intel_dp.c 188.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drmP.h>
36
#include <drm/drm_atomic_helper.h>
37 38
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include "intel_drv.h"
43
#include <drm/i915_drm.h>
44 45
#include "i915_drv.h"

46
#define DP_DPRX_ESI_LEN 14
47

48 49 50 51 52 53
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

54
struct dp_link_dpll {
55
	int clock;
56 57 58
	struct dpll dpll;
};

59
static const struct dp_link_dpll g4x_dpll[] = {
60
	{ 162000,
61
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62
	{ 270000,
63 64 65 66
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
67
	{ 162000,
68
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69
	{ 270000,
70 71 72
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

73
static const struct dp_link_dpll vlv_dpll[] = {
74
	{ 162000,
C
Chon Ming Lee 已提交
75
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76
	{ 270000,
77 78 79
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

80 81 82 83 84 85 86 87 88 89
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
90
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
91
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
93 94
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
95

96
/**
97
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98 99 100 101 102
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
103
bool intel_dp_is_edp(struct intel_dp *intel_dp)
104
{
105 106 107
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 109
}

110 111
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
112
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
113 114
}

115 116
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
117
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
118
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
119 120
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
121
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
122
				      enum pipe pipe);
123
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
124

125 126 127
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
128
	static const int dp_rates[] = {
129
		162000, 270000, 540000, 810000
130
	};
131
	int i, max_rate;
132

133
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
134

135 136
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
137
			break;
138
		intel_dp->sink_rates[i] = dp_rates[i];
139
	}
140

141
	intel_dp->num_sink_rates = i;
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

166 167
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
168
{
169
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
170 171
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

202 203
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
204 205
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
206 207
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
208
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
209

210
	return min3(source_max, sink_max, fia_max);
211 212
}

213
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
214 215 216 217
{
	return intel_dp->max_link_lane_count;
}

218
int
219
intel_dp_link_required(int pixel_clock, int bpp)
220
{
221 222
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
223 224
}

P
Paulo Zanoni 已提交
225 226 227
void icl_program_mg_dp_mode(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
228
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
P
Paulo Zanoni 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	u32 ln0, ln1, lane_info;

	if (tc_port == PORT_TC_NONE || intel_dig_port->tc_type == TC_PORT_TBT)
		return;

	ln0 = I915_READ(MG_DP_MODE(port, 0));
	ln1 = I915_READ(MG_DP_MODE(port, 1));

	switch (intel_dig_port->tc_type) {
	case TC_PORT_TYPEC:
		ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
		ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);

		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
			    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

		switch (lane_info) {
		case 0x1:
		case 0x4:
			break;
		case 0x2:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0x3:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0x8:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0xC:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0xF:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		default:
			MISSING_CASE(lane_info);
		}
		break;

	case TC_PORT_LEGACY:
		ln0 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		ln1 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		break;

	default:
		MISSING_CASE(intel_dig_port->tc_type);
		return;
	}

	I915_WRITE(MG_DP_MODE(port, 0), ln0);
	I915_WRITE(MG_DP_MODE(port, 1), ln1);
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
void icl_enable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val |= MG_DP_MODE_CFG_TR2PWR_GATING |
		       MG_DP_MODE_CFG_TRPWR_GATING |
		       MG_DP_MODE_CFG_CLNPWR_GATING |
		       MG_DP_MODE_CFG_DIGPWR_GATING |
		       MG_DP_MODE_CFG_GAONPWR_GATING;
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val |= MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE(3) |
	       MG_MISC_SUS0_CFG_TR2PWR_GATING |
	       MG_MISC_SUS0_CFG_CL2PWR_GATING |
	       MG_MISC_SUS0_CFG_GAONPWR_GATING |
	       MG_MISC_SUS0_CFG_TRPWR_GATING |
	       MG_MISC_SUS0_CFG_CL1PWR_GATING |
	       MG_MISC_SUS0_CFG_DGPWR_GATING;
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

void icl_disable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val &= ~(MG_DP_MODE_CFG_TR2PWR_GATING |
			 MG_DP_MODE_CFG_TRPWR_GATING |
			 MG_DP_MODE_CFG_CLNPWR_GATING |
			 MG_DP_MODE_CFG_DIGPWR_GATING |
			 MG_DP_MODE_CFG_GAONPWR_GATING);
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val &= ~(MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE_MASK |
		 MG_MISC_SUS0_CFG_TR2PWR_GATING |
		 MG_MISC_SUS0_CFG_CL2PWR_GATING |
		 MG_MISC_SUS0_CFG_GAONPWR_GATING |
		 MG_MISC_SUS0_CFG_TRPWR_GATING |
		 MG_MISC_SUS0_CFG_CL1PWR_GATING |
		 MG_MISC_SUS0_CFG_DGPWR_GATING);
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

357
int
358 359
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
360 361 362 363 364 365 366
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
367 368
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

392
static int cnl_max_source_rate(struct intel_dp *intel_dp)
393 394 395 396 397 398 399 400 401
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
402
		return 540000;
403 404 405

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
406
		return 810000;
407

408
	/* For other SKUs, max rate on ports A and D is 5.4G */
409
	if (port == PORT_A || port == PORT_D)
410
		return 540000;
411

412
	return 810000;
413 414
}

415 416 417 418 419 420 421 422 423 424 425
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum port port = dig_port->base.port;

	if (port == PORT_B)
		return 540000;

	return 810000;
}

426 427
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
428
{
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
445 446
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
447 448
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
449
	const int *source_rates;
450
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
451

452 453 454
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

455
	if (INTEL_GEN(dev_priv) >= 10) {
456
		source_rates = cnl_rates;
457
		size = ARRAY_SIZE(cnl_rates);
458 459 460 461
		if (INTEL_GEN(dev_priv) == 10)
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
462 463 464
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
465
	} else if (IS_GEN9_BC(dev_priv)) {
466
		source_rates = skl_rates;
467
		size = ARRAY_SIZE(skl_rates);
468 469
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
470 471
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
472
	} else {
473 474
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
475 476
	}

477 478 479 480 481
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

482 483 484
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

485 486
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

512 513 514 515 516 517 518 519 520 521 522 523
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

524
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
525
{
526
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
527

528 529 530 531 532 533 534 535
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
536
		intel_dp->common_rates[0] = 162000;
537 538 539 540
		intel_dp->num_common_rates = 1;
	}
}

541 542
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
543 544 545 546 547 548
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
549 550
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
551 552
		return false;

553 554
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
555 556 557 558 559
		return false;

	return true;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
						     uint8_t lane_count)
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

576 577 578
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
579
	int index;
580

581 582 583 584
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
585 586 587 588 589 590 591
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
592 593
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
594
	} else if (lane_count > 1) {
595 596 597 598 599 600 601
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
602
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
603
		intel_dp->max_link_lane_count = lane_count >> 1;
604 605 606 607 608 609 610 611
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

612
static enum drm_mode_status
613 614 615
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
616
	struct intel_dp *intel_dp = intel_attached_dp(connector);
617 618
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
619 620
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
621 622
	int max_dotclk;

623 624 625
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

626
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
627

628
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
629
		if (mode->hdisplay > fixed_mode->hdisplay)
630 631
			return MODE_PANEL;

632
		if (mode->vdisplay > fixed_mode->vdisplay)
633
			return MODE_PANEL;
634 635

		target_clock = fixed_mode->clock;
636 637
	}

638
	max_link_clock = intel_dp_max_link_rate(intel_dp);
639
	max_lanes = intel_dp_max_lane_count(intel_dp);
640 641 642 643

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

644
	if (mode_rate > max_rate || target_clock > max_dotclk)
645
		return MODE_CLOCK_HIGH;
646 647 648 649

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

650 651 652
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

653 654 655
	return MODE_OK;
}

656
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
657 658 659 660 661 662 663 664 665 666 667
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

668
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
669 670 671 672 673 674 675 676
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

677
static void
678
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
679
static void
680
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
681
					      bool force_disable_vdd);
682
static void
683
intel_dp_pps_init(struct intel_dp *intel_dp);
684

685 686
static void pps_lock(struct intel_dp *intel_dp)
{
687
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
688 689

	/*
690
	 * See intel_power_sequencer_reset() why we need
691 692
	 * a power domain reference here.
	 */
693
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
694 695 696 697 698 699

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
700
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
701 702 703

	mutex_unlock(&dev_priv->pps_mutex);

704
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
705 706
}

707 708 709
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
710
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
711 712
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
713 714 715
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
716 717 718
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
719
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
720
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
721 722 723
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
724
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
725 726 727 728 729 730 731 732 733

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

734
	if (IS_CHERRYVIEW(dev_priv))
735 736 737
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
738

739 740 741 742 743 744
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
745
	if (!pll_enabled) {
746
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
747 748
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

749
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
750 751 752 753 754
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
755
	}
756

757 758 759
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
760
	 * to make this power sequencer lock onto the port.
761 762 763 764 765 766 767 768 769 770
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
771

772
	if (!pll_enabled) {
773
		vlv_force_pll_off(dev_priv, pipe);
774 775 776 777

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
778 779
}

780 781 782 783 784 785 786 787 788
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
789 790
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

812 813 814
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
815
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
816
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
817
	enum pipe pipe;
818

V
Ville Syrjälä 已提交
819
	lockdep_assert_held(&dev_priv->pps_mutex);
820

821
	/* We should never land here with regular DP ports */
822
	WARN_ON(!intel_dp_is_edp(intel_dp));
823

824 825 826
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

827 828 829
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

830
	pipe = vlv_find_free_pps(dev_priv);
831 832 833 834 835

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
836
	if (WARN_ON(pipe == INVALID_PIPE))
837
		pipe = PIPE_A;
838

839
	vlv_steal_power_sequencer(dev_priv, pipe);
840
	intel_dp->pps_pipe = pipe;
841 842 843

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
844
		      port_name(intel_dig_port->base.port));
845 846

	/* init power sequencer on this pipe and port */
847 848
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
849

850 851 852 853 854
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
855 856 857 858

	return intel_dp->pps_pipe;
}

859 860 861
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
862
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863
	int backlight_controller = dev_priv->vbt.backlight.controller;
864 865 866 867

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
868
	WARN_ON(!intel_dp_is_edp(intel_dp));
869 870

	if (!intel_dp->pps_reset)
871
		return backlight_controller;
872 873 874 875 876 877 878

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
879
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
880

881
	return backlight_controller;
882 883
}

884 885 886 887 888 889
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
890
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
891 892 893 894 895
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
896
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
897 898 899 900 901 902 903
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
904

905
static enum pipe
906 907 908
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
909 910
{
	enum pipe pipe;
911 912

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
913
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
914
			PANEL_PORT_SELECT_MASK;
915 916 917 918

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

919 920 921
		if (!pipe_check(dev_priv, pipe))
			continue;

922
		return pipe;
923 924
	}

925 926 927 928 929 930
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
931
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
932
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
933
	enum port port = intel_dig_port->base.port;
934 935 936 937

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
938 939 940 941 942 943 944 945 946 947 948
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
949 950 951 952 953 954

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
955 956
	}

957 958 959
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

960 961
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
962 963
}

964
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
965 966 967
{
	struct intel_encoder *encoder;

