1198
	       DP_AUX_CH_CTL_INTERRUPT |
1199
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1200
	       timeout |
1201
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1202 1203
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1204
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1205 1206
}

1207 1208 1209 1210 1211 1212
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
	return DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_DONE |
1213
	       DP_AUX_CH_CTL_INTERRUPT |
1214
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1215
	       DP_AUX_CH_CTL_TIME_OUT_MAX |
1216 1217
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1218
	       DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1219 1220 1221
	       DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
}

1222
static int
1223 1224
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1225 1226
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1227 1228
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1229 1230
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1231
	i915_reg_t ch_ctl, ch_data[5];
1232
	uint32_t aux_clock_divider;
1233 1234
	int i, ret, recv_bytes;
	uint32_t status;
1235
	int try, clock = 0;
1236 1237
	bool vdd;

1238 1239 1240 1241
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1242
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1243

1244 1245 1246 1247 1248 1249
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1250
	vdd = edp_panel_vdd_on(intel_dp);
1251 1252 1253 1254 1255 1256 1257 1258

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1259

1260 1261
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1262
		status = I915_READ_NOTRACE(ch_ctl);
1263 1264 1265 1266 1267 1268
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1269 1270 1271 1272 1273 1274 1275 1276 1277
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1278 1279
		ret = -EBUSY;
		goto out;
1280 1281
	}

1282 1283 1284 1285 1286 1287
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1288
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1289 1290 1291 1292 1293
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1294

1295 1296 1297 1298
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1299
				I915_WRITE(ch_data[i >> 2],
1300 1301
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1302 1303

			/* Send the command and wait for it to complete */
1304
			I915_WRITE(ch_ctl, send_ctl);
1305

1306
			status = intel_dp_aux_wait_done(intel_dp);
1307 1308 1309 1310 1311 1312 1313 1314

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1315 1316 1317 1318 1319
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1320 1321 1322
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1323 1324
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1325
				continue;
1326
			}
1327
			if (status & DP_AUX_CH_CTL_DONE)
1328
				goto done;
1329
		}
1330 1331 1332
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1333
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1334 1335
		ret = -EBUSY;
		goto out;
1336 1337
	}

1338
done:
1339 1340 1341
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1342
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1343
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1344 1345
		ret = -EIO;
		goto out;
1346
	}
1347 1348 1349

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1350
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1351
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1352 1353
		ret = -ETIMEDOUT;
		goto out;
1354 1355 1356 1357 1358
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1372 1373
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1374

1375
	for (i = 0; i < recv_bytes; i += 4)
1376
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1377
				    recv + i, recv_bytes - i);
1378

1379 1380 1381 1382
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1383 1384 1385
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1386
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1387

1388
	return ret;
1389 1390
}

1391 1392
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1404 1405
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1406
{
1407 1408 1409
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1410 1411
	int ret;

1412
	intel_dp_aux_header(txbuf, msg);
1413

1414 1415 1416
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1417
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1418
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1419
		rxsize = 2; /* 0 or 1 data bytes */
1420

1421 1422
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1423

1424 1425
		WARN_ON(!msg->buffer != !msg->size);

1426 1427
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1428

1429
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1430
					rxbuf, rxsize, 0);
1431 1432
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1433

1434 1435 1436 1437 1438 1439 1440
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1441 1442
		}
		break;
1443

1444 1445
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1446
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1447
		rxsize = msg->size + 1;
1448

1449 1450
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1451

1452
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1453
					rxbuf, rxsize, 0);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1464
		}
1465 1466 1467 1468 1469
		break;

	default:
		ret = -EINVAL;
		break;
1470
	}
1471

1472
	return ret;
1473 1474
}

1475
static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1476
{
1477 1478 1479
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = encoder->port;
1480 1481
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[port];
1482
	enum aux_ch aux_ch;
1483 1484

	if (!info->alternate_aux_channel) {
1485 1486
		aux_ch = (enum aux_ch) port;

1487
		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1488 1489
			      aux_ch_name(aux_ch), port_name(port));
		return aux_ch;
1490 1491 1492 1493
	}

	switch (info->alternate_aux_channel) {
	case DP_AUX_A:
1494
		aux_ch = AUX_CH_A;
1495 1496
		break;
	case DP_AUX_B:
1497
		aux_ch = AUX_CH_B;
1498 1499
		break;
	case DP_AUX_C:
1500
		aux_ch = AUX_CH_C;
1501 1502
		break;
	case DP_AUX_D:
1503
		aux_ch = AUX_CH_D;
1504
		break;
1505 1506 1507
	case DP_AUX_E:
		aux_ch = AUX_CH_E;
		break;
R
Rodrigo Vivi 已提交
1508
	case DP_AUX_F:
1509
		aux_ch = AUX_CH_F;
R
Rodrigo Vivi 已提交
1510
		break;
1511 1512
	default:
		MISSING_CASE(info->alternate_aux_channel);
1513
		aux_ch = AUX_CH_A;
1514 1515 1516 1517
		break;
	}

	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1518
		      aux_ch_name(aux_ch), port_name(port));
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	return aux_ch;
}

static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp *intel_dp)
{
	switch (intel_dp->aux_ch) {
	case AUX_CH_A:
		return POWER_DOMAIN_AUX_A;
	case AUX_CH_B:
		return POWER_DOMAIN_AUX_B;
	case AUX_CH_C:
		return POWER_DOMAIN_AUX_C;
	case AUX_CH_D:
		return POWER_DOMAIN_AUX_D;
1535 1536
	case AUX_CH_E:
		return POWER_DOMAIN_AUX_E;
1537 1538 1539 1540 1541 1542
	case AUX_CH_F:
		return POWER_DOMAIN_AUX_F;
	default:
		MISSING_CASE(intel_dp->aux_ch);
		return POWER_DOMAIN_AUX_A;
	}
1543 1544
}

1545
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1546
{
1547 1548 1549
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1550 1551 1552 1553 1554
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1555
	default:
1556 1557
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1558 1559 1560
	}
}

1561
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1562
{
1563 1564 1565
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1566 1567 1568 1569 1570
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1571
	default:
1572 1573
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1574 1575 1576
	}
}

1577
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1578
{
1579 1580 1581
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1582 1583 1584 1585 1586 1587 1588
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1589
	default:
1590 1591
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1592 1593 1594
	}
}

1595
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1596
{
1597 1598 1599
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1600 1601 1602 1603 1604 1605 1606
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1607
	default:
1608 1609
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1610 1611 1612
	}
}

1613
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1614
{
1615 1616 1617
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1618 1619 1620 1621 1622
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1623
	case AUX_CH_E:
1624 1625
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1626
	default:
1627 1628
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1629 1630 1631
	}
}

1632
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1633
{
1634 1635 1636
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	enum aux_ch aux_ch = intel_dp->aux_ch;

1637 1638 1639 1640 1641
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1642
	case AUX_CH_E:
1643 1644
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1645
	default:
1646 1647
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1648 1649 1650
	}
}

1651 1652 1653 1654 1655 1656 1657 1658
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1659 1660
{
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1661 1662 1663 1664
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	intel_dp->aux_ch = intel_aux_ch(intel_dp);
	intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1676

1677 1678 1679 1680 1681 1682 1683 1684
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1685

1686 1687 1688 1689
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1690

1691
	drm_dp_aux_init(&intel_dp->aux);
1692

1693
	/* Failure to allocate our preferred name is not critical */
1694 1695
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1696
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1697 1698
}

1699
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1700
{
1701
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1702

1703
	return max_rate >= 540000;
1704 1705
}

1706 1707 1708 1709 1710 1711 1712
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1713 1714
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1715
		   struct intel_crtc_state *pipe_config)
1716
{
1717
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1718 1719
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1720

1721
	if (IS_G4X(dev_priv)) {
1722 1723
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1724
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1725 1726
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1727
	} else if (IS_CHERRYVIEW(dev_priv)) {
1728 1729
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1730
	} else if (IS_VALLEYVIEW(dev_priv)) {
1731 1732
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1733
	}
1734 1735 1736

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1737
			if (pipe_config->port_clock == divisor[i].clock) {
1738 1739 1740 1741 1742
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1743 1744 1745
	}
}

1746 1747 1748 1749 1750 1751 1752 1753
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1754
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1769 1770
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1771 1772
	DRM_DEBUG_KMS("source rates: %s\n", str);

1773 1774
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1775 1776
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1777 1778
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1779
	DRM_DEBUG_KMS("common rates: %s\n", str);
1780 1781
}

1782 1783 1784 1785 1786
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1787
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1788 1789 1790
	if (WARN_ON(len <= 0))
		return 162000;

1791
	return intel_dp->common_rates[len - 1];
1792 1793
}

1794 1795
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1796 1797
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1798 1799 1800 1801 1802

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1803 1804
}

1805 1806
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1807
{
1808 1809
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1810 1811 1812 1813 1814 1815 1816 1817 1818
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1819 1820 1821 1822 1823 1824
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1825 1826
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1827
{
1828 1829
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1830 1831 1832 1833 1834 1835 1836 1837
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1848 1849 1850
	return bpp;
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1923 1924 1925
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config)
1926
{
1927
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1928
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1929
	struct link_config_limits limits;
1930
	int common_len;
1931

1932
	common_len = intel_dp_common_len_rate_limit(intel_dp,
1933
						    intel_dp->max_link_rate);
1934 1935

	/* No common link rates between source and sink */
1936
	WARN_ON(common_len <= 0);
1937

