intel_dp.c 187.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31
#include <linux/types.h>
32 33
#include <linux/notifier.h>
#include <linux/reboot.h>
34
#include <asm/byteorder.h>
35
#include <drm/drmP.h>
36
#include <drm/drm_atomic_helper.h>
37 38
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include "intel_drv.h"
43
#include <drm/i915_drm.h>
44 45
#include "i915_drv.h"

46
#define DP_DPRX_ESI_LEN 14
47

48 49 50 51 52 53
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

54
struct dp_link_dpll {
55
	int clock;
56 57 58
	struct dpll dpll;
};

59
static const struct dp_link_dpll g4x_dpll[] = {
60
	{ 162000,
61
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62
	{ 270000,
63 64 65 66
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
67
	{ 162000,
68
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69
	{ 270000,
70 71 72
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

73
static const struct dp_link_dpll vlv_dpll[] = {
74
	{ 162000,
C
Chon Ming Lee 已提交
75
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76
	{ 270000,
77 78 79
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

80 81 82 83 84 85 86 87 88 89
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
90
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
91
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
93 94
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
95

96
/**
97
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98 99 100 101 102
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
103
bool intel_dp_is_edp(struct intel_dp *intel_dp)
104
{
105 106 107
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 109
}

110 111
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
112
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
113 114
}

115 116
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
117
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
118
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
119 120
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
121
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
122
				      enum pipe pipe);
123
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
124

125 126 127
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
128
	static const int dp_rates[] = {
129
		162000, 270000, 540000, 810000
130
	};
131
	int i, max_rate;
132

133
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
134

135 136
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
137
			break;
138
		intel_dp->sink_rates[i] = dp_rates[i];
139
	}
140

141
	intel_dp->num_sink_rates = i;
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

166 167
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
168
{
169
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
170 171
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

202 203
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
204 205
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
206 207
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
208
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
209

210
	return min3(source_max, sink_max, fia_max);
211 212
}

213
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
214 215 216 217
{
	return intel_dp->max_link_lane_count;
}

218
int
219
intel_dp_link_required(int pixel_clock, int bpp)
220
{
221 222
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
223 224
}

P
Paulo Zanoni 已提交
225 226 227
void icl_program_mg_dp_mode(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
228
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
P
Paulo Zanoni 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	u32 ln0, ln1, lane_info;

	if (tc_port == PORT_TC_NONE || intel_dig_port->tc_type == TC_PORT_TBT)
		return;

	ln0 = I915_READ(MG_DP_MODE(port, 0));
	ln1 = I915_READ(MG_DP_MODE(port, 1));

	switch (intel_dig_port->tc_type) {
	case TC_PORT_TYPEC:
		ln0 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);
		ln1 &= ~(MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE);

		lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
			     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
			    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

		switch (lane_info) {
		case 0x1:
		case 0x4:
			break;
		case 0x2:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0x3:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0x8:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE;
			break;
		case 0xC:
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		case 0xF:
			ln0 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			ln1 |= MG_DP_MODE_CFG_DP_X1_MODE |
			       MG_DP_MODE_CFG_DP_X2_MODE;
			break;
		default:
			MISSING_CASE(lane_info);
		}
		break;

	case TC_PORT_LEGACY:
		ln0 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		ln1 |= MG_DP_MODE_CFG_DP_X1_MODE | MG_DP_MODE_CFG_DP_X2_MODE;
		break;

	default:
		MISSING_CASE(intel_dig_port->tc_type);
		return;
	}

	I915_WRITE(MG_DP_MODE(port, 0), ln0);
	I915_WRITE(MG_DP_MODE(port, 1), ln1);
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
void icl_enable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val |= MG_DP_MODE_CFG_TR2PWR_GATING |
		       MG_DP_MODE_CFG_TRPWR_GATING |
		       MG_DP_MODE_CFG_CLNPWR_GATING |
		       MG_DP_MODE_CFG_DIGPWR_GATING |
		       MG_DP_MODE_CFG_GAONPWR_GATING;
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val |= MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE(3) |
	       MG_MISC_SUS0_CFG_TR2PWR_GATING |
	       MG_MISC_SUS0_CFG_CL2PWR_GATING |
	       MG_MISC_SUS0_CFG_GAONPWR_GATING |
	       MG_MISC_SUS0_CFG_TRPWR_GATING |
	       MG_MISC_SUS0_CFG_CL1PWR_GATING |
	       MG_MISC_SUS0_CFG_DGPWR_GATING;
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

void icl_disable_phy_clock_gating(struct intel_digital_port *dig_port)
{
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	i915_reg_t mg_regs[2] = { MG_DP_MODE(port, 0), MG_DP_MODE(port, 1) };
	u32 val;
	int i;

	if (tc_port == PORT_TC_NONE)
		return;

	for (i = 0; i < ARRAY_SIZE(mg_regs); i++) {
		val = I915_READ(mg_regs[i]);
		val &= ~(MG_DP_MODE_CFG_TR2PWR_GATING |
			 MG_DP_MODE_CFG_TRPWR_GATING |
			 MG_DP_MODE_CFG_CLNPWR_GATING |
			 MG_DP_MODE_CFG_DIGPWR_GATING |
			 MG_DP_MODE_CFG_GAONPWR_GATING);
		I915_WRITE(mg_regs[i], val);
	}

	val = I915_READ(MG_MISC_SUS0(tc_port));
	val &= ~(MG_MISC_SUS0_SUSCLK_DYNCLKGATE_MODE_MASK |
		 MG_MISC_SUS0_CFG_TR2PWR_GATING |
		 MG_MISC_SUS0_CFG_CL2PWR_GATING |
		 MG_MISC_SUS0_CFG_GAONPWR_GATING |
		 MG_MISC_SUS0_CFG_TRPWR_GATING |
		 MG_MISC_SUS0_CFG_CL1PWR_GATING |
		 MG_MISC_SUS0_CFG_DGPWR_GATING);
	I915_WRITE(MG_MISC_SUS0(tc_port), val);
}

357
int
358 359
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
360 361 362 363 364 365 366
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
367 368
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

392
static int cnl_max_source_rate(struct intel_dp *intel_dp)
393 394 395 396 397 398 399 400 401
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
402
		return 540000;
403 404 405

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
406
		return 810000;
407

408
	/* For other SKUs, max rate on ports A and D is 5.4G */
409
	if (port == PORT_A || port == PORT_D)
410
		return 540000;
411

412
	return 810000;
413 414
}

415 416 417 418 419 420 421 422 423 424 425
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum port port = dig_port->base.port;

	if (port == PORT_B)
		return 540000;

	return 810000;
}

426 427
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
428
{
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
445 446
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
447 448
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
449
	const int *source_rates;
450
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
451

452 453 454
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

455
	if (INTEL_GEN(dev_priv) >= 10) {
456
		source_rates = cnl_rates;
457
		size = ARRAY_SIZE(cnl_rates);
458 459 460 461
		if (INTEL_GEN(dev_priv) == 10)
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
462 463 464
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
465
	} else if (IS_GEN9_BC(dev_priv)) {
466
		source_rates = skl_rates;
467
		size = ARRAY_SIZE(skl_rates);
468 469
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
470 471
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
472
	} else {
473 474
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
475 476
	}

477 478 479 480 481
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

482 483 484
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

485 486
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

512 513 514 515 516 517 518 519 520 521 522 523
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

524
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
525
{
526
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
527

528 529 530 531 532 533 534 535
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
536
		intel_dp->common_rates[0] = 162000;
537 538 539 540
		intel_dp->num_common_rates = 1;
	}
}

541 542
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       uint8_t lane_count)
543 544 545 546 547 548
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
549 550
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
551 552
		return false;

553 554
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
555 556 557 558 559
		return false;

	return true;
}

560 561 562
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, uint8_t lane_count)
{
563
	int index;
564

565 566 567 568
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
569 570
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
571
	} else if (lane_count > 1) {
572
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
573
		intel_dp->max_link_lane_count = lane_count >> 1;
574 575 576 577 578 579 580 581
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

582
static enum drm_mode_status
583 584 585
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
586
	struct intel_dp *intel_dp = intel_attached_dp(connector);
587 588
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
589 590
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
591 592
	int max_dotclk;

593 594 595
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

596
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
597

598
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
599
		if (mode->hdisplay > fixed_mode->hdisplay)
600 601
			return MODE_PANEL;

602
		if (mode->vdisplay > fixed_mode->vdisplay)
603
			return MODE_PANEL;
604 605

		target_clock = fixed_mode->clock;
606 607
	}

608
	max_link_clock = intel_dp_max_link_rate(intel_dp);
609
	max_lanes = intel_dp_max_lane_count(intel_dp);
610 611 612 613

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

614
	if (mode_rate > max_rate || target_clock > max_dotclk)
615
		return MODE_CLOCK_HIGH;
616 617 618 619

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

620 621 622
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

623 624 625
	return MODE_OK;
}

626
uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
627 628 629 630 631 632 633 634 635 636 637
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

638
static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
639 640 641 642 643 644 645 646
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

647
static void
648
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
649
static void
650
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
651
					      bool force_disable_vdd);
652
static void
653
intel_dp_pps_init(struct intel_dp *intel_dp);
654

655 656
static void pps_lock(struct intel_dp *intel_dp)
{
657
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
658 659

	/*
660
	 * See intel_power_sequencer_reset() why we need
661 662
	 * a power domain reference here.
	 */
663
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
664 665 666 667 668 669

	mutex_lock(&dev_priv->pps_mutex);
}

static void pps_unlock(struct intel_dp *intel_dp)
{
670
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
671 672 673

	mutex_unlock(&dev_priv->pps_mutex);

674
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
675 676
}

677 678 679
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
680
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
681 682
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
683 684 685
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
686 687 688
	uint32_t DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
689
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
690
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
691 692 693
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
694
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
695 696 697 698 699 700 701 702 703

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

704
	if (IS_CHERRYVIEW(dev_priv))
705 706 707
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
708

709 710 711 712 713 714
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
715
	if (!pll_enabled) {
716
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
717 718
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

719
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
720 721 722 723 724
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
725
	}
726

727 728 729
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
730
	 * to make this power sequencer lock onto the port.
731 732 733 734 735 736 737 738 739 740
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
741

742
	if (!pll_enabled) {
743
		vlv_force_pll_off(dev_priv, pipe);
744 745 746 747

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
748 749
}

750 751 752 753 754 755 756 757 758
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
759 760
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

782 783 784
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
785
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
786
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
787
	enum pipe pipe;
788

V
Ville Syrjälä 已提交
789
	lockdep_assert_held(&dev_priv->pps_mutex);
790

791
	/* We should never land here with regular DP ports */
792
	WARN_ON(!intel_dp_is_edp(intel_dp));
793

794 795 796
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

797 798 799
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

800
	pipe = vlv_find_free_pps(dev_priv);
801 802 803 804 805

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
806
	if (WARN_ON(pipe == INVALID_PIPE))
807
		pipe = PIPE_A;
808

809
	vlv_steal_power_sequencer(dev_priv, pipe);
810
	intel_dp->pps_pipe = pipe;
811 812 813

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
814
		      port_name(intel_dig_port->base.port));
815 816

	/* init power sequencer on this pipe and port */
817 818
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
819

820 821 822 823 824
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
825 826 827 828

	return intel_dp->pps_pipe;
}

829 830 831
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
832
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
833
	int backlight_controller = dev_priv->vbt.backlight.controller;
834 835 836 837

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
838
	WARN_ON(!intel_dp_is_edp(intel_dp));
839 840

	if (!intel_dp->pps_reset)
841
		return backlight_controller;
842 843 844 845 846 847 848

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
849
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
850

851
	return backlight_controller;
852 853
}

854 855 856 857 858 859
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
860
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
861 862 863 864 865
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
866
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
867 868 869 870 871 872 873
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
874

875
static enum pipe
876 877 878
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
879 880
{
	enum pipe pipe;
881 882