968
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
969
		    !IS_GEN9_LP(dev_priv)))
970 971 972 973 974 975 976 977 978 979 980 981
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

982 983
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
984

985 986 987 988 989
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

990
		if (IS_GEN9_LP(dev_priv))
991 992 993
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
994
	}
995 996
}

997 998 999 1000 1001 1002 1003 1004
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1005
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1006 1007
				    struct pps_registers *regs)
{
1008
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1009 1010
	int pps_idx = 0;

1011 1012
	memset(regs, 0, sizeof(*regs));

1013
	if (IS_GEN9_LP(dev_priv))
1014 1015 1016
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1017

1018 1019 1020 1021
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1022 1023
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
1024
		regs->pp_div = PP_DIVISOR(pps_idx);
1025 1026
}

1027 1028
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1029
{
1030
	struct pps_registers regs;
1031

1032
	intel_pps_get_registers(intel_dp, &regs);
1033 1034

	return regs.pp_ctrl;
1035 1036
}

1037 1038
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1039
{
1040
	struct pps_registers regs;
1041

1042
	intel_pps_get_registers(intel_dp, &regs);
1043 1044

	return regs.pp_stat;
1045 1046
}

1047 1048 1049 1050 1051 1052 1053
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1054
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1055

1056
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1057 1058
		return 0;

1059
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1060

1061
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
1062
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1063
		i915_reg_t pp_ctrl_reg, pp_div_reg;
1064
		u32 pp_div;
V
Ville Syrjälä 已提交
1065

1066 1067
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
1068 1069 1070 1071 1072 1073 1074 1075 1076
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

1077
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1078

1079 1080 1081
	return 0;
}

1082
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1083
{
1084
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085

V
Ville Syrjälä 已提交
1086 1087
	lockdep_assert_held(&dev_priv->pps_mutex);

1088
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1089 1090 1091
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1092
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1093 1094
}

1095
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1096
{
1097
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1098

V
Ville Syrjälä 已提交
1099 1100
	lockdep_assert_held(&dev_priv->pps_mutex);

1101
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1102 1103 1104
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1105
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1106 1107
}

1108 1109 1110
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1111
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1112

1113
	if (!intel_dp_is_edp(intel_dp))
1114
		return;
1115

1116
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1117 1118
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1119 1120
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1121 1122 1123
	}
}

1124
static uint32_t
1125
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1126
{
1127
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1128
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1129 1130 1131
	uint32_t status;
	bool done;

1132
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1133 1134
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1135
	if (!done)
1136
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1137 1138 1139 1140 1141
#undef C

	return status;
}

1142
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1143
{
1144
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1145

1146 1147 1148
	if (index)
		return 0;

1149 1150
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1151
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1152
	 */
1153
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1154 1155 1156 1157
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1158
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1159 1160 1161 1162

	if (index)
		return 0;

1163 1164 1165 1166 1167
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1168
	if (intel_dp->aux_ch == AUX_CH_A)
1169
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1170 1171
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1172 1173 1174 1175
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1176
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177

1178
	if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1179
		/* Workaround for non-ULT HSW */
1180 1181 1182 1183 1184
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1185
	}
1186 1187

	return ilk_get_aux_clock_divider(intel_dp, index);
1188 1189
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1200 1201 1202
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1203 1204
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1205 1206
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1207 1208
	uint32_t precharge, timeout;

1209
	if (IS_GEN6(dev_priv))
1210 1211 1212 1213
		precharge = 3;
	else
		precharge = 5;

1214
	if (IS_BROADWELL(dev_priv))
1215 1216 1217 1218 1219
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1220
	       DP_AUX_CH_CTL_DONE |
1221
	       DP_AUX_CH_CTL_INTERRUPT |
1222
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1223
	       timeout |
1224
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1225 1226
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1227
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1228 1229
}

1230 1231 1232 1233
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	uint32_t ret;

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1251 1252
}

1253
static int
1254 1255
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1256 1257
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1258 1259
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1260 1261
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1262
	i915_reg_t ch_ctl, ch_data[5];
1263
	uint32_t aux_clock_divider;
1264 1265
	int i, ret, recv_bytes;
	uint32_t status;
1266
	int try, clock = 0;
1267 1268
	bool vdd;

1269 1270 1271 1272
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1273
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1274

1275 1276 1277 1278 1279 1280
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1281
	vdd = edp_panel_vdd_on(intel_dp);
1282 1283 1284 1285 1286 1287 1288 1289

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1290

1291 1292
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1293
		status = I915_READ_NOTRACE(ch_ctl);
1294 1295 1296 1297 1298 1299
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1300 1301 1302 1303 1304 1305 1306 1307 1308
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1309 1310
		ret = -EBUSY;
		goto out;
1311 1312
	}

1313 1314 1315 1316 1317 1318
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1319
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1320 1321 1322 1323 1324
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1325

1326 1327 1328 1329
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1330
				I915_WRITE(ch_data[i >> 2],
1331 1332
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1333 1334

			/* Send the command and wait for it to complete */
1335
			I915_WRITE(ch_ctl, send_ctl);
1336

1337
			status = intel_dp_aux_wait_done(intel_dp);
1338 1339 1340 1341 1342 1343 1344 1345

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1346 1347 1348 1349 1350
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1351 1352 1353
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1354 1355
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1356
				continue;
1357
			}
1358
			if (status & DP_AUX_CH_CTL_DONE)
1359
				goto done;
1360
		}
1361 1362 1363
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1364
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1365 1366
		ret = -EBUSY;
		goto out;
1367 1368
	}

1369
done:
1370 1371 1372
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1373
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1374
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1375 1376
		ret = -EIO;
		goto out;
1377
	}
1378 1379 1380

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1381
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1382
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1383 1384
		ret = -ETIMEDOUT;
		goto out;
1385 1386 1387 1388 1389
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1403 1404
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1405

1406
	for (i = 0; i < recv_bytes; i += 4)
1407
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1408
				    recv + i, recv_bytes - i);
1409

1410 1411 1412 1413
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1414 1415 1416
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1417
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1418

1419
	return ret;
1420 1421
}

1422 1423
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1435 1436
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1437
{
1438 1439 1440
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1441 1442
	int ret;

1443
	intel_dp_aux_header(txbuf, msg);
1444

1445 1446 1447
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1448
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1449
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1450
		rxsize = 2; /* 0 or 1 data bytes */
1451

1452 1453
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1454

1455 1456
		WARN_ON(!msg->buffer != !msg->size);

1457 1458
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1459

1460
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1461
					rxbuf, rxsize, 0);
1462 1463
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1464

1465 1466 1467 1468 1469 1470 1471
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1472 1473
		}
		break;
1474

1475 1476
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1477
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1478
		rxsize = msg->size + 1;
1479

1480 1481
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1482

1483
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1484
					rxbuf, rxsize, 0);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1495
		}
1496 1497 1498 1499 1500
		break;

	default:
		ret = -EINVAL;
		break;
1501
	}
1502

1503
	return ret;
1504 1505
}

1506
static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1507
{
1508 1509 1510
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = encoder->port;
1511 1512
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[port];
1513
	enum aux_ch aux_ch;
1514 1515

	if (!info->alternate_aux_channel) {
1516 1517
		aux_ch = (enum aux_ch) port;

1518
		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1519 1520
			      aux_ch_name(aux_ch), port_name(port));
		return aux_ch;
1521 1522 1523 1524
	}

	switch (info->alternate_aux_channel) {
	case DP_AUX_A:
1525
		aux_ch = AUX_CH_A;
1526 1527
		break;
	case DP_AUX_B:
1528
		aux_ch = AUX_CH_B;
1529 1530
		break;
	case DP_AUX_C:
1531
		aux_ch = AUX_CH_C;
1532 1533
		break;
	case DP_AUX_D:
1534
		aux_ch = AUX_CH_D;
1535
		break;
1536 1537 1538
	case DP_AUX_E:
		aux_ch = AUX_CH_E;
		break;
R
Rodrigo Vivi 已提交
1539
	case DP_AUX_F:
1540
		aux_ch = AUX_CH_F;
R
Rodrigo Vivi 已提交
1541
		break;
1542 1543
	default:
		MISSING_CASE(info->alternate_aux_channel);
1544
		aux_ch = AUX_CH_A;
1545 1546 1547 1548
		break;
	}

	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1549
		      aux_ch_name(aux_ch), port_name(port));
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	return aux_ch;
}

static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp *intel_dp)
{
	switch (intel_dp->aux_ch) {
	case AUX_CH_A:
		return POWER_DOMAIN_AUX_A;
	case AUX_CH_B:
		return POWER_DOMAIN_AUX_B;
	case AUX_CH_C:
		return POWER_DOMAIN_AUX_C;
	case AUX_CH_D:
		return POWER_DOMAIN_AUX_D;
1566 1567
	case AUX_CH_E:
		return POWER_DOMAIN_AUX_E;
1568 1569 1570 1571 1572 1573
	case AUX_CH_F:
		return POWER_DOMAIN_AUX_F;
	default:
		MISSING_CASE(intel_dp->aux_ch);
		return POWER_DOMAIN_AUX_A;
	}
1574 1575
}

1576
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1577
{
1578
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1579 1580
	enum aux_ch aux_ch = intel_dp->aux_ch;

1581 1582 1583 1584 1585
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1586
	default:
1587 1588
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1589 1590 1591
	}
}

1592
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1593
{
1594
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1595 1596
	enum aux_ch aux_ch = intel_dp->aux_ch;

1597 1598 1599 1600 1601
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1602
	default:
1603 1604
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1605 1606 1607
	}
}

1608
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1609
{
1610
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1611 1612
	enum aux_ch aux_ch = intel_dp->aux_ch;

1613 1614 1615 1616 1617 1618 1619
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1620
	default:
1621 1622
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1623 1624 1625
	}
}

1626
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1627
{
1628
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629 1630
	enum aux_ch aux_ch = intel_dp->aux_ch;

1631 1632 1633 1634 1635 1636 1637
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1638
	default:
1639 1640
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1641 1642 1643
	}
}

1644
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1645
{
1646
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1647 1648
	enum aux_ch aux_ch = intel_dp->aux_ch;

1649 1650 1651 1652 1653
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1654
	case AUX_CH_E:
1655 1656
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1657
	default:
1658 1659
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1660 1661 1662
	}
}

1663
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1664
{
1665
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1666 1667
	enum aux_ch aux_ch = intel_dp->aux_ch;

1668 1669 1670 1671 1672
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1673
	case AUX_CH_E:
1674 1675
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1676
	default:
1677 1678
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1679 1680 1681
	}
}

1682 1683 1684 1685 1686 1687 1688 1689
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1690
{
1691
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1692 1693 1694 1695
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	intel_dp->aux_ch = intel_aux_ch(intel_dp);
	intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1707

1708 1709 1710 1711 1712 1713 1714 1715
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1716

1717 1718 1719 1720
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1721

1722
	drm_dp_aux_init(&intel_dp->aux);
1723

1724
	/* Failure to allocate our preferred name is not critical */
1725 1726
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1727
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1728 1729
}

1730
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1731
{
1732
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1733

