intel_dp.c 206.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43
#include <drm/i915_drm.h>
44

45
#include "i915_drv.h"
46
#include "intel_atomic.h"
47
#include "intel_audio.h"
48
#include "intel_connector.h"
49
#include "intel_ddi.h"
50
#include "intel_dp.h"
51
#include "intel_dp_link_training.h"
52
#include "intel_dp_mst.h"
53
#include "intel_drv.h"
54
#include "intel_fifo_underrun.h"
55
#include "intel_hdcp.h"
56
#include "intel_hdmi.h"
57
#include "intel_hotplug.h"
58
#include "intel_lspcon.h"
59
#include "intel_lvds.h"
60
#include "intel_panel.h"
61
#include "intel_psr.h"
62
#include "intel_sideband.h"
63
#include "intel_vdsc.h"
64

65
#define DP_DPRX_ESI_LEN 14
66

67 68
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
69 70
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
71 72 73 74 75 76 77 78 79

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

80 81 82 83 84 85
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

86
struct dp_link_dpll {
87
	int clock;
88 89 90
	struct dpll dpll;
};

91
static const struct dp_link_dpll g4x_dpll[] = {
92
	{ 162000,
93
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
94
	{ 270000,
95 96 97 98
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
99
	{ 162000,
100
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
101
	{ 270000,
102 103 104
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

105
static const struct dp_link_dpll vlv_dpll[] = {
106
	{ 162000,
C
Chon Ming Lee 已提交
107
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
108
	{ 270000,
109 110 111
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

112 113 114 115 116 117 118 119 120 121
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
122
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
123
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
124
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
125 126
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
127

128 129 130 131 132 133 134 135
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

136
/**
137
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
138 139 140 141 142
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
143
bool intel_dp_is_edp(struct intel_dp *intel_dp)
144
{
145 146 147
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
148 149
}

150 151
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
152
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
153 154
}

155 156
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
157
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
158
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
159 160
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
161
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
162
				      enum pipe pipe);
163
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
164

165 166 167
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
168
	static const int dp_rates[] = {
169
		162000, 270000, 540000, 810000
170
	};
171
	int i, max_rate;
172

173
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
174

175 176
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
177
			break;
178
		intel_dp->sink_rates[i] = dp_rates[i];
179
	}
180

181
	intel_dp->num_sink_rates = i;
182 183
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

206 207
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
208
{
209
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
210 211
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

242 243
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
244 245
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
246 247
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
248
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
249

250
	return min3(source_max, sink_max, fia_max);
251 252
}

253
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
254 255 256 257
{
	return intel_dp->max_link_lane_count;
}

258
int
259
intel_dp_link_required(int pixel_clock, int bpp)
260
{
261 262
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
263 264
}

265
int
266 267
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
268 269 270 271 272 273 274
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
275 276
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

300
static int cnl_max_source_rate(struct intel_dp *intel_dp)
301 302 303 304 305 306 307 308 309
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
310
		return 540000;
311 312 313

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
314
		return 810000;
315

316
	/* For other SKUs, max rate on ports A and D is 5.4G */
317
	if (port == PORT_A || port == PORT_D)
318
		return 540000;
319

320
	return 810000;
321 322
}

323 324 325
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 328
	enum port port = dig_port->base.port;

329 330
	if (intel_port_is_combophy(dev_priv, port) &&
	    !intel_dp_is_edp(intel_dp))
331 332 333 334 335
		return 540000;

	return 810000;
}

336 337
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
338
{
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
355 356
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
357 358
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
359
	const int *source_rates;
360
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
361

362 363 364
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

365
	if (INTEL_GEN(dev_priv) >= 10) {
366
		source_rates = cnl_rates;
367
		size = ARRAY_SIZE(cnl_rates);
368
		if (IS_GEN(dev_priv, 10))
369 370 371
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
372 373 374
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
375
	} else if (IS_GEN9_BC(dev_priv)) {
376
		source_rates = skl_rates;
377
		size = ARRAY_SIZE(skl_rates);
378 379
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
380 381
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
382
	} else {
383 384
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
385 386
	}

387 388 389 390 391
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

392 393 394
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

395 396
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

422 423 424 425 426 427 428 429 430 431 432 433
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

434
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
435
{
436
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
437

438 439 440 441 442 443 444 445
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
446
		intel_dp->common_rates[0] = 162000;
447 448 449 450
		intel_dp->num_common_rates = 1;
	}
}

451
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
452
				       u8 lane_count)
453 454 455 456 457 458
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
459 460
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
461 462
		return false;

463 464
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
465 466 467 468 469
		return false;

	return true;
}

470 471
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
472
						     u8 lane_count)
473 474 475 476 477 478 479 480 481 482 483 484 485
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

486
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
487
					    int link_rate, u8 lane_count)
488
{
489
	int index;
490

491 492 493 494
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
495 496 497 498 499 500 501
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
502 503
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
504
	} else if (lane_count > 1) {
505 506 507 508 509 510 511
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
512
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
513
		intel_dp->max_link_lane_count = lane_count >> 1;
514 515 516 517 518 519 520 521
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

522
static enum drm_mode_status
523 524 525
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
526
	struct intel_dp *intel_dp = intel_attached_dp(connector);
527 528
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
529
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
530 531
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
532
	int max_dotclk;
533 534
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
535

536 537 538
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

539
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
540

541
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
542
		if (mode->hdisplay > fixed_mode->hdisplay)
543 544
			return MODE_PANEL;

545
		if (mode->vdisplay > fixed_mode->vdisplay)
546
			return MODE_PANEL;
547 548

		target_clock = fixed_mode->clock;
549 550
	}

551
	max_link_clock = intel_dp_max_link_rate(intel_dp);
552
	max_lanes = intel_dp_max_lane_count(intel_dp);
553 554 555 556

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

557 558 559 560 561 562 563 564 565 566 567 568
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
569
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
570 571 572 573 574 575 576 577 578 579 580 581 582 583
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
584
		return MODE_CLOCK_HIGH;
585 586 587 588

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

589 590 591
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

592 593 594
	return MODE_OK;
}

595
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
596
{
597 598
	int i;
	u32 v = 0;
599 600 601 602

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
603
		v |= ((u32)src[i]) << ((3 - i) * 8);
604 605 606
	return v;
}

607
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
608 609 610 611 612 613 614 615
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

616
static void
617
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
618
static void
619
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
620
					      bool force_disable_vdd);
621
static void
622
intel_dp_pps_init(struct intel_dp *intel_dp);
623

624 625
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
626
{
627
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
628
	intel_wakeref_t wakeref;
629 630

	/*
631
	 * See intel_power_sequencer_reset() why we need
632 633
	 * a power domain reference here.
	 */
634 635
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
636 637

	mutex_lock(&dev_priv->pps_mutex);
638 639

	return wakeref;
640 641
}

642 643
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
644
{
645
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
646 647

	mutex_unlock(&dev_priv->pps_mutex);
648 649 650 651
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
652 653
}

654 655 656
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

657 658 659
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
660
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
661 662
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
663 664 665
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
666
	u32 DP;
667 668

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
669
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
670
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
671 672 673
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
674
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
675 676 677 678 679 680 681 682 683

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

684
	if (IS_CHERRYVIEW(dev_priv))
685 686 687
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
688

689 690 691 692 693 694
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
695
	if (!pll_enabled) {
696
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
697 698
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

699
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
700 701 702 703 704
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
705
	}
706

707 708 709
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
710
	 * to make this power sequencer lock onto the port.
711 712 713 714 715 716 717 718 719 720
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
721

722
	if (!pll_enabled) {
723
		vlv_force_pll_off(dev_priv, pipe);
724 725 726 727

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
728 729
}

730 731 732 733 734 735 736 737 738
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
739 740
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

762 763 764
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
765
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
766
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
767
	enum pipe pipe;
768

V
Ville Syrjälä 已提交
769
	lockdep_assert_held(&dev_priv->pps_mutex);
770

771
	/* We should never land here with regular DP ports */
772
	WARN_ON(!intel_dp_is_edp(intel_dp));
773

774 775 776
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

777 778 779
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

780
	pipe = vlv_find_free_pps(dev_priv);
781 782 783 784 785

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
786
	if (WARN_ON(pipe == INVALID_PIPE))
787
		pipe = PIPE_A;
788

789
	vlv_steal_power_sequencer(dev_priv, pipe);
790
	intel_dp->pps_pipe = pipe;
791 792 793

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
794
		      port_name(intel_dig_port->base.port));
795 796

	/* init power sequencer on this pipe and port */
797 798
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
799

800 801 802 803 804
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
805 806 807 808

	return intel_dp->pps_pipe;
}

809 810 811
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
812
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
813
	int backlight_controller = dev_priv->vbt.backlight.controller;
814 815 816 817

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
818
	WARN_ON(!intel_dp_is_edp(intel_dp));
819 820

	if (!intel_dp->pps_reset)
821
		return backlight_controller;
822 823 824 825 826 827 828

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
829
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
830

831
	return backlight_controller;
832 833
}

834 835 836 837 838 839
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
840
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
841 842 843 844 845
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
846
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
847 848 849 850 851 852 853
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
854

855
static enum pipe
856 857 858
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
859 860
{
	enum pipe pipe;
861 862

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
863
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
864
			PANEL_PORT_SELECT_MASK;
865 866 867 868

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

869 870 871
		if (!pipe_check(dev_priv, pipe))
			continue;

872
		return pipe;
873 874
	}

875 876 877 878 879 880
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
881
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883
	enum port port = intel_dig_port->base.port;
884 885 886 887

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
888 889 890 891 892 893 894 895 896 897 898
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
899 900 901 902 903 904

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
905 906
	}

907 908 909
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

910 911
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
912 913
}

914
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
915 916 917
{
	struct intel_encoder *encoder;

918
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
919
		    !IS_GEN9_LP(dev_priv)))
920 921 922 923 924 925 926 927 928 929 930 931
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

932 933
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
934

935 936 937 938 939
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

940
		if (IS_GEN9_LP(dev_priv))
941 942 943
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
944
	}
945 946
}

947 948 949 950 951 952 953 954
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

955
static void intel_pps_get_registers(struct intel_dp *intel_dp,
956 957
				    struct pps_registers *regs)
{
958
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
959 960
	int pps_idx = 0;

961 962
	memset(regs, 0, sizeof(*regs));

963
	if (IS_GEN9_LP(dev_priv))
964 965 966
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
967

968 969 970 971
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
972 973

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
974
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
975 976
		regs->pp_div = INVALID_MMIO_REG;
	else
977
		regs->pp_div = PP_DIVISOR(pps_idx);
978 979
}

980 981
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
982
{
983
	struct pps_registers regs;
984

985
	intel_pps_get_registers(intel_dp, &regs);
986 987

	return regs.pp_ctrl;
988 989
}

990 991
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
992
{
993
	struct pps_registers regs;
994