1938 1939 1940 1941 1942 1943 1944 1945
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1946

1947
	if (intel_dp_is_edp(intel_dp)) {
1948 1949 1950 1951 1952 1953 1954
		/*
		 * Use the maximum clock and number of lanes the eDP panel
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
		 */
1955 1956
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
1957
	}
1958

1959 1960
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

1961 1962 1963 1964 1965 1966
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

1967 1968 1969 1970 1971 1972
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits))
		return false;
1973 1974

	DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
1975 1976 1977 1978 1979 1980 1981 1982
		      pipe_config->lane_count, pipe_config->port_clock,
		      pipe_config->pipe_bpp);

	DRM_DEBUG_KMS("DP link rate required %i available %i\n",
		      intel_dp_link_required(adjusted_mode->crtc_clock,
					     pipe_config->pipe_bpp),
		      intel_dp_max_data_rate(pipe_config->port_clock,
					     pipe_config->lane_count));
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

	return true;
}

bool
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_LIMITED_M_N);

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2015 2016
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

		if (INTEL_GEN(dev_priv) >= 9) {
			int ret;

			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2034 2035 2036
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return false;

2037
	if (HAS_GMCH_DISPLAY(dev_priv) &&
2038 2039 2040 2041 2042 2043 2044 2045 2046
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

	if (!intel_dp_compute_link_config(encoder, pipe_config))
		return false;

2047
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2048 2049 2050 2051 2052
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
2053
		pipe_config->limited_color_range =
2054
			pipe_config->pipe_bpp != 18 &&
2055 2056
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
2057 2058
	} else {
		pipe_config->limited_color_range =
2059
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2060 2061
	}

2062
	intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
2063 2064
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
2065 2066
			       &pipe_config->dp_m_n,
			       reduce_m_n);
2067

2068
	if (intel_connector->panel.downclock_mode != NULL &&
2069
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2070
			pipe_config->has_drrs = true;
2071 2072 2073 2074 2075 2076
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
					       reduce_m_n);
2077 2078
	}

2079
	if (!HAS_DDI(dev_priv))
2080
		intel_dp_set_clock(encoder, pipe_config);
2081

2082 2083
	intel_psr_compute_config(intel_dp, pipe_config);

2084
	return true;
2085 2086
}

2087
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2088 2089
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
2090
{
2091
	intel_dp->link_trained = false;
2092 2093 2094
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2095 2096
}

2097
static void intel_dp_prepare(struct intel_encoder *encoder,
2098
			     const struct intel_crtc_state *pipe_config)
2099
{
2100
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2101
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2102
	enum port port = encoder->port;
2103
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2104
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2105

2106 2107 2108 2109
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2110

2111
	/*
K
Keith Packard 已提交
2112
	 * There are four kinds of DP registers:
2113 2114
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2115 2116
	 * 	SNB CPU
	 *	IVB CPU
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2127

2128 2129 2130 2131
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2132

2133 2134
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2135
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2136

2137
	/* Split out the IBX/CPU vs CPT settings */
2138

2139
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2140 2141 2142 2143 2144 2145
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2146
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2147 2148
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2149
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2150
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2151 2152
		u32 trans_dp;

2153
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2154 2155 2156 2157 2158 2159 2160

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2161
	} else {
2162
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2163
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2164 2165 2166 2167 2168 2169 2170

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2171
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2172 2173
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2174
		if (IS_CHERRYVIEW(dev_priv))
2175 2176 2177
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2178
	}
2179 2180
}

2181 2182
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2183

2184 2185
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2186

2187 2188
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2189

2190
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2191

2192
static void wait_panel_status(struct intel_dp *intel_dp,
2193 2194
				       u32 mask,
				       u32 value)
2195
{
2196
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2197
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2198

V
Ville Syrjälä 已提交
2199 2200
	lockdep_assert_held(&dev_priv->pps_mutex);

2201
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2202

2203 2204
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2205

2206
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2207 2208 2209
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2210

2211 2212 2213
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2214
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2215 2216
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2217 2218

	DRM_DEBUG_KMS("Wait complete\n");
2219
}
2220

2221
static void wait_panel_on(struct intel_dp *intel_dp)
2222 2223
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2224
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2225 2226
}

2227
static void wait_panel_off(struct intel_dp *intel_dp)
2228 2229
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2230
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2231 2232
}

2233
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2234
{
2235 2236 2237
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2238
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2239

2240 2241 2242 2243 2244
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2245 2246
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2247 2248 2249
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2250

2251
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2252 2253
}

2254
static void wait_backlight_on(struct intel_dp *intel_dp)
2255 2256 2257 2258 2259
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2260
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2261 2262 2263 2264
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2265

2266 2267 2268 2269
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2270
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2271
{
2272
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2273
	u32 control;
2274

V
Ville Syrjälä 已提交
2275 2276
	lockdep_assert_held(&dev_priv->pps_mutex);

2277
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2278 2279
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2280 2281 2282
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2283
	return control;
2284 2285
}

2286 2287 2288 2289 2290
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2291
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2292
{
2293
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2294
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2295
	u32 pp;
2296
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2297
	bool need_to_disable = !intel_dp->want_panel_vdd;
2298

V
Ville Syrjälä 已提交
2299 2300
	lockdep_assert_held(&dev_priv->pps_mutex);

2301
	if (!intel_dp_is_edp(intel_dp))
2302
		return false;
2303

2304
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2305
	intel_dp->want_panel_vdd = true;
2306

2307
	if (edp_have_panel_vdd(intel_dp))
2308
		return need_to_disable;
2309

2310
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2311

V
Ville Syrjälä 已提交
2312
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2313
		      port_name(intel_dig_port->base.port));
2314

2315 2316
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2317

2318
	pp = ironlake_get_pp_control(intel_dp);
2319
	pp |= EDP_FORCE_VDD;
2320

2321 2322
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2323 2324 2325 2326 2327

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2328 2329 2330
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2331
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2332
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2333
			      port_name(intel_dig_port->base.port));
2334 2335
		msleep(intel_dp->panel_power_up_delay);
	}
2336 2337 2338 2339

	return need_to_disable;
}

2340 2341 2342 2343 2344 2345 2346
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2347
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2348
{
2349
	bool vdd;
2350

2351
	if (!intel_dp_is_edp(intel_dp))
2352 2353
		return;

2354
	pps_lock(intel_dp);
2355
	vdd = edp_panel_vdd_on(intel_dp);
2356
	pps_unlock(intel_dp);
2357

R
Rob Clark 已提交
2358
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2359
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2360 2361
}

2362
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2363
{
2364
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2365 2366
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2367
	u32 pp;
2368
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2369

V
Ville Syrjälä 已提交
2370
	lockdep_assert_held(&dev_priv->pps_mutex);
2371

2372
	WARN_ON(intel_dp->want_panel_vdd);
2373

2374
	if (!edp_have_panel_vdd(intel_dp))
2375
		return;
2376

V
Ville Syrjälä 已提交
2377
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2378
		      port_name(intel_dig_port->base.port));
2379

2380 2381
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2382

2383 2384
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2385

2386 2387
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2388

2389 2390 2391
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2392

2393
	if ((pp & PANEL_POWER_ON) == 0)
2394
		intel_dp->panel_power_off_time = ktime_get_boottime();
2395

2396
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2397
}
2398

2399
static void edp_panel_vdd_work(struct work_struct *__work)
2400 2401 2402 2403
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2404
	pps_lock(intel_dp);
2405 2406
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2407
	pps_unlock(intel_dp);
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2423 2424 2425 2426 2427
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2428
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2429
{
2430
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
V
Ville Syrjälä 已提交
2431 2432 2433

	lockdep_assert_held(&dev_priv->pps_mutex);

2434
	if (!intel_dp_is_edp(intel_dp))
2435
		return;
2436

R
Rob Clark 已提交
2437
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2438
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2439

2440 2441
	intel_dp->want_panel_vdd = false;

2442
	if (sync)
2443
		edp_panel_vdd_off_sync(intel_dp);
2444 2445
	else
		edp_panel_vdd_schedule_off(intel_dp);
2446 2447
}

2448
static void edp_panel_on(struct intel_dp *intel_dp)
2449
{
2450
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2451
	u32 pp;
2452
	i915_reg_t pp_ctrl_reg;
2453

2454 2455
	lockdep_assert_held(&dev_priv->pps_mutex);

2456
	if (!intel_dp_is_edp(intel_dp))
2457
		return;
2458

V
Ville Syrjälä 已提交
2459
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2460
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2461

2462 2463
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2464
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2465
		return;
2466

2467
	wait_panel_power_cycle(intel_dp);
2468

2469
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2470
	pp = ironlake_get_pp_control(intel_dp);
2471
	if (IS_GEN5(dev_priv)) {
2472 2473
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2474 2475
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2476
	}
2477

2478
	pp |= PANEL_POWER_ON;
2479
	if (!IS_GEN5(dev_priv))
2480 2481
		pp |= PANEL_POWER_RESET;

2482 2483
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2484

2485
	wait_panel_on(intel_dp);
2486
	intel_dp->last_power_on = jiffies;
2487

2488
	if (IS_GEN5(dev_priv)) {
2489
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2490 2491
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2492
	}
2493
}
V
Ville Syrjälä 已提交
2494

2495 2496
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2497
	if (!intel_dp_is_edp(intel_dp))
2498 2499 2500 2501
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2502
	pps_unlock(intel_dp);
2503 2504
}

