intel_dp.c 43.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30 31 32 33 34 35 36
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
37
#include "drm_dp_helper.h"
38

39

40 41 42 43 44
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

45
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
46
#define IS_PCH_eDP(dp_priv) ((dp_priv)->is_pch_edp)
47

48 49 50 51 52
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
53
	int dpms_mode;
54 55 56
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
57
	struct intel_encoder *intel_encoder;
58 59
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
60
	bool is_pch_edp;
61 62 63
};

static void
64
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
65 66 67
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
68
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
69

70
void
71
intel_edp_link_config (struct intel_encoder *intel_encoder,
72 73
		int *lane_num, int *link_bw)
{
74
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
75 76 77 78 79 80 81 82

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

83
static int
84
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
85
{
86
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
102
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
103
{
104
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
129
intel_dp_link_required(struct drm_device *dev,
130
		       struct intel_encoder *intel_encoder, int pixel_clock)
131
{
132
	struct drm_i915_private *dev_priv = dev->dev_private;
133
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
134

135
	if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv))
136 137 138
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
139 140
}

141 142 143 144 145 146
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

147 148 149 150
static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
151 152
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
153 154
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
155

156 157 158 159 160
	/* only refuse the mode on non eDP since we have seen some wierd eDP panels
	   which are outside spec tolerances but somehow work by magic */
	if (!IS_eDP(intel_encoder) &&
	    (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

222
static int
223
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
224 225 226
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
227
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
228
	uint32_t output_reg = dp_priv->output_reg;
229
	struct drm_device *dev = intel_encoder->enc.dev;
230 231 232 233 234 235 236
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
237
	uint32_t aux_clock_divider;
238
	int try, precharge;
239 240

	/* The clock divider is based off the hrawclk,
241 242
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
243
	 */
244 245 246 247 248 249
	if (IS_eDP(intel_encoder)) {
		if (IS_GEN6(dev))
			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
		else
			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
	} else if (HAS_PCH_SPLIT(dev))
250
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
251 252 253
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

254 255 256 257 258
	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

259 260 261 262
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
263
			uint32_t    d = pack_aux(send + i, send_bytes - i);
264 265 266 267 268 269 270
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
271
		       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
288
		I915_WRITE(ch_ctl, (status |
289 290 291 292 293
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
294 295 296 297
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
298
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
299
		return -EBUSY;
300 301 302 303 304
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
305
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
306
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
307 308
		return -EIO;
	}
309 310 311

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
312
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
313
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
314
		return -ETIMEDOUT;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
335
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
336 337 338 339 340 341 342 343 344 345 346
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
347
	msg[2] = address & 0xff;
348 349 350 351
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
352
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
353 354 355 356 357 358 359
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
360
			return -EIO;
361 362 363 364 365 366
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
367
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
368 369
			    uint16_t address, uint8_t byte)
{
370
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
371 372 373 374
}

/* read bytes from a native aux channel */
static int
375
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
394
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
395
				      reply, reply_bytes);
396 397 398
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
399 400 401 402 403 404 405 406 407
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
408
			return -EIO;
409 410 411 412
	}
}

static int
413 414
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
415
{
416
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
417 418 419
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
420
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
459
	  ret = intel_dp_aux_ch(intel_encoder,
460 461 462
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
463
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
464 465 466 467 468 469 470 471 472
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
473
			DRM_DEBUG_KMS("aux_ch nack\n");
474 475
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
476
			DRM_DEBUG_KMS("aux_ch defer\n");
477 478 479 480 481 482 483
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
484 485 486
}

static int
487 488
intel_dp_i2c_init(struct intel_encoder *intel_encoder,
		  struct intel_connector *intel_connector, const char *name)
489
{
490
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
491

Z
Zhenyu Wang 已提交
492
	DRM_DEBUG_KMS("i2c_init %s\n", name);
493 494 495 496 497 498 499
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
500 501
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
502
	dp_priv->adapter.algo_data = &dp_priv->algo;
503
	dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
504 505 506 507 508 509 510 511
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
512 513
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
514 515
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
516
	int lane_count, clock;
517 518
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
519 520
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	if ((IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) &&
	    dev_priv->panel_fixed_mode) {
		struct drm_display_mode *fixed_mode = dev_priv->panel_fixed_mode;

		adjusted_mode->hdisplay = fixed_mode->hdisplay;
		adjusted_mode->hsync_start = fixed_mode->hsync_start;
		adjusted_mode->hsync_end = fixed_mode->hsync_end;
		adjusted_mode->htotal = fixed_mode->htotal;

		adjusted_mode->vdisplay = fixed_mode->vdisplay;
		adjusted_mode->vsync_start = fixed_mode->vsync_start;
		adjusted_mode->vsync_end = fixed_mode->vsync_end;
		adjusted_mode->vtotal = fixed_mode->vtotal;

		adjusted_mode->clock = fixed_mode->clock;
		drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);