995
	intel_pps_get_registers(intel_dp, &regs);
996 997

	return regs.pp_stat;
998 999
}

1000 1001 1002 1003 1004 1005 1006
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1007
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1008
	intel_wakeref_t wakeref;
1009

1010
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1011 1012
		return 0;

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1026
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1027 1028
			msleep(intel_dp->panel_power_cycle_delay);
		}
1029 1030 1031 1032 1033
	}

	return 0;
}

1034
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1035
{
1036
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1037

V
Ville Syrjälä 已提交
1038 1039
	lockdep_assert_held(&dev_priv->pps_mutex);

1040
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1041 1042 1043
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1044
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1045 1046
}

1047
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1048
{
1049
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1050

V
Ville Syrjälä 已提交
1051 1052
	lockdep_assert_held(&dev_priv->pps_mutex);

1053
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1054 1055 1056
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1057
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1058 1059
}

1060 1061 1062
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1063
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1064

1065
	if (!intel_dp_is_edp(intel_dp))
1066
		return;
1067

1068
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1069 1070
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1071 1072
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1073 1074 1075
	}
}

1076
static u32
1077
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1078
{
1079
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1080
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1081
	u32 status;
1082 1083
	bool done;

1084
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1085 1086
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1087 1088 1089 1090

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1091
	if (!done)
1092
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1093 1094 1095 1096 1097
#undef C

	return status;
}

1098
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1099
{
1100
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1101

1102 1103 1104
	if (index)
		return 0;

1105 1106
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1107
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1108
	 */
1109
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1110 1111
}

1112
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1113
{
1114
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1115
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1116 1117 1118 1119

	if (index)
		return 0;

1120 1121 1122 1123 1124
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1125
	if (dig_port->aux_ch == AUX_CH_A)
1126
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1127 1128
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1129 1130
}

1131
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1132
{
1133
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1135

1136
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1137
		/* Workaround for non-ULT HSW */
1138 1139 1140 1141 1142
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1143
	}
1144 1145

	return ilk_get_aux_clock_divider(intel_dp, index);
1146 1147
}

1148
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1149 1150 1151 1152 1153 1154 1155 1156 1157
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1158 1159 1160
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1161 1162
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1163 1164
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1165
	u32 precharge, timeout;
1166

1167
	if (IS_GEN(dev_priv, 6))
1168 1169 1170 1171
		precharge = 3;
	else
		precharge = 5;

1172
	if (IS_BROADWELL(dev_priv))
1173 1174 1175 1176 1177
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1178
	       DP_AUX_CH_CTL_DONE |
1179
	       DP_AUX_CH_CTL_INTERRUPT |
1180
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1181
	       timeout |
1182
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1183 1184
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1185
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1186 1187
}

1188 1189 1190
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1191
{
1192
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1193
	u32 ret;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1209 1210
}

1211
static int
1212
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1213 1214
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1215
		  u32 aux_send_ctl_flags)
1216 1217
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1218 1219
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1220
	i915_reg_t ch_ctl, ch_data[5];
1221
	u32 aux_clock_divider;
1222
	intel_wakeref_t wakeref;
1223
	int i, ret, recv_bytes;
1224
	int try, clock = 0;
1225
	u32 status;
1226 1227
	bool vdd;

1228 1229 1230 1231
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1232
	wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1233

1234 1235 1236 1237 1238 1239
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1240
	vdd = edp_panel_vdd_on(intel_dp);
1241 1242 1243 1244 1245 1246 1247 1248

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1249

1250 1251
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1252
		status = I915_READ_NOTRACE(ch_ctl);
1253 1254 1255 1256
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1257 1258
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1259 1260

	if (try == 3) {
1261 1262 1263 1264 1265 1266 1267 1268 1269
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1270 1271
		ret = -EBUSY;
		goto out;
1272 1273
	}

1274 1275 1276 1277 1278 1279
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1280
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1281 1282 1283 1284 1285
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1286

1287 1288 1289 1290
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1291
				I915_WRITE(ch_data[i >> 2],
1292 1293
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1294 1295

			/* Send the command and wait for it to complete */
1296
			I915_WRITE(ch_ctl, send_ctl);
1297

1298
			status = intel_dp_aux_wait_done(intel_dp);
1299 1300 1301 1302 1303 1304 1305 1306

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1307 1308 1309 1310 1311
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1312 1313 1314
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1315 1316
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1317
				continue;
1318
			}
1319
			if (status & DP_AUX_CH_CTL_DONE)
1320
				goto done;
1321
		}
1322 1323 1324
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1325
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1326 1327
		ret = -EBUSY;
		goto out;
1328 1329
	}

1330
done:
1331 1332 1333
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1334
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1335
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1336 1337
		ret = -EIO;
		goto out;
1338
	}
1339 1340 1341

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1342
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1343
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1344 1345
		ret = -ETIMEDOUT;
		goto out;
1346 1347 1348 1349 1350
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1364 1365
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1366

1367
	for (i = 0; i < recv_bytes; i += 4)
1368
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1369
				    recv + i, recv_bytes - i);
1370

1371 1372 1373 1374
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1375 1376 1377
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1378
	pps_unlock(intel_dp, wakeref);
V
Ville Syrjälä 已提交
1379

1380
	return ret;
1381 1382
}

1383 1384
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1396 1397
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1398
{
1399
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1400
	u8 txbuf[20], rxbuf[20];
1401
	size_t txsize, rxsize;
1402 1403
	int ret;

1404
	intel_dp_aux_header(txbuf, msg);
1405

1406 1407 1408
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1409
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1410
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1411
		rxsize = 2; /* 0 or 1 data bytes */
1412

1413 1414
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1415

1416 1417
		WARN_ON(!msg->buffer != !msg->size);

1418 1419
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1420

1421
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1422
					rxbuf, rxsize, 0);
1423 1424
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1425

1426 1427 1428 1429 1430 1431 1432
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1433 1434
		}
		break;
1435

1436 1437
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1438
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1439
		rxsize = msg->size + 1;
1440

1441 1442
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1443

1444
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1445
					rxbuf, rxsize, 0);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1456
		}
1457 1458 1459 1460 1461
		break;

	default:
		ret = -EINVAL;
		break;
1462
	}
1463

1464
	return ret;
1465 1466
}

1467

1468
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1469
{
1470
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1471 1472
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1473

1474 1475 1476 1477 1478
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1479
	default:
1480 1481
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1482 1483 1484
	}
}

1485
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1486
{
1487
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1488 1489
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1490

1491 1492 1493 1494 1495
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1496
	default:
1497 1498
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1499 1500 1501
	}
}

1502
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1503
{
1504
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1505 1506
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1507

1508 1509 1510 1511 1512 1513 1514
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1515
	default:
1516 1517
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1518 1519 1520
	}
}

1521
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1522
{
1523
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1524 1525
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1526

1527 1528 1529 1530 1531 1532 1533
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1534
	default:
1535 1536
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1537 1538 1539
	}
}

1540
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1541
{
1542
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1543 1544
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1545

1546 1547 1548 1549 1550
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1551
	case AUX_CH_E:
1552 1553
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1554
	default:
1555 1556
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1557 1558 1559
	}
}

1560
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1561
{
1562
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1563 1564
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1565

1566 1567 1568 1569 1570
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1571
	case AUX_CH_E:
1572 1573
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1574
	default:
1575 1576
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1577 1578 1579
	}
}

1580 1581 1582 1583 1584 1585 1586 1587
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1588
{
1589
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1590 1591
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1603

1604 1605 1606 1607 1608 1609 1610 1611
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1612

1613 1614 1615 1616
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1617

1618
	drm_dp_aux_init(&intel_dp->aux);
1619

1620
	/* Failure to allocate our preferred name is not critical */
1621 1622
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1623
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1624 1625
}

1626
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1627
{
1628
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1629

1630
	return max_rate >= 540000;
1631 1632
}

1633 1634 1635 1636 1637 1638 1639
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1640 1641
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1642
		   struct intel_crtc_state *pipe_config)
1643
{
1644
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1645 1646
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1647

1648
	if (IS_G4X(dev_priv)) {
1649 1650
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1651
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1652 1653
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1654
	} else if (IS_CHERRYVIEW(dev_priv)) {
1655 1656
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1657
	} else if (IS_VALLEYVIEW(dev_priv)) {
1658 1659
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1660
	}
1661 1662 1663

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1664
			if (pipe_config->port_clock == divisor[i].clock) {
1665 1666 1667 1668 1669
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1670 1671 1672
	}
}

1673 1674 1675 1676 1677 1678 1679 1680
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1681
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1696 1697
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1698 1699
	DRM_DEBUG_KMS("source rates: %s\n", str);

1700 1701
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1702 1703
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1704 1705
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1706
	DRM_DEBUG_KMS("common rates: %s\n", str);
1707 1708
}

1709 1710 1711 1712 1713
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1714
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1715 1716 1717
	if (WARN_ON(len <= 0))
		return 162000;

1718
	return intel_dp->common_rates[len - 1];
1719 1720
}

1721 1722
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1723 1724
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1725 1726 1727 1728 1729

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1730 1731
}

1732
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1733
			   u8 *link_bw, u8 *rate_select)
1734
{
1735 1736
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1737 1738 1739 1740 1741 1742 1743 1744 1745
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1746
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1747 1748 1749 1750
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1766 1767 1768 1769 1770 1771 1772 1773

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1774 1775 1776
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1777 1778 1779 1780
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1781 1782
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1783
{
1784
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1785
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1786 1787 1788 1789 1790 1791 1792 1793
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1804 1805 1806
	return bpp;
}

1807
/* Adjust link config limits based on compliance test requests. */
1808
void
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1843
/* Optimize link config in order: max bpp, min clock, min lanes */
1844
static int
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1870
					return 0;
1871 1872 1873 1874 1875
				}
			}
		}
	}

1876
	return -EINVAL;
1877 1878
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1894 1895 1896 1897
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1898 1899 1900 1901 1902 1903
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1904
	int ret;
1905

1906 1907 1908
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

1909
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1910
		return -EINVAL;
1911 1912 1913 1914 1915 1916 1917

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1918
		return -EINVAL;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1952
			return -EINVAL;
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1969
			return -EINVAL;
1970 1971
		}
	}
1972 1973 1974

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
1975 1976 1977 1978
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
1979
		return ret;
1980
	}
1981

1982 1983 1984 1985 1986 1987 1988
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

1989
	return 0;
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2000
static int
2001
intel_dp_compute_link_config(struct intel_encoder *encoder,
2002 2003
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2004
{
2005
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2006
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2007
	struct link_config_limits limits;
2008
	int common_len;
2009
	int ret;
2010

2011
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2012
						    intel_dp->max_link_rate);
2013 2014