2505 2506

static void edp_panel_off(struct intel_dp *intel_dp)
2507
{
2508
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2509
	u32 pp;
2510
	i915_reg_t pp_ctrl_reg;
2511

2512 2513
	lockdep_assert_held(&dev_priv->pps_mutex);

2514
	if (!intel_dp_is_edp(intel_dp))
2515
		return;
2516

V
Ville Syrjälä 已提交
2517
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2518
		      port_name(dp_to_dig_port(intel_dp)->base.port));
2519

V
Ville Syrjälä 已提交
2520
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2521
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2522

2523
	pp = ironlake_get_pp_control(intel_dp);
2524 2525
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2526
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2527
		EDP_BLC_ENABLE);
2528

2529
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2530

2531 2532
	intel_dp->want_panel_vdd = false;

2533 2534
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2535

2536
	wait_panel_off(intel_dp);
2537
	intel_dp->panel_power_off_time = ktime_get_boottime();
2538 2539

	/* We got a reference when we enabled the VDD. */
2540
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2541
}
V
Ville Syrjälä 已提交
2542

2543 2544
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2545
	if (!intel_dp_is_edp(intel_dp))
2546
		return;
V
Ville Syrjälä 已提交
2547

2548 2549
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2550
	pps_unlock(intel_dp);
2551 2552
}

2553 2554
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2555
{
2556
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2557
	u32 pp;
2558
	i915_reg_t pp_ctrl_reg;
2559

2560 2561 2562 2563 2564 2565
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2566
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2567

2568
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2569

2570
	pp = ironlake_get_pp_control(intel_dp);
2571
	pp |= EDP_BLC_ENABLE;
2572

2573
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2574 2575 2576

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2577

2578
	pps_unlock(intel_dp);
2579 2580
}

2581
/* Enable backlight PWM and backlight PP control. */
2582 2583
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2584
{
2585 2586
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2587
	if (!intel_dp_is_edp(intel_dp))
2588 2589 2590 2591
		return;

	DRM_DEBUG_KMS("\n");

2592
	intel_panel_enable_backlight(crtc_state, conn_state);
2593 2594 2595 2596 2597
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2598
{
2599
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2600
	u32 pp;
2601
	i915_reg_t pp_ctrl_reg;
2602

2603
	if (!intel_dp_is_edp(intel_dp))
2604 2605
		return;

2606
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2607

2608
	pp = ironlake_get_pp_control(intel_dp);
2609
	pp &= ~EDP_BLC_ENABLE;
2610

2611
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2612 2613 2614

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2615

2616
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2617 2618

	intel_dp->last_backlight_off = jiffies;
2619
	edp_wait_backlight_off(intel_dp);
2620
}
2621

2622
/* Disable backlight PP control and backlight PWM. */
2623
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2624
{
2625 2626
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2627
	if (!intel_dp_is_edp(intel_dp))
2628 2629 2630
		return;

	DRM_DEBUG_KMS("\n");
2631

2632
	_intel_edp_backlight_off(intel_dp);
2633
	intel_panel_disable_backlight(old_conn_state);
2634
}
2635

2636 2637 2638 2639 2640 2641 2642 2643
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2644 2645
	bool is_enabled;

2646
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2647
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2648
	pps_unlock(intel_dp);
2649 2650 2651 2652

	if (is_enabled == enable)
		return;

2653 2654
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2655 2656 2657 2658 2659 2660 2661

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2662 2663 2664 2665 2666 2667 2668 2669
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2670
			port_name(dig_port->base.port),
2671
			onoff(state), onoff(cur_state));
2672 2673 2674 2675 2676 2677 2678 2679 2680
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2681
			onoff(state), onoff(cur_state));
2682 2683 2684 2685
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2686
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2687
				const struct intel_crtc_state *pipe_config)
2688
{
2689
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2690
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2691

2692 2693 2694
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2695

2696
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2697
		      pipe_config->port_clock);
2698 2699 2700

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2701
	if (pipe_config->port_clock == 162000)
2702 2703 2704 2705 2706 2707 2708 2709
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2710 2711 2712 2713 2714 2715 2716
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN5(dev_priv))
2717
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2718

2719
	intel_dp->DP |= DP_PLL_ENABLE;
2720

2721
	I915_WRITE(DP_A, intel_dp->DP);
2722 2723
	POSTING_READ(DP_A);
	udelay(200);
2724 2725
}

2726 2727
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2728
{
2729
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2730
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2731

2732 2733 2734
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2735

2736 2737
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2738
	intel_dp->DP &= ~DP_PLL_ENABLE;
2739

2740
	I915_WRITE(DP_A, intel_dp->DP);
2741
	POSTING_READ(DP_A);
2742 2743 2744
	udelay(200);
}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2760
/* If the sink supports it, try to set the power state appropriately */
2761
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2762 2763 2764 2765 2766 2767 2768 2769
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2770 2771 2772
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2773 2774
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2775
	} else {
2776 2777
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2778 2779 2780 2781 2782
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2783 2784
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2785 2786 2787 2788
			if (ret == 1)
				break;
			msleep(1);
		}
2789 2790 2791

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2792
	}
2793 2794 2795 2796

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2797 2798
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2845 2846
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2847
{
2848
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2849
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2850
	bool ret;
2851

2852 2853
	if (!intel_display_power_get_if_enabled(dev_priv,
						encoder->power_domain))
2854 2855
		return false;

2856 2857
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2858

2859
	intel_display_power_put(dev_priv, encoder->power_domain);
2860 2861

	return ret;
2862
}
2863

2864
static void intel_dp_get_config(struct intel_encoder *encoder,
2865
				struct intel_crtc_state *pipe_config)
2866
{
2867
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2868 2869
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2870
	enum port port = encoder->port;
2871
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2872

2873 2874 2875 2876
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2877

2878
	tmp = I915_READ(intel_dp->output_reg);
2879 2880

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2881

2882
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2883 2884 2885
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2886 2887 2888
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2889

2890
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2891 2892 2893 2894
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2895
		if (tmp & DP_SYNC_HS_HIGH)
2896 2897 2898
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2899

2900
		if (tmp & DP_SYNC_VS_HIGH)
2901 2902 2903 2904
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
2905

2906
	pipe_config->base.adjusted_mode.flags |= flags;
2907

2908
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2909 2910
		pipe_config->limited_color_range = true;

2911 2912 2913
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

2914 2915
	intel_dp_get_m_n(crtc, pipe_config);

2916
	if (port == PORT_A) {
2917
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2918 2919 2920 2921
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
2922

2923 2924 2925
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
2926

2927
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2928
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2943 2944
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2945
	}
2946 2947
}

2948
static void intel_disable_dp(struct intel_encoder *encoder,
2949 2950
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
2951
{
2952
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2953

2954 2955
	intel_dp->link_trained = false;

2956
	if (old_crtc_state->has_audio)
2957 2958
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
2959 2960 2961

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
2962
	intel_edp_panel_vdd_on(intel_dp);
2963
	intel_edp_backlight_off(old_conn_state);
2964
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2965
	intel_edp_panel_off(intel_dp);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2980 2981
}

2982
static void g4x_post_disable_dp(struct intel_encoder *encoder,
2983 2984
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
2985
{
2986
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2987
	enum port port = encoder->port;
2988

2989 2990 2991 2992 2993 2994
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
2995
	intel_dp_link_down(encoder, old_crtc_state);
2996 2997

	/* Only ilk+ has port A */
2998
	if (port == PORT_A)
2999
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3000 3001
}

3002
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3003 3004
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3005
{
3006
	intel_dp_link_down(encoder, old_crtc_state);
3007 3008
}

3009
static void chv_post_disable_dp(struct intel_encoder *encoder,
3010 3011
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3012
{
3013
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3014

3015
	intel_dp_link_down(encoder, old_crtc_state);
3016 3017 3018 3019

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3020
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3021

V
Ville Syrjälä 已提交
3022
	mutex_unlock(&dev_priv->sb_lock);
3023 3024
}

3025 3026 3027 3028 3029
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
3030
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3031
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3032
	enum port port = intel_dig_port->base.port;
3033
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3034

3035
	if (dp_train_pat & train_pat_mask)
3036
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3037
			      dp_train_pat & train_pat_mask);
3038

3039
	if (HAS_DDI(dev_priv)) {
3040 3041 3042 3043 3044 3045 3046 3047
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3048
		switch (dp_train_pat & train_pat_mask) {
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3062 3063 3064
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3065 3066 3067
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3068
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3069
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3083
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3084 3085 3086 3087 3088
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3089
		*DP &= ~DP_LINK_TRAIN_MASK;
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3102 3103
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3104 3105 3106 3107 3108
			break;
		}
	}
}

3109
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3110
				 const struct intel_crtc_state *old_crtc_state)
3111
{
3112
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3113 3114 3115

	/* enable with pattern 1 (as per spec) */

3116
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3117 3118 3119 3120 3121 3122 3123 3124

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3125
	if (old_crtc_state->has_audio)
3126
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3127 3128 3129

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3130 3131
}

3132
static void intel_enable_dp(struct intel_encoder *encoder,
3133 3134
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3135
{
3136
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3137
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3138
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3139
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3140
	enum pipe pipe = crtc->pipe;
3141

3142 3143
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3144

3145 3146
	pps_lock(intel_dp);

3147
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3148
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3149

3150
	intel_dp_enable_port(intel_dp, pipe_config);
3151 3152 3153 3154 3155 3156 3157

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3158
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3159 3160
		unsigned int lane_mask = 0x0;

3161
		if (IS_CHERRYVIEW(dev_priv))
3162
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3163