1734
	return max_rate >= 540000;
1735 1736
}

1737 1738 1739 1740 1741 1742 1743
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1744 1745
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1746
		   struct intel_crtc_state *pipe_config)
1747
{
1748
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1749 1750
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1751

1752
	if (IS_G4X(dev_priv)) {
1753 1754
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1755
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1756 1757
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1758
	} else if (IS_CHERRYVIEW(dev_priv)) {
1759 1760
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1761
	} else if (IS_VALLEYVIEW(dev_priv)) {
1762 1763
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1764
	}
1765 1766 1767

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1768
			if (pipe_config->port_clock == divisor[i].clock) {
1769 1770 1771 1772 1773
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1774 1775 1776
	}
}

1777 1778 1779 1780 1781 1782 1783 1784
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1785
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1800 1801
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1802 1803
	DRM_DEBUG_KMS("source rates: %s\n", str);

1804 1805
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1806 1807
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1808 1809
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1810
	DRM_DEBUG_KMS("common rates: %s\n", str);
1811 1812
}

1813 1814 1815 1816 1817
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1818
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1819 1820 1821
	if (WARN_ON(len <= 0))
		return 162000;

1822
	return intel_dp->common_rates[len - 1];
1823 1824
}

1825 1826
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1827 1828
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1829 1830 1831 1832 1833

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1834 1835
}

1836 1837
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1838
{
1839 1840
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1841 1842 1843 1844 1845 1846 1847 1848 1849
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1850 1851 1852 1853 1854 1855
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1856 1857
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1858
{
1859
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1860
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1861 1862 1863 1864 1865 1866 1867 1868
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1879 1880 1881
	return bpp;
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
/* Optimize link config in order: max bpp, min lanes, min clock */
static bool
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (lane_count = limits->min_lane_count;
		     lane_count <= limits->max_lane_count;
		     lane_count <<= 1) {
			for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1990 1991 1992
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config)
1993
{
1994
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1995
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1996
	struct link_config_limits limits;
1997
	int common_len;
1998

1999
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2000
						    intel_dp->max_link_rate);
2001 2002

	/* No common link rates between source and sink */
2003
	WARN_ON(common_len <= 0);
2004

2005 2006 2007 2008 2009 2010 2011 2012
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2013

2014
	if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
2015 2016
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2017 2018 2019 2020 2021 2022
		 * advertizes being capable of. The eDP 1.3 and earlier panels
		 * are generally designed to support only a single clock and
		 * lane configuration, and typically these values correspond to
		 * the native resolution of the panel. With eDP 1.4 rate select
		 * and DSC, this is decreasingly the case, and we need to be
		 * able to select less than maximum link config.
2023
		 */
2024 2025
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2026
	}
2027

2028 2029
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2030 2031 2032 2033 2034 2035
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	if (intel_dp_is_edp(intel_dp)) {
		/*
		 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
		 * section A.1: "It is recommended that the minimum number of
		 * lanes be used, using the minimum link rate allowed for that
		 * lane configuration."
		 *
		 * Note that we use the max clock and lane count for eDP 1.3 and
		 * earlier, and fast vs. wide is irrelevant.
		 */
		if (!intel_dp_compute_link_config_fast(intel_dp, pipe_config,
						       &limits))
			return false;
	} else {
		/* Optimize for slow and wide. */
		if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config,
						       &limits))
			return false;
	}
2055 2056

	DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2057 2058 2059 2060 2061 2062 2063 2064
		      pipe_config->lane_count, pipe_config->port_clock,
		      pipe_config->pipe_bpp);

	DRM_DEBUG_KMS("DP link rate required %i available %i\n",
		      intel_dp_link_required(adjusted_mode->crtc_clock,
					     pipe_config->pipe_bpp),
		      intel_dp_max_data_rate(pipe_config->port_clock,
					     pipe_config->lane_count));
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	return true;
}

bool
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2077
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2078 2079 2080 2081 2082
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2083 2084
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2085 2086 2087 2088

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2089
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2090 2091 2092
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2093 2094 2095 2096 2097 2098 2099 2100 2101
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2102 2103
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

		if (INTEL_GEN(dev_priv) >= 9) {
			int ret;

			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2121 2122 2123
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return false;

2124
	if (HAS_GMCH_DISPLAY(dev_priv) &&
2125 2126 2127 2128 2129 2130 2131 2132 2133
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

	if (!intel_dp_compute_link_config(encoder, pipe_config))
		return false;

2134
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2135 2136 2137 2138 2139
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
2140
		pipe_config->limited_color_range =
2141
			pipe_config->pipe_bpp != 18 &&
2142 2143
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
2144 2145
	} else {
		pipe_config->limited_color_range =
2146
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2147 2148
	}

2149
	intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
2150 2151
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
2152
			       &pipe_config->dp_m_n,
2153
			       constant_n);
2154

2155
	if (intel_connector->panel.downclock_mode != NULL &&
2156
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2157
			pipe_config->has_drrs = true;
2158 2159 2160 2161 2162
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2163
					       constant_n);
2164 2165
	}

2166
	if (!HAS_DDI(dev_priv))
2167
		intel_dp_set_clock(encoder, pipe_config);
2168

2169 2170
	intel_psr_compute_config(intel_dp, pipe_config);

2171
	return true;
2172 2173
}

2174
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2175 2176
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
2177
{
2178
	intel_dp->link_trained = false;
2179 2180 2181
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2182 2183
}

2184
static void intel_dp_prepare(struct intel_encoder *encoder,
2185
			     const struct intel_crtc_state *pipe_config)
2186
{
2187
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2188
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2189
	enum port port = encoder->port;
2190
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2191
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2192

2193 2194 2195 2196
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2197

2198
	/*
K
Keith Packard 已提交
2199
	 * There are four kinds of DP registers:
2200 2201
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2202 2203
	 * 	SNB CPU
	 *	IVB CPU
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2214

2215 2216 2217 2218
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2219

2220 2221
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2222
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2223

2224
	/* Split out the IBX/CPU vs CPT settings */
2225

2226
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2227 2228 2229 2230 2231 2232
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2233
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2234 2235
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2236
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2237
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2238 2239
		u32 trans_dp;

2240
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2241 2242 2243 2244 2245 2246 2247

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2248
	} else {
2249
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2250
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2251 2252 2253 2254 2255 2256 2257

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2258
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2259 2260
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2261
		if (IS_CHERRYVIEW(dev_priv))
2262 2263 2264
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2265
	}
2266 2267
}

2268 2269
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2270

2271 2272
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2273

2274 2275
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2276

2277
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2278

2279
static void wait_panel_status(struct intel_dp *intel_dp,
2280 2281
				       u32 mask,
				       u32 value)
2282
{
2283
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2284
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2285

V
Ville Syrjälä 已提交
2286 2287
	lockdep_assert_held(&dev_priv->pps_mutex);

2288
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2289

2290 2291
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2292

2293
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2294 2295 2296
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2297

2298 2299 2300
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2301
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2302 2303
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2304 2305

	DRM_DEBUG_KMS("Wait complete\n");
2306
}
2307

2308
static void wait_panel_on(struct intel_dp *intel_dp)
2309 2310
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2311
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2312 2313
}

2314
static void wait_panel_off(struct intel_dp *intel_dp)
2315 2316
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2317
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2318 2319
}

2320
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2321
{
2322 2323 2324
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2325
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2326

2327 2328 2329 2330 2331
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2332 2333
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2334 2335 2336
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2337

2338
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2339 2340
}

2341
static void wait_backlight_on(struct intel_dp *intel_dp)
2342 2343 2344 2345 2346
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2347
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2348 2349 2350 2351
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2352

2353 2354 2355 2356
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2357
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2358
{
2359
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2360
	u32 control;
2361

V
Ville Syrjälä 已提交
2362 2363
	lockdep_assert_held(&dev_priv->pps_mutex);

2364
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2365 2366
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2367 2368 2369
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2370
	return control;
2371 2372
}

2373 2374 2375 2376 2377
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2378
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2379
{
2380
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2381
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2382
	u32 pp;
2383
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2384
	bool need_to_disable = !intel_dp->want_panel_vdd;
2385

V
Ville Syrjälä 已提交
2386 2387
	lockdep_assert_held(&dev_priv->pps_mutex);

2388
	if (!intel_dp_is_edp(intel_dp))
2389
		return false;
2390

2391
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2392
	intel_dp->want_panel_vdd = true;
2393

2394
	if (edp_have_panel_vdd(intel_dp))
2395
		return need_to_disable;
2396

2397
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2398

V
Ville Syrjälä 已提交
2399
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2400
		      port_name(intel_dig_port->base.port));
2401

2402 2403
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2404

2405
	pp = ironlake_get_pp_control(intel_dp);
2406
	pp |= EDP_FORCE_VDD;
2407

2408 2409
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2410 2411 2412 2413 2414

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2415 2416 2417
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2418
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2419
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2420
			      port_name(intel_dig_port->base.port));
2421 2422
		msleep(intel_dp->panel_power_up_delay);
	}
2423 2424 2425 2426

	return need_to_disable;
}

2427 2428 2429 2430 2431 2432 2433
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2434
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2435
{
2436
	bool vdd;
2437

2438
	if (!intel_dp_is_edp(intel_dp))
2439 2440
		return;

2441
	pps_lock(intel_dp);
2442
	vdd = edp_panel_vdd_on(intel_dp);
2443
	pps_unlock(intel_dp);
2444

R
Rob Clark 已提交
2445
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2446
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2447 2448
}

2449
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2450
{
2451
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2452 2453
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2454
	u32 pp;
2455
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2456

V
Ville Syrjälä 已提交
2457
	lockdep_assert_held(&dev_priv->pps_mutex);
2458

2459
	WARN_ON(intel_dp->want_panel_vdd);
2460

2461
	if (!edp_have_panel_vdd(intel_dp))
2462
		return;
2463

V
Ville Syrjälä 已提交
2464
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2465
		      port_name(intel_dig_port->base.port));
2466

2467 2468
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2469

2470 2471
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2472

2473 2474
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2475

2476 2477 2478
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2479

2480
	if ((pp & PANEL_POWER_ON) == 0)
2481
		intel_dp->panel_power_off_time = ktime_get_boottime();
2482

2483
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2484
}
2485

2486
static void edp_panel_vdd_work(struct work_struct *__work)
2487 2488 2489 2490
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2491
	pps_lock(intel_dp);
2492 2493
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2494
	pps_unlock(intel_dp);
2495 2496
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2510 2511 2512 2513 2514
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2515
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2516
{
2517
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2518 2519 2520

	lockdep_assert_held(&dev_priv->pps_mutex);

2521
	if (!intel_dp_is_edp(intel_dp))
2522
		return;
2523

R
Rob Clark 已提交
2524
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2525
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2526

2527 2528
	intel_dp->want_panel_vdd = false;

2529
	if (sync)
2530
		edp_panel_vdd_off_sync(intel_dp);
2531 2532
	else
		edp_panel_vdd_schedule_off(intel_dp);
2533 2534
}

2535
static void edp_panel_on(struct intel_dp *intel_dp)
2536
{
2537
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2538
	u32 pp;
2539
	i915_reg_t pp_ctrl_reg;
2540