	/* No common link rates between source and sink */
2015
	WARN_ON(common_len <= 0);
2016

2017 2018 2019 2020 2021 2022
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2023
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2024
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2025

2026
	if (intel_dp_is_edp(intel_dp)) {
2027 2028
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2029 2030 2031 2032
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2033
		 */
2034 2035
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2036
	}
2037

2038 2039
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2040 2041 2042 2043 2044 2045
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2046 2047 2048 2049 2050
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2051 2052

	/* enable compression if the mode doesn't fit available BW */
2053
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2054 2055 2056 2057 2058
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2059
	}
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2083
	return 0;
2084 2085
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2109
int
2110 2111 2112 2113 2114 2115 2116
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2117
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2118 2119 2120 2121 2122
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2123 2124
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2125
	int ret, output_bpp;
2126 2127 2128 2129

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2130
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2131 2132 2133
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2134 2135 2136 2137 2138 2139 2140 2141 2142
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2143 2144
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2145 2146 2147 2148 2149 2150 2151

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2152
		if (HAS_GMCH(dev_priv))
2153 2154 2155 2156 2157 2158 2159
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2160
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2161
		return -EINVAL;
2162

R
Rodrigo Vivi 已提交
2163
	if (HAS_GMCH(dev_priv) &&
2164
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2165
		return -EINVAL;
2166 2167

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2168
		return -EINVAL;
2169

2170 2171 2172
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2173

2174 2175
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2176

2177 2178
	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
2179
	else
2180 2181 2182 2183 2184 2185 2186 2187
		output_bpp = pipe_config->pipe_bpp;

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
			       constant_n);
2188

2189
	if (intel_connector->panel.downclock_mode != NULL &&
2190
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2191
			pipe_config->has_drrs = true;
2192
			intel_link_compute_m_n(output_bpp,
2193 2194 2195 2196
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2197
					       constant_n);
2198 2199
	}

2200
	if (!HAS_DDI(dev_priv))
2201
		intel_dp_set_clock(encoder, pipe_config);
2202

2203 2204
	intel_psr_compute_config(intel_dp, pipe_config);

2205
	return 0;
2206 2207
}

2208
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2209
			      int link_rate, u8 lane_count,
2210
			      bool link_mst)
2211
{
2212
	intel_dp->link_trained = false;
2213 2214 2215
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2216 2217
}

2218
static void intel_dp_prepare(struct intel_encoder *encoder,
2219
			     const struct intel_crtc_state *pipe_config)
2220
{
2221
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2222
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2223
	enum port port = encoder->port;
2224
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2225
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2226

2227 2228 2229 2230
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2231

2232
	/*
K
Keith Packard 已提交
2233
	 * There are four kinds of DP registers:
2234 2235
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2236 2237
	 * 	SNB CPU
	 *	IVB CPU
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2248

2249 2250 2251 2252
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2253

2254 2255
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2256
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2257

2258
	/* Split out the IBX/CPU vs CPT settings */
2259

2260
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2261 2262 2263 2264 2265 2266
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2267
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2268 2269
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2270
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2271
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2272 2273
		u32 trans_dp;

2274
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2275 2276 2277 2278 2279 2280 2281

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2282
	} else {
2283
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2284
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2285 2286 2287 2288 2289 2290 2291

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2292
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2293 2294
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2295
		if (IS_CHERRYVIEW(dev_priv))
2296 2297 2298
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2299
	}
2300 2301
}

2302 2303
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2304

2305 2306
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2307

2308 2309
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2310

2311
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2312

2313
static void wait_panel_status(struct intel_dp *intel_dp,
2314 2315
				       u32 mask,
				       u32 value)
2316
{
2317
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2318
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2319

V
Ville Syrjälä 已提交
2320 2321
	lockdep_assert_held(&dev_priv->pps_mutex);

2322
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2323

2324 2325
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2326

2327
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2328 2329 2330
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2331

2332
	if (intel_wait_for_register(&dev_priv->uncore,
2333 2334
				    pp_stat_reg, mask, value,
				    5000))
2335
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2336 2337
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2338 2339

	DRM_DEBUG_KMS("Wait complete\n");
2340
}
2341

2342
static void wait_panel_on(struct intel_dp *intel_dp)
2343 2344
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2345
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2346 2347
}

2348
static void wait_panel_off(struct intel_dp *intel_dp)
2349 2350
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2351
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2352 2353
}

2354
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2355
{
2356 2357 2358
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2359
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2360

2361 2362 2363 2364 2365
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2366 2367
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2368 2369 2370
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2371

2372
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2373 2374
}

2375
static void wait_backlight_on(struct intel_dp *intel_dp)
2376 2377 2378 2379 2380
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2381
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2382 2383 2384 2385
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2386

2387 2388 2389 2390
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2391
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2392
{
2393
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2394
	u32 control;
2395

V
Ville Syrjälä 已提交
2396 2397
	lockdep_assert_held(&dev_priv->pps_mutex);

2398
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2399 2400
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2401 2402 2403
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2404
	return control;
2405 2406
}

2407 2408 2409 2410 2411
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2412
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2413
{
2414
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2415
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2416
	u32 pp;
2417
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2418
	bool need_to_disable = !intel_dp->want_panel_vdd;
2419

V
Ville Syrjälä 已提交
2420 2421
	lockdep_assert_held(&dev_priv->pps_mutex);

2422
	if (!intel_dp_is_edp(intel_dp))
2423
		return false;
2424

2425
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2426
	intel_dp->want_panel_vdd = true;
2427

2428
	if (edp_have_panel_vdd(intel_dp))
2429
		return need_to_disable;
2430

2431 2432
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2433

V
Ville Syrjälä 已提交
2434
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2435
		      port_name(intel_dig_port->base.port));
2436

2437 2438
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2439

2440
	pp = ironlake_get_pp_control(intel_dp);
2441
	pp |= EDP_FORCE_VDD;
2442

2443 2444
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2445 2446 2447 2448 2449

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2450 2451 2452
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2453
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2454
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2455
			      port_name(intel_dig_port->base.port));
2456 2457
		msleep(intel_dp->panel_power_up_delay);
	}
2458 2459 2460 2461

	return need_to_disable;
}

2462 2463 2464 2465 2466 2467 2468
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2469
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2470
{
2471
	intel_wakeref_t wakeref;
2472
	bool vdd;
2473

2474
	if (!intel_dp_is_edp(intel_dp))
2475 2476
		return;

2477 2478 2479
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
R
Rob Clark 已提交
2480
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2481
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2482 2483
}

2484
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2485
{
2486
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2487 2488
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2489
	u32 pp;
2490
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2491

V
Ville Syrjälä 已提交
2492
	lockdep_assert_held(&dev_priv->pps_mutex);
2493

2494
	WARN_ON(intel_dp->want_panel_vdd);
2495

2496
	if (!edp_have_panel_vdd(intel_dp))
2497
		return;
2498

V
Ville Syrjälä 已提交
2499
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2500
		      port_name(intel_dig_port->base.port));
2501

2502 2503
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2504

2505 2506
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2507

2508 2509
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2510

2511 2512 2513
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2514

2515
	if ((pp & PANEL_POWER_ON) == 0)
2516
		intel_dp->panel_power_off_time = ktime_get_boottime();
2517

2518 2519
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2520
}
2521

2522
static void edp_panel_vdd_work(struct work_struct *__work)
2523
{
2524 2525 2526 2527
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2528

2529 2530 2531 2532
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2533 2534
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2548 2549 2550 2551 2552
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2553
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2554
{
2555
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2556 2557 2558

	lockdep_assert_held(&dev_priv->pps_mutex);

2559
	if (!intel_dp_is_edp(intel_dp))
2560
		return;
2561

R
Rob Clark 已提交
2562
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2563
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2564

2565 2566
	intel_dp->want_panel_vdd = false;

2567
	if (sync)
2568
		edp_panel_vdd_off_sync(intel_dp);
2569 2570
	else
		edp_panel_vdd_schedule_off(intel_dp);
2571 2572
}

2573
static void edp_panel_on(struct intel_dp *intel_dp)
2574
{
2575
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2576
	u32 pp;
2577
	i915_reg_t pp_ctrl_reg;
2578

2579 2580
	lockdep_assert_held(&dev_priv->pps_mutex);

2581
	if (!intel_dp_is_edp(intel_dp))
2582
		return;
2583

V
Ville Syrjälä 已提交
2584
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2585
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2586

2587 2588
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2589
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2590
		return;
2591

2592
	wait_panel_power_cycle(intel_dp);
2593

2594
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2595
	pp = ironlake_get_pp_control(intel_dp);
2596
	if (IS_GEN(dev_priv, 5)) {
2597 2598
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2599 2600
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2601
	}
2602

2603
	pp |= PANEL_POWER_ON;
2604
	if (!IS_GEN(dev_priv, 5))
2605 2606
		pp |= PANEL_POWER_RESET;

2607 2608
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2609

2610
	wait_panel_on(intel_dp);
2611
	intel_dp->last_power_on = jiffies;
2612

2613
	if (IS_GEN(dev_priv, 5)) {
2614
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2615 2616
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2617
	}
2618
}
V
Ville Syrjälä 已提交
2619

2620 2621
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2622 2623
	intel_wakeref_t wakeref;

2624
	if (!intel_dp_is_edp(intel_dp))
2625 2626
		return;

2627 2628
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2629 2630
}

2631 2632

static void edp_panel_off(struct intel_dp *intel_dp)
2633
{
2634
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2635
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2636
	u32 pp;
2637
	i915_reg_t pp_ctrl_reg;
2638

2639 2640
	lockdep_assert_held(&dev_priv->pps_mutex);

2641
	if (!intel_dp_is_edp(intel_dp))
2642
		return;
2643

V
Ville Syrjälä 已提交
2644
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2645
		      port_name(dig_port->base.port));
2646

V
Ville Syrjälä 已提交
2647
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2648
	     port_name(dig_port->base.port));
2649

2650
	pp = ironlake_get_pp_control(intel_dp);
2651 2652
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2653
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2654
		EDP_BLC_ENABLE);
2655

2656
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2657

2658 2659
	intel_dp->want_panel_vdd = false;

2660 2661
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2662

2663
	wait_panel_off(intel_dp);
2664
	intel_dp->panel_power_off_time = ktime_get_boottime();
2665 2666

	/* We got a reference when we enabled the VDD. */
2667
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2668
}
V
Ville Syrjälä 已提交
2669

2670 2671
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2672 2673
	intel_wakeref_t wakeref;

2674
	if (!intel_dp_is_edp(intel_dp))
2675
		return;
V
Ville Syrjälä 已提交
2676

2677 2678
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2679 2680
}

2681 2682
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2683
{
2684
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2685
	intel_wakeref_t wakeref;
2686