3164 3165
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3166
	}
3167

3168
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3169
	intel_dp_start_link_train(intel_dp);
3170
	intel_dp_stop_link_train(intel_dp);
3171

3172
	if (pipe_config->has_audio) {
3173
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3174
				 pipe_name(pipe));
3175
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3176
	}
3177
}
3178

3179
static void g4x_enable_dp(struct intel_encoder *encoder,
3180 3181
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3182
{
3183
	intel_enable_dp(encoder, pipe_config, conn_state);
3184
	intel_edp_backlight_on(pipe_config, conn_state);
3185
}
3186

3187
static void vlv_enable_dp(struct intel_encoder *encoder,
3188 3189
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3190
{
3191
	intel_edp_backlight_on(pipe_config, conn_state);
3192 3193
}

3194
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3195 3196
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3197 3198
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3199
	enum port port = encoder->port;
3200

3201
	intel_dp_prepare(encoder, pipe_config);
3202

3203
	/* Only ilk+ has port A */
3204
	if (port == PORT_A)
3205
		ironlake_edp_pll_on(intel_dp, pipe_config);
3206 3207
}

3208 3209 3210
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3211
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3212
	enum pipe pipe = intel_dp->pps_pipe;
3213
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3214

3215 3216
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3217 3218 3219
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3220 3221 3222
	edp_panel_vdd_off_sync(intel_dp);

	/*
3223
	 * VLV seems to get confused when multiple power sequencers
3224 3225 3226
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3227
	 * selected in multiple power sequencers, but let's clear the
3228 3229 3230 3231
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3232
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3233 3234 3235 3236 3237 3238
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3239
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3240 3241 3242 3243 3244 3245
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3246 3247 3248
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3249

3250 3251 3252 3253
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3254 3255 3256 3257
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3258
			      pipe_name(pipe), port_name(port));
3259 3260

		/* make sure vdd is off before we steal it */
3261
		vlv_detach_power_sequencer(intel_dp);
3262 3263 3264
	}
}

3265 3266
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3267
{
3268
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3269 3270
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3271 3272 3273

	lockdep_assert_held(&dev_priv->pps_mutex);

3274
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3275

3276 3277 3278 3279 3280 3281 3282
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3283
		vlv_detach_power_sequencer(intel_dp);
3284
	}
3285 3286 3287 3288 3289

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3290
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3291

3292 3293
	intel_dp->active_pipe = crtc->pipe;

3294
	if (!intel_dp_is_edp(intel_dp))
3295 3296
		return;

3297 3298 3299 3300
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3301
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3302 3303

	/* init power sequencer on this pipe and port */
3304 3305
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3306 3307
}

3308
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3309 3310
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3311
{
3312
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3313

3314
	intel_enable_dp(encoder, pipe_config, conn_state);
3315 3316
}

3317
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3318 3319
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3320
{
3321
	intel_dp_prepare(encoder, pipe_config);
3322

3323
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3324 3325
}

3326
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3327 3328
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3329
{
3330
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3331

3332
	intel_enable_dp(encoder, pipe_config, conn_state);
3333 3334

	/* Second common lane will stay alive on its own now */
3335
	chv_phy_release_cl2_override(encoder);
3336 3337
}

3338
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3339 3340
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3341
{
3342
	intel_dp_prepare(encoder, pipe_config);
3343

3344
	chv_phy_pre_pll_enable(encoder, pipe_config);
3345 3346
}

3347
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3348 3349
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3350
{
3351
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3352 3353
}

3354 3355 3356 3357
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3358
bool
3359
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3360
{
3361 3362
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3363 3364
}

3365
/* These are source-specific values. */
3366
uint8_t
K
Keith Packard 已提交
3367
intel_dp_voltage_max(struct intel_dp *intel_dp)
3368
{
3369
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3370 3371
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3372

3373
	if (HAS_DDI(dev_priv))
3374
		return intel_ddi_dp_voltage_max(encoder);
3375
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3376
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3377
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3378
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3379
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3380
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3381
	else
3382
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3383 3384
}

3385
uint8_t
K
Keith Packard 已提交
3386 3387
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3388
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3389 3390
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3391

3392 3393
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3394
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3395
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3396 3397 3398 3399 3400 3401 3402
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3403
		default:
3404
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3405
		}
3406
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3407
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3408 3409 3410 3411 3412
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3413
		default:
3414
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3415 3416 3417
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3418 3419 3420 3421 3422 3423 3424
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3425
		default:
3426
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3427
		}
3428 3429 3430
	}
}

3431
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3432
{
3433
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3434 3435 3436 3437 3438
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3439
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3440 3441
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3442
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3443 3444 3445
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3446
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3447 3448 3449
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3450
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3451 3452 3453
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3454
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3455 3456 3457 3458 3459 3460 3461
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3462
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3463 3464
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3465
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3466 3467 3468
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3469
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3470 3471 3472
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3473
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3474 3475 3476 3477 3478 3479 3480
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3481
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3482 3483
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3484
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3485 3486 3487
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3488
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3489 3490 3491 3492 3493 3494 3495
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3496
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3497 3498
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3499
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3511 3512
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3513 3514 3515 3516

	return 0;
}

3517
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3518
{
3519 3520 3521
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3522 3523 3524
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3525
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3526
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3527
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3528 3529 3530
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3531
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3532 3533 3534
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3535
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3536 3537 3538
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3539
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3540 3541
			deemph_reg_value = 128;
			margin_reg_value = 154;
3542
			uniq_trans_scale = true;
3543 3544 3545 3546 3547
			break;
		default:
			return 0;
		}
		break;
3548
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3549
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3550
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3551 3552 3553
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3554
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3555 3556 3557
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3558
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3559 3560 3561 3562 3563 3564 3565
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3566
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3567
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3568
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3569 3570 3571
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3572
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3573 3574 3575 3576 3577 3578 3579
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3580
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3581
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3582
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3594 3595
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3596 3597 3598 3599

	return 0;
}

3600
static uint32_t
3601
g4x_signal_levels(uint8_t train_set)
3602
{
3603
	uint32_t	signal_levels = 0;
3604

3605
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3606
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3607 3608 3609
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3610
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3611 3612
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3613
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3614 3615
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3616
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3617 3618 3619
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3620
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3621
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3622 3623 3624
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3625
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3626 3627
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3628
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3629 3630
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3631
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3632 3633 3634 3635 3636 3637
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3638
/* SNB CPU eDP voltage swing and pre-emphasis control */
3639
static uint32_t
3640
snb_cpu_edp_signal_levels(uint8_t train_set)
3641
{
3642 3643 3644
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3645 3646
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3647
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3648
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3649
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3650 3651
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3652
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3653 3654
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3655
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3656 3657
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3658
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3659
	default:
3660 3661 3662
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3663 3664 3665
	}
}

3666
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3667
static uint32_t
3668
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3669 3670 3671 3672
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3673
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3674
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3675
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3676
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3677
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3678 3679
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3680
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3681
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3682
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3683 3684
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3685
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3686
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3687
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3697
void
3698
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3699
{
3700
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3701
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3702
	enum port port = intel_dig_port->base.port;
3703
	uint32_t signal_levels, mask = 0;
3704 3705
	uint8_t train_set = intel_dp->train_set[0];

3706 3707 3708
	if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3709
		signal_levels = ddi_signal_levels(intel_dp);
3710
		mask = DDI_BUF_EMP_MASK;
3711
	} else if (IS_CHERRYVIEW(dev_priv)) {
3712
		signal_levels = chv_signal_levels(intel_dp);
3713
	} else if (IS_VALLEYVIEW(dev_priv)) {
3714
		signal_levels = vlv_signal_levels(intel_dp);
3715
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3716
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3717
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3718
	} else if (IS_GEN6(dev_priv) && port == PORT_A) {
3719
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3720 3721
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3722
		signal_levels = g4x_signal_levels(train_set);
3723 3724 3725
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3726 3727 3728 3729 3730 3731 3732 3733
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3734

3735
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3736 3737 3738

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3739 3740
}

3741
void
3742 3743
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3744
{
3745
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3746 3747
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3748

3749
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3750

3751
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3752
	POSTING_READ(intel_dp->output_reg);
3753 3754
}

3755
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3756
{
3757
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3758
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3759
	enum port port = intel_dig_port->base.port;
3760 3761
	uint32_t val;

3762
	if (!HAS_DDI(dev_priv))
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3780 3781 3782 3783
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3784 3785 3786
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3787
static void
3788 3789
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3790
{
3791 3792 3793 3794
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3795
	uint32_t DP = intel_dp->DP;
3796

3797
	if (WARN_ON(HAS_DDI(dev_priv)))
3798 3799
		return;

3800
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3801 3802
		return;

3803
	DRM_DEBUG_KMS("\n");
3804

3805
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3806
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3807
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3808
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3809
	} else {
3810
		DP &= ~DP_LINK_TRAIN_MASK;
3811
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3812
	}
3813
	I915_WRITE(intel_dp->output_reg, DP);
3814
	POSTING_READ(intel_dp->output_reg);
3815

3816 3817 3818 3819 3820 3821 3822 3823 3824
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3825
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3826 3827 3828 3829 3830 3831 3832
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3833
		/* always enable with pattern 1 (as per spec) */
3834 3835 3836
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3837 3838 3839 3840
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3841
		I915_WRITE(intel_dp->output_reg, DP);
3842
		POSTING_READ(intel_dp->output_reg);
3843

3844
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3845 3846
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3847 3848
	}