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
883
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
884
			PANEL_PORT_SELECT_MASK;
885 886 887 888

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

889 890 891
		if (!pipe_check(dev_priv, pipe))
			continue;

892
		return pipe;
893 894
	}

895 896 897 898 899 900
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
901
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
902
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
903
	enum port port = intel_dig_port->base.port;
904 905 906 907

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
908 909 910 911 912 913 914 915 916 917 918
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
919 920 921 922 923 924

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
925 926
	}

927 928 929
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

930 931
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
932 933
}

934
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
935 936 937
{
	struct intel_encoder *encoder;

938
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
939
		    !IS_GEN9_LP(dev_priv)))
940 941 942 943 944 945 946 947 948 949 950 951
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

952 953
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
954

955 956 957 958 959
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

960
		if (IS_GEN9_LP(dev_priv))
961 962 963
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
964
	}
965 966
}

967 968 969 970 971 972 973 974
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

975
static void intel_pps_get_registers(struct intel_dp *intel_dp,
976 977
				    struct pps_registers *regs)
{
978
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
979 980
	int pps_idx = 0;

981 982
	memset(regs, 0, sizeof(*regs));

983
	if (IS_GEN9_LP(dev_priv))
984 985 986
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
987

988 989 990 991
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
992 993
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv))
994
		regs->pp_div = PP_DIVISOR(pps_idx);
995 996
}

997 998
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
999
{
1000
	struct pps_registers regs;
1001

1002
	intel_pps_get_registers(intel_dp, &regs);
1003 1004

	return regs.pp_ctrl;
1005 1006
}

1007 1008
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1009
{
1010
	struct pps_registers regs;
1011

1012
	intel_pps_get_registers(intel_dp, &regs);
1013 1014

	return regs.pp_stat;
1015 1016
}

1017 1018 1019 1020 1021 1022 1023
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1024
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1025

1026
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1027 1028
		return 0;

1029
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1030

1031
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
V
Ville Syrjälä 已提交
1032
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1033
		i915_reg_t pp_ctrl_reg, pp_div_reg;
1034
		u32 pp_div;
V
Ville Syrjälä 已提交
1035

1036 1037
		pp_ctrl_reg = PP_CONTROL(pipe);
		pp_div_reg  = PP_DIVISOR(pipe);
1038 1039 1040 1041 1042 1043 1044 1045 1046
		pp_div = I915_READ(pp_div_reg);
		pp_div &= PP_REFERENCE_DIVIDER_MASK;

		/* 0x1F write to PP_DIV_REG sets max cycle delay */
		I915_WRITE(pp_div_reg, pp_div | 0x1F);
		I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
		msleep(intel_dp->panel_power_cycle_delay);
	}

1047
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1048

1049 1050 1051
	return 0;
}

1052
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1053
{
1054
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1055

V
Ville Syrjälä 已提交
1056 1057
	lockdep_assert_held(&dev_priv->pps_mutex);

1058
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1059 1060 1061
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1062
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1063 1064
}

1065
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1066
{
1067
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1068

V
Ville Syrjälä 已提交
1069 1070
	lockdep_assert_held(&dev_priv->pps_mutex);

1071
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1072 1073 1074
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1075
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1076 1077
}

1078 1079 1080
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1081
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1082

1083
	if (!intel_dp_is_edp(intel_dp))
1084
		return;
1085

1086
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1087 1088
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1089 1090
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1091 1092 1093
	}
}

1094
static uint32_t
1095
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1096
{
1097
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1098
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1099 1100 1101
	uint32_t status;
	bool done;

1102
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1103 1104
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1105
	if (!done)
1106
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1107 1108 1109 1110 1111
#undef C

	return status;
}

1112
static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1113
{
1114
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1115

1116 1117 1118
	if (index)
		return 0;

1119 1120
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1121
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1122
	 */
1123
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1124 1125 1126 1127
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1128
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1129 1130 1131 1132

	if (index)
		return 0;

1133 1134 1135 1136 1137
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1138
	if (intel_dp->aux_ch == AUX_CH_A)
1139
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1140 1141
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1142 1143 1144 1145
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
1146
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1147

1148
	if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1149
		/* Workaround for non-ULT HSW */
1150 1151 1152 1153 1154
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1155
	}
1156 1157

	return ilk_get_aux_clock_divider(intel_dp, index);
1158 1159
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1170 1171 1172
static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				     int send_bytes,
				     uint32_t aux_clock_divider)
1173 1174
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1175 1176
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1177 1178
	uint32_t precharge, timeout;

1179
	if (IS_GEN6(dev_priv))
1180 1181 1182 1183
		precharge = 3;
	else
		precharge = 5;

1184
	if (IS_BROADWELL(dev_priv))
1185 1186 1187 1188 1189
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1190
	       DP_AUX_CH_CTL_DONE |
1191
	       DP_AUX_CH_CTL_INTERRUPT |
1192
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1193
	       timeout |
1194
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1195 1196
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1197
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1198 1199
}

1200 1201 1202 1203
static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				      int send_bytes,
				      uint32_t unused)
{
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	uint32_t ret;

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1221 1222
}

1223
static int
1224 1225
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const uint8_t *send, int send_bytes,
1226 1227
		  uint8_t *recv, int recv_size,
		  u32 aux_send_ctl_flags)
1228 1229
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1230 1231
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1232
	i915_reg_t ch_ctl, ch_data[5];
1233
	uint32_t aux_clock_divider;
1234 1235
	int i, ret, recv_bytes;
	uint32_t status;
1236
	int try, clock = 0;
1237 1238
	bool vdd;

1239 1240 1241 1242
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1243
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1244

1245 1246 1247 1248 1249 1250
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1251
	vdd = edp_panel_vdd_on(intel_dp);
1252 1253 1254 1255 1256 1257 1258 1259

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1260

1261 1262
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1263
		status = I915_READ_NOTRACE(ch_ctl);
1264 1265 1266 1267 1268 1269
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
1270 1271 1272 1273 1274 1275 1276 1277 1278
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1279 1280
		ret = -EBUSY;
		goto out;
1281 1282
	}

1283 1284 1285 1286 1287 1288
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1289
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1290 1291 1292 1293 1294
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1295

1296 1297 1298 1299
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1300
				I915_WRITE(ch_data[i >> 2],
1301 1302
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1303 1304

			/* Send the command and wait for it to complete */
1305
			I915_WRITE(ch_ctl, send_ctl);
1306

1307
			status = intel_dp_aux_wait_done(intel_dp);
1308 1309 1310 1311 1312 1313 1314 1315

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1316 1317 1318 1319 1320
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1321 1322 1323
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1324 1325
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1326
				continue;
1327
			}
1328
			if (status & DP_AUX_CH_CTL_DONE)
1329
				goto done;
1330
		}
1331 1332 1333
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1334
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1335 1336
		ret = -EBUSY;
		goto out;
1337 1338
	}

1339
done:
1340 1341 1342
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1343
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1344
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1345 1346
		ret = -EIO;
		goto out;
1347
	}
1348 1349 1350

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1351
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1352
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1353 1354
		ret = -ETIMEDOUT;
		goto out;
1355 1356 1357 1358 1359
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1373 1374
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1375

1376
	for (i = 0; i < recv_bytes; i += 4)
1377
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1378
				    recv + i, recv_bytes - i);
1379

1380 1381 1382 1383
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1384 1385 1386
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1387
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
1388

1389
	return ret;
1390 1391
}

1392 1393
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1405 1406
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1407
{
1408 1409 1410
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
1411 1412
	int ret;

1413
	intel_dp_aux_header(txbuf, msg);
1414

1415 1416 1417
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1418
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1419
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1420
		rxsize = 2; /* 0 or 1 data bytes */
1421

1422 1423
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1424

1425 1426
		WARN_ON(!msg->buffer != !msg->size);

1427 1428
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1429

1430
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1431
					rxbuf, rxsize, 0);
1432 1433
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1434

1435 1436 1437 1438 1439 1440 1441
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1442 1443
		}
		break;
1444

1445 1446
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1447
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1448
		rxsize = msg->size + 1;
1449

1450 1451
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1452

1453
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1454
					rxbuf, rxsize, 0);
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1465
		}
1466 1467 1468 1469 1470
		break;

	default:
		ret = -EINVAL;
		break;
1471
	}
1472

1473
	return ret;
1474 1475
}

1476
static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1477
{
1478 1479 1480
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum port port = encoder->port;
1481 1482
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[port];
1483
	enum aux_ch aux_ch;
1484 1485

	if (!info->alternate_aux_channel) {
1486 1487
		aux_ch = (enum aux_ch) port;

1488
		DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1489 1490
			      aux_ch_name(aux_ch), port_name(port));
		return aux_ch;
1491 1492 1493 1494
	}

	switch (info->alternate_aux_channel) {
	case DP_AUX_A:
1495
		aux_ch = AUX_CH_A;
1496 1497
		break;
	case DP_AUX_B:
1498
		aux_ch = AUX_CH_B;
1499 1500
		break;
	case DP_AUX_C:
1501
		aux_ch = AUX_CH_C;
1502 1503
		break;
	case DP_AUX_D:
1504
		aux_ch = AUX_CH_D;
1505
		break;
1506 1507 1508
	case DP_AUX_E:
		aux_ch = AUX_CH_E;
		break;
R
Rodrigo Vivi 已提交
1509
	case DP_AUX_F:
1510
		aux_ch = AUX_CH_F;
R
Rodrigo Vivi 已提交
1511
		break;
1512 1513
	default:
		MISSING_CASE(info->alternate_aux_channel);
1514
		aux_ch = AUX_CH_A;
1515 1516 1517 1518
		break;
	}

	DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1519
		      aux_ch_name(aux_ch), port_name(port));
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	return aux_ch;
}

static enum intel_display_power_domain
intel_aux_power_domain(struct intel_dp *intel_dp)
{
	switch (intel_dp->aux_ch) {
	case AUX_CH_A:
		return POWER_DOMAIN_AUX_A;
	case AUX_CH_B:
		return POWER_DOMAIN_AUX_B;
	case AUX_CH_C:
		return POWER_DOMAIN_AUX_C;
	case AUX_CH_D:
		return POWER_DOMAIN_AUX_D;
1536 1537
	case AUX_CH_E:
		return POWER_DOMAIN_AUX_E;
1538 1539 1540 1541 1542 1543
	case AUX_CH_F:
		return POWER_DOMAIN_AUX_F;
	default:
		MISSING_CASE(intel_dp->aux_ch);
		return POWER_DOMAIN_AUX_A;
	}
1544 1545
}

1546
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1547
{
1548
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1549 1550
	enum aux_ch aux_ch = intel_dp->aux_ch;

1551 1552 1553 1554 1555
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1556
	default:
1557 1558
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1559 1560 1561
	}
}

1562
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1563
{
1564
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1565 1566
	enum aux_ch aux_ch = intel_dp->aux_ch;

1567 1568 1569 1570 1571
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1572
	default:
1573 1574
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1575 1576 1577
	}
}

1578
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1579
{
1580
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1581 1582
	enum aux_ch aux_ch = intel_dp->aux_ch;

1583 1584 1585 1586 1587 1588 1589
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1590
	default:
1591 1592
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1593 1594 1595
	}
}

1596
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1597
{
1598
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1599 1600
	enum aux_ch aux_ch = intel_dp->aux_ch;

1601 1602 1603 1604 1605 1606 1607
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1608
	default:
1609 1610
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1611 1612 1613
	}
}

1614
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1615
{
1616
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1617 1618
	enum aux_ch aux_ch = intel_dp->aux_ch;

1619 1620 1621 1622 1623
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1624
	case AUX_CH_E:
1625 1626
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1627
	default:
1628 1629
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1630 1631 1632
	}
}

1633
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1634
{
1635
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1636 1637
	enum aux_ch aux_ch = intel_dp->aux_ch;

1638 1639 1640 1641 1642
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1643
	case AUX_CH_E:
1644 1645
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1646
	default:
1647 1648
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1649 1650 1651
	}
}