2687 2688 2689 2690 2691 2692
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2693
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2694

2695 2696 2697
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2698

2699 2700
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2701

2702 2703 2704
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2705 2706
}

2707
/* Enable backlight PWM and backlight PP control. */
2708 2709
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2710
{
2711 2712
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2713
	if (!intel_dp_is_edp(intel_dp))
2714 2715 2716 2717
		return;

	DRM_DEBUG_KMS("\n");

2718
	intel_panel_enable_backlight(crtc_state, conn_state);
2719 2720 2721 2722 2723
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2724
{
2725
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2726
	intel_wakeref_t wakeref;
2727

2728
	if (!intel_dp_is_edp(intel_dp))
2729 2730
		return;

2731 2732 2733
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2734

2735 2736
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2737

2738 2739 2740
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2741 2742

	intel_dp->last_backlight_off = jiffies;
2743
	edp_wait_backlight_off(intel_dp);
2744
}
2745

2746
/* Disable backlight PP control and backlight PWM. */
2747
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2748
{
2749 2750
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2751
	if (!intel_dp_is_edp(intel_dp))
2752 2753 2754
		return;

	DRM_DEBUG_KMS("\n");
2755

2756
	_intel_edp_backlight_off(intel_dp);
2757
	intel_panel_disable_backlight(old_conn_state);
2758
}
2759

2760 2761 2762 2763 2764 2765 2766 2767
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2768
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2769 2770
	bool is_enabled;

2771 2772 2773
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2774 2775 2776
	if (is_enabled == enable)
		return;

2777 2778
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2779 2780 2781 2782 2783 2784 2785

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2786 2787 2788 2789 2790 2791 2792 2793
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2794
			port_name(dig_port->base.port),
2795
			onoff(state), onoff(cur_state));
2796 2797 2798 2799 2800 2801 2802 2803 2804
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2805
			onoff(state), onoff(cur_state));
2806 2807 2808 2809
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2810
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2811
				const struct intel_crtc_state *pipe_config)
2812
{
2813
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2814
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2815

2816 2817 2818
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2819

2820
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2821
		      pipe_config->port_clock);
2822 2823 2824

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2825
	if (pipe_config->port_clock == 162000)
2826 2827 2828 2829 2830 2831 2832 2833
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2834 2835 2836 2837 2838 2839
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2840
	if (IS_GEN(dev_priv, 5))
2841
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2842

2843
	intel_dp->DP |= DP_PLL_ENABLE;
2844

2845
	I915_WRITE(DP_A, intel_dp->DP);
2846 2847
	POSTING_READ(DP_A);
	udelay(200);
2848 2849
}

2850 2851
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2852
{
2853
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2854
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2855

2856 2857 2858
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2859

2860 2861
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2862
	intel_dp->DP &= ~DP_PLL_ENABLE;
2863

2864
	I915_WRITE(DP_A, intel_dp->DP);
2865
	POSTING_READ(DP_A);
2866 2867 2868
	udelay(200);
}

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2900
/* If the sink supports it, try to set the power state appropriately */
2901
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2902 2903 2904 2905 2906 2907 2908 2909
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2910 2911 2912
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2913 2914
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2915
	} else {
2916 2917
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2918 2919 2920 2921 2922
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2923 2924
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2925 2926 2927 2928
			if (ret == 1)
				break;
			msleep(1);
		}
2929 2930 2931

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2932
	}
2933 2934 2935 2936

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2985 2986
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2987
{
2988
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2989
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2990
	intel_wakeref_t wakeref;
2991
	bool ret;
2992

2993 2994 2995
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
2996 2997
		return false;

2998 2999
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3000

3001
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3002 3003

	return ret;
3004
}
3005

3006
static void intel_dp_get_config(struct intel_encoder *encoder,
3007
				struct intel_crtc_state *pipe_config)
3008
{
3009
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3010 3011
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3012
	enum port port = encoder->port;
3013
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3014

3015 3016 3017 3018
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3019

3020
	tmp = I915_READ(intel_dp->output_reg);
3021 3022

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3023

3024
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3025 3026 3027
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3028 3029 3030
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3031

3032
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3033 3034 3035 3036
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3037
		if (tmp & DP_SYNC_HS_HIGH)
3038 3039 3040
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3041

3042
		if (tmp & DP_SYNC_VS_HIGH)
3043 3044 3045 3046
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3047

3048
	pipe_config->base.adjusted_mode.flags |= flags;
3049

3050
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3051 3052
		pipe_config->limited_color_range = true;

3053 3054 3055
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3056 3057
	intel_dp_get_m_n(crtc, pipe_config);

3058
	if (port == PORT_A) {
3059
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3060 3061 3062 3063
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3064

3065 3066 3067
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3068

3069
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3070
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3085 3086
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3087
	}
3088 3089
}

3090
static void intel_disable_dp(struct intel_encoder *encoder,
3091 3092
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3093
{
3094
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3095

3096 3097
	intel_dp->link_trained = false;

3098
	if (old_crtc_state->has_audio)
3099 3100
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3101 3102 3103

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3104
	intel_edp_panel_vdd_on(intel_dp);
3105
	intel_edp_backlight_off(old_conn_state);
3106
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3107
	intel_edp_panel_off(intel_dp);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3122 3123
}

3124
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3125 3126
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3127
{
3128
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3129
	enum port port = encoder->port;
3130

3131 3132 3133 3134 3135 3136
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3137
	intel_dp_link_down(encoder, old_crtc_state);
3138 3139

	/* Only ilk+ has port A */
3140
	if (port == PORT_A)
3141
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3142 3143
}

3144
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3145 3146
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3147
{
3148
	intel_dp_link_down(encoder, old_crtc_state);
3149 3150
}

3151
static void chv_post_disable_dp(struct intel_encoder *encoder,
3152 3153
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3154
{
3155
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3156

3157
	intel_dp_link_down(encoder, old_crtc_state);
3158

3159
	vlv_dpio_get(dev_priv);
3160 3161

	/* Assert data lane reset */
3162
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3163

3164
	vlv_dpio_put(dev_priv);
3165 3166
}

3167 3168
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3169 3170
			 u32 *DP,
			 u8 dp_train_pat)
3171
{
3172
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3173
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3174
	enum port port = intel_dig_port->base.port;
3175
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3176

3177
	if (dp_train_pat & train_pat_mask)
3178
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3179
			      dp_train_pat & train_pat_mask);
3180

3181
	if (HAS_DDI(dev_priv)) {
3182
		u32 temp = I915_READ(DP_TP_CTL(port));
3183 3184 3185 3186 3187 3188 3189

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3190
		switch (dp_train_pat & train_pat_mask) {
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3204 3205 3206
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3207 3208 3209
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3210
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3211
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3225
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3226 3227 3228 3229 3230
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3231
		*DP &= ~DP_LINK_TRAIN_MASK;
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3244 3245
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3246 3247 3248 3249 3250
			break;
		}
	}
}

3251
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3252
				 const struct intel_crtc_state *old_crtc_state)
3253
{
3254
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3255 3256 3257

	/* enable with pattern 1 (as per spec) */

3258
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3259 3260 3261 3262 3263 3264 3265 3266

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3267
	if (old_crtc_state->has_audio)
3268
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3269 3270 3271

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3272 3273
}

3274
static void intel_enable_dp(struct intel_encoder *encoder,
3275 3276
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3277
{
3278
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3279
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3280
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3281
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3282
	enum pipe pipe = crtc->pipe;
3283
	intel_wakeref_t wakeref;
3284

3285 3286
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3287

3288 3289 3290
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3291

3292
		intel_dp_enable_port(intel_dp, pipe_config);
3293

3294 3295 3296 3297
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3298

3299
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3300 3301
		unsigned int lane_mask = 0x0;

3302
		if (IS_CHERRYVIEW(dev_priv))
3303
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3304

3305 3306
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3307
	}
3308

3309
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3310
	intel_dp_start_link_train(intel_dp);
3311
	intel_dp_stop_link_train(intel_dp);
3312

3313
	if (pipe_config->has_audio) {
3314
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3315
				 pipe_name(pipe));
3316
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3317
	}
3318
}
3319

3320
static void g4x_enable_dp(struct intel_encoder *encoder,
3321 3322
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3323
{
3324
	intel_enable_dp(encoder, pipe_config, conn_state);
3325
	intel_edp_backlight_on(pipe_config, conn_state);
3326
}
3327

3328
static void vlv_enable_dp(struct intel_encoder *encoder,
3329 3330
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3331
{
3332
	intel_edp_backlight_on(pipe_config, conn_state);
3333 3334
}

3335
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3336 3337
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3338 3339
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3340
	enum port port = encoder->port;
3341

3342
	intel_dp_prepare(encoder, pipe_config);
3343

3344
	/* Only ilk+ has port A */
3345
	if (port == PORT_A)
3346
		ironlake_edp_pll_on(intel_dp, pipe_config);
3347 3348
}

3349 3350 3351
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3352
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3353
	enum pipe pipe = intel_dp->pps_pipe;
3354
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3355

3356 3357
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3358 3359 3360
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3361 3362 3363
	edp_panel_vdd_off_sync(intel_dp);

	/*
3364
	 * VLV seems to get confused when multiple power sequencers
3365 3366 3367
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3368
	 * selected in multiple power sequencers, but let's clear the
3369 3370 3371 3372
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3373
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3374 3375 3376 3377 3378 3379
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3380
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3381 3382 3383 3384 3385 3386
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3387 3388 3389
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3390

3391 3392 3393 3394
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3395 3396 3397 3398
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3399
			      pipe_name(pipe), port_name(port));
3400 3401

		/* make sure vdd is off before we steal it */
3402
		vlv_detach_power_sequencer(intel_dp);
3403 3404 3405
	}
}

3406 3407
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3408
{
3409
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3410 3411
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3412 3413 3414

	lockdep_assert_held(&dev_priv->pps_mutex);

3415
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3416

3417 3418 3419 3420 3421 3422 3423
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3424
		vlv_detach_power_sequencer(intel_dp);
3425
	}
3426 3427 3428 3429 3430

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3431
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3432

3433 3434
	intel_dp->active_pipe = crtc->pipe;

3435
	if (!intel_dp_is_edp(intel_dp))
3436 3437
		return;

3438 3439 3440 3441
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3442
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3443 3444

	/* init power sequencer on this pipe and port */
3445 3446
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3447 3448
}

3449
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3450 3451
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3452
{
3453
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3454

3455
	intel_enable_dp(encoder, pipe_config, conn_state);
3456 3457
}

3458
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3459 3460
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3461
{
3462
	intel_dp_prepare(encoder, pipe_config);
3463

3464
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3465 3466
}

3467
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3468 3469
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3470
{
3471
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3472