3849
	msleep(intel_dp->panel_power_down_delay);
3850 3851

	intel_dp->DP = DP;
3852 3853 3854 3855 3856 3857

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3858 3859
}

3860
bool
3861
intel_dp_read_dpcd(struct intel_dp *intel_dp)
3862
{
3863 3864
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
3865
		return false; /* aux transfer failed */
3866

3867
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3868

3869 3870
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
3871

3872 3873 3874 3875 3876
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3877

3878 3879
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3880

3881
	if (!intel_dp_read_dpcd(intel_dp))
3882 3883
		return false;

3884 3885
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
3886

3887 3888 3889
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
3901 3902
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
3903
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3904
			      intel_dp->edp_dpcd);
3905

3906 3907 3908 3909 3910 3911
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

3912 3913
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3914
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3915 3916
		int i;

3917 3918
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
3919

3920 3921
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
3922 3923 3924 3925

			if (val == 0)
				break;

3926 3927 3928 3929 3930 3931
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
3932
			intel_dp->sink_rates[i] = (val * 200) / 10;
3933
		}
3934
		intel_dp->num_sink_rates = i;
3935
	}
3936

3937 3938 3939 3940
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
3941 3942 3943 3944 3945
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

3946 3947
	intel_dp_set_common_rates(intel_dp);

3948 3949 3950 3951 3952 3953 3954
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
3955 3956
	u8 sink_count;

3957 3958 3959
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

3960
	/* Don't clobber cached eDP rates. */
3961
	if (!intel_dp_is_edp(intel_dp)) {
3962
		intel_dp_set_sink_rates(intel_dp);
3963 3964
		intel_dp_set_common_rates(intel_dp);
	}
3965

3966
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3967 3968 3969 3970 3971 3972 3973
		return false;

	/*
	 * Sink count can change between short pulse hpd hence
	 * a member variable in intel_dp will track any changes
	 * between short pulse interrupts.
	 */
3974
	intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3975 3976 3977 3978 3979 3980 3981 3982

	/*
	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
	 * a dongle is present but no display. Unless we require to know
	 * if a dongle is present or not, we don't need to update
	 * downstream port information. So, an early return here saves
	 * time from performing other operations which are not required.
	 */
3983
	if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3984
		return false;
3985

3986
	if (!drm_dp_is_branch(intel_dp->dpcd))
3987 3988 3989 3990 3991
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

3992 3993 3994
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
3995 3996 3997
		return false; /* downstream port status fetch failed */

	return true;
3998 3999
}

4000
static bool
4001
intel_dp_can_mst(struct intel_dp *intel_dp)
4002
{
4003
	u8 mstm_cap;
4004

4005
	if (!i915_modparams.enable_dp_mst)
4006 4007
		return false;

4008 4009 4010 4011 4012 4013
	if (!intel_dp->can_mst)
		return false;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4014
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4015
		return false;
4016

4017
	return mstm_cap & DP_MST_CAP;
4018 4019 4020 4021 4022
}

static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4023
	if (!i915_modparams.enable_dp_mst)
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
		return;

	if (!intel_dp->can_mst)
		return;

	intel_dp->is_mst = intel_dp_can_mst(intel_dp);

	if (intel_dp->is_mst)
		DRM_DEBUG_KMS("Sink is MST capable\n");
	else
		DRM_DEBUG_KMS("Sink is not MST capable\n");

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4038 4039
}

4040 4041 4042
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4043 4044
	return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
				 sink_irq_vector) == 1;
4045 4046
}

4047 4048 4049
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4050 4051 4052
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4053 4054
}

4055 4056
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
4057
	int status = 0;
4058
	int test_link_rate;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4080 4081 4082 4083

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4084 4085 4086 4087 4088 4089
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4090 4091 4092 4093
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
4094
	uint8_t test_pattern;
4095
	uint8_t test_misc;
4096 4097 4098 4099
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4100 4101
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4123 4124
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4151 4152 4153
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4154
{
4155
	uint8_t test_result = DP_TEST_ACK;
4156 4157 4158 4159
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4160
	    connector->edid_corrupt ||
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4174
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4175
	} else {
4176 4177 4178 4179 4180 4181 4182
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4183 4184
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4185 4186 4187
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4188
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4189 4190 4191
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4192
	intel_dp->compliance.test_active = 1;
4193

4194 4195 4196 4197
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4198
{
4199 4200 4201 4202 4203 4204 4205
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4206 4207
	uint8_t request = 0;
	int status;
4208

4209
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4210 4211 4212 4213 4214
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4215
	switch (request) {
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4233
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4234 4235 4236
		break;
	}

4237 4238 4239
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4240
update_status:
4241
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4242 4243
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4244 4245
}

4246 4247 4248 4249 4250 4251
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4252
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4253 4254 4255
		int ret = 0;
		int retry;
		bool handled;
4256 4257

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4258 4259 4260 4261 4262
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4263
			if (intel_dp->active_mst_links > 0 &&
4264
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4265 4266 4267 4268 4269
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4270
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4286
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4305 4306 4307 4308 4309
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4310 4311 4312 4313
	if (!intel_dp->link_trained)
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4342 4343
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
	if (crtc->config->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4395
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4396 4397 4398 4399 4400

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
	if (crtc->config->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4401 4402

	return 0;
4403 4404
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4419
{
4420 4421 4422
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4423

4424
	changed = intel_encoder_hotplug(encoder, connector);
4425

4426
	drm_modeset_acquire_init(&ctx, 0);
4427

4428 4429
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4430

4431 4432 4433 4434
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4435

4436 4437
		break;
	}
4438

4439 4440 4441
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4442

4443
	return changed;
4444 4445
}

4446 4447 4448 4449 4450 4451 4452
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4453 4454 4455 4456 4457
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4458
 */
4459
static bool
4460
intel_dp_short_pulse(struct intel_dp *intel_dp)
4461
{
4462
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4463
	u8 sink_irq_vector = 0;
4464 4465
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4466

4467 4468 4469 4470
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4471
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4472

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4484 4485
	}

4486 4487
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4488 4489
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
	    sink_irq_vector != 0) {
4490
		/* Clear interrupt source */
4491 4492 4493
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);
4494 4495

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4496
			intel_dp_handle_test_request(intel_dp);
4497 4498 4499 4500
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

4501 4502 4503
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4504 4505 4506
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4507

4508 4509
	intel_psr_short_pulse(intel_dp);

4510 4511 4512
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4513
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4514
	}
4515 4516

	return true;
4517 4518
}

4519
/* XXX this is probably wrong for multiple downstream ports */
4520
static enum drm_connector_status
4521
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4522
{
4523
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4524 4525 4526
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4527 4528 4529
	if (lspcon->active)
		lspcon_resume(lspcon);

4530 4531 4532
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4533
	if (intel_dp_is_edp(intel_dp))
4534 4535
		return connector_status_connected;

4536
	/* if there's no downstream port, we're done */
4537
	if (!drm_dp_is_branch(dpcd))
4538
		return connector_status_connected;
4539 4540

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4541 4542
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4543

4544 4545
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4546 4547
	}

4548 4549 4550
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4551
	/* If no HPD, poke DDC gently */
4552
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4553
		return connector_status_connected;
4554 4555

	/* Well we tried, say unknown for unreliable port types */
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4568 4569 4570

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4571
	return connector_status_disconnected;
4572 4573
}

4574 4575 4576
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4577
	return connector_status_connected;
4578 4579
}

4580
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4581
{
4582
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4583
	u32 bit;
4584

4585 4586
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4587 4588
		bit = SDE_PORTB_HOTPLUG;
		break;
4589
	case HPD_PORT_C:
4590 4591
		bit = SDE_PORTC_HOTPLUG;
		break;
4592
	case HPD_PORT_D:
4593 4594 4595
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4596
		MISSING_CASE(encoder->hpd_pin);
4597 4598 4599 4600 4601 4602
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4603
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4604
{
4605
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4606 4607
	u32 bit;

4608 4609
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4610 4611
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4612
	case HPD_PORT_C:
4613 4614
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4615
	case HPD_PORT_D:
4616 4617
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4618
	default:
4619
		MISSING_CASE(encoder->hpd_pin);
4620 4621 4622 4623 4624 4625
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4626
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4627
{
4628
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4629 4630
	u32 bit;

4631 4632
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4633 4634
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4635
	case HPD_PORT_E:
4636 4637
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4638
	default:
4639
		return cpt_digital_port_connected(encoder);
4640
	}
4641

4642
	return I915_READ(SDEISR) & bit;
4643 4644
}

4645
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4646
{
4647
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4648
	u32 bit;
4649

4650 4651
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4652 4653
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4654
	case HPD_PORT_C:
4655 4656
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4657
	case HPD_PORT_D:
4658 4659 4660
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4661
		MISSING_CASE(encoder->hpd_pin);
4662 4663 4664 4665 4666 4667
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4668
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4669
{
4670
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4671 4672
	u32 bit;

4673 4674
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4675
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4676
		break;
4677
	case HPD_PORT_C:
4678
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4679
		break;
4680
	case HPD_PORT_D:
4681
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4682 4683
		break;
	default:
4684
		MISSING_CASE(encoder->hpd_pin);
4685
		return false;
4686 4687
	}

4688
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4689 4690
}

4691
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4692
{
4693 4694 4695
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4696 4697
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4698
		return ibx_digital_port_connected(encoder);
4699 4700
}