1652 1653 1654 1655 1656 1657 1658 1659
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1660
{
1661
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1662 1663 1664 1665
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	intel_dp->aux_ch = intel_aux_ch(intel_dp);
	intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1677

1678 1679 1680 1681 1682 1683 1684 1685
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1686

1687 1688 1689 1690
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1691

1692
	drm_dp_aux_init(&intel_dp->aux);
1693

1694
	/* Failure to allocate our preferred name is not critical */
1695 1696
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1697
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1698 1699
}

1700
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1701
{
1702
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1703

1704
	return max_rate >= 540000;
1705 1706
}

1707 1708 1709 1710 1711 1712 1713
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1714 1715
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1716
		   struct intel_crtc_state *pipe_config)
1717
{
1718
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1719 1720
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1721

1722
	if (IS_G4X(dev_priv)) {
1723 1724
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1725
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1726 1727
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1728
	} else if (IS_CHERRYVIEW(dev_priv)) {
1729 1730
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1731
	} else if (IS_VALLEYVIEW(dev_priv)) {
1732 1733
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1734
	}
1735 1736 1737

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1738
			if (pipe_config->port_clock == divisor[i].clock) {
1739 1740 1741 1742 1743
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1744 1745 1746
	}
}

1747 1748 1749 1750 1751 1752 1753 1754
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1755
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1770 1771
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1772 1773
	DRM_DEBUG_KMS("source rates: %s\n", str);

1774 1775
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1776 1777
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1778 1779
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1780
	DRM_DEBUG_KMS("common rates: %s\n", str);
1781 1782
}

1783 1784 1785 1786 1787
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1788
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1789 1790 1791
	if (WARN_ON(len <= 0))
		return 162000;

1792
	return intel_dp->common_rates[len - 1];
1793 1794
}

1795 1796
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1797 1798
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1799 1800 1801 1802 1803

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1804 1805
}

1806 1807
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   uint8_t *link_bw, uint8_t *rate_select)
1808
{
1809 1810
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1811 1812 1813 1814 1815 1816 1817 1818 1819
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1820 1821 1822 1823 1824 1825
struct link_config_limits {
	int min_clock, max_clock;
	int min_lane_count, max_lane_count;
	int min_bpp, max_bpp;
};

1826 1827
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1828
{
1829
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1830
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1831 1832 1833 1834 1835 1836 1837 1838
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1849 1850 1851
	return bpp;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/* Optimize link config in order: max bpp, min clock, min lanes */
static bool
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
/* Optimize link config in order: max bpp, min lanes, min clock */
static bool
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (lane_count = limits->min_lane_count;
		     lane_count <= limits->max_lane_count;
		     lane_count <<= 1) {
			for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return true;
				}
			}
		}
	}

	return false;
}

1960 1961 1962
static bool
intel_dp_compute_link_config(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config)
1963
{
1964
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1965
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1966
	struct link_config_limits limits;
1967
	int common_len;
1968

1969
	common_len = intel_dp_common_len_rate_limit(intel_dp,
1970
						    intel_dp->max_link_rate);
1971 1972

	/* No common link rates between source and sink */
1973
	WARN_ON(common_len <= 0);
1974

1975 1976 1977 1978 1979 1980 1981 1982
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1983

1984
	if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
1985 1986
		/*
		 * Use the maximum clock and number of lanes the eDP panel
1987 1988 1989 1990 1991 1992
		 * advertizes being capable of. The eDP 1.3 and earlier panels
		 * are generally designed to support only a single clock and
		 * lane configuration, and typically these values correspond to
		 * the native resolution of the panel. With eDP 1.4 rate select
		 * and DSC, this is decreasingly the case, and we need to be
		 * able to select less than maximum link config.
1993
		 */
1994 1995
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
1996
	}
1997

1998 1999
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2000 2001 2002 2003 2004 2005
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	if (intel_dp_is_edp(intel_dp)) {
		/*
		 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
		 * section A.1: "It is recommended that the minimum number of
		 * lanes be used, using the minimum link rate allowed for that
		 * lane configuration."
		 *
		 * Note that we use the max clock and lane count for eDP 1.3 and
		 * earlier, and fast vs. wide is irrelevant.
		 */
		if (!intel_dp_compute_link_config_fast(intel_dp, pipe_config,
						       &limits))
			return false;
	} else {
		/* Optimize for slow and wide. */
		if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config,
						       &limits))
			return false;
	}
2025 2026

	DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2027 2028 2029 2030 2031 2032 2033 2034
		      pipe_config->lane_count, pipe_config->port_clock,
		      pipe_config->pipe_bpp);

	DRM_DEBUG_KMS("DP link rate required %i available %i\n",
		      intel_dp_link_required(adjusted_mode->crtc_clock,
					     pipe_config->pipe_bpp),
		      intel_dp_max_data_rate(pipe_config->port_clock,
					     pipe_config->lane_count));
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

	return true;
}

bool
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2052 2053
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2067 2068
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

		if (INTEL_GEN(dev_priv) >= 9) {
			int ret;

			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH_DISPLAY(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2086 2087 2088
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return false;

2089
	if (HAS_GMCH_DISPLAY(dev_priv) &&
2090 2091 2092 2093 2094 2095 2096 2097 2098
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return false;

	if (!intel_dp_compute_link_config(encoder, pipe_config))
		return false;

2099
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2100 2101 2102 2103 2104
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
2105
		pipe_config->limited_color_range =
2106
			pipe_config->pipe_bpp != 18 &&
2107 2108
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
2109 2110
	} else {
		pipe_config->limited_color_range =
2111
			intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2112 2113
	}

2114
	intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
2115 2116
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
2117
			       &pipe_config->dp_m_n,
2118
			       constant_n);
2119

2120
	if (intel_connector->panel.downclock_mode != NULL &&
2121
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2122
			pipe_config->has_drrs = true;
2123 2124 2125 2126 2127
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2128
					       constant_n);
2129 2130
	}

2131
	if (!HAS_DDI(dev_priv))
2132
		intel_dp_set_clock(encoder, pipe_config);
2133

2134 2135
	intel_psr_compute_config(intel_dp, pipe_config);

2136
	return true;
2137 2138
}

2139
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2140 2141
			      int link_rate, uint8_t lane_count,
			      bool link_mst)
2142
{
2143
	intel_dp->link_trained = false;
2144 2145 2146
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2147 2148
}

2149
static void intel_dp_prepare(struct intel_encoder *encoder,
2150
			     const struct intel_crtc_state *pipe_config)
2151
{
2152
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2153
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2154
	enum port port = encoder->port;
2155
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2156
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2157

2158 2159 2160 2161
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2162

2163
	/*
K
Keith Packard 已提交
2164
	 * There are four kinds of DP registers:
2165 2166
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2167 2168
	 * 	SNB CPU
	 *	IVB CPU
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2179

2180 2181 2182 2183
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2184

2185 2186
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2187
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2188

2189
	/* Split out the IBX/CPU vs CPT settings */
2190

2191
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2192 2193 2194 2195 2196 2197
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2198
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2199 2200
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2201
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2202
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2203 2204
		u32 trans_dp;

2205
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2206 2207 2208 2209 2210 2211 2212

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2213
	} else {
2214
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2215
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2216 2217 2218 2219 2220 2221 2222

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2223
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2224 2225
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2226
		if (IS_CHERRYVIEW(dev_priv))
2227 2228 2229
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2230
	}
2231 2232
}

2233 2234
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2235

2236 2237
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2238

2239 2240
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2241

2242
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2243

2244
static void wait_panel_status(struct intel_dp *intel_dp,
2245 2246
				       u32 mask,
				       u32 value)
2247
{
2248
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2249
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2250

V
Ville Syrjälä 已提交
2251 2252
	lockdep_assert_held(&dev_priv->pps_mutex);

2253
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2254

2255 2256
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2257

2258
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2259 2260 2261
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2262

2263 2264 2265
	if (intel_wait_for_register(dev_priv,
				    pp_stat_reg, mask, value,
				    5000))
2266
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2267 2268
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2269 2270

	DRM_DEBUG_KMS("Wait complete\n");
2271
}
2272

2273
static void wait_panel_on(struct intel_dp *intel_dp)
2274 2275
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2276
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2277 2278
}

2279
static void wait_panel_off(struct intel_dp *intel_dp)
2280 2281
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2282
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2283 2284
}

2285
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2286
{
2287 2288 2289
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2290
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2291

2292 2293 2294 2295 2296
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2297 2298
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2299 2300 2301
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2302

2303
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2304 2305
}

2306
static void wait_backlight_on(struct intel_dp *intel_dp)
2307 2308 2309 2310 2311
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2312
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2313 2314 2315 2316
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2317

2318 2319 2320 2321
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2322
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2323
{
2324
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2325
	u32 control;
2326

V
Ville Syrjälä 已提交
2327 2328
	lockdep_assert_held(&dev_priv->pps_mutex);

2329
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2330 2331
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2332 2333 2334
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2335
	return control;
2336 2337
}

2338 2339 2340 2341 2342
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2343
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2344
{
2345
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2346
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2347
	u32 pp;
2348
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2349
	bool need_to_disable = !intel_dp->want_panel_vdd;
2350

V
Ville Syrjälä 已提交
2351 2352
	lockdep_assert_held(&dev_priv->pps_mutex);

2353
	if (!intel_dp_is_edp(intel_dp))
2354
		return false;
2355

2356
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2357
	intel_dp->want_panel_vdd = true;
2358

2359
	if (edp_have_panel_vdd(intel_dp))
2360
		return need_to_disable;
2361

2362
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2363

V
Ville Syrjälä 已提交
2364
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2365
		      port_name(intel_dig_port->base.port));
2366

2367 2368
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2369

2370
	pp = ironlake_get_pp_control(intel_dp);
2371
	pp |= EDP_FORCE_VDD;
2372

2373 2374
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2375 2376 2377 2378 2379

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2380 2381 2382
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2383
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2384
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2385
			      port_name(intel_dig_port->base.port));
2386 2387
		msleep(intel_dp->panel_power_up_delay);
	}
2388 2389 2390 2391

	return need_to_disable;
}

2392 2393 2394 2395 2396 2397 2398
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2399
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2400
{
2401
	bool vdd;
2402

2403
	if (!intel_dp_is_edp(intel_dp))
2404 2405
		return;

2406
	pps_lock(intel_dp);
2407
	vdd = edp_panel_vdd_on(intel_dp);
2408
	pps_unlock(intel_dp);
2409

R
Rob Clark 已提交
2410
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2411
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2412 2413
}

2414
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2415
{
2416
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2417 2418
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2419
	u32 pp;
2420
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2421

V
Ville Syrjälä 已提交
2422
	lockdep_assert_held(&dev_priv->pps_mutex);
2423

2424
	WARN_ON(intel_dp->want_panel_vdd);
2425

2426
	if (!edp_have_panel_vdd(intel_dp))
2427
		return;
2428

V
Ville Syrjälä 已提交
2429
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2430
		      port_name(intel_dig_port->base.port));
2431

2432 2433
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2434

2435 2436
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2437

2438 2439
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2440

2441 2442 2443
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2444

2445
	if ((pp & PANEL_POWER_ON) == 0)
2446
		intel_dp->panel_power_off_time = ktime_get_boottime();
2447

2448
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2449
}
2450

2451
static void edp_panel_vdd_work(struct work_struct *__work)
2452 2453 2454 2455
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);

2456
	pps_lock(intel_dp);
2457 2458
	if (!intel_dp->want_panel_vdd)
		edp_panel_vdd_off_sync(intel_dp);
2459
	pps_unlock(intel_dp);
2460 2461
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2475 2476 2477 2478 2479
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2480
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2481
{
2482
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2483 2484 2485

	lockdep_assert_held(&dev_priv->pps_mutex);

2486
	if (!intel_dp_is_edp(intel_dp))
2487
		return;
2488

R
Rob Clark 已提交
2489
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2490
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2491

2492 2493
	intel_dp->want_panel_vdd = false;