		/*
		 * the mode->clock is used to calculate the Data&Link M/N
		 * of the pipe. For the eDP the fixed clock should be used.
		 */
		mode->clock = dev_priv->panel_fixed_mode->clock;
	}

545 546
	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
547
			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
548

549
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
550
					<= link_avail) {
551 552 553
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
554 555
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
556 557 558 559 560 561
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
562

563
	if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
564 565 566 567 568 569 570 571 572 573
		/* okay we failed just pick the highest */
		dp_priv->lane_count = max_lane_count;
		dp_priv->link_bw = bws[max_clock];
		adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
			      "count %d clock %d\n",
			      dp_priv->link_bw, dp_priv->lane_count,
			      adjusted_mode->clock);
		return true;
	}
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
595
intel_dp_compute_m_n(int bpp,
596 597 598 599 600 601
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
602
	m_n->gmch_m = (pixel_clock * bpp) >> 3;
603 604 605 606 607 608 609
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
bool intel_pch_has_edp(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct intel_encoder *intel_encoder;
		struct intel_dp_priv *dp_priv;

		if (!encoder || encoder->crtc != crtc)
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		dp_priv = intel_encoder->dev_priv;

		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT)
627
			return dp_priv->is_pch_edp;
628 629 630 631
	}
	return false;
}

632 633 634 635 636 637
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
638
	struct drm_encoder *encoder;
639 640
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
641
	int lane_count = 4, bpp = 24;
642 643 644
	struct intel_dp_m_n m_n;

	/*
645
	 * Find the lane count in the intel_encoder private
646
	 */
647 648 649
	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
		struct intel_encoder *intel_encoder;
		struct intel_dp_priv *dp_priv;
650

651
		if (encoder->crtc != crtc)
652 653
			continue;

654 655 656
		intel_encoder = enc_to_intel_encoder(encoder);
		dp_priv = intel_encoder->dev_priv;

657
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
658
			lane_count = dp_priv->lane_count;
659 660
			if (IS_PCH_eDP(dp_priv))
				bpp = dev_priv->edp_bpp;
661 662 663 664 665 666 667 668 669
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
670
	intel_dp_compute_m_n(bpp, lane_count,
671 672
			     mode->clock, adjusted_mode->clock, &m_n);

673
	if (HAS_PCH_SPLIT(dev)) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
689
	} else {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
707 708 709 710 711 712 713
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
714
	struct drm_device *dev = encoder->dev;
715 716 717
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
718 719
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

720
	dp_priv->DP = (DP_VOLTAGE_0_4 |
721 722 723 724 725 726
		       DP_PRE_EMPHASIS_0);

	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
		dp_priv->DP |= DP_SYNC_HS_HIGH;
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
		dp_priv->DP |= DP_SYNC_VS_HIGH;
727

728 729 730 731
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
	else
		dp_priv->DP |= DP_LINK_TRAIN_OFF;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
752
	 * Check for DPCD version > 1.1 and enhanced framing support
753
	 */
754
	if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
755 756 757 758
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

759 760
	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
761
		dp_priv->DP |= DP_PIPEB_SELECT;
762

763
	if (IS_eDP(intel_encoder)) {
764 765 766 767 768 769 770
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
771 772
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static void ironlake_edp_panel_on (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 pp, pp_status;

	pp_status = I915_READ(PCH_PP_STATUS);
	if (pp_status & PP_ON)
		return;

	pp = I915_READ(PCH_PP_CONTROL);
	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
	I915_WRITE(PCH_PP_CONTROL, pp);
	do {
		pp_status = I915_READ(PCH_PP_STATUS);
	} while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));

	if (time_after(jiffies, timeout))
		DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);

	pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
	I915_WRITE(PCH_PP_CONTROL, pp);
}

static void ironlake_edp_panel_off (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
	u32 pp, pp_status;

	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~POWER_TARGET_ON;
	I915_WRITE(PCH_PP_CONTROL, pp);
	do {
		pp_status = I915_READ(PCH_PP_STATUS);
	} while ((pp_status & PP_ON) && !time_after(jiffies, timeout));

	if (time_after(jiffies, timeout))
		DRM_DEBUG_KMS("panel off wait timed out\n");

	/* Make sure VDD is enabled so DP AUX will work */
	pp |= EDP_FORCE_VDD;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

818
static void ironlake_edp_backlight_on (struct drm_device *dev)
819 820 821 822
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