4701
static bool snb_digital_port_connected(struct intel_encoder *encoder)
4702
{
4703 4704 4705
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4706 4707
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4708
		return cpt_digital_port_connected(encoder);
4709 4710
}

4711
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4712
{
4713 4714 4715
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4716 4717
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
4718
		return cpt_digital_port_connected(encoder);
4719 4720
}

4721
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4722
{
4723 4724 4725
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4726 4727
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
4728
		return cpt_digital_port_connected(encoder);
4729 4730
}

4731
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4732
{
4733
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4734 4735
	u32 bit;

4736 4737
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4738 4739
		bit = BXT_DE_PORT_HP_DDIA;
		break;
4740
	case HPD_PORT_B:
4741 4742
		bit = BXT_DE_PORT_HP_DDIB;
		break;
4743
	case HPD_PORT_C:
4744 4745 4746
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4747
		MISSING_CASE(encoder->hpd_pin);
4748 4749 4750 4751 4752 4753
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4754 4755 4756 4757 4758 4759 4760 4761
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;
	const char *type_str;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

	if (is_legacy) {
		intel_dig_port->tc_type = TC_PORT_LEGACY;
		type_str = "legacy";
	} else if (is_typec) {
		intel_dig_port->tc_type = TC_PORT_TYPEC;
		type_str = "typec";
	} else if (is_tbt) {
		intel_dig_port->tc_type = TC_PORT_TBT;
		type_str = "tbt";
	} else {
		return;
	}

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
			      type_str);
}

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

	is_legacy = I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port);

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

4812 4813 4814 4815 4816
	if (!is_legacy && !is_typec && !is_tbt)
		return false;

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
4817

4818
	return true;
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
	case HPD_PORT_B:
		return icl_combo_port_connected(dev_priv, dig_port);
	case HPD_PORT_C:
	case HPD_PORT_D:
	case HPD_PORT_E:
	case HPD_PORT_F:
		return icl_tc_port_connected(dev_priv, dig_port);
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}
}

4841 4842
/*
 * intel_digital_port_connected - is the specified port connected?
4843
 * @encoder: intel_encoder
4844
 *
4845
 * Return %true if port is connected, %false otherwise.
4846
 */
4847
bool intel_digital_port_connected(struct intel_encoder *encoder)
4848
{
4849 4850
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

4851 4852
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
4853
			return gm45_digital_port_connected(encoder);
4854
		else
4855
			return g4x_digital_port_connected(encoder);
4856 4857 4858
	}

	if (IS_GEN5(dev_priv))
4859
		return ilk_digital_port_connected(encoder);
4860
	else if (IS_GEN6(dev_priv))
4861
		return snb_digital_port_connected(encoder);
4862
	else if (IS_GEN7(dev_priv))
4863
		return ivb_digital_port_connected(encoder);
4864
	else if (IS_GEN8(dev_priv))
4865
		return bdw_digital_port_connected(encoder);
4866
	else if (IS_GEN9_LP(dev_priv))
4867
		return bxt_digital_port_connected(encoder);
4868
	else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
4869
		return spt_digital_port_connected(encoder);
4870 4871
	else
		return icl_digital_port_connected(encoder);
4872 4873
}

4874
static struct edid *
4875
intel_dp_get_edid(struct intel_dp *intel_dp)
4876
{
4877
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4878

4879 4880 4881 4882
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
4883 4884
			return NULL;

J
Jani Nikula 已提交
4885
		return drm_edid_duplicate(intel_connector->edid);
4886 4887 4888 4889
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
4890

4891 4892 4893 4894 4895
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
4896

4897
	intel_dp_unset_edid(intel_dp);
4898 4899 4900
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

4901
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
4902
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
4903 4904
}

4905 4906
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
4907
{
4908
	struct intel_connector *intel_connector = intel_dp->attached_connector;
4909

4910
	drm_dp_cec_unset_edid(&intel_dp->aux);
4911 4912
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
4913

4914 4915
	intel_dp->has_audio = false;
}
4916

4917
static int
4918
intel_dp_long_pulse(struct intel_connector *connector)
Z
Zhenyu Wang 已提交
4919
{
4920 4921
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
Z
Zhenyu Wang 已提交
4922
	enum drm_connector_status status;
4923
	u8 sink_irq_vector = 0;
Z
Zhenyu Wang 已提交
4924

4925
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
4926

4927
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
Z
Zhenyu Wang 已提交
4928

4929
	/* Can't disconnect eDP */
4930
	if (intel_dp_is_edp(intel_dp))
4931
		status = edp_detect(intel_dp);
4932
	else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
4933
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
4934
	else
4935 4936
		status = connector_status_disconnected;

4937
	if (status == connector_status_disconnected) {
4938
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4939

4940 4941 4942 4943 4944 4945 4946 4947 4948
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

4949
		goto out;
4950
	}
Z
Zhenyu Wang 已提交
4951

4952
	if (intel_dp->reset_link_params) {
4953 4954
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4955

4956 4957
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4958 4959 4960

		intel_dp->reset_link_params = false;
	}
4961

4962 4963
	intel_dp_print_rates(intel_dp);

4964 4965
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4966

4967 4968 4969
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
4970 4971 4972 4973 4974
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
4975 4976 4977 4978
		status = connector_status_disconnected;
		goto out;
	}

4979 4980 4981 4982 4983 4984 4985 4986
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

4987
	intel_dp_set_edid(intel_dp);
4988
	if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
4989
		status = connector_status_connected;
4990
	intel_dp->detect_done = true;
4991

4992 4993
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4994 4995
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
	    sink_irq_vector != 0) {
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
		/* Clear interrupt source */
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
			intel_dp_handle_test_request(intel_dp);
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

5007
out:
5008
	if (status != connector_status_connected && !intel_dp->is_mst)
5009
		intel_dp_unset_edid(intel_dp);
5010

5011
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5012
	return status;
5013 5014
}

5015 5016 5017 5018
static int
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
5019 5020
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5021
	int status = connector->status;
5022 5023 5024 5025

	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);

5026
	/* If full detect is not performed yet, do a full detect */
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	if (!intel_dp->detect_done) {
		struct drm_crtc *crtc;
		int ret;

		crtc = connector->state->crtc;
		if (crtc) {
			ret = drm_modeset_lock(&crtc->mutex, ctx);
			if (ret)
				return ret;
		}

5038
		status = intel_dp_long_pulse(intel_dp->attached_connector);
5039
	}
5040 5041

	intel_dp->detect_done = false;
5042

5043
	return status;
5044 5045
}

5046 5047
static void
intel_dp_force(struct drm_connector *connector)
5048
{
5049
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5050
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
5051
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5052

5053 5054 5055
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5056

5057 5058
	if (connector->status != connector_status_connected)
		return;
5059

5060
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5061 5062 5063

	intel_dp_set_edid(intel_dp);

5064
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5078

5079
	/* if eDP has no EDID, fall back to fixed mode */
5080
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5081
	    intel_connector->panel.fixed_mode) {
5082
		struct drm_display_mode *mode;
5083 5084

		mode = drm_mode_duplicate(connector->dev,
5085
					  intel_connector->panel.fixed_mode);
5086
		if (mode) {
5087 5088 5089 5090
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5091

5092
	return 0;
5093 5094
}

5095 5096 5097 5098
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5099
	struct drm_device *dev = connector->dev;
5100 5101 5102 5103 5104
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5105 5106 5107 5108 5109 5110 5111

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5112 5113 5114 5115 5116
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5117 5118
}

5119 5120 5121
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5122 5123 5124 5125
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5126 5127 5128
	intel_connector_unregister(connector);
}

5129
static void
5130
intel_dp_connector_destroy(struct drm_connector *connector)
5131
{
5132
	struct intel_connector *intel_connector = to_intel_connector(connector);
5133

5134
	kfree(intel_connector->detect_edid);
5135

5136 5137 5138
	if (!IS_ERR_OR_NULL(intel_connector->edid))
		kfree(intel_connector->edid);

5139 5140 5141 5142
	/*
	 * Can't call intel_dp_is_edp() since the encoder may have been
	 * destroyed already.
	 */
5143
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5144
		intel_panel_fini(&intel_connector->panel);
5145

5146
	drm_connector_cleanup(connector);
5147
	kfree(connector);
5148 5149
}

P
Paulo Zanoni 已提交
5150
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5151
{
5152 5153
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5154

5155
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5156
	if (intel_dp_is_edp(intel_dp)) {
5157
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5158 5159 5160 5161
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5162
		pps_lock(intel_dp);
5163
		edp_panel_vdd_off_sync(intel_dp);
5164 5165
		pps_unlock(intel_dp);

5166 5167 5168 5169
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5170
	}
5171 5172 5173

	intel_dp_aux_fini(intel_dp);

5174
	drm_encoder_cleanup(encoder);
5175
	kfree(intel_dig_port);
5176 5177
}

5178
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5179 5180 5181
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5182
	if (!intel_dp_is_edp(intel_dp))
5183 5184
		return;

5185 5186 5187 5188
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5189
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5190
	pps_lock(intel_dp);
5191
	edp_panel_vdd_off_sync(intel_dp);
5192
	pps_unlock(intel_dp);
5193 5194
}

5195 5196 5197 5198 5199
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5200 5201 5202 5203 5204 5205
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
		DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5223
	intel_dp_aux_header(txbuf, &msg);
5224

5225
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5226 5227
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	if (ret < 0) {
		DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
		return ret;
	} else if (ret == 0) {
		DRM_ERROR("Aksv write over DP/AUX was empty\n");
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
	return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
		DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5272 5273
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5274 5275
{
	ssize_t ret;
5276