2494
	if (sync)
2495
		edp_panel_vdd_off_sync(intel_dp);
2496 2497
	else
		edp_panel_vdd_schedule_off(intel_dp);
2498 2499
}

2500
static void edp_panel_on(struct intel_dp *intel_dp)
2501
{
2502
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2503
	u32 pp;
2504
	i915_reg_t pp_ctrl_reg;
2505

2506 2507
	lockdep_assert_held(&dev_priv->pps_mutex);

2508
	if (!intel_dp_is_edp(intel_dp))
2509
		return;
2510

V
Ville Syrjälä 已提交
2511
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2512
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2513

2514 2515
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2516
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2517
		return;
2518

2519
	wait_panel_power_cycle(intel_dp);
2520

2521
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2522
	pp = ironlake_get_pp_control(intel_dp);
2523
	if (IS_GEN5(dev_priv)) {
2524 2525
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2526 2527
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2528
	}
2529

2530
	pp |= PANEL_POWER_ON;
2531
	if (!IS_GEN5(dev_priv))
2532 2533
		pp |= PANEL_POWER_RESET;

2534 2535
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2536

2537
	wait_panel_on(intel_dp);
2538
	intel_dp->last_power_on = jiffies;
2539

2540
	if (IS_GEN5(dev_priv)) {
2541
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2542 2543
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2544
	}
2545
}
V
Ville Syrjälä 已提交
2546

2547 2548
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2549
	if (!intel_dp_is_edp(intel_dp))
2550 2551 2552 2553
		return;

	pps_lock(intel_dp);
	edp_panel_on(intel_dp);
2554
	pps_unlock(intel_dp);
2555 2556
}

2557 2558

static void edp_panel_off(struct intel_dp *intel_dp)
2559
{
2560
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2561
	u32 pp;
2562
	i915_reg_t pp_ctrl_reg;
2563

2564 2565
	lockdep_assert_held(&dev_priv->pps_mutex);

2566
	if (!intel_dp_is_edp(intel_dp))
2567
		return;
2568

V
Ville Syrjälä 已提交
2569
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2570
		      port_name(dp_to_dig_port(intel_dp)->base.port));
2571

V
Ville Syrjälä 已提交
2572
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2573
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2574

2575
	pp = ironlake_get_pp_control(intel_dp);
2576 2577
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2578
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2579
		EDP_BLC_ENABLE);
2580

2581
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2582

2583 2584
	intel_dp->want_panel_vdd = false;

2585 2586
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2587

2588
	wait_panel_off(intel_dp);
2589
	intel_dp->panel_power_off_time = ktime_get_boottime();
2590 2591

	/* We got a reference when we enabled the VDD. */
2592
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2593
}
V
Ville Syrjälä 已提交
2594

2595 2596
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2597
	if (!intel_dp_is_edp(intel_dp))
2598
		return;
V
Ville Syrjälä 已提交
2599

2600 2601
	pps_lock(intel_dp);
	edp_panel_off(intel_dp);
2602
	pps_unlock(intel_dp);
2603 2604
}

2605 2606
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2607
{
2608
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2609
	u32 pp;
2610
	i915_reg_t pp_ctrl_reg;
2611

2612 2613 2614 2615 2616 2617
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2618
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2619

2620
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2621

2622
	pp = ironlake_get_pp_control(intel_dp);
2623
	pp |= EDP_BLC_ENABLE;
2624

2625
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2626 2627 2628

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
V
Ville Syrjälä 已提交
2629

2630
	pps_unlock(intel_dp);
2631 2632
}

2633
/* Enable backlight PWM and backlight PP control. */
2634 2635
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2636
{
2637 2638
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2639
	if (!intel_dp_is_edp(intel_dp))
2640 2641 2642 2643
		return;

	DRM_DEBUG_KMS("\n");

2644
	intel_panel_enable_backlight(crtc_state, conn_state);
2645 2646 2647 2648 2649
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2650
{
2651
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2652
	u32 pp;
2653
	i915_reg_t pp_ctrl_reg;
2654

2655
	if (!intel_dp_is_edp(intel_dp))
2656 2657
		return;

2658
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2659

2660
	pp = ironlake_get_pp_control(intel_dp);
2661
	pp &= ~EDP_BLC_ENABLE;
2662

2663
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2664 2665 2666

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2667

2668
	pps_unlock(intel_dp);
V
Ville Syrjälä 已提交
2669 2670

	intel_dp->last_backlight_off = jiffies;
2671
	edp_wait_backlight_off(intel_dp);
2672
}
2673

2674
/* Disable backlight PP control and backlight PWM. */
2675
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2676
{
2677 2678
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2679
	if (!intel_dp_is_edp(intel_dp))
2680 2681 2682
		return;

	DRM_DEBUG_KMS("\n");
2683

2684
	_intel_edp_backlight_off(intel_dp);
2685
	intel_panel_disable_backlight(old_conn_state);
2686
}
2687

2688 2689 2690 2691 2692 2693 2694 2695
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
V
Ville Syrjälä 已提交
2696 2697
	bool is_enabled;

2698
	pps_lock(intel_dp);
V
Ville Syrjälä 已提交
2699
	is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2700
	pps_unlock(intel_dp);
2701 2702 2703 2704

	if (is_enabled == enable)
		return;

2705 2706
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2707 2708 2709 2710 2711 2712 2713

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2714 2715 2716 2717 2718 2719 2720 2721
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2722
			port_name(dig_port->base.port),
2723
			onoff(state), onoff(cur_state));
2724 2725 2726 2727 2728 2729 2730 2731 2732
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2733
			onoff(state), onoff(cur_state));
2734 2735 2736 2737
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2738
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2739
				const struct intel_crtc_state *pipe_config)
2740
{
2741
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2742
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2743

2744 2745 2746
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2747

2748
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2749
		      pipe_config->port_clock);
2750 2751 2752

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2753
	if (pipe_config->port_clock == 162000)
2754 2755 2756 2757 2758 2759 2760 2761
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2762 2763 2764 2765 2766 2767 2768
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN5(dev_priv))
2769
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2770

2771
	intel_dp->DP |= DP_PLL_ENABLE;
2772

2773
	I915_WRITE(DP_A, intel_dp->DP);
2774 2775
	POSTING_READ(DP_A);
	udelay(200);
2776 2777
}

2778 2779
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2780
{
2781
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2782
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2783

2784 2785 2786
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2787

2788 2789
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2790
	intel_dp->DP &= ~DP_PLL_ENABLE;
2791

2792
	I915_WRITE(DP_A, intel_dp->DP);
2793
	POSTING_READ(DP_A);
2794 2795 2796
	udelay(200);
}

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2812
/* If the sink supports it, try to set the power state appropriately */
2813
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2814 2815 2816 2817 2818 2819 2820 2821
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2822 2823 2824
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2825 2826
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2827
	} else {
2828 2829
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2830 2831 2832 2833 2834
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2835 2836
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2837 2838 2839 2840
			if (ret == 1)
				break;
			msleep(1);
		}
2841 2842 2843

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2844
	}
2845 2846 2847 2848

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2849 2850
}

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

2897 2898
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
2899
{
2900
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2901
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2902
	bool ret;
2903

2904 2905
	if (!intel_display_power_get_if_enabled(dev_priv,
						encoder->power_domain))
2906 2907
		return false;

2908 2909
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
2910

2911
	intel_display_power_put(dev_priv, encoder->power_domain);
2912 2913

	return ret;
2914
}
2915

2916
static void intel_dp_get_config(struct intel_encoder *encoder,
2917
				struct intel_crtc_state *pipe_config)
2918
{
2919
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2920 2921
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
2922
	enum port port = encoder->port;
2923
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2924

2925 2926 2927 2928
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2929

2930
	tmp = I915_READ(intel_dp->output_reg);
2931 2932

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2933

2934
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2935 2936 2937
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2938 2939 2940
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2941

2942
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2943 2944 2945 2946
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
2947
		if (tmp & DP_SYNC_HS_HIGH)
2948 2949 2950
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
2951

2952
		if (tmp & DP_SYNC_VS_HIGH)
2953 2954 2955 2956
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
2957

2958
	pipe_config->base.adjusted_mode.flags |= flags;
2959

2960
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2961 2962
		pipe_config->limited_color_range = true;

2963 2964 2965
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

2966 2967
	intel_dp_get_m_n(crtc, pipe_config);

2968
	if (port == PORT_A) {
2969
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2970 2971 2972 2973
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
2974

2975 2976 2977
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
2978

2979
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2980
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2995 2996
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2997
	}
2998 2999
}

3000
static void intel_disable_dp(struct intel_encoder *encoder,
3001 3002
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3003
{
3004
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3005

3006 3007
	intel_dp->link_trained = false;

3008
	if (old_crtc_state->has_audio)
3009 3010
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3011 3012 3013

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3014
	intel_edp_panel_vdd_on(intel_dp);
3015
	intel_edp_backlight_off(old_conn_state);
3016
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3017
	intel_edp_panel_off(intel_dp);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3032 3033
}

3034
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3035 3036
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3037
{
3038
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3039
	enum port port = encoder->port;
3040

3041 3042 3043 3044 3045 3046
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3047
	intel_dp_link_down(encoder, old_crtc_state);
3048 3049

	/* Only ilk+ has port A */
3050
	if (port == PORT_A)
3051
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3052 3053
}

3054
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3055 3056
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3057
{
3058
	intel_dp_link_down(encoder, old_crtc_state);
3059 3060
}

3061
static void chv_post_disable_dp(struct intel_encoder *encoder,
3062 3063
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3064
{
3065
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3066

3067
	intel_dp_link_down(encoder, old_crtc_state);
3068 3069 3070 3071

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3072
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3073

V
Ville Syrjälä 已提交
3074
	mutex_unlock(&dev_priv->sb_lock);
3075 3076
}

3077 3078 3079 3080 3081
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 uint32_t *DP,
			 uint8_t dp_train_pat)
{
3082
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3083
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3084
	enum port port = intel_dig_port->base.port;
3085
	uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3086

3087
	if (dp_train_pat & train_pat_mask)
3088
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3089
			      dp_train_pat & train_pat_mask);
3090

3091
	if (HAS_DDI(dev_priv)) {
3092 3093 3094 3095 3096 3097 3098 3099
		uint32_t temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3100
		switch (dp_train_pat & train_pat_mask) {
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3114 3115 3116
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3117 3118 3119
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3120
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3121
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3135
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3136 3137 3138 3139 3140
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3141
		*DP &= ~DP_LINK_TRAIN_MASK;
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3154 3155
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3156 3157 3158 3159 3160
			break;
		}
	}
}

3161
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3162
				 const struct intel_crtc_state *old_crtc_state)
3163
{
3164
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3165 3166 3167

	/* enable with pattern 1 (as per spec) */

3168
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3169 3170 3171 3172 3173 3174 3175 3176

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3177
	if (old_crtc_state->has_audio)
3178
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3179 3180 3181

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3182 3183
}

3184
static void intel_enable_dp(struct intel_encoder *encoder,
3185 3186
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3187
{
3188
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3189
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3190
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3191
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3192
	enum pipe pipe = crtc->pipe;
3193

3194 3195
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3196

3197 3198
	pps_lock(intel_dp);

3199
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3200
		vlv_init_panel_power_sequencer(encoder, pipe_config);
3201

3202
	intel_dp_enable_port(intel_dp, pipe_config);
3203 3204 3205 3206 3207 3208 3209

	edp_panel_vdd_on(intel_dp);
	edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);

	pps_unlock(intel_dp);

3210
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3211 3212
		unsigned int lane_mask = 0x0;

3213
		if (IS_CHERRYVIEW(dev_priv))
3214
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3215

3216 3217
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3218
	}
3219

3220
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3221
	intel_dp_start_link_train(intel_dp);
3222
	intel_dp_stop_link_train(intel_dp);
3223

3224
	if (pipe_config->has_audio) {
3225
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3226
				 pipe_name(pipe));
3227
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3228
	}
3229
}
3230