2541 2542
	lockdep_assert_held(&dev_priv->pps_mutex);

2543
	if (!intel_dp_is_edp(intel_dp))
2544
		return;
2545

V
Ville Syrjälä 已提交
2546
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2547
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2548

2549 2550
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2551
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2552
		return;
2553

2554
	wait_panel_power_cycle(intel_dp);
2555

2556
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2557
	pp = ironlake_get_pp_control(intel_dp);
2558
	if (IS_GEN5(dev_priv)) {
2559 2560
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2561 2562
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2563
	}
2564

2565
	pp |= PANEL_POWER_ON;
2566
	if (!IS_GEN5(dev_priv))
2567 2568
		pp |= PANEL_POWER_RESET;

2569 2570
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2571

2572
	wait_panel_on(intel_dp);
2573
	intel_dp->last_power_on = jiffies;
2574

2575
	if (IS_GEN5(dev_priv)) {
2576
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2577 2578
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2579
	}
2580
}
V
Ville Syrjälä 已提交
2581

2582 2583
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2584
	if (!intel_dp_is_edp(intel_dp))
2585 2586 2587 2588
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2589
	pps_unlock(intel_dp);
2590 2591
}

2592 2593

static void edp_panel_off(struct intel_dp *intel_dp)
2594
{
2595
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2596
	u32 pp;
2597
	i915_reg_t pp_ctrl_reg;
2598

2599 2600
	lockdep_assert_held(&dev_priv->pps_mutex);

2601
	if (!intel_dp_is_edp(intel_dp))
2602
		return;
2603

V
Ville Syrjälä 已提交
2604
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2605
		      port_name(dp_to_dig_port(intel_dp)->base.port));
2606

V
Ville Syrjälä 已提交
2607
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2608
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2609

2610
	pp = ironlake_get_pp_control(intel_dp);
2611 2612
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2613
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2614
		EDP_BLC_ENABLE);
2615

2616
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2617

2618 2619
	intel_dp->want_panel_vdd = false;

2620 2621
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2622

2623
	wait_panel_off(intel_dp);
2624
	intel_dp->panel_power_off_time = ktime_get_boottime();
2625 2626

	/* We got a reference when we enabled the VDD. */
2627
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2628
}
V
Ville Syrjälä 已提交
2629

2630 2631
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2632
	if (!intel_dp_is_edp(intel_dp))
2633
		return;
V
Ville Syrjälä 已提交
2634

2635 2636
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2637
	pps_unlock(intel_dp);
2638 2639
}

2640 2641
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2642
{
2643
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2644
	u32 pp;
2645
	i915_reg_t pp_ctrl_reg;
2646

2647 2648 2649 2650 2651 2652
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2653
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2654

2655
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2656

2657
	pp = ironlake_get_pp_control(intel_dp);
2658
	pp |= EDP_BLC_ENABLE;
2659

2660
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2661 2662 2663

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2664

2665
	pps_unlock(intel_dp);
2666 2667
}

2668
/* Enable backlight PWM and backlight PP control. */
2669 2670
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2671
{
2672 2673
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2674
	if (!intel_dp_is_edp(intel_dp))
2675 2676 2677 2678
		return;

	DRM_DEBUG_KMS("\n");

2679
	intel_panel_enable_backlight(crtc_state, conn_state);
2680 2681 2682 2683 2684
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2685
{
2686
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2687
	u32 pp;
2688
	i915_reg_t pp_ctrl_reg;
2689

2690
	if (!intel_dp_is_edp(intel_dp))
2691 2692
		return;

2693
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2694

2695
	pp = ironlake_get_pp_control(intel_dp);
2696
	pp &= ~EDP_BLC_ENABLE;
2697

2698
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2699 2700 2701

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2702

2703
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2704 2705

	intel_dp->last_backlight_off = jiffies;
2706
	edp_wait_backlight_off(intel_dp);
2707
}
2708

2709
/* Disable backlight PP control and backlight PWM. */
2710
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2711
{
2712 2713
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2714
	if (!intel_dp_is_edp(intel_dp))
2715 2716 2717
		return;

	DRM_DEBUG_KMS("\n");
2718

2719
	_intel_edp_backlight_off(intel_dp);
2720
	intel_panel_disable_backlight(old_conn_state);
2721
}
2722

2723 2724 2725 2726 2727 2728 2729 2730
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2731 2732
	bool is_enabled;

2733
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2734
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2735
	pps_unlock(intel_dp);
2736 2737 2738 2739

	if (is_enabled == enable)
		return;

2740 2741
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2742 2743 2744 2745 2746 2747 2748

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2749 2750 2751 2752 2753 2754 2755 2756
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2757
			port_name(dig_port->base.port),
2758
			onoff(state), onoff(cur_state));
2759 2760 2761 2762 2763 2764 2765 2766 2767
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2768
			onoff(state), onoff(cur_state));
2769 2770 2771 2772
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2773
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2774
				const struct intel_crtc_state *pipe_config)
2775
{
2776
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2777
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2778

2779 2780 2781
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2782

2783
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2784
		      pipe_config->port_clock);
2785 2786 2787

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2788
	if (pipe_config->port_clock == 162000)
2789 2790 2791 2792 2793 2794 2795 2796
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2797 2798 2799 2800 2801 2802 2803
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN5(dev_priv))
2804
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2805

2806
	intel_dp->DP |= DP_PLL_ENABLE;
2807

2808
	I915_WRITE(DP_A, intel_dp->DP);
2809 2810
	POSTING_READ(DP_A);
	udelay(200);
2811 2812
}

2813 2814
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2815
{
2816
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2817
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2818

2819 2820 2821
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2822

2823 2824
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2825
	intel_dp->DP &= ~DP_PLL_ENABLE;
2826

2827
	I915_WRITE(DP_A, intel_dp->DP);
2828
	POSTING_READ(DP_A);
2829 2830 2831
	udelay(200);
}

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2847
/* If the sink supports it, try to set the power state appropriately */
2848
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2849 2850 2851 2852 2853 2854 2855 2856
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2857 2858 2859
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2860 2861
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2862
	} else {
2863 2864
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2865 2866 2867 2868 2869
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2870 2871
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2872 2873 2874 2875
			if (ret == 1)
				break;
			msleep(1);
		}
2876 2877 2878

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2879
	}
2880 2881 2882 2883

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2884 2885
}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2932 2933
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2934
{
2935
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2936
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2937
	bool ret;
2938

2939 2940
	if (!intel_display_power_get_if_enabled(dev_priv,
						encoder->power_domain))
2941 2942
		return false;

2943 2944
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2945

2946
	intel_display_power_put(dev_priv, encoder->power_domain);
2947 2948

	return ret;
2949
}
2950

2951
static void intel_dp_get_config(struct intel_encoder *encoder,
2952
				struct intel_crtc_state *pipe_config)
2953
{
2954
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2955 2956
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2957
	enum port port = encoder->port;
2958
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2959

2960 2961 2962 2963
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2964

2965
	tmp = I915_READ(intel_dp->output_reg);
2966 2967

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2968

2969
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2970 2971 2972
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2973 2974 2975
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2976

2977
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2978 2979 2980 2981
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2982
		if (tmp & DP_SYNC_HS_HIGH)
2983 2984 2985
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2986

2987
		if (tmp & DP_SYNC_VS_HIGH)
2988 2989 2990 2991
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
2992

2993
	pipe_config->base.adjusted_mode.flags |= flags;
2994

2995
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2996 2997
		pipe_config->limited_color_range = true;

2998 2999 3000
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3001 3002
	intel_dp_get_m_n(crtc, pipe_config);

3003
	if (port == PORT_A) {
3004
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3005 3006 3007 3008
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3009

3010 3011 3012
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3013

3014
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3015
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3030 3031
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3032
	}
3033 3034
}

3035
static void intel_disable_dp(struct intel_encoder *encoder,
3036 3037
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3038
{
3039
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3040

3041 3042
	intel_dp->link_trained = false;

3043
	if (old_crtc_state->has_audio)
3044 3045
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3046 3047 3048

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3049
	intel_edp_panel_vdd_on(intel_dp);
3050
	intel_edp_backlight_off(old_conn_state);
3051
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3052
	intel_edp_panel_off(intel_dp);
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3067 3068
}

3069
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3070 3071
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3072
{
3073
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3074
	enum port port = encoder->port;
3075

3076 3077 3078 3079 3080 3081
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3082
	intel_dp_link_down(encoder, old_crtc_state);
3083 3084

	/* Only ilk+ has port A */
3085
	if (port == PORT_A)
3086
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3087 3088
}

3089
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3090 3091
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3092
{
3093
	intel_dp_link_down(encoder, old_crtc_state);
3094 3095
}

3096
static void chv_post_disable_dp(struct intel_encoder *encoder,
3097 3098
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3099
{
3100
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3101

3102
	intel_dp_link_down(encoder, old_crtc_state);
3103 3104 3105 3106

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3107
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3108

V
Ville Syrjälä 已提交
3109
	mutex_unlock(&dev_priv->sb_lock);
3110 3111
}

3112 3113 3114 3115 3116
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
3117
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3118
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3119
	enum port port = intel_dig_port->base.port;
3120
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3121

3122
	if (dp_train_pat & train_pat_mask)
3123
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3124
			      dp_train_pat & train_pat_mask);
3125

3126
	if (HAS_DDI(dev_priv)) {
3127 3128 3129 3130 3131 3132 3133 3134
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3135
		switch (dp_train_pat & train_pat_mask) {
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3149 3150 3151
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3152 3153 3154
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3155
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3156
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3170
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3171 3172 3173 3174 3175
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3176
		*DP &= ~DP_LINK_TRAIN_MASK;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3189 3190
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3191 3192 3193 3194 3195
			break;
		}
	}
}

3196
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3197
				 const struct intel_crtc_state *old_crtc_state)
3198
{
3199
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3200 3201 3202

	/* enable with pattern 1 (as per spec) */

3203
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3204 3205 3206 3207 3208 3209 3210 3211

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3212
	if (old_crtc_state->has_audio)
3213
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3214 3215 3216

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3217 3218
}

3219
static void intel_enable_dp(struct intel_encoder *encoder,
3220 3221
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3222
{
3223
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3224
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3225
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3226
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3227
	enum pipe pipe = crtc->pipe;
3228

3229 3230
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3231

3232 3233
	pps_lock(intel_dp);

3234
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3235
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3236

3237
	intel_dp_enable_port(intel_dp, pipe_config);
3238 3239 3240 3241 3242 3243 3244

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3245
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3246 3247
		unsigned int lane_mask = 0x0;

3248
		if (IS_CHERRYVIEW(dev_priv))
3249
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3250

3251 3252
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3253
	}
3254

3255
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3256
	intel_dp_start_link_train(intel_dp);
3257
	intel_dp_stop_link_train(intel_dp);
3258

3259
	if (pipe_config->has_audio) {
3260
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3261
				 pipe_name(pipe));
3262
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3263
	}
3264
}
3265

3266
static void g4x_enable_dp(struct intel_encoder *encoder,
3267 3268
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3269
{
3270
	intel_enable_dp(encoder, pipe_config, conn_state);
3271
	intel_edp_backlight_on(pipe_config, conn_state);
3272
}
3273