3473
	intel_enable_dp(encoder, pipe_config, conn_state);
3474 3475

	/* Second common lane will stay alive on its own now */
3476
	chv_phy_release_cl2_override(encoder);
3477 3478
}

3479
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3480 3481
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3482
{
3483
	intel_dp_prepare(encoder, pipe_config);
3484

3485
	chv_phy_pre_pll_enable(encoder, pipe_config);
3486 3487
}

3488
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3489 3490
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3491
{
3492
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3493 3494
}

3495 3496 3497 3498
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3499
bool
3500
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3501
{
3502 3503
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3504 3505
}

3506
/* These are source-specific values. */
3507
u8
K
Keith Packard 已提交
3508
intel_dp_voltage_max(struct intel_dp *intel_dp)
3509
{
3510
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3511 3512
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3513

3514
	if (HAS_DDI(dev_priv))
3515
		return intel_ddi_dp_voltage_max(encoder);
3516
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3517
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3518
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3519
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3520
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3521
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3522
	else
3523
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3524 3525
}

3526 3527
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3528
{
3529
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3530 3531
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3532

3533 3534
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3535
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3536
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3537 3538 3539 3540 3541 3542 3543
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3544
		default:
3545
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3546
		}
3547
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3548
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3549 3550 3551 3552 3553
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3554
		default:
3555
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3556 3557 3558
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3559 3560 3561 3562 3563 3564 3565
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3566
		default:
3567
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3568
		}
3569 3570 3571
	}
}

3572
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3573
{
3574
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3575 3576
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3577
	u8 train_set = intel_dp->train_set[0];
3578 3579

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3580
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3581 3582
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3583
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3584 3585 3586
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3587
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3588 3589 3590
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3591
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3592 3593 3594
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3595
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3596 3597 3598 3599 3600 3601 3602
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3603
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3604 3605
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3606
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3607 3608 3609
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3610
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3611 3612 3613
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3614
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3615 3616 3617 3618 3619 3620 3621
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3622
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3623 3624
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3625
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3626 3627 3628
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3629
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3630 3631 3632 3633 3634 3635 3636
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3637
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3638 3639
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3640
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3652 3653
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3654 3655 3656 3657

	return 0;
}

3658
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3659
{
3660 3661 3662
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3663
	u8 train_set = intel_dp->train_set[0];
3664 3665

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3666
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3667
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3668
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3669 3670 3671
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3672
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3673 3674 3675
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3676
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3677 3678 3679
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3680
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3681 3682
			deemph_reg_value = 128;
			margin_reg_value = 154;
3683
			uniq_trans_scale = true;
3684 3685 3686 3687 3688
			break;
		default:
			return 0;
		}
		break;
3689
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3690
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3691
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3692 3693 3694
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3695
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3696 3697 3698
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3699
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3700 3701 3702 3703 3704 3705 3706
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3707
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3708
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3709
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3710 3711 3712
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3713
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3714 3715 3716 3717 3718 3719 3720
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3721
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3722
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3723
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3735 3736
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3737 3738 3739 3740

	return 0;
}

3741 3742
static u32
g4x_signal_levels(u8 train_set)
3743
{
3744
	u32 signal_levels = 0;
3745

3746
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3747
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3748 3749 3750
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3751
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3752 3753
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3754
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3755 3756
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3757
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3758 3759 3760
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3761
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3762
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3763 3764 3765
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3766
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3767 3768
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3769
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3770 3771
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3772
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3773 3774 3775 3776 3777 3778
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3779
/* SNB CPU eDP voltage swing and pre-emphasis control */
3780 3781
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3782
{
3783 3784 3785
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3786 3787
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3788
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3789
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3790
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3791 3792
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3793
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3794 3795
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3796
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3797 3798
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3799
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3800
	default:
3801 3802 3803
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3804 3805 3806
	}
}

3807
/* IVB CPU eDP voltage swing and pre-emphasis control */
3808 3809
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
3810 3811 3812 3813
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3814
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3815
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3816
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3817
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3818
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3819 3820
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3821
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3822
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3823
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3824 3825
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3826
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3827
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3828
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3838
void
3839
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3840
{
3841
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3842
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3843
	enum port port = intel_dig_port->base.port;
3844 3845
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
3846

R
Rodrigo Vivi 已提交
3847
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3848 3849
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3850
		signal_levels = ddi_signal_levels(intel_dp);
3851
		mask = DDI_BUF_EMP_MASK;
3852
	} else if (IS_CHERRYVIEW(dev_priv)) {
3853
		signal_levels = chv_signal_levels(intel_dp);
3854
	} else if (IS_VALLEYVIEW(dev_priv)) {
3855
		signal_levels = vlv_signal_levels(intel_dp);
3856
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3857
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3858
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3859
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3860
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3861 3862
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3863
		signal_levels = g4x_signal_levels(train_set);
3864 3865 3866
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3867 3868 3869 3870 3871 3872 3873 3874
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3875

3876
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3877 3878 3879

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3880 3881
}

3882
void
3883
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3884
				       u8 dp_train_pat)
3885
{
3886
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3887 3888
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3889

3890
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3891

3892
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3893
	POSTING_READ(intel_dp->output_reg);
3894 3895
}

3896
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3897
{
3898
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3899
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3900
	enum port port = intel_dig_port->base.port;
3901
	u32 val;
3902

3903
	if (!HAS_DDI(dev_priv))
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3921
	if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3922 3923 3924
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3925 3926 3927
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3928
static void
3929 3930
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3931
{
3932 3933 3934 3935
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
3936
	u32 DP = intel_dp->DP;
3937

3938
	if (WARN_ON(HAS_DDI(dev_priv)))
3939 3940
		return;

3941
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3942 3943
		return;

3944
	DRM_DEBUG_KMS("\n");
3945

3946
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3947
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3948
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3949
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3950
	} else {
3951
		DP &= ~DP_LINK_TRAIN_MASK;
3952
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3953
	}
3954
	I915_WRITE(intel_dp->output_reg, DP);
3955
	POSTING_READ(intel_dp->output_reg);
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3966
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3967 3968 3969 3970 3971 3972 3973
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3974
		/* always enable with pattern 1 (as per spec) */
3975 3976 3977
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3978 3979 3980 3981
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3982
		I915_WRITE(intel_dp->output_reg, DP);
3983
		POSTING_READ(intel_dp->output_reg);
3984

3985
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3986 3987
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3988 3989
	}

3990
	msleep(intel_dp->panel_power_down_delay);
3991 3992

	intel_dp->DP = DP;
3993 3994

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3995 3996 3997 3998
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
3999
	}
4000 4001
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4038
bool
4039
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4040
{
4041 4042
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4043
		return false; /* aux transfer failed */
4044

4045 4046
	intel_dp_extended_receiver_capabilities(intel_dp);

4047
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4048

4049 4050
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4051

4052 4053 4054 4055 4056 4057 4058 4059
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4060 4061 4062
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4075

4076
		/* FEC is supported only on DP 1.4 */
4077 4078 4079 4080
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4081

4082
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4083 4084 4085
	}
}

4086 4087 4088 4089 4090
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4091

4092 4093
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4094

4095
	if (!intel_dp_read_dpcd(intel_dp))
4096 4097
		return false;

4098 4099
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4100

4101 4102 4103
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4104

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4115 4116
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4117
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4118
			      intel_dp->edp_dpcd);
4119

4120 4121 4122 4123 4124 4125
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4126 4127
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4128
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4129 4130
		int i;

4131 4132
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4133

4134 4135
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4136 4137 4138 4139

			if (val == 0)
				break;

4140 4141 4142 4143 4144 4145
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4146
			intel_dp->sink_rates[i] = (val * 200) / 10;
4147
		}
4148
		intel_dp->num_sink_rates = i;
4149
	}
4150

4151 4152 4153 4154
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4155 4156 4157 4158 4159
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4160 4161
	intel_dp_set_common_rates(intel_dp);

4162 4163 4164 4165
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4176
	/* Don't clobber cached eDP rates. */
4177
	if (!intel_dp_is_edp(intel_dp)) {
4178
		intel_dp_set_sink_rates(intel_dp);
4179 4180
		intel_dp_set_common_rates(intel_dp);
	}
4181

4182
	/*
4183 4184
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4185
	 */
4186 4187 4188
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4189

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4211

4212
	if (!drm_dp_is_branch(intel_dp->dpcd))
4213 4214 4215 4216 4217
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4218 4219 4220
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4221 4222 4223
		return false; /* downstream port status fetch failed */

	return true;
4224 4225
}

4226
static bool
4227
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4228
{
4229
	u8 mstm_cap;
4230 4231 4232 4233

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4234
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4235
		return false;
4236

4237
	return mstm_cap & DP_MST_CAP;
4238 4239
}

4240 4241 4242 4243 4244 4245 4246 4247
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4248 4249 4250
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4251 4252 4253 4254 4255 4256 4257
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4258 4259 4260 4261

	if (!intel_dp->can_mst)
		return;

4262 4263
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4264 4265 4266

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4267 4268 4269 4270 4271
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4272 4273 4274
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4275 4276
}

4277
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
4344
	min_slice_count = min_t(u8, min_slice_count,
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4362
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4363
{
4364
	int status = 0;
4365
	int test_link_rate;
4366
	u8 test_lane_count, test_link_bw;
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4387 4388 4389 4390

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4391 4392 4393 4394 4395 4396
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4397 4398
}

4399
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4400
{
4401 4402
	u8 test_pattern;
	u8 test_misc;
4403 4404 4405 4406
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4407 4408
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4430 4431
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4458 4459
}

4460
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4461
{
4462
	u8 test_result = DP_TEST_ACK;
4463 4464 4465 4466
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4467
	    connector->edid_corrupt ||
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4481
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4482
	} else {
4483 4484 4485 4486 4487 4488 4489
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4490 4491
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4492 4493 4494
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4495
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4496 4497 4498
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4499
	intel_dp->compliance.test_active = 1;
4500

4501 4502 4503
	return test_result;
}

4504
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4505
{
4506
	u8 test_result = DP_TEST_NAK;
4507 4508 4509 4510 4511
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4512 4513
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4514
	int status;
4515

4516
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4517 4518 4519 4520 4521
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4522
	switch (request) {
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4540
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4541 4542 4543
		break;
	}

4544 4545 4546
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4547
update_status:
4548
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4549 4550
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4551 4552
}

4553 4554 4555 4556 4557 4558
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4559
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4560 4561 4562
		int ret = 0;
		int retry;
		bool handled;
4563 4564

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4565 4566 4567 4568 4569
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4570
			if (intel_dp->active_mst_links > 0 &&
4571
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4572 4573 4574 4575 4576
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4577
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4593
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4594 4595 4596 4597 4598 4599 4600 4601 4602
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4603 4604
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4605 4606 4607 4608 4609
		}
	}
	return -EINVAL;
}