823
	DRM_DEBUG_KMS("\n");
824 825 826 827 828
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

829
static void ironlake_edp_backlight_off (struct drm_device *dev)
830 831 832 833
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

834
	DRM_DEBUG_KMS("\n");
835 836 837 838
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
839 840 841 842

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
843 844
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
845
	struct drm_device *dev = encoder->dev;
846 847 848 849
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
850
		if (dp_reg & DP_PORT_EN) {
851
			intel_dp_link_down(intel_encoder, dp_priv->DP);
852
			if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
853
				ironlake_edp_backlight_off(dev);
854
				ironlake_edp_panel_off(dev);
855
			}
856
		}
857
	} else {
858
		if (!(dp_reg & DP_PORT_EN)) {
859
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
860
			if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
861
				ironlake_edp_panel_on(dev);
862
				ironlake_edp_backlight_on(dev);
863
			}
864
		}
865
	}
866
	dp_priv->dpms_mode = mode;
867 868 869 870 871 872 873
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
874
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
875 876 877 878
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

879
	ret = intel_dp_aux_native_read(intel_encoder,
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
956
intel_get_adjust_train(struct intel_encoder *intel_encoder,
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
	switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
		return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
	}
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
1092
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
1093 1094 1095 1096 1097
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
1098
	struct drm_device *dev = intel_encoder->enc.dev;
1099
	struct drm_i915_private *dev_priv = dev->dev_private;
1100
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1101 1102 1103 1104 1105 1106 1107
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

1108
	intel_dp_aux_native_write_1(intel_encoder,
1109 1110 1111
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

1112
	ret = intel_dp_aux_native_write(intel_encoder,
1113 1114 1115 1116 1117 1118 1119 1120
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
1121
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
1122 1123
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
1124
	struct drm_device *dev = intel_encoder->enc.dev;
1125
	struct drm_i915_private *dev_priv = dev->dev_private;
1126
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1127 1128 1129 1130 1131 1132 1133 1134
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;
1135
	u32 reg;
1136 1137

	/* Write the link configuration data */
1138
	intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
1139 1140 1141
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
1142 1143 1144 1145
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
	else
		DP &= ~DP_LINK_TRAIN_MASK;
1146 1147 1148 1149 1150 1151
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1152 1153 1154 1155 1156 1157 1158 1159
		uint32_t    signal_levels;
		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}
1160

1161 1162 1163 1164 1165 1166
		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_1;

		if (!intel_dp_set_link_train(intel_encoder, reg,
1167 1168 1169 1170 1171 1172
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
1173
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1198
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1199 1200 1201 1202 1203 1204 1205
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		uint32_t    signal_levels;

		if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
			signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
		} else {
			signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
		}

		if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
		else
			reg = DP | DP_LINK_TRAIN_PAT_2;
1220 1221

		/* channel eq pattern */
1222
		if (!intel_dp_set_link_train(intel_encoder, reg,
1223 1224 1225 1226 1227
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1228
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1241
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1242 1243 1244
		++tries;
	}

1245 1246 1247 1248 1249 1250
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
		reg = DP | DP_LINK_TRAIN_OFF_CPT;
	else
		reg = DP | DP_LINK_TRAIN_OFF;

	I915_WRITE(dp_priv->output_reg, reg);
1251
	POSTING_READ(dp_priv->output_reg);
1252
	intel_dp_aux_native_write_1(intel_encoder,
1253 1254 1255 1256
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1257
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1258
{
1259
	struct drm_device *dev = intel_encoder->enc.dev;
1260
	struct drm_i915_private *dev_priv = dev->dev_private;
1261
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1262

1263
	DRM_DEBUG_KMS("\n");
1264

1265
	if (IS_eDP(intel_encoder)) {
1266 1267 1268 1269 1270 1271
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1272 1273 1274 1275 1276 1277 1278 1279 1280
	if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
		POSTING_READ(dp_priv->output_reg);
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
		POSTING_READ(dp_priv->output_reg);
	}
1281 1282 1283

	udelay(17000);

1284
	if (IS_eDP(intel_encoder))
1285
		DP |= DP_LINK_TRAIN_OFF;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1300
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1301
{
1302
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1303 1304
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1305
	if (!intel_encoder->enc.crtc)
1306 1307
		return;

1308 1309
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1310 1311 1312 1313
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1314
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1315 1316
}

1317
static enum drm_connector_status
1318
ironlake_dp_detect(struct drm_connector *connector)
1319
{
1320 1321
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
1322
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1323 1324 1325
	enum drm_connector_status status;

	status = connector_status_disconnected;
1326
	if (intel_dp_aux_native_read(intel_encoder,
1327 1328 1329 1330 1331 1332
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
1333 1334
	DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
		      dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
1335 1336 1337
	return status;
}

