intel_dp.c 207.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34
#include <asm/byteorder.h>
35

36
#include <drm/drm_atomic_helper.h>
37
#include <drm/drm_crtc.h>
38
#include <drm/drm_dp_helper.h>
39
#include <drm/drm_edid.h>
40
#include <drm/drm_hdcp.h>
41
#include <drm/drm_probe_helper.h>
42
#include <drm/i915_drm.h>
43

44
#include "i915_drv.h"
45
#include "intel_audio.h"
46
#include "intel_connector.h"
47
#include "intel_ddi.h"
48
#include "intel_drv.h"
49
#include "intel_psr.h"
50

51
#define DP_DPRX_ESI_LEN 14
52

53 54
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
55 56
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10
57 58 59 60 61 62 63 64 65

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR		976

66 67 68 69 70 71
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

72
struct dp_link_dpll {
73
	int clock;
74 75 76
	struct dpll dpll;
};

77
static const struct dp_link_dpll g4x_dpll[] = {
78
	{ 162000,
79
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
80
	{ 270000,
81 82 83 84
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
85
	{ 162000,
86
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
87
	{ 270000,
88 89 90
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

91
static const struct dp_link_dpll vlv_dpll[] = {
92
	{ 162000,
C
Chon Ming Lee 已提交
93
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
94
	{ 270000,
95 96 97
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

98 99 100 101 102 103 104 105 106 107
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
108
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
109
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
110
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
111 112
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
113

114 115 116 117 118 119 120 121
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

122
/**
123
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
124 125 126 127 128
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
129
bool intel_dp_is_edp(struct intel_dp *intel_dp)
130
{
131 132 133
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
134 135
}

136 137
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
138
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
139 140
}

141 142
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
143
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
144
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
145 146
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
147
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
148
				      enum pipe pipe);
149
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
150

151 152 153
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
154
	static const int dp_rates[] = {
155
		162000, 270000, 540000, 810000
156
	};
157
	int i, max_rate;
158

159
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
160

161 162
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
163
			break;
164
		intel_dp->sink_rates[i] = dp_rates[i];
165
	}
166

167
	intel_dp->num_sink_rates = i;
168 169
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

192 193
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
194
{
195
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
196 197
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 lane_info;

	if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
		return 4;

	lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
		     DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
		    DP_LANE_ASSIGNMENT_SHIFT(tc_port);

	switch (lane_info) {
	default:
		MISSING_CASE(lane_info);
	case 1:
	case 2:
	case 4:
	case 8:
		return 1;
	case 3:
	case 12:
		return 2;
	case 15:
		return 4;
	}
}

228 229
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
230 231
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
232 233
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
234
	int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
235

236
	return min3(source_max, sink_max, fia_max);
237 238
}

239
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
240 241 242 243
{
	return intel_dp->max_link_lane_count;
}

244
int
245
intel_dp_link_required(int pixel_clock, int bpp)
246
{
247 248
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
249 250
}

251
int
252 253
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
254 255 256 257 258 259 260
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
261 262
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

286
static int cnl_max_source_rate(struct intel_dp *intel_dp)
287 288 289 290 291 292 293 294 295
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
296
		return 540000;
297 298 299

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
300
		return 810000;
301

302
	/* For other SKUs, max rate on ports A and D is 5.4G */
303
	if (port == PORT_A || port == PORT_D)
304
		return 540000;
305

306
	return 810000;
307 308
}

309 310 311
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
312
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
313 314
	enum port port = dig_port->base.port;

315 316
	if (intel_port_is_combophy(dev_priv, port) &&
	    !intel_dp_is_edp(intel_dp))
317 318 319 320 321
		return 540000;

	return 810000;
}

322 323
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
324
{
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
341 342
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
343 344
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
345
	const int *source_rates;
346
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
347

348 349 350
	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

351
	if (INTEL_GEN(dev_priv) >= 10) {
352
		source_rates = cnl_rates;
353
		size = ARRAY_SIZE(cnl_rates);
354
		if (IS_GEN(dev_priv, 10))
355 356 357
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
358 359 360
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
361
	} else if (IS_GEN9_BC(dev_priv)) {
362
		source_rates = skl_rates;
363
		size = ARRAY_SIZE(skl_rates);
364 365
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
366 367
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
368
	} else {
369 370
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
371 372
	}