3231
static void g4x_enable_dp(struct intel_encoder *encoder,
3232 3233
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3234
{
3235
	intel_enable_dp(encoder, pipe_config, conn_state);
3236
	intel_edp_backlight_on(pipe_config, conn_state);
3237
}
3238

3239
static void vlv_enable_dp(struct intel_encoder *encoder,
3240 3241
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3242
{
3243
	intel_edp_backlight_on(pipe_config, conn_state);
3244 3245
}

3246
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3247 3248
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3249 3250
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3251
	enum port port = encoder->port;
3252

3253
	intel_dp_prepare(encoder, pipe_config);
3254

3255
	/* Only ilk+ has port A */
3256
	if (port == PORT_A)
3257
		ironlake_edp_pll_on(intel_dp, pipe_config);
3258 3259
}

3260 3261 3262
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3263
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3264
	enum pipe pipe = intel_dp->pps_pipe;
3265
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3266

3267 3268
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3269 3270 3271
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3272 3273 3274
	edp_panel_vdd_off_sync(intel_dp);

	/*
3275
	 * VLV seems to get confused when multiple power sequencers
3276 3277 3278
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3279
	 * selected in multiple power sequencers, but let's clear the
3280 3281 3282 3283
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3284
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3285 3286 3287 3288 3289 3290
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3291
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3292 3293 3294 3295 3296 3297
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3298 3299 3300
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3301

3302 3303 3304 3305
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3306 3307 3308 3309
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3310
			      pipe_name(pipe), port_name(port));
3311 3312

		/* make sure vdd is off before we steal it */
3313
		vlv_detach_power_sequencer(intel_dp);
3314 3315 3316
	}
}

3317 3318
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3319
{
3320
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3321 3322
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3323 3324 3325

	lockdep_assert_held(&dev_priv->pps_mutex);

3326
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3327

3328 3329 3330 3331 3332 3333 3334
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3335
		vlv_detach_power_sequencer(intel_dp);
3336
	}
3337 3338 3339 3340 3341

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3342
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3343

3344 3345
	intel_dp->active_pipe = crtc->pipe;

3346
	if (!intel_dp_is_edp(intel_dp))
3347 3348
		return;

3349 3350 3351 3352
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3353
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3354 3355

	/* init power sequencer on this pipe and port */
3356 3357
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3358 3359
}

3360
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3361 3362
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3363
{
3364
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3365

3366
	intel_enable_dp(encoder, pipe_config, conn_state);
3367 3368
}

3369
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3370 3371
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3372
{
3373
	intel_dp_prepare(encoder, pipe_config);
3374

3375
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3376 3377
}

3378
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3379 3380
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3381
{
3382
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3383

3384
	intel_enable_dp(encoder, pipe_config, conn_state);
3385 3386

	/* Second common lane will stay alive on its own now */
3387
	chv_phy_release_cl2_override(encoder);
3388 3389
}

3390
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3391 3392
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3393
{
3394
	intel_dp_prepare(encoder, pipe_config);
3395

3396
	chv_phy_pre_pll_enable(encoder, pipe_config);
3397 3398
}

3399
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3400 3401
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3402
{
3403
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3404 3405
}

3406 3407 3408 3409
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3410
bool
3411
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3412
{
3413 3414
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3415 3416
}

3417
/* These are source-specific values. */
3418
uint8_t
K
Keith Packard 已提交
3419
intel_dp_voltage_max(struct intel_dp *intel_dp)
3420
{
3421
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3422 3423
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3424

3425
	if (HAS_DDI(dev_priv))
3426
		return intel_ddi_dp_voltage_max(encoder);
3427
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3428
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3429
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3430
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3431
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3432
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3433
	else
3434
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3435 3436
}

3437
uint8_t
K
Keith Packard 已提交
3438 3439
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
3440
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3441 3442
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3443

3444 3445
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3446
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3447
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3448 3449 3450 3451 3452 3453 3454
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3455
		default:
3456
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3457
		}
3458
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3459
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3460 3461 3462 3463 3464
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3465
		default:
3466
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3467 3468 3469
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3470 3471 3472 3473 3474 3475 3476
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3477
		default:
3478
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3479
		}
3480 3481 3482
	}
}

3483
static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3484
{
3485
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3486 3487 3488 3489 3490
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3491
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3492 3493
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3494
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3495 3496 3497
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3498
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3499 3500 3501
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3502
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3503 3504 3505
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3506
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3507 3508 3509 3510 3511 3512 3513
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3514
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3515 3516
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3517
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3518 3519 3520
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3521
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3522 3523 3524
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3525
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3526 3527 3528 3529 3530 3531 3532
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3533
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3534 3535
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3536
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3537 3538 3539
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3540
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3541 3542 3543 3544 3545 3546 3547
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3548
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3549 3550
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3551
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3563 3564
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3565 3566 3567 3568

	return 0;
}

3569
static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3570
{
3571 3572 3573
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3574 3575 3576
	uint8_t train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3577
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3578
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3579
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3580 3581 3582
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3583
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3584 3585 3586
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3587
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3588 3589 3590
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3591
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3592 3593
			deemph_reg_value = 128;
			margin_reg_value = 154;
3594
			uniq_trans_scale = true;
3595 3596 3597 3598 3599
			break;
		default:
			return 0;
		}
		break;
3600
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3601
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3602
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3603 3604 3605
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3606
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3607 3608 3609
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3610
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3611 3612 3613 3614 3615 3616 3617
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3618
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3619
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3620
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3621 3622 3623
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3624
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3625 3626 3627 3628 3629 3630 3631
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3632
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3633
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3634
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3646 3647
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3648 3649 3650 3651

	return 0;
}

3652
static uint32_t
3653
g4x_signal_levels(uint8_t train_set)
3654
{
3655
	uint32_t	signal_levels = 0;
3656

3657
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3658
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3659 3660 3661
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3662
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3663 3664
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3665
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3666 3667
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3668
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3669 3670 3671
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3672
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3673
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3674 3675 3676
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3677
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3678 3679
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3680
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3681 3682
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3683
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3684 3685 3686 3687 3688 3689
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3690
/* SNB CPU eDP voltage swing and pre-emphasis control */
3691
static uint32_t
3692
snb_cpu_edp_signal_levels(uint8_t train_set)
3693
{
3694 3695 3696
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3697 3698
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3699
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3700
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3701
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3702 3703
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3704
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3705 3706
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3707
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3708 3709
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3710
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3711
	default:
3712 3713 3714
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3715 3716 3717
	}
}

3718
/* IVB CPU eDP voltage swing and pre-emphasis control */
K
Keith Packard 已提交
3719
static uint32_t
3720
ivb_cpu_edp_signal_levels(uint8_t train_set)
K
Keith Packard 已提交
3721 3722 3723 3724
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3725
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3726
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3727
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3728
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3729
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3730 3731
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3732
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3733
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3734
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3735 3736
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3737
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3738
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3739
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3749
void
3750
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3751
{
3752
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3753
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3754
	enum port port = intel_dig_port->base.port;
3755
	uint32_t signal_levels, mask = 0;
3756 3757
	uint8_t train_set = intel_dp->train_set[0];

3758 3759 3760
	if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3761
		signal_levels = ddi_signal_levels(intel_dp);
3762
		mask = DDI_BUF_EMP_MASK;
3763
	} else if (IS_CHERRYVIEW(dev_priv)) {
3764
		signal_levels = chv_signal_levels(intel_dp);
3765
	} else if (IS_VALLEYVIEW(dev_priv)) {
3766
		signal_levels = vlv_signal_levels(intel_dp);
3767
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3768
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3769
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3770
	} else if (IS_GEN6(dev_priv) && port == PORT_A) {
3771
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3772 3773
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3774
		signal_levels = g4x_signal_levels(train_set);
3775 3776 3777
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3778 3779 3780 3781 3782 3783 3784 3785
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3786

3787
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3788 3789 3790

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3791 3792
}

3793
void
3794 3795
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       uint8_t dp_train_pat)
3796
{
3797
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3798 3799
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3800

3801
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3802

3803
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3804
	POSTING_READ(intel_dp->output_reg);
3805 3806
}

3807
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3808
{
3809
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3810
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3811
	enum port port = intel_dig_port->base.port;
3812 3813
	uint32_t val;

3814
	if (!HAS_DDI(dev_priv))
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3832 3833 3834 3835
	if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3836 3837 3838
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3839
static void
3840 3841
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3842
{
3843 3844 3845 3846
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
C
Chris Wilson 已提交
3847
	uint32_t DP = intel_dp->DP;
3848

3849
	if (WARN_ON(HAS_DDI(dev_priv)))
3850 3851
		return;

3852
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3853 3854
		return;

3855
	DRM_DEBUG_KMS("\n");
3856

3857
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3858
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3859
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3860
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3861
	} else {
3862
		DP &= ~DP_LINK_TRAIN_MASK;
3863
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3864
	}
3865
	I915_WRITE(intel_dp->output_reg, DP);
3866
	POSTING_READ(intel_dp->output_reg);
3867

3868 3869 3870 3871 3872 3873 3874 3875 3876
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3877
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3878 3879 3880 3881 3882 3883 3884
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

3885
		/* always enable with pattern 1 (as per spec) */
3886 3887 3888
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
3889 3890 3891 3892
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
3893
		I915_WRITE(intel_dp->output_reg, DP);
3894
		POSTING_READ(intel_dp->output_reg);
3895

3896
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3897 3898
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3899 3900
	}

3901
	msleep(intel_dp->panel_power_down_delay);
3902 3903

	intel_dp->DP = DP;
3904 3905 3906 3907 3908 3909

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		pps_lock(intel_dp);
		intel_dp->active_pipe = INVALID_PIPE;
		pps_unlock(intel_dp);
	}
3910 3911
}

3912
bool
3913
intel_dp_read_dpcd(struct intel_dp *intel_dp)
3914
{
3915 3916
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
3917
		return false; /* aux transfer failed */
3918

3919
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3920

3921 3922
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
3923

3924 3925 3926 3927 3928
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3929

3930 3931
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3932

3933
	if (!intel_dp_read_dpcd(intel_dp))
3934 3935
		return false;

3936 3937
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
3938

3939 3940 3941
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3942

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
3953 3954
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
3955
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3956
			      intel_dp->edp_dpcd);
3957

3958 3959 3960 3961 3962 3963
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

3964 3965
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3966
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3967 3968
		int i;

3969 3970
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
3971

3972 3973
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
3974 3975 3976 3977

			if (val == 0)
				break;

3978 3979 3980 3981 3982 3983
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
3984
			intel_dp->sink_rates[i] = (val * 200) / 10;
3985
		}
3986
		intel_dp->num_sink_rates = i;
3987
	}
3988

3989 3990 3991 3992
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
3993 3994 3995 3996 3997
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

3998 3999
	intel_dp_set_common_rates(intel_dp);

4000 4001 4002 4003 4004 4005 4006
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
4007 4008
	u8 sink_count;

4009 4010 4011
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4012
	/* Don't clobber cached eDP rates. */
4013
	if (!intel_dp_is_edp(intel_dp)) {
4014
		intel_dp_set_sink_rates(intel_dp);
4015 4016
		intel_dp_set_common_rates(intel_dp);
	}
4017

4018
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
4019 4020 4021 4022 4023 4024 4025
		return false;

	/*
	 * Sink count can change between short pulse hpd hence
	 * a member variable in intel_dp will track any changes
	 * between short pulse interrupts.
	 */
4026
	intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
4027 4028 4029 4030 4031 4032 4033 4034

	/*
	 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
	 * a dongle is present but no display. Unless we require to know
	 * if a dongle is present or not, we don't need to update
	 * downstream port information. So, an early return here saves
	 * time from performing other operations which are not required.
	 */
4035
	if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
4036
		return false;
4037