3274
static void vlv_enable_dp(struct intel_encoder *encoder,
3275 3276
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3277
{
3278
	intel_edp_backlight_on(pipe_config, conn_state);
3279 3280
}

3281
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3282 3283
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3284 3285
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3286
	enum port port = encoder->port;
3287

3288
	intel_dp_prepare(encoder, pipe_config);
3289

3290
	/* Only ilk+ has port A */
3291
	if (port == PORT_A)
3292
		ironlake_edp_pll_on(intel_dp, pipe_config);
3293 3294
}

3295 3296 3297
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3298
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3299
	enum pipe pipe = intel_dp->pps_pipe;
3300
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3301

3302 3303
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3304 3305 3306
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3307 3308 3309
	edp_panel_vdd_off_sync(intel_dp);

	/*
3310
	 * VLV seems to get confused when multiple power sequencers
3311 3312 3313
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3314
	 * selected in multiple power sequencers, but let's clear the
3315 3316 3317 3318
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3319
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3320 3321 3322 3323 3324 3325
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3326
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3327 3328 3329 3330 3331 3332
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3333 3334 3335
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3336

3337 3338 3339 3340
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3341 3342 3343 3344
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3345
			      pipe_name(pipe), port_name(port));
3346 3347

		/* make sure vdd is off before we steal it */
3348
		vlv_detach_power_sequencer(intel_dp);
3349 3350 3351
	}
}

3352 3353
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3354
{
3355
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3356 3357
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3358 3359 3360

	lockdep_assert_held(&dev_priv->pps_mutex);

3361
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3362

3363 3364 3365 3366 3367 3368 3369
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3370
		vlv_detach_power_sequencer(intel_dp);
3371
	}
3372 3373 3374 3375 3376

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3377
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3378

3379 3380
	intel_dp->active_pipe = crtc->pipe;

3381
	if (!intel_dp_is_edp(intel_dp))
3382 3383
		return;

3384 3385 3386 3387
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3388
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3389 3390

	/* init power sequencer on this pipe and port */
3391 3392
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3393 3394
}

3395
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3396 3397
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3398
{
3399
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3400

3401
	intel_enable_dp(encoder, pipe_config, conn_state);
3402 3403
}

3404
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3405 3406
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3407
{
3408
	intel_dp_prepare(encoder, pipe_config);
3409

3410
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3411 3412
}

3413
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3414 3415
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3416
{
3417
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3418

3419
	intel_enable_dp(encoder, pipe_config, conn_state);
3420 3421

	/* Second common lane will stay alive on its own now */
3422
	chv_phy_release_cl2_override(encoder);
3423 3424
}

3425
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3426 3427
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3428
{
3429
	intel_dp_prepare(encoder, pipe_config);
3430

3431
	chv_phy_pre_pll_enable(encoder, pipe_config);
3432 3433
}

3434
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3435 3436
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3437
{
3438
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3439 3440
}

3441 3442 3443 3444
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3445
bool
3446
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3447
{
3448 3449
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3450 3451
}

3452
/* These are source-specific values. */
3453
uint8_t
K
Keith Packard 已提交
3454
intel_dp_voltage_max(struct intel_dp *intel_dp)
3455
{
3456
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3457 3458
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3459

3460
	if (HAS_DDI(dev_priv))
3461
		return intel_ddi_dp_voltage_max(encoder);
3462
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3463
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3464
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3465
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3466
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3467
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3468
	else
3469
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3470 3471
}

3472
uint8_t
K
Keith Packard 已提交
3473 3474
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3475
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3476 3477
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3478

3479 3480
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3481
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3482
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3483 3484 3485 3486 3487 3488 3489
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3490
		default:
3491
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3492
		}
3493
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3494
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3495 3496 3497 3498 3499
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3500
		default:
3501
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3502 3503 3504
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3505 3506 3507 3508 3509 3510 3511
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3512
		default:
3513
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3514
		}
3515 3516 3517
	}
}

3518
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3519
{
3520
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3521 3522 3523 3524 3525
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3526
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3527 3528
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3529
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3530 3531 3532
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3533
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3534 3535 3536
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3537
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3538 3539 3540
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3541
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3542 3543 3544 3545 3546 3547 3548
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3549
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3550 3551
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3552
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3553 3554 3555
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3556
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3557 3558 3559
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3560
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3561 3562 3563 3564 3565 3566 3567
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3568
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3569 3570
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3571
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3572 3573 3574
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3575
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3576 3577 3578 3579 3580 3581 3582
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3583
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3584 3585
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3586
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3598 3599
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3600 3601 3602 3603

	return 0;
}

3604
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3605
{
3606 3607 3608
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3609 3610 3611
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3612
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3613
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3614
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3615 3616 3617
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3618
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3619 3620 3621
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3622
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3623 3624 3625
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3626
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3627 3628
			deemph_reg_value = 128;
			margin_reg_value = 154;
3629
			uniq_trans_scale = true;
3630 3631 3632 3633 3634
			break;
		default:
			return 0;
		}
		break;
3635
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3636
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3637
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3638 3639 3640
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3641
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3642 3643 3644
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3645
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3646 3647 3648 3649 3650 3651 3652
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3653
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3654
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3655
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3656 3657 3658
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3659
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3660 3661 3662 3663 3664 3665 3666
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3667
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3668
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3669
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3681 3682
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3683 3684 3685 3686

	return 0;
}

3687
static uint32_t
3688
g4x_signal_levels(uint8_t train_set)
3689
{
3690
	uint32_t	signal_levels = 0;
3691

3692
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3693
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3694 3695 3696
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3697
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3698 3699
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3700
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3701 3702
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3703
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3704 3705 3706
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3707
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3708
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3709 3710 3711
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3712
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3713 3714
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3715
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3716 3717
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3718
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3719 3720 3721 3722 3723 3724
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3725
/* SNB CPU eDP voltage swing and pre-emphasis control */
3726
static uint32_t
3727
snb_cpu_edp_signal_levels(uint8_t train_set)
3728
{
3729 3730 3731
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3732 3733
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3734
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3735
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3736
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3737 3738
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3739
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3740 3741
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3742
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3743 3744
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3745
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3746
	default:
3747 3748 3749
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3750 3751 3752
	}
}

3753
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3754
static uint32_t
3755
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3756 3757 3758 3759
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3760
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3761
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3762
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3763
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3764
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3765 3766
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3767
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3768
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3769
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3770 3771
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3772
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3773
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3774
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3784
void
3785
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3786
{
3787
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3788
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3789
	enum port port = intel_dig_port->base.port;
3790
	uint32_t signal_levels, mask = 0;
3791 3792
	uint8_t train_set = intel_dp->train_set[0];

R
Rodrigo Vivi 已提交
3793
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3794 3795
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3796
		signal_levels = ddi_signal_levels(intel_dp);
3797
		mask = DDI_BUF_EMP_MASK;
3798
	} else if (IS_CHERRYVIEW(dev_priv)) {
3799
		signal_levels = chv_signal_levels(intel_dp);
3800
	} else if (IS_VALLEYVIEW(dev_priv)) {
3801
		signal_levels = vlv_signal_levels(intel_dp);
3802
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3803
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3804
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3805
	} else if (IS_GEN6(dev_priv) && port == PORT_A) {
3806
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3807 3808
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3809
		signal_levels = g4x_signal_levels(train_set);
3810 3811 3812
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3813 3814 3815 3816 3817 3818 3819 3820
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3821

3822
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3823 3824 3825

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3826 3827
}

3828
void
3829 3830
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3831
{
3832
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3833 3834
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3835

3836
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3837

3838
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3839
	POSTING_READ(intel_dp->output_reg);
3840 3841
}

3842
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3843
{
3844
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3845
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3846
	enum port port = intel_dig_port->base.port;
3847 3848
	uint32_t val;

3849
	if (!HAS_DDI(dev_priv))
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3867 3868 3869 3870
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3871 3872 3873
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3874
static void
3875 3876
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3877
{
3878 3879 3880 3881
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3882
	uint32_t DP = intel_dp->DP;
3883

3884
	if (WARN_ON(HAS_DDI(dev_priv)))
3885 3886
		return;

3887
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3888 3889
		return;

3890
	DRM_DEBUG_KMS("\n");
3891

3892
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3893
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3894
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3895
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3896
	} else {
3897
		DP &= ~DP_LINK_TRAIN_MASK;
3898
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3899
	}
3900
	I915_WRITE(intel_dp->output_reg, DP);
3901
	POSTING_READ(intel_dp->output_reg);
3902

3903 3904 3905 3906 3907 3908 3909 3910 3911
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3912
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3913 3914 3915 3916 3917 3918 3919
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3920
		/* always enable with pattern 1 (as per spec) */
3921 3922 3923
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3924 3925 3926 3927
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3928
		I915_WRITE(intel_dp->output_reg, DP);
3929
		POSTING_READ(intel_dp->output_reg);
3930

3931
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3932 3933
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3934 3935
	}

3936
	msleep(intel_dp->panel_power_down_delay);
3937 3938

	intel_dp->DP = DP;
3939 3940 3941 3942 3943 3944

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3945 3946
}

3947
bool
3948
intel_dp_read_dpcd(struct intel_dp *intel_dp)
3949
{
3950 3951
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
3952
		return false; /* aux transfer failed */
3953

3954
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3955

3956 3957
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
3958

3959 3960 3961 3962 3963
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3964

3965 3966
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3967

3968
	if (!intel_dp_read_dpcd(intel_dp))
3969 3970
		return false;

3971 3972
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
3973

3974 3975 3976
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3977

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
3988 3989
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
3990
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3991
			      intel_dp->edp_dpcd);
3992

3993 3994 3995 3996 3997 3998
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

3999 4000
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4001
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4002 4003
		int i;

4004 4005
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4006

4007 4008
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4009 4010 4011 4012

			if (val == 0)
				break;

4013 4014 4015 4016 4017 4018
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4019
			intel_dp->sink_rates[i] = (val * 200) / 10;
4020
		}
4021
		intel_dp->num_sink_rates = i;
4022
	}
4023

4024 4025 4026 4027
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4028 4029 4030 4031 4032
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4033 4034
	intel_dp_set_common_rates(intel_dp);

4035 4036 4037 4038 4039 4040 4041
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
4042 4043
	u8 sink_count;

4044 4045 4046
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4047
	/* Don't clobber cached eDP rates. */
4048
	if (!intel_dp_is_edp(intel_dp)) {
4049
		intel_dp_set_sink_rates(intel_dp);
4050 4051
		intel_dp_set_common_rates(intel_dp);
	}
4052

4053
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
4054 4055 4056 4057 4058 4059 4060
		return false;

	/*
	 * Sink count can change between short pulse hpd hence
	 * a member variable in intel_dp will track any changes
	 * between short pulse interrupts.
	 */
4061
	intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
4062 4063 4064 4065 4066 4067 4068 4069

	/*
	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
	 * a dongle is present but no display. Unless we require to know
	 * if a dongle is present or not, we don't need to update
	 * downstream port information. So, an early return here saves
	 * time from performing other operations which are not required.
	 */
4070
	if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
4071
		return false;
4072