4610 4611 4612 4613 4614
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4615
	if (!intel_dp->link_trained)
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4627 4628 4629
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4646 4647
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4688 4689 4690

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4691
	if (crtc_state->has_pch_encoder)
4692 4693 4694 4695 4696 4697 4698
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4699
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4700 4701

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4702
	if (crtc_state->has_pch_encoder)
4703 4704
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4705 4706

	return 0;
4707 4708
}

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4723
{
4724 4725 4726
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4727

4728
	changed = intel_encoder_hotplug(encoder, connector);
4729

4730
	drm_modeset_acquire_init(&ctx, 0);
4731

4732 4733
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4734

4735 4736 4737 4738
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4739

4740 4741
		break;
	}
4742

4743 4744 4745
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4746

4747
	return changed;
4748 4749
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4766
	if (val & DP_CP_IRQ)
4767
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4768 4769 4770

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4771 4772
}

4773 4774 4775 4776 4777 4778 4779
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4780 4781 4782 4783 4784
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4785
 */
4786
static bool
4787
intel_dp_short_pulse(struct intel_dp *intel_dp)
4788
{
4789
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4790 4791
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4792

4793 4794 4795 4796
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4797
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4798

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4810 4811
	}

4812
	intel_dp_check_service_irq(intel_dp);
4813

4814 4815 4816
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4817 4818 4819
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4820

4821 4822
	intel_psr_short_pulse(intel_dp);

4823 4824 4825
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4826
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4827
	}
4828 4829

	return true;
4830 4831
}

4832
/* XXX this is probably wrong for multiple downstream ports */
4833
static enum drm_connector_status
4834
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4835
{
4836
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4837 4838
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
4839

4840 4841 4842
	if (lspcon->active)
		lspcon_resume(lspcon);

4843 4844 4845
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4846
	if (intel_dp_is_edp(intel_dp))
4847 4848
		return connector_status_connected;

4849
	/* if there's no downstream port, we're done */
4850
	if (!drm_dp_is_branch(dpcd))
4851
		return connector_status_connected;
4852 4853

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4854 4855
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4856

4857 4858
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4859 4860
	}

4861 4862 4863
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4864
	/* If no HPD, poke DDC gently */
4865
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4866
		return connector_status_connected;
4867 4868

	/* Well we tried, say unknown for unreliable port types */
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4881 4882 4883

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4884
	return connector_status_disconnected;
4885 4886
}

4887 4888 4889
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4890
	return connector_status_connected;
4891 4892
}

4893
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4894
{
4895
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4896
	u32 bit;
4897

4898 4899
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4900 4901
		bit = SDE_PORTB_HOTPLUG;
		break;
4902
	case HPD_PORT_C:
4903 4904
		bit = SDE_PORTC_HOTPLUG;
		break;
4905
	case HPD_PORT_D:
4906 4907 4908
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4909
		MISSING_CASE(encoder->hpd_pin);
4910 4911 4912 4913 4914 4915
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4916
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4917
{
4918
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4919 4920
	u32 bit;

4921 4922
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4923 4924
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4925
	case HPD_PORT_C:
4926 4927
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4928
	case HPD_PORT_D:
4929 4930
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4931
	default:
4932
		MISSING_CASE(encoder->hpd_pin);
4933 4934 4935 4936 4937 4938
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4939
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4940
{
4941
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4942 4943
	u32 bit;

4944 4945
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4946 4947
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4948
	case HPD_PORT_E:
4949 4950
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4951
	default:
4952
		return cpt_digital_port_connected(encoder);
4953
	}
4954

4955
	return I915_READ(SDEISR) & bit;
4956 4957
}

4958
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4959
{
4960
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4961
	u32 bit;
4962

4963 4964
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4965 4966
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4967
	case HPD_PORT_C:
4968 4969
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4970
	case HPD_PORT_D:
4971 4972 4973
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4974
		MISSING_CASE(encoder->hpd_pin);
4975 4976 4977 4978 4979 4980
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4981
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4982
{
4983
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4984 4985
	u32 bit;

4986 4987
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4988
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4989
		break;
4990
	case HPD_PORT_C:
4991
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4992
		break;
4993
	case HPD_PORT_D:
4994
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4995 4996
		break;
	default:
4997
		MISSING_CASE(encoder->hpd_pin);
4998
		return false;
4999 5000
	}

5001
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5002 5003
}

5004
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5005
{
5006 5007 5008
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5009 5010
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5011
		return ibx_digital_port_connected(encoder);
5012 5013
}

5014
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5015
{
5016 5017 5018
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5019 5020
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5021
		return cpt_digital_port_connected(encoder);
5022 5023
}

5024
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5025
{
5026 5027 5028
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5029 5030
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5031
		return cpt_digital_port_connected(encoder);
5032 5033
}

5034
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5035
{
5036 5037 5038
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5039 5040
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5041
		return cpt_digital_port_connected(encoder);
5042 5043
}

5044
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5045
{
5046
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5047 5048
	u32 bit;

5049 5050
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5051 5052
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5053
	case HPD_PORT_B:
5054 5055
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5056
	case HPD_PORT_C:
5057 5058 5059
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5060
		MISSING_CASE(encoder->hpd_pin);
5061 5062 5063 5064 5065 5066
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5067 5068 5069 5070 5071 5072 5073 5074
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5090 5091 5092 5093 5094 5095 5096 5097 5098
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5099
	if (is_legacy)
5100
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5101
	else if (is_typec)
5102
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5103
	else if (is_tbt)
5104
		intel_dig_port->tc_type = TC_PORT_TBT;
5105
	else
5106 5107 5108 5109 5110 5111 5112 5113
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5114
			      tc_type_name(intel_dig_port->tc_type));
5115 5116
}

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5151
		WARN_ON(dig_port->tc_legacy_port);
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5172
		icl_tc_phy_disconnect(dev_priv, dig_port);
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5183 5184
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5185 5186 5187
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5188
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5189 5190 5191
		return;

	/*
5192 5193
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5194
	 */
5195 5196 5197 5198 5199
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5200 5201 5202
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5203

5204 5205 5206 5207
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5208
	dig_port->tc_type = TC_PORT_UNKNOWN;
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5221 5222 5223 5224 5225 5226 5227 5228
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5229
	/*
5230
	 * Complain if we got a legacy port HPD, but VBT didn't mark the port as
5231 5232
	 * legacy. Treat the port as legacy from now on.
	 */
5233 5234 5235 5236
	if (!intel_dig_port->tc_legacy_port &&
	    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)) {
		DRM_ERROR("VBT incorrectly claims port %c is not TypeC legacy\n",
			  port_name(port));
5237
		intel_dig_port->tc_legacy_port = true;
5238
	}
5239
	is_legacy = intel_dig_port->tc_legacy_port;
5240 5241 5242 5243 5244 5245 5246 5247 5248

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5249 5250
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5251

5252
		return false;
5253
	}
5254 5255 5256

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5257

5258 5259 5260
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5261
	return true;
5262 5263 5264 5265 5266 5267 5268
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5269
	if (intel_port_is_combophy(dev_priv, encoder->port))
5270
		return icl_combo_port_connected(dev_priv, dig_port);
5271
	else if (intel_port_is_tc(dev_priv, encoder->port))
5272
		return icl_tc_port_connected(dev_priv, dig_port);
5273
	else
5274
		MISSING_CASE(encoder->hpd_pin);
5275 5276

	return false;
5277 5278
}

5279 5280
/*
 * intel_digital_port_connected - is the specified port connected?
5281
 * @encoder: intel_encoder
5282
 *
5283 5284 5285 5286 5287
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5288
 * Return %true if port is connected, %false otherwise.
5289
 */
5290
bool intel_digital_port_connected(struct intel_encoder *encoder)
5291
{
5292 5293
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5294
	if (HAS_GMCH(dev_priv)) {
5295
		if (IS_GM45(dev_priv))
5296
			return gm45_digital_port_connected(encoder);
5297
		else
5298
			return g4x_digital_port_connected(encoder);
5299 5300
	}

5301 5302
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5303
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5304
		return spt_digital_port_connected(encoder);
5305
	else if (IS_GEN9_LP(dev_priv))
5306
		return bxt_digital_port_connected(encoder);
5307
	else if (IS_GEN(dev_priv, 8))
5308
		return bdw_digital_port_connected(encoder);
5309
	else if (IS_GEN(dev_priv, 7))
5310
		return ivb_digital_port_connected(encoder);
5311
	else if (IS_GEN(dev_priv, 6))
5312
		return snb_digital_port_connected(encoder);
5313
	else if (IS_GEN(dev_priv, 5))
5314 5315 5316 5317
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5318 5319
}

5320
static struct edid *
5321
intel_dp_get_edid(struct intel_dp *intel_dp)
5322
{
5323
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5324

5325 5326 5327 5328
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5329 5330
			return NULL;

J
Jani Nikula 已提交
5331
		return drm_edid_duplicate(intel_connector->edid);
5332 5333 5334 5335
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5336

5337 5338 5339 5340 5341
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5342

5343
	intel_dp_unset_edid(intel_dp);
5344 5345 5346
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5347
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5348
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5349 5350
}

5351 5352
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5353
{
5354
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5355

5356
	drm_dp_cec_unset_edid(&intel_dp->aux);
5357 5358
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5359

5360 5361
	intel_dp->has_audio = false;
}
5362

5363
static int
5364 5365 5366
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5367
{
5368 5369
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5370 5371
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5372
	enum drm_connector_status status;
5373 5374
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5375
	intel_wakeref_t wakeref;
Z
Zhenyu Wang 已提交
5376

5377 5378
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5379
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5380

5381
	wakeref = intel_display_power_get(dev_priv, aux_domain);
Z
Zhenyu Wang 已提交
5382

5383
	/* Can't disconnect eDP */
5384
	if (intel_dp_is_edp(intel_dp))
5385
		status = edp_detect(intel_dp);
5386
	else if (intel_digital_port_connected(encoder))
5387
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5388
	else
5389 5390
		status = connector_status_disconnected;

5391
	if (status == connector_status_disconnected) {
5392
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5393
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5394

5395 5396 5397 5398 5399 5400 5401 5402 5403
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5404
		goto out;
5405
	}
Z
Zhenyu Wang 已提交
5406

5407
	if (intel_dp->reset_link_params) {
5408 5409
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5410

5411 5412
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5413 5414 5415

		intel_dp->reset_link_params = false;
	}
5416

5417 5418
	intel_dp_print_rates(intel_dp);

5419 5420 5421 5422
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5423 5424
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5425

5426 5427 5428
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5429 5430 5431 5432 5433
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5434 5435
		status = connector_status_disconnected;
		goto out;
5436 5437 5438 5439 5440 5441
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5442 5443 5444 5445 5446
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
5447
			intel_display_power_put(dev_priv, aux_domain, wakeref);
5448 5449 5450
			return ret;
		}
	}
5451