5277
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5278
			       bcaps, 1);
5279 5280 5281 5282
	if (ret != 1) {
		DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
		DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
			DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
				  ret);
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
		DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5387

5388 5389 5390 5391
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5392
		return false;
5393
	}
5394

5395 5396 5397
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5424
	.hdcp_capable = intel_dp_hdcp_capable,
5425 5426
};

5427 5428
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5429
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5443
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5444 5445 5446 5447

	edp_panel_vdd_schedule_off(intel_dp);
}

5448 5449 5450
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5451 5452
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5453

5454 5455 5456
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5457

5458
	return INVALID_PIPE;
5459 5460
}

5461
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5462
{
5463
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5464 5465
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5466 5467 5468

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5469

5470
	if (lspcon->active)
5471 5472
		lspcon_resume(lspcon);

5473 5474
	intel_dp->reset_link_params = true;

5475 5476
	pps_lock(intel_dp);

5477 5478 5479
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5480
	if (intel_dp_is_edp(intel_dp)) {
5481
		/* Reinit the power sequencer, in case BIOS did something with it. */
5482
		intel_dp_pps_init(intel_dp);
5483 5484
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5485 5486

	pps_unlock(intel_dp);
5487 5488
}

5489
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5490
	.force = intel_dp_force,
5491
	.fill_modes = drm_helper_probe_single_connector_modes,
5492 5493
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5494
	.late_register = intel_dp_connector_register,
5495
	.early_unregister = intel_dp_connector_unregister,
5496
	.destroy = intel_dp_connector_destroy,
5497
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5498
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5499 5500 5501
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5502
	.detect_ctx = intel_dp_detect,
5503 5504
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5505
	.atomic_check = intel_digital_connector_atomic_check,
5506 5507 5508
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5509
	.reset = intel_dp_encoder_reset,
5510
	.destroy = intel_dp_encoder_destroy,
5511 5512
};

5513
enum irqreturn
5514 5515 5516
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5517
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5518
	enum irqreturn ret = IRQ_NONE;
5519

5520 5521 5522 5523 5524 5525 5526 5527
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5528
			      port_name(intel_dig_port->base.port));
5529
		return IRQ_HANDLED;
5530 5531
	}

5532
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5533
		      port_name(intel_dig_port->base.port),
5534
		      long_hpd ? "long" : "short");
5535

5536
	if (long_hpd) {
5537
		intel_dp->reset_link_params = true;
5538 5539 5540 5541
		intel_dp->detect_done = false;
		return IRQ_NONE;
	}

5542
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			intel_dp->detect_done = false;
			goto put_power;
5557
		}
5558
	}
5559

5560
	if (!intel_dp->is_mst) {
5561
		bool handled;
5562 5563 5564

		handled = intel_dp_short_pulse(intel_dp);

5565 5566 5567
		/* Short pulse can signify loss of hdcp authentication */
		intel_hdcp_check_link(intel_dp->attached_connector);

5568
		if (!handled) {
5569 5570
			intel_dp->detect_done = false;
			goto put_power;
5571
		}
5572
	}
5573 5574 5575

	ret = IRQ_HANDLED;

5576
put_power:
5577
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5578 5579

	return ret;
5580 5581
}

5582
/* check the VBT to see whether the eDP is on another port */
5583
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5584
{
5585 5586 5587 5588
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
5589
	if (INTEL_GEN(dev_priv) < 5)
5590 5591
		return false;

5592
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5593 5594
		return true;

5595
	return intel_bios_is_port_edp(dev_priv, port);
5596 5597
}

5598
static void
5599 5600
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
5601
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5602 5603 5604 5605
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
5606

5607
	intel_attach_broadcast_rgb_property(connector);
5608

5609
	if (intel_dp_is_edp(intel_dp)) {
5610 5611 5612 5613 5614 5615 5616 5617
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

5618
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5619

5620
	}
5621 5622
}

5623 5624
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
5625
	intel_dp->panel_power_off_time = ktime_get_boottime();
5626 5627 5628 5629
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

5630
static void
5631
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5632
{
5633
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5634
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5635
	struct pps_registers regs;
5636

5637
	intel_pps_get_registers(intel_dp, &regs);
5638 5639 5640

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
5641
	pp_ctl = ironlake_get_pp_control(intel_dp);
5642

5643 5644
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
5645 5646
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
5647 5648
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
5649
	}
5650 5651

	/* Pull timing values out of registers */
5652 5653
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
5654

5655 5656
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
5657

5658 5659
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
5660

5661 5662
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
5663

5664 5665
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5666 5667
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5668
	} else {
5669
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5670
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5671
	}
5672 5673
}

I
Imre Deak 已提交
5674 5675 5676 5677 5678 5679 5680 5681 5682
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
5683
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
5684 5685 5686 5687
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

5688
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

5698
static void
5699
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5700
{
5701
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5702 5703 5704 5705 5706 5707 5708 5709 5710
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

5711
	intel_pps_readout_hw_state(intel_dp, &cur);
5712

I
Imre Deak 已提交
5713
	intel_pps_dump_state("cur", &cur);
5714

5715
	vbt = dev_priv->vbt.edp.pps;
5716 5717 5718 5719 5720 5721
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5722
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5723 5724 5725
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
5726 5727 5728 5729 5730
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
5744
	intel_pps_dump_state("vbt", &vbt);
5745 5746 5747

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
5748
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5749 5750 5751 5752 5753 5754 5755 5756 5757
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

5758
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5759 5760 5761 5762 5763 5764 5765
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

5766 5767 5768 5769 5770 5771
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
5782 5783 5784 5785 5786 5787

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5788 5789 5790
}

static void
5791
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5792
					      bool force_disable_vdd)
5793
{
5794
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5795
	u32 pp_on, pp_off, pp_div, port_sel = 0;
5796
	int div = dev_priv->rawclk_freq / 1000;
5797
	struct pps_registers regs;
5798
	enum port port = dp_to_dig_port(intel_dp)->base.port;
5799
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5800

V
Ville Syrjälä 已提交
5801
	lockdep_assert_held(&dev_priv->pps_mutex);
5802

5803
	intel_pps_get_registers(intel_dp, &regs);
5804

5805 5806
	/*
	 * On some VLV machines the BIOS can leave the VDD
5807
	 * enabled even on power sequencers which aren't
5808 5809 5810 5811 5812 5813 5814
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
5815
	 * soon as the new power sequencer gets initialized.
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

5830
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
5831 5832
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5833
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5834 5835
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
5836 5837
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5838
		pp_div = I915_READ(regs.pp_ctrl);
5839
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5840
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5841 5842 5843 5844 5845 5846
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
5847 5848 5849

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
5850
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5851
		port_sel = PANEL_PORT_SELECT_VLV(port);
5852
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5853 5854
		switch (port) {
		case PORT_A:
5855
			port_sel = PANEL_PORT_SELECT_DPA;
5856 5857 5858 5859 5860
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
5861
			port_sel = PANEL_PORT_SELECT_DPD;
5862 5863 5864 5865 5866
			break;
		default:
			MISSING_CASE(port);
			break;
		}
5867 5868
	}

5869 5870
	pp_on |= port_sel;

5871 5872
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
5873 5874
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
5875
		I915_WRITE(regs.pp_ctrl, pp_div);
5876
	else
5877
		I915_WRITE(regs.pp_div, pp_div);
5878 5879

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5880 5881
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
5882 5883
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
5884 5885
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
5886 5887
}

5888
static void intel_dp_pps_init(struct intel_dp *intel_dp)
5889
{
5890
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5891 5892

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5893 5894
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
5895 5896
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
5897 5898 5899
	}
}

5900 5901
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5902
 * @dev_priv: i915 device
5903
 * @crtc_state: a pointer to the active intel_crtc_state
5904 5905 5906 5907 5908 5909 5910 5911 5912
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
5913
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5914
				    const struct intel_crtc_state *crtc_state,
5915
				    int refresh_rate)
5916 5917
{
	struct intel_encoder *encoder;
5918 5919
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
5920
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5921
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5922 5923 5924 5925 5926 5927

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

5928 5929
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
5930 5931 5932
		return;
	}

5933 5934
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
5935 5936 5937 5938 5939 5940

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

5941
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5942 5943 5944 5945
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

5946 5947
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
5948 5949
		index = DRRS_LOW_RR;

5950
	if (index == dev_priv->drrs.refresh_rate_type) {
5951 5952 5953 5954 5955
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

5956
	if (!crtc_state->base.active) {
5957 5958 5959 5960
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

5961
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
		switch (index) {
		case DRRS_HIGH_RR:
			intel_dp_set_m_n(intel_crtc, M1_N1);
			break;
		case DRRS_LOW_RR:
			intel_dp_set_m_n(intel_crtc, M2_N2);
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
5973 5974
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5975
		u32 val;
5976

5977
		val = I915_READ(reg);
5978
		if (index > DRRS_HIGH_RR) {
5979
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5980 5981 5982
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
5983
		} else {
5984
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5985 5986 5987
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5988 5989 5990 5991
		}
		I915_WRITE(reg, val);
	}

5992 5993 5994 5995 5996
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

5997 5998 5999
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6000
 * @crtc_state: A pointer to the active crtc state.
6001 6002 6003
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6004
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6005
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6006
{
6007
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
V
Vandana Kannan 已提交
6008