4073
	if (!drm_dp_is_branch(intel_dp->dpcd))
4074 4075 4076 4077 4078
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4079 4080 4081
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4082 4083 4084
		return false; /* downstream port status fetch failed */

	return true;
4085 4086
}

4087
static bool
4088
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4089
{
4090
	u8 mstm_cap;
4091 4092 4093 4094

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4095
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4096
		return false;
4097

4098
	return mstm_cap & DP_MST_CAP;
4099 4100
}

4101 4102 4103 4104 4105 4106 4107 4108
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4109 4110 4111
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4112 4113 4114 4115 4116 4117 4118
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4119 4120 4121 4122

	if (!intel_dp->can_mst)
		return;

4123 4124
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4125 4126 4127

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4128 4129 4130 4131 4132
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4133 4134 4135
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4136 4137
}

4138 4139
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
4140
	int status = 0;
4141
	int test_link_rate;
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4163 4164 4165 4166

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4167 4168 4169 4170 4171 4172
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4173 4174 4175 4176
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
4177
	uint8_t test_pattern;
4178
	uint8_t test_misc;
4179 4180 4181 4182
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4183 4184
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4206 4207
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4234 4235 4236
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4237
{
4238
	uint8_t test_result = DP_TEST_ACK;
4239 4240 4241 4242
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4243
	    connector->edid_corrupt ||
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4257
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4258
	} else {
4259 4260 4261 4262 4263 4264 4265
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4266 4267
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4268 4269 4270
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4271
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4272 4273 4274
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4275
	intel_dp->compliance.test_active = 1;
4276

4277 4278 4279 4280
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4281
{
4282 4283 4284 4285 4286 4287 4288
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4289 4290
	uint8_t request = 0;
	int status;
4291

4292
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4293 4294 4295 4296 4297
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4298
	switch (request) {
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4316
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4317 4318 4319
		break;
	}

4320 4321 4322
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4323
update_status:
4324
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4325 4326
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4327 4328
}

4329 4330 4331 4332 4333 4334
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4335
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4336 4337 4338
		int ret = 0;
		int retry;
		bool handled;
4339 4340

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4341 4342 4343 4344 4345
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4346
			if (intel_dp->active_mst_links > 0 &&
4347
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4348 4349 4350 4351 4352
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4353
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4369
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4388 4389 4390 4391 4392
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4393 4394 4395 4396
	if (!intel_dp->link_trained)
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4413 4414
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4455 4456 4457

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4458
	if (crtc_state->has_pch_encoder)
4459 4460 4461 4462 4463 4464 4465
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4466
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4467 4468

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4469
	if (crtc_state->has_pch_encoder)
4470 4471
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4472 4473

	return 0;
4474 4475
}

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4490
{
4491 4492 4493
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4494

4495
	changed = intel_encoder_hotplug(encoder, connector);
4496

4497
	drm_modeset_acquire_init(&ctx, 0);
4498

4499 4500
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4501

4502 4503 4504 4505
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4506

4507 4508
		break;
	}
4509

4510 4511 4512
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4513

4514
	return changed;
4515 4516
}

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

	if (val & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
		DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}

4537 4538 4539 4540 4541 4542 4543
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4544 4545 4546 4547 4548
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4549
 */
4550
static bool
4551
intel_dp_short_pulse(struct intel_dp *intel_dp)
4552
{
4553
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4554 4555
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4556

4557 4558 4559 4560
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4561
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4562

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4574 4575
	}

4576
	intel_dp_check_service_irq(intel_dp);
4577

4578 4579 4580
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4581 4582 4583
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4584

4585 4586
	intel_psr_short_pulse(intel_dp);

4587 4588 4589
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4590
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4591
	}
4592 4593

	return true;
4594 4595
}

4596
/* XXX this is probably wrong for multiple downstream ports */
4597
static enum drm_connector_status
4598
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4599
{
4600
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4601 4602 4603
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4604 4605 4606
	if (lspcon->active)
		lspcon_resume(lspcon);

4607 4608 4609
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4610
	if (intel_dp_is_edp(intel_dp))
4611 4612
		return connector_status_connected;

4613
	/* if there's no downstream port, we're done */
4614
	if (!drm_dp_is_branch(dpcd))
4615
		return connector_status_connected;
4616 4617

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4618 4619
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4620

4621 4622
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4623 4624
	}

4625 4626 4627
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4628
	/* If no HPD, poke DDC gently */
4629
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4630
		return connector_status_connected;
4631 4632

	/* Well we tried, say unknown for unreliable port types */
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4645 4646 4647

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4648
	return connector_status_disconnected;
4649 4650
}

4651 4652 4653
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4654
	return connector_status_connected;
4655 4656
}

4657
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4658
{
4659
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4660
	u32 bit;
4661

4662 4663
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4664 4665
		bit = SDE_PORTB_HOTPLUG;
		break;
4666
	case HPD_PORT_C:
4667 4668
		bit = SDE_PORTC_HOTPLUG;
		break;
4669
	case HPD_PORT_D:
4670 4671 4672
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4673
		MISSING_CASE(encoder->hpd_pin);
4674 4675 4676 4677 4678 4679
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4680
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4681
{
4682
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4683 4684
	u32 bit;

4685 4686
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4687 4688
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4689
	case HPD_PORT_C:
4690 4691
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4692
	case HPD_PORT_D:
4693 4694
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4695
	default:
4696
		MISSING_CASE(encoder->hpd_pin);
4697 4698 4699 4700 4701 4702
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4703
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4704
{
4705
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4706 4707
	u32 bit;

4708 4709
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4710 4711
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4712
	case HPD_PORT_E:
4713 4714
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4715
	default:
4716
		return cpt_digital_port_connected(encoder);
4717
	}
4718

4719
	return I915_READ(SDEISR) & bit;
4720 4721
}

4722
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4723
{
4724
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4725
	u32 bit;
4726

4727 4728
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4729 4730
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4731
	case HPD_PORT_C:
4732 4733
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4734
	case HPD_PORT_D:
4735 4736 4737
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4738
		MISSING_CASE(encoder->hpd_pin);
4739 4740 4741 4742 4743 4744
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4745
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4746
{
4747
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4748 4749
	u32 bit;

4750 4751
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4752
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4753
		break;
4754
	case HPD_PORT_C:
4755
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4756
		break;
4757
	case HPD_PORT_D:
4758
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4759 4760
		break;
	default:
4761
		MISSING_CASE(encoder->hpd_pin);
4762
		return false;
4763 4764
	}

4765
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4766 4767
}

4768
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4769
{
4770 4771 4772
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4773 4774
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4775
		return ibx_digital_port_connected(encoder);
4776 4777
}

4778
static bool snb_digital_port_connected(struct intel_encoder *encoder)
4779
{
4780 4781 4782
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4783 4784
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4785
		return cpt_digital_port_connected(encoder);
4786 4787
}

4788
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4789
{
4790 4791 4792
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4793 4794
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
4795
		return cpt_digital_port_connected(encoder);
4796 4797
}

4798
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4799
{
4800 4801 4802
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4803 4804
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
4805
		return cpt_digital_port_connected(encoder);
4806 4807
}

4808
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4809
{
4810
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4811 4812
	u32 bit;

4813 4814
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4815 4816
		bit = BXT_DE_PORT_HP_DDIA;
		break;
4817
	case HPD_PORT_B:
4818 4819
		bit = BXT_DE_PORT_HP_DDIB;
		break;
4820
	case HPD_PORT_C:
4821 4822 4823
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4824
		MISSING_CASE(encoder->hpd_pin);
4825 4826 4827 4828 4829 4830
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4831 4832 4833 4834 4835 4836 4837 4838
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;
	const char *type_str;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

	if (is_legacy) {
		intel_dig_port->tc_type = TC_PORT_LEGACY;
		type_str = "legacy";
	} else if (is_typec) {
		intel_dig_port->tc_type = TC_PORT_TYPEC;
		type_str = "typec";
	} else if (is_tbt) {
		intel_dig_port->tc_type = TC_PORT_TBT;
		type_str = "tbt";
	} else {
		return;
	}

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
			      type_str);
}

4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
		val = I915_READ(PORT_TX_DFLEXDPCSSS);
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
static void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return;

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port)) {
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

	is_legacy = I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port);

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

4987 4988
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
4989
		return false;
4990
	}
4991 4992 4993

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
4994

4995 4996 4997
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

4998
	return true;
4999 5000 5001 5002 5003 5004 5005
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5006
	if (intel_port_is_combophy(dev_priv, encoder->port))
5007
		return icl_combo_port_connected(dev_priv, dig_port);
5008
	else if (intel_port_is_tc(dev_priv, encoder->port))
5009
		return icl_tc_port_connected(dev_priv, dig_port);
5010
	else
5011
		MISSING_CASE(encoder->hpd_pin);
5012 5013

	return false;
5014 5015
}

5016 5017
/*
 * intel_digital_port_connected - is the specified port connected?
5018
 * @encoder: intel_encoder
5019
 *
5020 5021 5022 5023 5024
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5025
 * Return %true if port is connected, %false otherwise.
5026
 */
5027
bool intel_digital_port_connected(struct intel_encoder *encoder)
5028
{
5029 5030
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

5031 5032
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
5033
			return gm45_digital_port_connected(encoder);
5034
		else
5035
			return g4x_digital_port_connected(encoder);
5036 5037
	}

5038 5039 5040 5041
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
	else if (IS_GEN10(dev_priv) || IS_GEN9_BC(dev_priv))
		return spt_digital_port_connected(encoder);
5042
	else if (IS_GEN9_LP(dev_priv))
5043
		return bxt_digital_port_connected(encoder);
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
	else if (IS_GEN8(dev_priv))
		return bdw_digital_port_connected(encoder);
	else if (IS_GEN7(dev_priv))
		return ivb_digital_port_connected(encoder);
	else if (IS_GEN6(dev_priv))
		return snb_digital_port_connected(encoder);
	else if (IS_GEN5(dev_priv))
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5055 5056
}

5057
static struct edid *
5058
intel_dp_get_edid(struct intel_dp *intel_dp)
5059
{
5060
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5061

5062 5063 5064 5065
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5066 5067
			return NULL;

J
Jani Nikula 已提交
5068
		return drm_edid_duplicate(intel_connector->edid);
5069 5070 5071 5072
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5073

5074 5075 5076 5077 5078
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5079

5080
	intel_dp_unset_edid(intel_dp);
5081 5082 5083
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5084
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5085
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5086 5087
}

5088 5089
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5090
{
5091
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5092

5093
	drm_dp_cec_unset_edid(&intel_dp->aux);
5094 5095
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5096

5097 5098
	intel_dp->has_audio = false;
}
5099

5100
static int
5101 5102 5103
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5104
{
5105 5106
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5107
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
Z
Zhenyu Wang 已提交
5108 5109
	enum drm_connector_status status;

5110 5111
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5112
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5113

5114
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
Z
Zhenyu Wang 已提交
5115