4038
	if (!drm_dp_is_branch(intel_dp->dpcd))
4039 4040 4041 4042 4043
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4044 4045 4046
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4047 4048 4049
		return false; /* downstream port status fetch failed */

	return true;
4050 4051
}

4052
static bool
4053
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4054
{
4055
	u8 mstm_cap;
4056 4057 4058 4059

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4060
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4061
		return false;
4062

4063
	return mstm_cap & DP_MST_CAP;
4064 4065
}

4066 4067 4068 4069 4070 4071 4072 4073
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4074 4075 4076
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4077 4078 4079 4080 4081 4082 4083
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4084 4085 4086 4087

	if (!intel_dp->can_mst)
		return;

4088 4089
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4090 4091 4092

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4093 4094 4095 4096 4097
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4098 4099 4100
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4101 4102
}

4103 4104
static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
4105
	int status = 0;
4106
	int test_link_rate;
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	uint8_t test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4128 4129 4130 4131

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4132 4133 4134 4135 4136 4137
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4138 4139 4140 4141
}

static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
4142
	uint8_t test_pattern;
4143
	uint8_t test_misc;
4144 4145 4146 4147
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4148 4149
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4171 4172
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4199 4200 4201
}

static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4202
{
4203
	uint8_t test_result = DP_TEST_ACK;
4204 4205 4206 4207
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4208
	    connector->edid_corrupt ||
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4222
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4223
	} else {
4224 4225 4226 4227 4228 4229 4230
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4231 4232
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4233 4234 4235
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4236
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4237 4238 4239
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4240
	intel_dp->compliance.test_active = 1;
4241

4242 4243 4244 4245
	return test_result;
}

static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4246
{
4247 4248 4249 4250 4251 4252 4253
	uint8_t test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	uint8_t response = DP_TEST_NAK;
4254 4255
	uint8_t request = 0;
	int status;
4256

4257
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4258 4259 4260 4261 4262
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4263
	switch (request) {
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4281
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4282 4283 4284
		break;
	}

4285 4286 4287
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4288
update_status:
4289
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4290 4291
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4292 4293
}

4294 4295 4296 4297 4298 4299
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4300
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4301 4302 4303
		int ret = 0;
		int retry;
		bool handled;
4304 4305

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4306 4307 4308 4309 4310
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4311
			if (intel_dp->active_mst_links > 0 &&
4312
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4313 4314 4315 4316 4317
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4318
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4334
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
			/* send a hotplug event */
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
		}
	}
	return -EINVAL;
}

4353 4354 4355 4356 4357
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4358 4359 4360 4361
	if (!intel_dp->link_trained)
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4378 4379
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
	if (crtc->config->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4431
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4432 4433 4434 4435 4436

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
	if (crtc->config->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4437 4438

	return 0;
4439 4440
}

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4455
{
4456 4457 4458
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4459

4460
	changed = intel_encoder_hotplug(encoder, connector);
4461

4462
	drm_modeset_acquire_init(&ctx, 0);
4463

4464 4465
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4466

4467 4468 4469 4470
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4471

4472 4473
		break;
	}
4474

4475 4476 4477
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4478

4479
	return changed;
4480 4481
}

4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

	if (val & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
		DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}

4502 4503 4504 4505 4506 4507 4508
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4509 4510 4511 4512 4513
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4514
 */
4515
static bool
4516
intel_dp_short_pulse(struct intel_dp *intel_dp)
4517
{
4518
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4519 4520
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4521

4522 4523 4524 4525
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4526
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4527

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4539 4540
	}

4541
	intel_dp_check_service_irq(intel_dp);
4542

4543 4544 4545
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4546 4547 4548
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4549

4550 4551
	intel_psr_short_pulse(intel_dp);

4552 4553 4554
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4555
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4556
	}
4557 4558

	return true;
4559 4560
}

4561
/* XXX this is probably wrong for multiple downstream ports */
4562
static enum drm_connector_status
4563
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4564
{
4565
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4566 4567 4568
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

4569 4570 4571
	if (lspcon->active)
		lspcon_resume(lspcon);

4572 4573 4574
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4575
	if (intel_dp_is_edp(intel_dp))
4576 4577
		return connector_status_connected;

4578
	/* if there's no downstream port, we're done */
4579
	if (!drm_dp_is_branch(dpcd))
4580
		return connector_status_connected;
4581 4582

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4583 4584
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4585

4586 4587
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4588 4589
	}

4590 4591 4592
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4593
	/* If no HPD, poke DDC gently */
4594
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4595
		return connector_status_connected;
4596 4597

	/* Well we tried, say unknown for unreliable port types */
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4610 4611 4612

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4613
	return connector_status_disconnected;
4614 4615
}

4616 4617 4618
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4619
	return connector_status_connected;
4620 4621
}

4622
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4623
{
4624
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4625
	u32 bit;
4626

4627 4628
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4629 4630
		bit = SDE_PORTB_HOTPLUG;
		break;
4631
	case HPD_PORT_C:
4632 4633
		bit = SDE_PORTC_HOTPLUG;
		break;
4634
	case HPD_PORT_D:
4635 4636 4637
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4638
		MISSING_CASE(encoder->hpd_pin);
4639 4640 4641 4642 4643 4644
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4645
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4646
{
4647
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4648 4649
	u32 bit;

4650 4651
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4652 4653
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4654
	case HPD_PORT_C:
4655 4656
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4657
	case HPD_PORT_D:
4658 4659
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4660
	default:
4661
		MISSING_CASE(encoder->hpd_pin);
4662 4663 4664 4665 4666 4667
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4668
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4669
{
4670
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4671 4672
	u32 bit;

4673 4674
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4675 4676
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4677
	case HPD_PORT_E:
4678 4679
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4680
	default:
4681
		return cpt_digital_port_connected(encoder);
4682
	}
4683

4684
	return I915_READ(SDEISR) & bit;
4685 4686
}

4687
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4688
{
4689
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4690
	u32 bit;
4691

4692 4693
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4694 4695
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4696
	case HPD_PORT_C:
4697 4698
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
4699
	case HPD_PORT_D:
4700 4701 4702
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
4703
		MISSING_CASE(encoder->hpd_pin);
4704 4705 4706 4707 4708 4709
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

4710
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4711
{
4712
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4713 4714
	u32 bit;

4715 4716
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4717
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4718
		break;
4719
	case HPD_PORT_C:
4720
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4721
		break;
4722
	case HPD_PORT_D:
4723
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4724 4725
		break;
	default:
4726
		MISSING_CASE(encoder->hpd_pin);
4727
		return false;
4728 4729
	}

4730
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
4731 4732
}

4733
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4734
{
4735 4736 4737
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4738 4739
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4740
		return ibx_digital_port_connected(encoder);
4741 4742
}

4743
static bool snb_digital_port_connected(struct intel_encoder *encoder)
4744
{
4745 4746 4747
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4748 4749
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
4750
		return cpt_digital_port_connected(encoder);
4751 4752
}

4753
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4754
{
4755 4756 4757
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4758 4759
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
4760
		return cpt_digital_port_connected(encoder);
4761 4762
}

4763
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4764
{
4765 4766 4767
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
4768 4769
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
4770
		return cpt_digital_port_connected(encoder);
4771 4772
}

4773
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4774
{
4775
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4776 4777
	u32 bit;

4778 4779
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4780 4781
		bit = BXT_DE_PORT_HP_DDIA;
		break;
4782
	case HPD_PORT_B:
4783 4784
		bit = BXT_DE_PORT_HP_DDIB;
		break;
4785
	case HPD_PORT_C:
4786 4787 4788
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
4789
		MISSING_CASE(encoder->hpd_pin);
4790 4791 4792 4793 4794 4795
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

4796 4797 4798 4799 4800 4801 4802 4803
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;
	const char *type_str;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

	if (is_legacy) {
		intel_dig_port->tc_type = TC_PORT_LEGACY;
		type_str = "legacy";
	} else if (is_typec) {
		intel_dig_port->tc_type = TC_PORT_TYPEC;
		type_str = "typec";
	} else if (is_tbt) {
		intel_dig_port->tc_type = TC_PORT_TBT;
		type_str = "tbt";
	} else {
		return;
	}

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
			      type_str);
}

4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
		val = I915_READ(PORT_TX_DFLEXDPCSSS);
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
static void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return;

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port)) {
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

	is_legacy = I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port);

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

4952 4953
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
4954
		return false;
4955
	}
4956 4957 4958

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
4959

4960 4961 4962
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

4963
	return true;
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
	case HPD_PORT_B:
		return icl_combo_port_connected(dev_priv, dig_port);
	case HPD_PORT_C:
	case HPD_PORT_D:
	case HPD_PORT_E:
	case HPD_PORT_F:
		return icl_tc_port_connected(dev_priv, dig_port);
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}
}

4986 4987
/*
 * intel_digital_port_connected - is the specified port connected?
4988
 * @encoder: intel_encoder
4989
 *
4990 4991 4992 4993 4994
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
4995
 * Return %true if port is connected, %false otherwise.
4996
 */
4997
bool intel_digital_port_connected(struct intel_encoder *encoder)
4998
{
4999 5000
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

5001 5002
	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (IS_GM45(dev_priv))
5003
			return gm45_digital_port_connected(encoder);
5004
		else
5005
			return g4x_digital_port_connected(encoder);
5006 5007 5008
	}

	if (IS_GEN5(dev_priv))
5009
		return ilk_digital_port_connected(encoder);
5010
	else if (IS_GEN6(dev_priv))
5011
		return snb_digital_port_connected(encoder);
5012
	else if (IS_GEN7(dev_priv))
5013
		return ivb_digital_port_connected(encoder);
5014
	else if (IS_GEN8(dev_priv))
5015
		return bdw_digital_port_connected(encoder);
5016
	else if (IS_GEN9_LP(dev_priv))
5017
		return bxt_digital_port_connected(encoder);
5018
	else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
5019
		return spt_digital_port_connected(encoder);
5020 5021
	else
		return icl_digital_port_connected(encoder);
5022 5023
}

5024
static struct edid *
5025
intel_dp_get_edid(struct intel_dp *intel_dp)
5026
{
5027
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5028

5029 5030 5031 5032
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5033 5034
			return NULL;

J
Jani Nikula 已提交
5035
		return drm_edid_duplicate(intel_connector->edid);
5036 5037 5038 5039
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5040

5041 5042 5043 5044 5045
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5046

5047
	intel_dp_unset_edid(intel_dp);
5048 5049 5050
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5051
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5052
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5053 5054
}

5055 5056
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5057
{
5058
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5059

5060
	drm_dp_cec_unset_edid(&intel_dp->aux);
5061 5062
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5063

5064 5065
	intel_dp->has_audio = false;
}
5066

5067
static int
5068 5069 5070
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5071
{
5072 5073
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5074
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
Z
Zhenyu Wang 已提交
5075 5076
	enum drm_connector_status status;

5077 5078
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5079
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5080

5081
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
Z
Zhenyu Wang 已提交
5082

5083
	/* Can't disconnect eDP */
5084
	if (intel_dp_is_edp(intel_dp))
5085
		status = edp_detect(intel_dp);
5086
	else if (intel_digital_port_connected(encoder))
5087
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5088
	else
5089 5090
		status = connector_status_disconnected;

5091
	if (status == connector_status_disconnected) {
5092
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5093

5094 5095 5096 5097 5098 5099 5100 5101 5102
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5103
		goto out;
5104
	}
Z
Zhenyu Wang 已提交
5105

5106
	if (intel_dp->reset_link_params) {
5107 5108
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5109

5110 5111
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5112 5113 5114

		intel_dp->reset_link_params = false;
	}
5115

5116 5117
	intel_dp_print_rates(intel_dp);

5118 5119
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5120

5121 5122 5123
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5124 5125 5126 5127 5128
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5129 5130
		status = connector_status_disconnected;
		goto out;
5131 5132 5133 5134 5135 5136
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
			intel_display_power_put(dev_priv,
						intel_dp->aux_power_domain);
			return ret;
		}
	}
5147