5452 5453 5454 5455 5456 5457 5458 5459
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5460
	intel_dp_set_edid(intel_dp);
5461 5462
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5463
		status = connector_status_connected;
5464

5465
	intel_dp_check_service_irq(intel_dp);
5466

5467
out:
5468
	if (status != connector_status_connected && !intel_dp->is_mst)
5469
		intel_dp_unset_edid(intel_dp);
5470

5471
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5472
	return status;
5473 5474
}

5475 5476
static void
intel_dp_force(struct drm_connector *connector)
5477
{
5478
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5479 5480
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5481
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5482 5483
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5484
	intel_wakeref_t wakeref;
5485

5486 5487 5488
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5489

5490 5491
	if (connector->status != connector_status_connected)
		return;
5492

5493
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5494 5495 5496

	intel_dp_set_edid(intel_dp);

5497
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5511

5512
	/* if eDP has no EDID, fall back to fixed mode */
5513
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5514
	    intel_connector->panel.fixed_mode) {
5515
		struct drm_display_mode *mode;
5516 5517

		mode = drm_mode_duplicate(connector->dev,
5518
					  intel_connector->panel.fixed_mode);
5519
		if (mode) {
5520 5521 5522 5523
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5524

5525
	return 0;
5526 5527
}

5528 5529 5530 5531
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5532
	struct drm_device *dev = connector->dev;
5533 5534 5535 5536 5537
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5538 5539 5540 5541 5542 5543 5544

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5545 5546 5547 5548 5549
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5550 5551
}

5552 5553 5554
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5555 5556 5557 5558
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5559 5560 5561
	intel_connector_unregister(connector);
}

5562
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5563
{
5564 5565
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5566

5567
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5568
	if (intel_dp_is_edp(intel_dp)) {
5569 5570
		intel_wakeref_t wakeref;

5571
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5572 5573 5574 5575
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5576 5577
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5578

5579 5580 5581 5582
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5583
	}
5584 5585

	intel_dp_aux_fini(intel_dp);
5586 5587 5588 5589 5590
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5591

5592
	drm_encoder_cleanup(encoder);
5593
	kfree(enc_to_dig_port(encoder));
5594 5595
}

5596
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5597 5598
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5599
	intel_wakeref_t wakeref;
5600

5601
	if (!intel_dp_is_edp(intel_dp))
5602 5603
		return;

5604 5605 5606 5607
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5608
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5609 5610
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5611 5612
}

5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5625 5626 5627 5628 5629
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5630 5631 5632 5633 5634
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5635
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5636 5637 5638 5639 5640 5641 5642
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5643 5644
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5645 5646 5647 5648 5649 5650 5651 5652 5653
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5654
	intel_dp_aux_header(txbuf, &msg);
5655

5656
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5657 5658
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5659
	if (ret < 0) {
5660
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5661 5662
		return ret;
	} else if (ret == 0) {
5663
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5664 5665 5666 5667
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5668 5669 5670 5671 5672 5673
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5674 5675 5676 5677 5678 5679 5680 5681 5682
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5683
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5701
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5702 5703 5704 5705 5706 5707
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5708 5709
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5710 5711
{
	ssize_t ret;
5712

5713
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5714
			       bcaps, 1);
5715
	if (ret != 1) {
5716
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5717 5718
		return ret >= 0 ? -EIO : ret;
	}
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5746
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5761
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5783 5784
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5804
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5823

5824 5825 5826
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5827
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5828
		return false;
5829
	}
5830

5831 5832 5833
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

static struct hdcp2_dp_msg_data {
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
	} hdcp2_msg_data[] = {
		{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
				false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
		{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
				true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
				HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
		{HDCP_2_2_AKE_SEND_PAIRING_INFO,
				DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
				HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
		{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
				false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
		{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_SEND_RECVID_LIST,
				DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
				HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
		{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_MANAGE,
				DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
				false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
		{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
				DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
				0, 0},
		};

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
			    struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
5969 5970 5971 5972 5973 5974 5975
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
		if (hdcp2_msg_data[i].msg_id == msg_id)
			return &hdcp2_msg_data[i];

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6002 6003
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6019 6020
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6190
	.hdcp_capable = intel_dp_hdcp_capable,
6191 6192 6193 6194 6195 6196
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6197 6198
};

6199 6200
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6201
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6202
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6216
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6217 6218 6219 6220

	edp_panel_vdd_schedule_off(intel_dp);
}

6221 6222
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6223
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6224 6225
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6226

6227 6228 6229
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6230

6231
	return INVALID_PIPE;
6232 6233
}

6234
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6235
{
6236
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6237 6238
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6239
	intel_wakeref_t wakeref;
6240 6241 6242

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6243

6244
	if (lspcon->active)
6245 6246
		lspcon_resume(lspcon);

6247 6248
	intel_dp->reset_link_params = true;

6249 6250 6251
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6252

6253 6254 6255 6256 6257 6258 6259 6260
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6261
	}
6262 6263
}

6264
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6265
	.force = intel_dp_force,
6266
	.fill_modes = drm_helper_probe_single_connector_modes,
6267 6268
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6269
	.late_register = intel_dp_connector_register,
6270
	.early_unregister = intel_dp_connector_unregister,
6271
	.destroy = intel_connector_destroy,
6272
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6273
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6274 6275 6276
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6277
	.detect_ctx = intel_dp_detect,
6278 6279
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6280
	.atomic_check = intel_digital_connector_atomic_check,
6281 6282 6283
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6284
	.reset = intel_dp_encoder_reset,
6285
	.destroy = intel_dp_encoder_destroy,
6286 6287
};

6288
enum irqreturn
6289 6290 6291
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6292
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6293
	enum irqreturn ret = IRQ_NONE;
6294
	intel_wakeref_t wakeref;
6295

6296 6297 6298 6299 6300 6301 6302 6303
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6304
			      port_name(intel_dig_port->base.port));
6305
		return IRQ_HANDLED;
6306 6307
	}

6308
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6309
		      port_name(intel_dig_port->base.port),
6310
		      long_hpd ? "long" : "short");
6311

6312
	if (long_hpd) {
6313
		intel_dp->reset_link_params = true;
6314 6315 6316
		return IRQ_NONE;
	}

6317 6318
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
6319

6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
6332
		}
6333
	}
6334

6335
	if (!intel_dp->is_mst) {
6336
		bool handled;
6337 6338 6339

		handled = intel_dp_short_pulse(intel_dp);

6340
		if (!handled)
6341
			goto put_power;
6342
	}
6343 6344 6345

	ret = IRQ_HANDLED;

6346
put_power:
6347
	intel_display_power_put(dev_priv,
6348 6349
				intel_aux_power_domain(intel_dig_port),
				wakeref);
6350 6351

	return ret;
6352 6353
}

6354
/* check the VBT to see whether the eDP is on another port */
6355
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6356
{
6357 6358 6359 6360
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6361
	if (INTEL_GEN(dev_priv) < 5)
6362 6363
		return false;

6364
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6365 6366
		return true;

6367
	return intel_bios_is_port_edp(dev_priv, port);
6368 6369
}

6370
static void
6371 6372
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6373
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6374 6375 6376 6377
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6378

6379
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6380
	if (HAS_GMCH(dev_priv))
6381 6382 6383
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6384

6385
	if (intel_dp_is_edp(intel_dp)) {
6386 6387 6388
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6389
		if (!HAS_GMCH(dev_priv))
6390 6391 6392 6393
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6394
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6395

6396
	}
6397 6398
}

6399 6400
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6401
	intel_dp->panel_power_off_time = ktime_get_boottime();
6402 6403 6404 6405
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6406
static void
6407
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6408
{
6409
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6410
	u32 pp_on, pp_off, pp_ctl;
6411
	struct pps_registers regs;
6412

6413
	intel_pps_get_registers(intel_dp, &regs);
6414

6415
	pp_ctl = ironlake_get_pp_control(intel_dp);
6416

6417 6418 6419 6420
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6421 6422
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6423 6424

	/* Pull timing values out of registers */
6425 6426 6427 6428
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6429

6430 6431 6432 6433 6434
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6435
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6436
	} else {
6437
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6438
	}
6439 6440
}

I
Imre Deak 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6450
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6451 6452 6453 6454
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6455
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6456 6457 6458 6459 6460 6461 6462 6463 6464

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6465
static void
6466
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6467
{
6468
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6469 6470 6471 6472 6473 6474 6475 6476 6477
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6478
	intel_pps_readout_hw_state(intel_dp, &cur);
6479

I
Imre Deak 已提交
6480
	intel_pps_dump_state("cur", &cur);
6481

6482
	vbt = dev_priv->vbt.edp.pps;
6483 6484 6485 6486 6487 6488
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6489
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6490 6491 6492
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6493 6494 6495 6496 6497
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6511
	intel_pps_dump_state("vbt", &vbt);
6512 6513 6514

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6515
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6516 6517 6518 6519 6520 6521 6522 6523 6524
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6525
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6526 6527 6528 6529 6530 6531 6532
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6533 6534 6535 6536 6537 6538
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6549 6550 6551 6552 6553 6554

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6555 6556 6557
}

static void
6558
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6559
					      bool force_disable_vdd)
6560
{
6561
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6562
	u32 pp_on, pp_off, port_sel = 0;
6563
	int div = dev_priv->rawclk_freq / 1000;
6564
	struct pps_registers regs;
6565
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6566
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6567

V
Ville Syrjälä 已提交
6568
	lockdep_assert_held(&dev_priv->pps_mutex);
6569

6570
	intel_pps_get_registers(intel_dp, &regs);
6571

6572 6573
	/*
	 * On some VLV machines the BIOS can leave the VDD
6574
	 * enabled even on power sequencers which aren't
6575 6576 6577 6578 6579 6580 6581
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6582
	 * soon as the new power sequencer gets initialized.
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6597 6598 6599 6600
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6601 6602 6603

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6604
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6605
		port_sel = PANEL_PORT_SELECT_VLV(port);
6606
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6607 6608
		switch (port) {
		case PORT_A:
6609
			port_sel = PANEL_PORT_SELECT_DPA;
6610 6611 6612 6613 6614
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6615
			port_sel = PANEL_PORT_SELECT_DPD;
6616 6617 6618 6619 6620
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6621 6622
	}

6623 6624
	pp_on |= port_sel;

6625 6626
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6627 6628 6629 6630 6631

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6632 6633 6634
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6635 6636 6637 6638 6639
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6640
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6641 6642
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6643 6644

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6645 6646
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6647 6648 6649
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6650 6651
}

6652
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6653
{
6654
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6655 6656

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6657 6658
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6659 6660
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6661 6662 6663
	}
}