5116
	/* Can't disconnect eDP */
5117
	if (intel_dp_is_edp(intel_dp))
5118
		status = edp_detect(intel_dp);
5119
	else if (intel_digital_port_connected(encoder))
5120
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5121
	else
5122 5123
		status = connector_status_disconnected;

5124
	if (status == connector_status_disconnected) {
5125
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5126

5127 5128 5129 5130 5131 5132 5133 5134 5135
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5136
		goto out;
5137
	}
Z
Zhenyu Wang 已提交
5138

5139
	if (intel_dp->reset_link_params) {
5140 5141
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5142

5143 5144
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5145 5146 5147

		intel_dp->reset_link_params = false;
	}
5148

5149 5150
	intel_dp_print_rates(intel_dp);

5151 5152
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5153

5154 5155 5156
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5157 5158 5159 5160 5161
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5162 5163
		status = connector_status_disconnected;
		goto out;
5164 5165 5166 5167 5168 5169
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
			intel_display_power_put(dev_priv,
						intel_dp->aux_power_domain);
			return ret;
		}
	}
5180

5181 5182 5183 5184 5185 5186 5187 5188
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5189
	intel_dp_set_edid(intel_dp);
5190 5191
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5192
		status = connector_status_connected;
5193

5194
	intel_dp_check_service_irq(intel_dp);
5195

5196
out:
5197
	if (status != connector_status_connected && !intel_dp->is_mst)
5198
		intel_dp_unset_edid(intel_dp);
5199

5200
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5201
	return status;
5202 5203
}

5204 5205
static void
intel_dp_force(struct drm_connector *connector)
5206
{
5207
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5208
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
5209
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5210

5211 5212 5213
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5214

5215 5216
	if (connector->status != connector_status_connected)
		return;
5217

5218
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5219 5220 5221

	intel_dp_set_edid(intel_dp);

5222
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5236

5237
	/* if eDP has no EDID, fall back to fixed mode */
5238
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5239
	    intel_connector->panel.fixed_mode) {
5240
		struct drm_display_mode *mode;
5241 5242

		mode = drm_mode_duplicate(connector->dev,
5243
					  intel_connector->panel.fixed_mode);
5244
		if (mode) {
5245 5246 5247 5248
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5249

5250
	return 0;
5251 5252
}

5253 5254 5255 5256
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5257
	struct drm_device *dev = connector->dev;
5258 5259 5260 5261 5262
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5263 5264 5265 5266 5267 5268 5269

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5270 5271 5272 5273 5274
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5275 5276
}

5277 5278 5279
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5280 5281 5282 5283
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5284 5285 5286
	intel_connector_unregister(connector);
}

P
Paulo Zanoni 已提交
5287
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5288
{
5289 5290
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5291

5292
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5293
	if (intel_dp_is_edp(intel_dp)) {
5294
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5295 5296 5297 5298
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5299
		pps_lock(intel_dp);
5300
		edp_panel_vdd_off_sync(intel_dp);
5301 5302
		pps_unlock(intel_dp);

5303 5304 5305 5306
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5307
	}
5308 5309 5310

	intel_dp_aux_fini(intel_dp);

5311
	drm_encoder_cleanup(encoder);
5312
	kfree(intel_dig_port);
5313 5314
}

5315
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5316 5317 5318
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5319
	if (!intel_dp_is_edp(intel_dp))
5320 5321
		return;

5322 5323 5324 5325
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5326
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5327
	pps_lock(intel_dp);
5328
	edp_panel_vdd_off_sync(intel_dp);
5329
	pps_unlock(intel_dp);
5330 5331
}

5332 5333 5334 5335 5336
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5337 5338 5339 5340 5341 5342
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
		DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5360
	intel_dp_aux_header(txbuf, &msg);
5361

5362
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5363 5364
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
	if (ret < 0) {
		DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
		return ret;
	} else if (ret == 0) {
		DRM_ERROR("Aksv write over DP/AUX was empty\n");
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
	return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
		DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5409 5410
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5411 5412
{
	ssize_t ret;
5413

5414
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5415
			       bcaps, 1);
5416 5417 5418 5419
	if (ret != 1) {
		DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
		DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
			DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
				  ret);
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
		DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5524

5525 5526 5527 5528
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5529
		return false;
5530
	}
5531

5532 5533 5534
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5561
	.hdcp_capable = intel_dp_hdcp_capable,
5562 5563
};

5564 5565
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5566
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5580
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5581 5582 5583 5584

	edp_panel_vdd_schedule_off(intel_dp);
}

5585 5586
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
5587
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5588 5589
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5590

5591 5592 5593
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5594

5595
	return INVALID_PIPE;
5596 5597
}

5598
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5599
{
5600
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5601 5602
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5603 5604 5605

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5606

5607
	if (lspcon->active)
5608 5609
		lspcon_resume(lspcon);

5610 5611
	intel_dp->reset_link_params = true;

5612 5613
	pps_lock(intel_dp);

5614 5615 5616
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5617
	if (intel_dp_is_edp(intel_dp)) {
5618
		/* Reinit the power sequencer, in case BIOS did something with it. */
5619
		intel_dp_pps_init(intel_dp);
5620 5621
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5622 5623

	pps_unlock(intel_dp);
5624 5625
}

5626
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5627
	.force = intel_dp_force,
5628
	.fill_modes = drm_helper_probe_single_connector_modes,
5629 5630
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5631
	.late_register = intel_dp_connector_register,
5632
	.early_unregister = intel_dp_connector_unregister,
5633
	.destroy = intel_connector_destroy,
5634
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5635
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5636 5637 5638
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5639
	.detect_ctx = intel_dp_detect,
5640 5641
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5642
	.atomic_check = intel_digital_connector_atomic_check,
5643 5644 5645
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5646
	.reset = intel_dp_encoder_reset,
5647
	.destroy = intel_dp_encoder_destroy,
5648 5649
};

5650
enum irqreturn
5651 5652 5653
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5654
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5655
	enum irqreturn ret = IRQ_NONE;
5656

5657 5658 5659 5660 5661 5662 5663 5664
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5665
			      port_name(intel_dig_port->base.port));
5666
		return IRQ_HANDLED;
5667 5668
	}

5669
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5670
		      port_name(intel_dig_port->base.port),
5671
		      long_hpd ? "long" : "short");
5672

5673
	if (long_hpd) {
5674
		intel_dp->reset_link_params = true;
5675 5676 5677
		return IRQ_NONE;
	}

5678
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5679

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
5692
		}
5693
	}
5694

5695
	if (!intel_dp->is_mst) {
5696
		bool handled;
5697 5698 5699

		handled = intel_dp_short_pulse(intel_dp);

5700 5701 5702
		/* Short pulse can signify loss of hdcp authentication */
		intel_hdcp_check_link(intel_dp->attached_connector);

5703
		if (!handled)
5704
			goto put_power;
5705
	}
5706 5707 5708

	ret = IRQ_HANDLED;

5709
put_power:
5710
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5711 5712

	return ret;
5713 5714
}

5715
/* check the VBT to see whether the eDP is on another port */
5716
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5717
{
5718 5719 5720 5721
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
5722
	if (INTEL_GEN(dev_priv) < 5)
5723 5724
		return false;

5725
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5726 5727
		return true;

5728
	return intel_bios_is_port_edp(dev_priv, port);
5729 5730
}

5731
static void
5732 5733
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
5734
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5735 5736 5737 5738
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
5739

5740
	intel_attach_broadcast_rgb_property(connector);
5741

5742
	if (intel_dp_is_edp(intel_dp)) {
5743 5744 5745 5746 5747 5748 5749 5750
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

5751
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5752

5753
	}
5754 5755
}

5756 5757
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
5758
	intel_dp->panel_power_off_time = ktime_get_boottime();
5759 5760 5761 5762
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

5763
static void
5764
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5765
{
5766
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5767
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5768
	struct pps_registers regs;
5769

5770
	intel_pps_get_registers(intel_dp, &regs);
5771 5772 5773

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
5774
	pp_ctl = ironlake_get_pp_control(intel_dp);
5775

5776 5777
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
5778 5779
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
5780 5781
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
5782
	}
5783 5784

	/* Pull timing values out of registers */
5785 5786
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
5787

5788 5789
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
5790

5791 5792
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
5793

5794 5795
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
5796

5797 5798
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5799 5800
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5801
	} else {
5802
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5803
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5804
	}
5805 5806
}

I
Imre Deak 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
5816
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
5817 5818 5819 5820
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

5821
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
5822 5823 5824 5825 5826 5827 5828 5829 5830

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

5831
static void
5832
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5833
{
5834
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5835 5836 5837 5838 5839 5840 5841 5842 5843
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

5844
	intel_pps_readout_hw_state(intel_dp, &cur);
5845

I
Imre Deak 已提交
5846
	intel_pps_dump_state("cur", &cur);
5847

5848
	vbt = dev_priv->vbt.edp.pps;
5849 5850 5851 5852 5853 5854
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5855
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5856 5857 5858
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
5859 5860 5861 5862 5863
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
5877
	intel_pps_dump_state("vbt", &vbt);
5878 5879 5880

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
5881
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5882 5883 5884 5885 5886 5887 5888 5889 5890
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

5891
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5892 5893 5894 5895 5896 5897 5898
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

5899 5900 5901 5902 5903 5904
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
5915 5916 5917 5918 5919 5920

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5921 5922 5923
}

static void
5924
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5925
					      bool force_disable_vdd)
5926
{
5927
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5928
	u32 pp_on, pp_off, pp_div, port_sel = 0;
5929
	int div = dev_priv->rawclk_freq / 1000;
5930
	struct pps_registers regs;
5931
	enum port port = dp_to_dig_port(intel_dp)->base.port;
5932
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5933

V
Ville Syrjälä 已提交
5934
	lockdep_assert_held(&dev_priv->pps_mutex);
5935

5936
	intel_pps_get_registers(intel_dp, &regs);
5937

5938 5939
	/*
	 * On some VLV machines the BIOS can leave the VDD
5940
	 * enabled even on power sequencers which aren't
5941 5942 5943 5944 5945 5946 5947
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
5948
	 * soon as the new power sequencer gets initialized.
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

5963
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
5964 5965
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5966
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5967 5968
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
5969 5970
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5971
		pp_div = I915_READ(regs.pp_ctrl);
5972
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5973
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5974 5975 5976 5977 5978 5979
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
5980 5981 5982

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
5983
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5984
		port_sel = PANEL_PORT_SELECT_VLV(port);
5985
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5986 5987
		switch (port) {
		case PORT_A:
5988
			port_sel = PANEL_PORT_SELECT_DPA;
5989 5990 5991 5992 5993
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
5994
			port_sel = PANEL_PORT_SELECT_DPD;
5995 5996 5997 5998 5999
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6000 6001
	}

6002 6003
	pp_on |= port_sel;

6004 6005
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6006 6007
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
6008
		I915_WRITE(regs.pp_ctrl, pp_div);
6009
	else
6010
		I915_WRITE(regs.pp_div, pp_div);
6011 6012

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6013 6014
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6015 6016
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
6017 6018
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
6019 6020
}

6021
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6022
{
6023
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6024 6025

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6026 6027
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6028 6029
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6030 6031 6032
	}
}