5148 5149 5150 5151 5152 5153 5154 5155
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5156
	intel_dp_set_edid(intel_dp);
5157 5158
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5159
		status = connector_status_connected;
5160

5161
	intel_dp_check_service_irq(intel_dp);
5162

5163
out:
5164
	if (status != connector_status_connected && !intel_dp->is_mst)
5165
		intel_dp_unset_edid(intel_dp);
5166

5167
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5168
	return status;
5169 5170
}

5171 5172
static void
intel_dp_force(struct drm_connector *connector)
5173
{
5174
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5175
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
5176
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5177

5178 5179 5180
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5181

5182 5183
	if (connector->status != connector_status_connected)
		return;
5184

5185
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5186 5187 5188

	intel_dp_set_edid(intel_dp);

5189
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5203

5204
	/* if eDP has no EDID, fall back to fixed mode */
5205
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5206
	    intel_connector->panel.fixed_mode) {
5207
		struct drm_display_mode *mode;
5208 5209

		mode = drm_mode_duplicate(connector->dev,
5210
					  intel_connector->panel.fixed_mode);
5211
		if (mode) {
5212 5213 5214 5215
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5216

5217
	return 0;
5218 5219
}

5220 5221 5222 5223
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5224
	struct drm_device *dev = connector->dev;
5225 5226 5227 5228 5229
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5230 5231 5232 5233 5234 5235 5236

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5237 5238 5239 5240 5241
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5242 5243
}

5244 5245 5246
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5247 5248 5249 5250
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5251 5252 5253
	intel_connector_unregister(connector);
}

5254
static void
5255
intel_dp_connector_destroy(struct drm_connector *connector)
5256
{
5257
	struct intel_connector *intel_connector = to_intel_connector(connector);
5258

5259
	kfree(intel_connector->detect_edid);
5260

5261 5262 5263
	if (!IS_ERR_OR_NULL(intel_connector->edid))
		kfree(intel_connector->edid);

5264 5265 5266 5267
	/*
	 * Can't call intel_dp_is_edp() since the encoder may have been
	 * destroyed already.
	 */
5268
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5269
		intel_panel_fini(&intel_connector->panel);
5270

5271
	drm_connector_cleanup(connector);
5272
	kfree(connector);
5273 5274
}

P
Paulo Zanoni 已提交
5275
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5276
{
5277 5278
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5279

5280
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5281
	if (intel_dp_is_edp(intel_dp)) {
5282
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5283 5284 5285 5286
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5287
		pps_lock(intel_dp);
5288
		edp_panel_vdd_off_sync(intel_dp);
5289 5290
		pps_unlock(intel_dp);

5291 5292 5293 5294
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5295
	}
5296 5297 5298

	intel_dp_aux_fini(intel_dp);

5299
	drm_encoder_cleanup(encoder);
5300
	kfree(intel_dig_port);
5301 5302
}

5303
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5304 5305 5306
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

5307
	if (!intel_dp_is_edp(intel_dp))
5308 5309
		return;

5310 5311 5312 5313
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5314
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5315
	pps_lock(intel_dp);
5316
	edp_panel_vdd_off_sync(intel_dp);
5317
	pps_unlock(intel_dp);
5318 5319
}

5320 5321 5322 5323 5324
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5325 5326 5327 5328 5329 5330
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
		DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5348
	intel_dp_aux_header(txbuf, &msg);
5349

5350
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5351 5352
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
	if (ret < 0) {
		DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
		return ret;
	} else if (ret == 0) {
		DRM_ERROR("Aksv write over DP/AUX was empty\n");
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
	return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
		DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5397 5398
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5399 5400
{
	ssize_t ret;
5401

5402
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5403
			       bcaps, 1);
5404 5405 5406 5407
	if (ret != 1) {
		DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
		DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
			DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
				  ret);
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
		DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5512

5513 5514 5515 5516
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5517
		return false;
5518
	}
5519

5520 5521 5522
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
5549
	.hdcp_capable = intel_dp_hdcp_capable,
5550 5551
};

5552 5553
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
5554
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5568
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5569 5570 5571 5572

	edp_panel_vdd_schedule_off(intel_dp);
}

5573 5574
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
5575
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5576 5577
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
5578

5579 5580 5581
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
5582

5583
	return INVALID_PIPE;
5584 5585
}

5586
void intel_dp_encoder_reset(struct drm_encoder *encoder)
5587
{
5588
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5589 5590
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5591 5592 5593

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
5594

5595
	if (lspcon->active)
5596 5597
		lspcon_resume(lspcon);

5598 5599
	intel_dp->reset_link_params = true;

5600 5601
	pps_lock(intel_dp);

5602 5603 5604
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

5605
	if (intel_dp_is_edp(intel_dp)) {
5606
		/* Reinit the power sequencer, in case BIOS did something with it. */
5607
		intel_dp_pps_init(intel_dp);
5608 5609
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
5610 5611

	pps_unlock(intel_dp);
5612 5613
}

5614
static const struct drm_connector_funcs intel_dp_connector_funcs = {
5615
	.force = intel_dp_force,
5616
	.fill_modes = drm_helper_probe_single_connector_modes,
5617 5618
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
5619
	.late_register = intel_dp_connector_register,
5620
	.early_unregister = intel_dp_connector_unregister,
5621
	.destroy = intel_dp_connector_destroy,
5622
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5623
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
5624 5625 5626
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5627
	.detect_ctx = intel_dp_detect,
5628 5629
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
5630
	.atomic_check = intel_digital_connector_atomic_check,
5631 5632 5633
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5634
	.reset = intel_dp_encoder_reset,
5635
	.destroy = intel_dp_encoder_destroy,
5636 5637
};

5638
enum irqreturn
5639 5640 5641
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5642
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5643
	enum irqreturn ret = IRQ_NONE;
5644

5645 5646 5647 5648 5649 5650 5651 5652
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5653
			      port_name(intel_dig_port->base.port));
5654
		return IRQ_HANDLED;
5655 5656
	}

5657
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5658
		      port_name(intel_dig_port->base.port),
5659
		      long_hpd ? "long" : "short");
5660

5661
	if (long_hpd) {
5662
		intel_dp->reset_link_params = true;
5663 5664 5665
		return IRQ_NONE;
	}

5666
	intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5667

5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
5680
		}
5681
	}
5682

5683
	if (!intel_dp->is_mst) {
5684
		bool handled;
5685 5686 5687

		handled = intel_dp_short_pulse(intel_dp);

5688 5689 5690
		/* Short pulse can signify loss of hdcp authentication */
		intel_hdcp_check_link(intel_dp->attached_connector);

5691
		if (!handled)
5692
			goto put_power;
5693
	}
5694 5695 5696

	ret = IRQ_HANDLED;

5697
put_power:
5698
	intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5699 5700

	return ret;
5701 5702
}

5703
/* check the VBT to see whether the eDP is on another port */
5704
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5705
{
5706 5707 5708 5709
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
5710
	if (INTEL_GEN(dev_priv) < 5)
5711 5712
		return false;

5713
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5714 5715
		return true;

5716
	return intel_bios_is_port_edp(dev_priv, port);
5717 5718
}

5719
static void
5720 5721
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
5722
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
5723 5724 5725 5726
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
5727

5728
	intel_attach_broadcast_rgb_property(connector);
5729

5730
	if (intel_dp_is_edp(intel_dp)) {
5731 5732 5733 5734 5735 5736 5737 5738
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH_DISPLAY(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

5739
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5740

5741
	}
5742 5743
}

5744 5745
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
5746
	intel_dp->panel_power_off_time = ktime_get_boottime();
5747 5748 5749 5750
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

5751
static void
5752
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5753
{
5754
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5755
	u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5756
	struct pps_registers regs;
5757

5758
	intel_pps_get_registers(intel_dp, &regs);
5759 5760 5761

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
5762
	pp_ctl = ironlake_get_pp_control(intel_dp);
5763

5764 5765
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
5766 5767
	if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
	    !HAS_PCH_ICP(dev_priv)) {
5768 5769
		I915_WRITE(regs.pp_ctrl, pp_ctl);
		pp_div = I915_READ(regs.pp_div);
5770
	}
5771 5772

	/* Pull timing values out of registers */
5773 5774
	seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		     PANEL_POWER_UP_DELAY_SHIFT;
5775

5776 5777
	seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		  PANEL_LIGHT_ON_DELAY_SHIFT;
5778

5779 5780
	seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		  PANEL_LIGHT_OFF_DELAY_SHIFT;
5781

5782 5783
	seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		   PANEL_POWER_DOWN_DELAY_SHIFT;
5784

5785 5786
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5787 5788
		seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
				BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5789
	} else {
5790
		seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5791
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5792
	}
5793 5794
}

I
Imre Deak 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
5804
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
5805 5806 5807 5808
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

5809
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
5810 5811 5812 5813 5814 5815 5816 5817 5818

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

5819
static void
5820
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5821
{
5822
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5823 5824 5825 5826 5827 5828 5829 5830 5831
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

5832
	intel_pps_readout_hw_state(intel_dp, &cur);
5833

I
Imre Deak 已提交
5834
	intel_pps_dump_state("cur", &cur);
5835

5836
	vbt = dev_priv->vbt.edp.pps;
5837 5838 5839 5840 5841 5842
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5843
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5844 5845 5846
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
5847 5848 5849 5850 5851
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
5865
	intel_pps_dump_state("vbt", &vbt);
5866 5867 5868

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
5869
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
5870 5871 5872 5873 5874 5875 5876 5877 5878
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

5879
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
5880 5881 5882 5883 5884 5885 5886
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

5887 5888 5889 5890 5891 5892
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
5903 5904 5905 5906 5907 5908

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5909 5910 5911
}

static void
5912
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5913
					      bool force_disable_vdd)
5914
{
5915
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5916
	u32 pp_on, pp_off, pp_div, port_sel = 0;
5917
	int div = dev_priv->rawclk_freq / 1000;
5918
	struct pps_registers regs;
5919
	enum port port = dp_to_dig_port(intel_dp)->base.port;
5920
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
5921

V
Ville Syrjälä 已提交
5922
	lockdep_assert_held(&dev_priv->pps_mutex);
5923

5924
	intel_pps_get_registers(intel_dp, &regs);
5925

5926 5927
	/*
	 * On some VLV machines the BIOS can leave the VDD
5928
	 * enabled even on power sequencers which aren't
5929 5930 5931 5932 5933 5934 5935
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
5936
	 * soon as the new power sequencer gets initialized.
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

5951
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
I
Imre Deak 已提交
5952 5953
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5954
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5955 5956
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
5957 5958
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv)) {
5959
		pp_div = I915_READ(regs.pp_ctrl);
5960
		pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5961
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5962 5963 5964 5965 5966 5967
				<< BXT_POWER_CYCLE_DELAY_SHIFT);
	} else {
		pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
		pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
				<< PANEL_POWER_CYCLE_DELAY_SHIFT);
	}
5968 5969 5970

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
5971
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5972
		port_sel = PANEL_PORT_SELECT_VLV(port);
5973
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5974 5975
		switch (port) {
		case PORT_A:
5976
			port_sel = PANEL_PORT_SELECT_DPA;
5977 5978 5979 5980 5981
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
5982
			port_sel = PANEL_PORT_SELECT_DPD;
5983 5984 5985 5986 5987
			break;
		default:
			MISSING_CASE(port);
			break;
		}
5988 5989
	}

5990 5991
	pp_on |= port_sel;

5992 5993
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
5994 5995
	if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
	    HAS_PCH_ICP(dev_priv))
5996
		I915_WRITE(regs.pp_ctrl, pp_div);
5997
	else
5998
		I915_WRITE(regs.pp_div, pp_div);
5999 6000

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6001 6002
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6003 6004
		      (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)  ||
		       HAS_PCH_ICP(dev_priv)) ?
6005 6006
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
		      I915_READ(regs.pp_div));
6007 6008
}

6009
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6010
{
6011
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6012 6013

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6014 6015
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6016 6017
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6018 6019 6020
	}
}