6009
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6010 6011 6012 6013
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6014 6015 6016 6017 6018
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6033 6034 6035
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6036
 * @old_crtc_state: Pointer to old crtc_state.
6037 6038
 *
 */
6039
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6040
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6041
{
6042
	struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
V
Vandana Kannan 已提交
6043

6044
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6045 6046 6047 6048 6049 6050 6051 6052 6053
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6054 6055
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6056 6057 6058 6059 6060 6061 6062

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6076
	/*
6077 6078
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6079 6080
	 */

6081 6082
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6083

6084 6085 6086 6087 6088 6089
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6090

6091 6092
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6093 6094
}

6095
/**
6096
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6097
 * @dev_priv: i915 device
6098 6099
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6100 6101
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6102 6103 6104
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6105 6106
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6107 6108 6109 6110
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6111
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6112 6113
		return;

6114
	cancel_delayed_work(&dev_priv->drrs.work);
6115

6116
	mutex_lock(&dev_priv->drrs.mutex);
6117 6118 6119 6120 6121
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6122 6123 6124
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6125 6126 6127
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6128
	/* invalidate means busy screen hence upclock */
6129
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6130 6131
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6132 6133 6134 6135

	mutex_unlock(&dev_priv->drrs.mutex);
}

6136
/**
6137
 * intel_edp_drrs_flush - Restart Idleness DRRS
6138
 * @dev_priv: i915 device
6139 6140
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6141 6142 6143 6144
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6145 6146 6147
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6148 6149
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6150 6151 6152 6153
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6154
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6155 6156
		return;

6157
	cancel_delayed_work(&dev_priv->drrs.work);
6158

6159
	mutex_lock(&dev_priv->drrs.mutex);
6160 6161 6162 6163 6164
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6165 6166
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6167 6168

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6169 6170
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6171
	/* flush means busy screen hence upclock */
6172
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6173 6174
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6175 6176 6177 6178 6179 6180

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6181 6182 6183 6184 6185
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6209 6210 6211 6212 6213 6214 6215 6216
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6217 6218 6219 6220 6221 6222 6223 6224
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6225
 * @connector: eDP connector
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6236
static struct drm_display_mode *
6237 6238
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6239
{
6240
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6241 6242
	struct drm_display_mode *downclock_mode = NULL;

6243 6244 6245
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6246
	if (INTEL_GEN(dev_priv) <= 6) {
6247 6248 6249 6250 6251
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6252
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6253 6254 6255
		return NULL;
	}

6256 6257
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6258 6259

	if (!downclock_mode) {
6260
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6261 6262 6263
		return NULL;
	}

6264
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6265

6266
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6267
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6268 6269 6270
	return downclock_mode;
}

6271
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6272
				     struct intel_connector *intel_connector)
6273
{
6274
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
6275
	struct drm_i915_private *dev_priv = to_i915(dev);
6276
	struct drm_connector *connector = &intel_connector->base;
6277
	struct drm_display_mode *fixed_mode = NULL;
6278
	struct drm_display_mode *downclock_mode = NULL;
6279 6280 6281
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6282
	enum pipe pipe = INVALID_PIPE;
6283

6284
	if (!intel_dp_is_edp(intel_dp))
6285 6286
		return true;

6287 6288 6289 6290 6291 6292
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6293
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6294 6295 6296 6297 6298 6299
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6300
	pps_lock(intel_dp);
6301 6302

	intel_dp_init_panel_power_timestamps(intel_dp);
6303
	intel_dp_pps_init(intel_dp);
6304
	intel_edp_panel_vdd_sanitize(intel_dp);
6305

6306
	pps_unlock(intel_dp);
6307

6308
	/* Cache DPCD and EDID for edp. */
6309
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6310

6311
	if (!has_dpcd) {
6312 6313
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6314
		goto out_vdd_off;
6315 6316
	}

6317
	mutex_lock(&dev->mode_config.mutex);
6318
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6319 6320
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6321
			drm_connector_update_edid_property(connector,
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6332
	/* prefer fixed mode from EDID if available */
6333 6334 6335
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6336 6337
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6338
			break;
6339 6340 6341 6342 6343 6344 6345
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6346
		if (fixed_mode) {
6347
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6348 6349 6350
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6351
	}
6352
	mutex_unlock(&dev->mode_config.mutex);
6353

6354
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6355 6356
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6357 6358 6359 6360 6361 6362

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6363
		pipe = vlv_active_pipe(intel_dp);
6364 6365 6366 6367 6368 6369 6370 6371 6372

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6373 6374
	}

6375
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6376
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6377
	intel_panel_setup_backlight(connector, pipe);
6378 6379

	return true;
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6392 6393
}

6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6410 6411
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6412 6413 6414 6415 6416
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6417
bool
6418 6419
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6420
{
6421 6422 6423 6424
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6425
	struct drm_i915_private *dev_priv = to_i915(dev);
6426
	enum port port = intel_encoder->port;
6427
	int type;
6428

6429 6430 6431 6432
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6433 6434 6435 6436 6437
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6438 6439
	intel_dp_set_source_rates(intel_dp);

6440
	intel_dp->reset_link_params = true;
6441
	intel_dp->pps_pipe = INVALID_PIPE;
6442
	intel_dp->active_pipe = INVALID_PIPE;
6443

6444
	/* intel_dp vfuncs */
6445
	if (HAS_DDI(dev_priv))
6446 6447
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6448 6449
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6450
	intel_dp->attached_connector = intel_connector;
6451

6452
	if (intel_dp_is_port_edp(dev_priv, port))
6453
		type = DRM_MODE_CONNECTOR_eDP;
6454 6455
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6456

6457 6458 6459
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6460 6461 6462 6463 6464 6465 6466 6467
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6468
	/* eDP only on port B and/or C on vlv/chv */
6469
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6470 6471
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6472 6473
		return false;

6474 6475 6476 6477
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6478
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6479 6480
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6481
	if (!HAS_GMCH_DISPLAY(dev_priv))
6482
		connector->interlace_allowed = true;
6483 6484
	connector->doublescan_allowed = 0;

6485
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6486

6487
	intel_dp_aux_init(intel_dp);
6488

6489
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6490
			  edp_panel_vdd_work);
6491

6492
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6493

6494
	if (HAS_DDI(dev_priv))
6495 6496 6497 6498
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6499
	/* init MST on ports that can support it */
6500
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6501 6502
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6503 6504
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6505

6506
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6507 6508 6509
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6510
	}
6511

6512
	intel_dp_add_properties(intel_dp, connector);
6513

6514
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6515 6516 6517 6518
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6519

6520 6521 6522 6523
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6524
	if (IS_G45(dev_priv)) {
6525 6526 6527
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6528 6529

	return true;
6530 6531 6532 6533 6534

fail:
	drm_connector_cleanup(connector);

	return false;
6535
}
6536

6537
bool intel_dp_init(struct drm_i915_private *dev_priv,
6538 6539
		   i915_reg_t output_reg,
		   enum port port)
6540 6541 6542 6543 6544 6545
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6546
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6547
	if (!intel_dig_port)
6548
		return false;
6549

6550
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6551 6552
	if (!intel_connector)
		goto err_connector_alloc;
6553 6554 6555 6556

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6557 6558 6559
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6560
		goto err_encoder_init;
6561

6562
	intel_encoder->hotplug = intel_dp_hotplug;
6563
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6564
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6565
	intel_encoder->get_config = intel_dp_get_config;
6566
	intel_encoder->suspend = intel_dp_encoder_suspend;
6567
	if (IS_CHERRYVIEW(dev_priv)) {
6568
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6569 6570
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6571
		intel_encoder->disable = vlv_disable_dp;
6572
		intel_encoder->post_disable = chv_post_disable_dp;
6573
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6574
	} else if (IS_VALLEYVIEW(dev_priv)) {
6575
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6576 6577
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6578
		intel_encoder->disable = vlv_disable_dp;
6579
		intel_encoder->post_disable = vlv_post_disable_dp;
6580
	} else {
6581 6582
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
6583
		intel_encoder->disable = g4x_disable_dp;
6584
		intel_encoder->post_disable = g4x_post_disable_dp;
6585
	}
6586 6587

	intel_dig_port->dp.output_reg = output_reg;
6588
	intel_dig_port->max_lanes = 4;
6589

6590
	intel_encoder->type = INTEL_OUTPUT_DP;
6591
	intel_encoder->power_domain = intel_port_to_power_domain(port);
6592
	if (IS_CHERRYVIEW(dev_priv)) {
6593 6594 6595 6596 6597 6598 6599
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
6600
	intel_encoder->cloneable = 0;
6601
	intel_encoder->port = port;
6602

6603 6604
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

6605 6606 6607
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

S
Sudip Mukherjee 已提交
6608 6609 6610
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

6611
	return true;
S
Sudip Mukherjee 已提交
6612 6613 6614

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
6615
err_encoder_init:
S
Sudip Mukherjee 已提交
6616 6617 6618
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
6619
	return false;
6620
}
6621

6622
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6623
{
6624 6625 6626 6627
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6628

6629 6630
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
6631

6632
		intel_dp = enc_to_intel_dp(&encoder->base);
6633

6634
		if (!intel_dp->can_mst)
6635 6636
			continue;

6637 6638
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6639 6640 6641
	}
}

6642
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6643
{
6644
	struct intel_encoder *encoder;
6645

6646 6647
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6648
		int ret;
6649

6650 6651 6652 6653 6654 6655
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
6656
			continue;
6657

6658
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6659
		if (ret)
6660
			intel_dp_check_mst_status(intel_dp);
6661 6662
	}
}