6033 6034
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6035
 * @dev_priv: i915 device
6036
 * @crtc_state: a pointer to the active intel_crtc_state
6037 6038 6039 6040 6041 6042 6043 6044 6045
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6046
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6047
				    const struct intel_crtc_state *crtc_state,
6048
				    int refresh_rate)
6049 6050
{
	struct intel_encoder *encoder;
6051 6052
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6053
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6054
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6055 6056 6057 6058 6059 6060

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6061 6062
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6063 6064 6065
		return;
	}

6066 6067
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6068 6069 6070 6071 6072 6073

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6074
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6075 6076 6077 6078
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6079 6080
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6081 6082
		index = DRRS_LOW_RR;

6083
	if (index == dev_priv->drrs.refresh_rate_type) {
6084 6085 6086 6087 6088
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6089
	if (!crtc_state->base.active) {
6090 6091 6092 6093
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6094
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6095 6096
		switch (index) {
		case DRRS_HIGH_RR:
6097
			intel_dp_set_m_n(crtc_state, M1_N1);
6098 6099
			break;
		case DRRS_LOW_RR:
6100
			intel_dp_set_m_n(crtc_state, M2_N2);
6101 6102 6103 6104 6105
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6106 6107
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6108
		u32 val;
6109

6110
		val = I915_READ(reg);
6111
		if (index > DRRS_HIGH_RR) {
6112
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6113 6114 6115
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6116
		} else {
6117
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6118 6119 6120
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6121 6122 6123 6124
		}
		I915_WRITE(reg, val);
	}

6125 6126 6127 6128 6129
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6130 6131 6132
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6133
 * @crtc_state: A pointer to the active crtc state.
6134 6135 6136
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6137
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6138
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6139
{
6140
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6141

6142
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6143 6144 6145 6146
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6147 6148 6149 6150 6151
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6166 6167 6168
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6169
 * @old_crtc_state: Pointer to old crtc_state.
6170 6171
 *
 */
6172
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6173
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6174
{
6175
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6176

6177
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6178 6179 6180 6181 6182 6183 6184 6185 6186
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6187 6188
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6189 6190 6191 6192 6193 6194 6195

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6209
	/*
6210 6211
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6212 6213
	 */

6214 6215
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6216

6217 6218 6219 6220 6221 6222
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6223

6224 6225
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6226 6227
}

6228
/**
6229
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6230
 * @dev_priv: i915 device
6231 6232
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6233 6234
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6235 6236 6237
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6238 6239
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6240 6241 6242 6243
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6244
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6245 6246
		return;

6247
	cancel_delayed_work(&dev_priv->drrs.work);
6248

6249
	mutex_lock(&dev_priv->drrs.mutex);
6250 6251 6252 6253 6254
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6255 6256 6257
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6258 6259 6260
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6261
	/* invalidate means busy screen hence upclock */
6262
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6263 6264
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6265 6266 6267 6268

	mutex_unlock(&dev_priv->drrs.mutex);
}

6269
/**
6270
 * intel_edp_drrs_flush - Restart Idleness DRRS
6271
 * @dev_priv: i915 device
6272 6273
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6274 6275 6276 6277
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6278 6279 6280
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6281 6282
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6283 6284 6285 6286
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6287
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6288 6289
		return;

6290
	cancel_delayed_work(&dev_priv->drrs.work);
6291

6292
	mutex_lock(&dev_priv->drrs.mutex);
6293 6294 6295 6296 6297
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6298 6299
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6300 6301

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6302 6303
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6304
	/* flush means busy screen hence upclock */
6305
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6306 6307
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6308 6309 6310 6311 6312 6313

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6314 6315 6316 6317 6318
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6342 6343 6344 6345 6346 6347 6348 6349
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6350 6351 6352 6353 6354 6355 6356 6357
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6358
 * @connector: eDP connector
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6369
static struct drm_display_mode *
6370 6371
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6372
{
6373
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6374 6375
	struct drm_display_mode *downclock_mode = NULL;

6376 6377 6378
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6379
	if (INTEL_GEN(dev_priv) <= 6) {
6380 6381 6382 6383 6384
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6385
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6386 6387 6388
		return NULL;
	}

6389 6390
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6391 6392

	if (!downclock_mode) {
6393
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6394 6395 6396
		return NULL;
	}

6397
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6398

6399
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6400
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6401 6402 6403
	return downclock_mode;
}

6404
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6405
				     struct intel_connector *intel_connector)
6406
{
6407 6408
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
6409
	struct drm_connector *connector = &intel_connector->base;
6410
	struct drm_display_mode *fixed_mode = NULL;
6411
	struct drm_display_mode *downclock_mode = NULL;
6412 6413 6414
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6415
	enum pipe pipe = INVALID_PIPE;
6416

6417
	if (!intel_dp_is_edp(intel_dp))
6418 6419
		return true;

6420 6421 6422 6423 6424 6425
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6426
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6427 6428 6429 6430 6431 6432
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6433
	pps_lock(intel_dp);
6434 6435

	intel_dp_init_panel_power_timestamps(intel_dp);
6436
	intel_dp_pps_init(intel_dp);
6437
	intel_edp_panel_vdd_sanitize(intel_dp);
6438

6439
	pps_unlock(intel_dp);
6440

6441
	/* Cache DPCD and EDID for edp. */
6442
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6443

6444
	if (!has_dpcd) {
6445 6446
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6447
		goto out_vdd_off;
6448 6449
	}

6450
	mutex_lock(&dev->mode_config.mutex);
6451
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6452 6453
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6454
			drm_connector_update_edid_property(connector,
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6465
	/* prefer fixed mode from EDID if available */
6466 6467 6468
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6469 6470
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6471
			break;
6472 6473 6474 6475 6476 6477 6478
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6479
		if (fixed_mode) {
6480
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6481 6482 6483
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6484
	}
6485
	mutex_unlock(&dev->mode_config.mutex);
6486

6487
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6488 6489
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6490 6491 6492 6493 6494 6495

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6496
		pipe = vlv_active_pipe(intel_dp);
6497 6498 6499 6500 6501 6502 6503 6504 6505

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6506 6507
	}

6508
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6509
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6510
	intel_panel_setup_backlight(connector, pipe);
6511

6512 6513 6514 6515
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

6516
	return true;
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6529 6530
}

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6547 6548
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6549 6550 6551 6552 6553
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6554
bool
6555 6556
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6557
{
6558 6559 6560 6561
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6562
	struct drm_i915_private *dev_priv = to_i915(dev);
6563
	enum port port = intel_encoder->port;
6564
	int type;
6565

6566 6567 6568 6569
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6570 6571 6572 6573 6574
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6575 6576
	intel_dp_set_source_rates(intel_dp);

6577
	intel_dp->reset_link_params = true;
6578
	intel_dp->pps_pipe = INVALID_PIPE;
6579
	intel_dp->active_pipe = INVALID_PIPE;
6580

6581
	/* intel_dp vfuncs */
6582
	if (HAS_DDI(dev_priv))
6583 6584
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6585 6586
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6587
	intel_dp->attached_connector = intel_connector;
6588

6589
	if (intel_dp_is_port_edp(dev_priv, port))
6590
		type = DRM_MODE_CONNECTOR_eDP;
6591 6592
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6593

6594 6595 6596
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6597 6598 6599 6600 6601 6602 6603 6604
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6605
	/* eDP only on port B and/or C on vlv/chv */
6606
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6607 6608
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6609 6610
		return false;

6611 6612 6613 6614
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6615
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6616 6617
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6618
	if (!HAS_GMCH_DISPLAY(dev_priv))
6619
		connector->interlace_allowed = true;
6620 6621
	connector->doublescan_allowed = 0;

6622
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6623

6624
	intel_dp_aux_init(intel_dp);
6625

6626
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6627
			  edp_panel_vdd_work);
6628

6629
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6630

6631
	if (HAS_DDI(dev_priv))
6632 6633 6634 6635
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6636
	/* init MST on ports that can support it */
6637
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6638 6639
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6640 6641
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6642

6643
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6644 6645 6646
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6647
	}
6648

6649
	intel_dp_add_properties(intel_dp, connector);
6650

6651
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6652 6653 6654 6655
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6656

6657 6658 6659 6660
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6661
	if (IS_G45(dev_priv)) {
6662 6663 6664
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6665 6666

	return true;
6667 6668 6669 6670 6671

fail:
	drm_connector_cleanup(connector);

	return false;
6672
}
6673

6674
bool intel_dp_init(struct drm_i915_private *dev_priv,
6675 6676
		   i915_reg_t output_reg,
		   enum port port)
6677 6678 6679 6680 6681 6682
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6683
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6684
	if (!intel_dig_port)
6685
		return false;
6686

6687
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6688 6689
	if (!intel_connector)
		goto err_connector_alloc;
6690 6691 6692 6693

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6694 6695 6696
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6697
		goto err_encoder_init;
6698

6699
	intel_encoder->hotplug = intel_dp_hotplug;
6700
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6701
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6702
	intel_encoder->get_config = intel_dp_get_config;
6703
	intel_encoder->suspend = intel_dp_encoder_suspend;
6704
	if (IS_CHERRYVIEW(dev_priv)) {
6705
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6706 6707
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6708
		intel_encoder->disable = vlv_disable_dp;
6709
		intel_encoder->post_disable = chv_post_disable_dp;
6710
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6711
	} else if (IS_VALLEYVIEW(dev_priv)) {
6712
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6713 6714
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6715
		intel_encoder->disable = vlv_disable_dp;
6716
		intel_encoder->post_disable = vlv_post_disable_dp;
6717
	} else {
6718 6719
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
6720
		intel_encoder->disable = g4x_disable_dp;
6721
		intel_encoder->post_disable = g4x_post_disable_dp;
6722
	}
6723 6724

	intel_dig_port->dp.output_reg = output_reg;
6725
	intel_dig_port->max_lanes = 4;
6726

6727
	intel_encoder->type = INTEL_OUTPUT_DP;
6728
	intel_encoder->power_domain = intel_port_to_power_domain(port);
6729
	if (IS_CHERRYVIEW(dev_priv)) {
6730 6731 6732 6733 6734 6735 6736
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
6737
	intel_encoder->cloneable = 0;
6738
	intel_encoder->port = port;
6739

6740 6741
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

6742 6743 6744
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

S
Sudip Mukherjee 已提交
6745 6746 6747
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

6748
	return true;
S
Sudip Mukherjee 已提交
6749 6750 6751

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
6752
err_encoder_init:
S
Sudip Mukherjee 已提交
6753 6754 6755
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
6756
	return false;
6757
}
6758

6759
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6760
{
6761 6762 6763 6764
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6765

6766 6767
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
6768

6769
		intel_dp = enc_to_intel_dp(&encoder->base);
6770

6771
		if (!intel_dp->can_mst)
6772 6773
			continue;

6774 6775
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6776 6777 6778
	}
}

6779
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6780
{
6781
	struct intel_encoder *encoder;
6782

6783 6784
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6785
		int ret;
6786

6787 6788 6789 6790 6791 6792
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
6793
			continue;
6794

6795
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6796
		if (ret)
6797
			intel_dp_check_mst_status(intel_dp);
6798 6799
	}
}