6021 6022
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6023
 * @dev_priv: i915 device
6024
 * @crtc_state: a pointer to the active intel_crtc_state
6025 6026 6027 6028 6029 6030 6031 6032 6033
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6034
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6035
				    const struct intel_crtc_state *crtc_state,
6036
				    int refresh_rate)
6037 6038
{
	struct intel_encoder *encoder;
6039 6040
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6041
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6042
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6043 6044 6045 6046 6047 6048

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6049 6050
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6051 6052 6053
		return;
	}

6054 6055
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6056 6057 6058 6059 6060 6061

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6062
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6063 6064 6065 6066
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6067 6068
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6069 6070
		index = DRRS_LOW_RR;

6071
	if (index == dev_priv->drrs.refresh_rate_type) {
6072 6073 6074 6075 6076
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6077
	if (!crtc_state->base.active) {
6078 6079 6080 6081
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6082
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
		switch (index) {
		case DRRS_HIGH_RR:
			intel_dp_set_m_n(intel_crtc, M1_N1);
			break;
		case DRRS_LOW_RR:
			intel_dp_set_m_n(intel_crtc, M2_N2);
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6094 6095
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6096
		u32 val;
6097

6098
		val = I915_READ(reg);
6099
		if (index > DRRS_HIGH_RR) {
6100
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6101 6102 6103
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6104
		} else {
6105
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6106 6107 6108
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6109 6110 6111 6112
		}
		I915_WRITE(reg, val);
	}

6113 6114 6115 6116 6117
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6118 6119 6120
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6121
 * @crtc_state: A pointer to the active crtc state.
6122 6123 6124
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6125
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6126
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6127
{
6128
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6129

6130
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6131 6132 6133 6134
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6135 6136 6137 6138 6139
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
	mutex_lock(&dev_priv->drrs.mutex);
	if (WARN_ON(dev_priv->drrs.dp)) {
		DRM_ERROR("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6154 6155 6156
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6157
 * @old_crtc_state: Pointer to old crtc_state.
6158 6159
 *
 */
6160
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6161
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6162
{
6163
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6164

6165
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6166 6167 6168 6169 6170 6171 6172 6173 6174
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6175 6176
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6177 6178 6179 6180 6181 6182 6183

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6197
	/*
6198 6199
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6200 6201
	 */

6202 6203
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6204

6205 6206 6207 6208 6209 6210
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6211

6212 6213
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6214 6215
}

6216
/**
6217
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6218
 * @dev_priv: i915 device
6219 6220
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6221 6222
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6223 6224 6225
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6226 6227
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6228 6229 6230 6231
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6232
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6233 6234
		return;

6235
	cancel_delayed_work(&dev_priv->drrs.work);
6236

6237
	mutex_lock(&dev_priv->drrs.mutex);
6238 6239 6240 6241 6242
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6243 6244 6245
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6246 6247 6248
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6249
	/* invalidate means busy screen hence upclock */
6250
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6251 6252
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6253 6254 6255 6256

	mutex_unlock(&dev_priv->drrs.mutex);
}

6257
/**
6258
 * intel_edp_drrs_flush - Restart Idleness DRRS
6259
 * @dev_priv: i915 device
6260 6261
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6262 6263 6264 6265
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6266 6267 6268
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6269 6270
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6271 6272 6273 6274
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6275
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6276 6277
		return;

6278
	cancel_delayed_work(&dev_priv->drrs.work);
6279

6280
	mutex_lock(&dev_priv->drrs.mutex);
6281 6282 6283 6284 6285
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6286 6287
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6288 6289

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6290 6291
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6292
	/* flush means busy screen hence upclock */
6293
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6294 6295
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6296 6297 6298 6299 6300 6301

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6302 6303 6304 6305 6306
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
6330 6331 6332 6333 6334 6335 6336 6337
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
6338 6339 6340 6341 6342 6343 6344 6345
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6346
 * @connector: eDP connector
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
6357
static struct drm_display_mode *
6358 6359
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
6360
{
6361
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6362 6363
	struct drm_display_mode *downclock_mode = NULL;

6364 6365 6366
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

6367
	if (INTEL_GEN(dev_priv) <= 6) {
6368 6369 6370 6371 6372
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6373
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6374 6375 6376
		return NULL;
	}

6377 6378
	downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
						    &connector->base);
6379 6380

	if (!downclock_mode) {
6381
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6382 6383 6384
		return NULL;
	}

6385
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6386

6387
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6388
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6389 6390 6391
	return downclock_mode;
}

6392
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6393
				     struct intel_connector *intel_connector)
6394
{
6395 6396
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
6397
	struct drm_connector *connector = &intel_connector->base;
6398
	struct drm_display_mode *fixed_mode = NULL;
6399
	struct drm_display_mode *downclock_mode = NULL;
6400 6401 6402
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;
6403
	enum pipe pipe = INVALID_PIPE;
6404

6405
	if (!intel_dp_is_edp(intel_dp))
6406 6407
		return true;

6408 6409 6410 6411 6412 6413
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
6414
	if (intel_get_lvds_encoder(&dev_priv->drm)) {
6415 6416 6417 6418 6419 6420
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

6421
	pps_lock(intel_dp);
6422 6423

	intel_dp_init_panel_power_timestamps(intel_dp);
6424
	intel_dp_pps_init(intel_dp);
6425
	intel_edp_panel_vdd_sanitize(intel_dp);
6426

6427
	pps_unlock(intel_dp);
6428

6429
	/* Cache DPCD and EDID for edp. */
6430
	has_dpcd = intel_edp_init_dpcd(intel_dp);
6431

6432
	if (!has_dpcd) {
6433 6434
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
6435
		goto out_vdd_off;
6436 6437
	}

6438
	mutex_lock(&dev->mode_config.mutex);
6439
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6440 6441
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
6442
			drm_connector_update_edid_property(connector,
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

6453
	/* prefer fixed mode from EDID if available */
6454 6455 6456
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
6457 6458
			downclock_mode = intel_dp_drrs_init(
						intel_connector, fixed_mode);
6459
			break;
6460 6461 6462 6463 6464 6465 6466
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
6467
		if (fixed_mode) {
6468
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6469 6470 6471
			connector->display_info.width_mm = fixed_mode->width_mm;
			connector->display_info.height_mm = fixed_mode->height_mm;
		}
6472
	}
6473
	mutex_unlock(&dev->mode_config.mutex);
6474

6475
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6476 6477
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
6478 6479 6480 6481 6482 6483

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
6484
		pipe = vlv_active_pipe(intel_dp);
6485 6486 6487 6488 6489 6490 6491 6492 6493

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
6494 6495
	}

6496
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6497
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
6498
	intel_panel_setup_backlight(connector, pipe);
6499

6500 6501 6502 6503
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

6504
	return true;
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	pps_lock(intel_dp);
	edp_panel_vdd_off_sync(intel_dp);
	pps_unlock(intel_dp);

	return false;
6517 6518
}

6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
6535 6536
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
6537 6538 6539 6540 6541
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

6542
bool
6543 6544
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
6545
{
6546 6547 6548 6549
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
6550
	struct drm_i915_private *dev_priv = to_i915(dev);
6551
	enum port port = intel_encoder->port;
6552
	int type;
6553

6554 6555 6556 6557
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

6558 6559 6560 6561 6562
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

6563 6564
	intel_dp_set_source_rates(intel_dp);

6565
	intel_dp->reset_link_params = true;
6566
	intel_dp->pps_pipe = INVALID_PIPE;
6567
	intel_dp->active_pipe = INVALID_PIPE;
6568

6569
	/* intel_dp vfuncs */
6570
	if (HAS_DDI(dev_priv))
6571 6572
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

6573 6574
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
6575
	intel_dp->attached_connector = intel_connector;
6576

6577
	if (intel_dp_is_port_edp(dev_priv, port))
6578
		type = DRM_MODE_CONNECTOR_eDP;
6579 6580
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
6581

6582 6583 6584
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

6585 6586 6587 6588 6589 6590 6591 6592
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

6593
	/* eDP only on port B and/or C on vlv/chv */
6594
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6595 6596
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
6597 6598
		return false;

6599 6600 6601 6602
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

6603
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6604 6605
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

6606
	if (!HAS_GMCH_DISPLAY(dev_priv))
6607
		connector->interlace_allowed = true;
6608 6609
	connector->doublescan_allowed = 0;

6610
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6611

6612
	intel_dp_aux_init(intel_dp);
6613

6614
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6615
			  edp_panel_vdd_work);
6616

6617
	intel_connector_attach_encoder(intel_connector, intel_encoder);
6618

6619
	if (HAS_DDI(dev_priv))
6620 6621 6622 6623
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

6624
	/* init MST on ports that can support it */
6625
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6626 6627
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
6628 6629
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
6630

6631
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6632 6633 6634
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
6635
	}
6636

6637
	intel_dp_add_properties(intel_dp, connector);
6638

6639
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6640 6641 6642 6643
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
6644

6645 6646 6647 6648
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
6649
	if (IS_G45(dev_priv)) {
6650 6651 6652
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
6653 6654

	return true;
6655 6656 6657 6658 6659

fail:
	drm_connector_cleanup(connector);

	return false;
6660
}
6661

6662
bool intel_dp_init(struct drm_i915_private *dev_priv,
6663 6664
		   i915_reg_t output_reg,
		   enum port port)
6665 6666 6667 6668 6669 6670
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

6671
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6672
	if (!intel_dig_port)
6673
		return false;
6674

6675
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
6676 6677
	if (!intel_connector)
		goto err_connector_alloc;
6678 6679 6680 6681

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

6682 6683 6684
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
6685
		goto err_encoder_init;
6686

6687
	intel_encoder->hotplug = intel_dp_hotplug;
6688
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
6689
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
6690
	intel_encoder->get_config = intel_dp_get_config;
6691
	intel_encoder->suspend = intel_dp_encoder_suspend;
6692
	if (IS_CHERRYVIEW(dev_priv)) {
6693
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6694 6695
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6696
		intel_encoder->disable = vlv_disable_dp;
6697
		intel_encoder->post_disable = chv_post_disable_dp;
6698
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6699
	} else if (IS_VALLEYVIEW(dev_priv)) {
6700
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6701 6702
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
6703
		intel_encoder->disable = vlv_disable_dp;
6704
		intel_encoder->post_disable = vlv_post_disable_dp;
6705
	} else {
6706 6707
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
6708
		intel_encoder->disable = g4x_disable_dp;
6709
		intel_encoder->post_disable = g4x_post_disable_dp;
6710
	}
6711 6712

	intel_dig_port->dp.output_reg = output_reg;
6713
	intel_dig_port->max_lanes = 4;
6714

6715
	intel_encoder->type = INTEL_OUTPUT_DP;
6716
	intel_encoder->power_domain = intel_port_to_power_domain(port);
6717
	if (IS_CHERRYVIEW(dev_priv)) {
6718 6719 6720 6721 6722 6723 6724
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
6725
	intel_encoder->cloneable = 0;
6726
	intel_encoder->port = port;
6727

6728 6729
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

6730 6731 6732
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

S
Sudip Mukherjee 已提交
6733 6734 6735
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

6736
	return true;
S
Sudip Mukherjee 已提交
6737 6738 6739

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
6740
err_encoder_init:
S
Sudip Mukherjee 已提交
6741 6742 6743
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
6744
	return false;
6745
}
6746

6747
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
6748
{
6749 6750 6751 6752
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6753

6754 6755
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
6756

6757
		intel_dp = enc_to_intel_dp(&encoder->base);
6758

6759
		if (!intel_dp->can_mst)
6760 6761
			continue;

6762 6763
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
6764 6765 6766
	}
}

6767
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
6768
{
6769
	struct intel_encoder *encoder;
6770

6771 6772
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
6773
		int ret;
6774

6775 6776 6777 6778 6779 6780
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
6781
			continue;
6782

6783
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
6784
		if (ret)
6785
			intel_dp_check_mst_status(intel_dp);
6786 6787
	}
}