1338 1339 1340 1341 1342 1343 1344 1345 1346
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1347 1348 1349
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1350
	struct drm_i915_private *dev_priv = dev->dev_private;
1351
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1352 1353 1354 1355 1356
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1357
	if (HAS_PCH_SPLIT(dev))
1358
		return ironlake_dp_detect(connector);
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1380
	if (intel_dp_aux_native_read(intel_encoder,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1392 1393 1394
	struct drm_encoder *encoder = intel_attached_encoder(connector);
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct drm_device *dev = intel_encoder->enc.dev;
1395
	struct drm_i915_private *dev_priv = dev->dev_private;
1396
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1397
	int ret;
1398 1399 1400 1401

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1402
	ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (ret) {
		if ((IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) &&
		    !dev_priv->panel_fixed_mode) {
			struct drm_display_mode *newmode;
			list_for_each_entry(newmode, &connector->probed_modes,
					    head) {
				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
					dev_priv->panel_fixed_mode =
						drm_mode_duplicate(dev, newmode);
					break;
				}
			}
		}

1417
		return ret;
1418
	}
1419 1420

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1421
	if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
1422 1423 1424 1425 1426 1427 1428 1429
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1430 1431 1432 1433 1434 1435 1436
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1437
	kfree(connector);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
1458
	.best_encoder = intel_attached_encoder,
1459 1460 1461 1462
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
1463 1464 1465 1466
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);

	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1467
	drm_encoder_cleanup(encoder);
1468
	kfree(intel_encoder);
1469 1470 1471 1472 1473 1474
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1475
void
1476
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1477
{
1478
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1479 1480

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1481
		intel_dp_check_link_status(intel_encoder);
1482
}
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_encoder *encoder;
	struct intel_encoder *intel_encoder = NULL;

	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1494
		if (encoder->crtc != crtc)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
			continue;

		intel_encoder = enc_to_intel_encoder(encoder);
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
			struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
			return dp_priv->output_reg;
		}
	}
	return -1;
}

1506
/* check the VBT to see whether the eDP is on DP-D port */
1507
bool intel_dpd_is_edp(struct drm_device *dev)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct child_device_config *p_child;
	int i;

	if (!dev_priv->child_dev_num)
		return false;

	for (i = 0; i < dev_priv->child_dev_num; i++) {
		p_child = dev_priv->child_dev + i;

		if (p_child->dvo_port == PORT_IDPD &&
		    p_child->device_type == DEVICE_TYPE_eDP)
			return true;
	}
	return false;
}

1526 1527 1528 1529 1530
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1531
	struct intel_encoder *intel_encoder;
1532
	struct intel_connector *intel_connector;
1533
	struct intel_dp_priv *dp_priv;
1534
	const char *name = NULL;
1535
	int type;
1536

1537
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1538
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1539
	if (!intel_encoder)
1540 1541
		return;

1542 1543 1544 1545 1546 1547
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
	if (!intel_connector) {
		kfree(intel_encoder);
		return;
	}

1548
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1549

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	if (HAS_PCH_SPLIT(dev) && (output_reg == PCH_DP_D))
		if (intel_dpd_is_edp(dev))
			dp_priv->is_pch_edp = true;

	if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
		type = DRM_MODE_CONNECTOR_eDP;
		intel_encoder->type = INTEL_OUTPUT_EDP;
	} else {
		type = DRM_MODE_CONNECTOR_DisplayPort;
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
	}

1562
	connector = &intel_connector->base;
1563
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1564 1565
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1566 1567
	connector->polled = DRM_CONNECTOR_POLL_HPD;

1568
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1569
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1570
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1571
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1572
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1573
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1574

1575 1576
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1577

1578
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1579 1580 1581
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1582
	dp_priv->intel_encoder = intel_encoder;
1583 1584
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1585
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1586
	intel_encoder->dev_priv = dp_priv;
1587

1588
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1589
			 DRM_MODE_ENCODER_TMDS);
1590
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1591

1592
	drm_mode_connector_attach_encoder(&intel_connector->base,
1593
					  &intel_encoder->enc);
1594 1595 1596
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1597
	switch (output_reg) {
1598 1599 1600
		case DP_A:
			name = "DPDDC-A";
			break;
1601 1602
		case DP_B:
		case PCH_DP_B:
1603 1604
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1605 1606 1607 1608
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1609 1610
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1611 1612 1613 1614
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1615 1616
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1617 1618 1619 1620
			name = "DPDDC-D";
			break;
	}

1621
	intel_dp_i2c_init(intel_encoder, intel_connector, name);
1622

1623 1624
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1625

1626
	if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1638 1639 1640 1641 1642 1643 1644 1645 1646
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}