6664 6665
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6666
 * @dev_priv: i915 device
6667
 * @crtc_state: a pointer to the active intel_crtc_state
6668 6669 6670 6671 6672 6673 6674 6675 6676
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6677
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6678
				    const struct intel_crtc_state *crtc_state,
6679
				    int refresh_rate)
6680 6681
{
	struct intel_encoder *encoder;
6682 6683
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6684
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6685
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6686 6687 6688 6689 6690 6691

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6692 6693
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6694 6695 6696
		return;
	}

6697 6698
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6699 6700 6701 6702 6703 6704

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6705
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6706 6707 6708 6709
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6710 6711
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6712 6713
		index = DRRS_LOW_RR;

6714
	if (index == dev_priv->drrs.refresh_rate_type) {
6715 6716 6717 6718 6719
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6720
	if (!crtc_state->base.active) {
6721 6722 6723 6724
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6725
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6726 6727
		switch (index) {
		case DRRS_HIGH_RR:
6728
			intel_dp_set_m_n(crtc_state, M1_N1);
6729 6730
			break;
		case DRRS_LOW_RR:
6731
			intel_dp_set_m_n(crtc_state, M2_N2);
6732 6733 6734 6735 6736
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6737 6738
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6739
		u32 val;
6740

6741
		val = I915_READ(reg);
6742
		if (index > DRRS_HIGH_RR) {
6743
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6744 6745 6746
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6747
		} else {
6748
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6749 6750 6751
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6752 6753 6754 6755
		}
		I915_WRITE(reg, val);
	}

6756 6757 6758 6759 6760
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6761 6762 6763
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6764
 * @crtc_state: A pointer to the active crtc state.
6765 6766 6767
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6768
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6769
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6770
{
6771
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6772

6773
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6774 6775 6776 6777
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6778 6779 6780 6781 6782
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6783
	mutex_lock(&dev_priv->drrs.mutex);
6784 6785
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6797 6798 6799
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6800
 * @old_crtc_state: Pointer to old crtc_state.
6801 6802
 *
 */
6803
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6804
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6805
{
6806
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6807

6808
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6818 6819
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6820 6821 6822 6823 6824 6825 6826

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6840
	/*
6841 6842
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6843 6844
	 */

6845 6846
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6847

6848 6849 6850 6851 6852 6853
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6854

6855 6856
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6857 6858
}

6859
/**
6860
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6861
 * @dev_priv: i915 device
6862 6863
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6864 6865
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6866 6867 6868
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6869 6870
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6871 6872 6873 6874
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6875
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6876 6877
		return;

6878
	cancel_delayed_work(&dev_priv->drrs.work);
6879

6880
	mutex_lock(&dev_priv->drrs.mutex);
6881 6882 6883 6884 6885
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6886 6887 6888
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6889 6890 6891
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6892
	/* invalidate means busy screen hence upclock */
6893
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6894 6895
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6896 6897 6898 6899

	mutex_unlock(&dev_priv->drrs.mutex);
}

6900
/**
6901
 * intel_edp_drrs_flush - Restart Idleness DRRS
6902
 * @dev_priv: i915 device
6903 6904
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6905 6906 6907 6908
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6909 6910 6911
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6912 6913
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6914 6915 6916 6917
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6918
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6919 6920
		return;

6921
	cancel_delayed_work(&dev_priv->drrs.work);
6922

6923
	mutex_lock(&dev_priv->drrs.mutex);
6924 6925 6926 6927 6928
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6929 6930
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6931 6932

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6933 6934
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6935
	/* flush means busy screen hence upclock */
6936
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6937 6938
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6939 6940 6941 6942 6943 6944

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6945 6946 6947 6948 6949
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6973 6974 6975 6976 6977 6978 6979 6980
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6981 6982 6983 6984 6985 6986 6987 6988
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6989
 * @connector: eDP connector
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7000
static struct drm_display_mode *
7001 7002
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7003
{
7004
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7005 7006
	struct drm_display_mode *downclock_mode = NULL;

7007 7008 7009
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7010
	if (INTEL_GEN(dev_priv) <= 6) {
7011 7012 7013 7014 7015
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7016
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7017 7018 7019
		return NULL;
	}

7020
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7021
	if (!downclock_mode) {
7022
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7023 7024 7025
		return NULL;
	}

7026
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7027

7028
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7029
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7030 7031 7032
	return downclock_mode;
}

7033
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7034
				     struct intel_connector *intel_connector)
7035
{
7036 7037
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7038
	struct drm_connector *connector = &intel_connector->base;
7039
	struct drm_display_mode *fixed_mode = NULL;
7040
	struct drm_display_mode *downclock_mode = NULL;
7041
	bool has_dpcd;
7042
	enum pipe pipe = INVALID_PIPE;
7043 7044
	intel_wakeref_t wakeref;
	struct edid *edid;
7045

7046
	if (!intel_dp_is_edp(intel_dp))
7047 7048
		return true;

7049 7050
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7051 7052 7053 7054 7055 7056
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7057
	if (intel_get_lvds_encoder(dev_priv)) {
7058 7059 7060 7061 7062 7063
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7064 7065 7066 7067 7068
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7069

7070
	/* Cache DPCD and EDID for edp. */
7071
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7072

7073
	if (!has_dpcd) {
7074 7075
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7076
		goto out_vdd_off;
7077 7078
	}

7079
	mutex_lock(&dev->mode_config.mutex);
7080
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7081 7082
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7083
			drm_connector_update_edid_property(connector,
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7094 7095 7096
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7097 7098

	/* fallback to VBT if available for eDP */
7099 7100
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7101
	mutex_unlock(&dev->mode_config.mutex);
7102

7103
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7104 7105
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7106 7107 7108 7109 7110 7111

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7112
		pipe = vlv_active_pipe(intel_dp);
7113 7114 7115 7116 7117 7118 7119 7120 7121

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7122 7123
	}

7124
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7125
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7126
	intel_panel_setup_backlight(connector, pipe);
7127

7128 7129 7130 7131
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7132
	return true;
7133 7134 7135 7136 7137 7138 7139

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7140 7141
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7142 7143

	return false;
7144 7145
}

7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7162 7163
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7164 7165 7166 7167 7168
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7169
bool
7170 7171
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7172
{
7173 7174 7175 7176
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7177
	struct drm_i915_private *dev_priv = to_i915(dev);
7178
	enum port port = intel_encoder->port;
7179
	int type;
7180

7181 7182 7183 7184
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7185 7186 7187 7188 7189
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

7190 7191
	intel_dp_set_source_rates(intel_dp);

7192
	intel_dp->reset_link_params = true;
7193
	intel_dp->pps_pipe = INVALID_PIPE;
7194
	intel_dp->active_pipe = INVALID_PIPE;
7195

7196
	/* intel_dp vfuncs */
7197
	if (HAS_DDI(dev_priv))
7198 7199
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

7200 7201
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7202
	intel_dp->attached_connector = intel_connector;
7203

7204
	if (intel_dp_is_port_edp(dev_priv, port))
7205
		type = DRM_MODE_CONNECTOR_eDP;
7206 7207
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
7208

7209 7210 7211
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7212 7213 7214 7215 7216 7217 7218 7219
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7220
	/* eDP only on port B and/or C on vlv/chv */
7221
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7222 7223
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7224 7225
		return false;

7226 7227 7228 7229
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

7230
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7231 7232
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7233
	if (!HAS_GMCH(dev_priv))
7234
		connector->interlace_allowed = true;
7235 7236
	connector->doublescan_allowed = 0;

7237
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7238

7239
	intel_dp_aux_init(intel_dp);
7240

7241
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7242

7243
	if (HAS_DDI(dev_priv))
7244 7245 7246 7247
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7248
	/* init MST on ports that can support it */
7249
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7250 7251
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7252 7253
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7254

7255
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7256 7257 7258
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7259
	}
7260

7261
	intel_dp_add_properties(intel_dp, connector);
7262

7263
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7264 7265 7266 7267
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7268

7269 7270 7271 7272
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7273
	if (IS_G45(dev_priv)) {
7274 7275 7276
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7277 7278

	return true;
7279 7280 7281 7282 7283

fail:
	drm_connector_cleanup(connector);

	return false;
7284
}
7285

7286
bool intel_dp_init(struct drm_i915_private *dev_priv,
7287 7288
		   i915_reg_t output_reg,
		   enum port port)
7289 7290 7291 7292 7293 7294
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7295
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7296
	if (!intel_dig_port)
7297
		return false;
7298

7299
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7300 7301
	if (!intel_connector)
		goto err_connector_alloc;
7302 7303 7304 7305

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7306 7307 7308
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7309
		goto err_encoder_init;
7310

7311
	intel_encoder->hotplug = intel_dp_hotplug;
7312
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7313
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7314
	intel_encoder->get_config = intel_dp_get_config;
7315
	intel_encoder->update_pipe = intel_panel_update_backlight;
7316
	intel_encoder->suspend = intel_dp_encoder_suspend;
7317
	if (IS_CHERRYVIEW(dev_priv)) {
7318
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7319 7320
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7321
		intel_encoder->disable = vlv_disable_dp;
7322
		intel_encoder->post_disable = chv_post_disable_dp;
7323
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7324
	} else if (IS_VALLEYVIEW(dev_priv)) {
7325
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7326 7327
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7328
		intel_encoder->disable = vlv_disable_dp;
7329
		intel_encoder->post_disable = vlv_post_disable_dp;
7330
	} else {
7331 7332
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7333
		intel_encoder->disable = g4x_disable_dp;
7334
		intel_encoder->post_disable = g4x_post_disable_dp;
7335
	}
7336 7337

	intel_dig_port->dp.output_reg = output_reg;
7338
	intel_dig_port->max_lanes = 4;
7339

7340
	intel_encoder->type = INTEL_OUTPUT_DP;
7341
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7342
	if (IS_CHERRYVIEW(dev_priv)) {
7343 7344 7345 7346 7347 7348 7349
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7350
	intel_encoder->cloneable = 0;
7351
	intel_encoder->port = port;
7352

7353 7354
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7355 7356 7357
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7358
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7359 7360 7361
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7362
	return true;
S
Sudip Mukherjee 已提交
7363 7364 7365

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7366
err_encoder_init:
S
Sudip Mukherjee 已提交
7367 7368 7369
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7370
	return false;
7371
}
7372

7373
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7374
{
7375 7376 7377 7378
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7379

7380 7381
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7382

7383
		intel_dp = enc_to_intel_dp(&encoder->base);
7384

7385
		if (!intel_dp->can_mst)
7386 7387
			continue;

7388 7389
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7390 7391 7392
	}
}

7393
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7394
{
7395
	struct intel_encoder *encoder;
7396

7397 7398
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7399
		int ret;
7400

7401 7402 7403 7404 7405 7406
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7407
			continue;
7408

7409
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7410 7411 7412 7413 7414
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7415 7416
	}
}