373 374 375 376 377
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

378 379 380
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

381 382
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

408 409 410 411 412 413 414 415 416 417 418 419
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

420
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
421
{
422
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
423

424 425 426 427 428 429 430 431
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
432
		intel_dp->common_rates[0] = 162000;
433 434 435 436
		intel_dp->num_common_rates = 1;
	}
}

437
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
438
				       u8 lane_count)
439 440 441 442 443 444
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
445 446
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
447 448
		return false;

449 450
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
451 452 453 454 455
		return false;

	return true;
}

456 457
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
458
						     u8 lane_count)
459 460 461 462 463 464 465 466 467 468 469 470 471
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

472
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
473
					    int link_rate, u8 lane_count)
474
{
475
	int index;
476

477 478 479 480
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
481 482 483 484 485 486 487
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
488 489
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
490
	} else if (lane_count > 1) {
491 492 493 494 495 496 497
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
498
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
499
		intel_dp->max_link_lane_count = lane_count >> 1;
500 501 502 503 504 505 506 507
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

508
static enum drm_mode_status
509 510 511
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
512
	struct intel_dp *intel_dp = intel_attached_dp(connector);
513 514
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
515
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
516 517
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
518
	int max_dotclk;
519 520
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
521

522 523 524
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

525
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
526

527
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
528
		if (mode->hdisplay > fixed_mode->hdisplay)
529 530
			return MODE_PANEL;

531
		if (mode->vdisplay > fixed_mode->vdisplay)
532
			return MODE_PANEL;
533 534

		target_clock = fixed_mode->clock;
535 536
	}

537
	max_link_clock = intel_dp_max_link_rate(intel_dp);
538
	max_lanes = intel_dp_max_lane_count(intel_dp);
539 540 541 542

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

543 544 545 546 547 548 549 550 551 552 553 554
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
555
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
556 557 558 559 560 561 562 563 564 565 566 567 568 569
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
570
		return MODE_CLOCK_HIGH;
571 572 573 574

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

575 576 577
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

578 579 580
	return MODE_OK;
}

581
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
582
{
583 584
	int i;
	u32 v = 0;
585 586 587 588

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
589
		v |= ((u32)src[i]) << ((3 - i) * 8);
590 591 592
	return v;
}

593
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
594 595 596 597 598 599 600 601
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

602
static void
603
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
604
static void
605
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
606
					      bool force_disable_vdd);
607
static void
608
intel_dp_pps_init(struct intel_dp *intel_dp);
609

610 611
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
612
{
613
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
614
	intel_wakeref_t wakeref;
615 616

	/*
617
	 * See intel_power_sequencer_reset() why we need
618 619
	 * a power domain reference here.
	 */
620 621
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
622 623

	mutex_lock(&dev_priv->pps_mutex);
624 625

	return wakeref;
626 627
}

628 629
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
630
{
631
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
632 633

	mutex_unlock(&dev_priv->pps_mutex);
634 635 636 637
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
638 639
}

640 641 642
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

643 644 645
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
646
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
647 648
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
649 650 651
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
652
	u32 DP;
653 654

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
655
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
656
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
657 658 659
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
660
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
661 662 663 664 665 666 667 668 669

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

670
	if (IS_CHERRYVIEW(dev_priv))
671 672 673
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
674

675 676 677 678 679 680
	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
681
	if (!pll_enabled) {
682
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
683 684
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

685
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
686 687 688 689 690
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
691
	}
692

693 694 695
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
696
	 * to make this power sequencer lock onto the port.
697 698 699 700 701 702 703 704 705 706
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
707

708
	if (!pll_enabled) {
709
		vlv_force_pll_off(dev_priv, pipe);
710 711 712 713

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
714 715
}

716 717 718 719 720 721 722 723 724
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
725 726
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

748 749 750
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
751
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
752
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
753
	enum pipe pipe;
754

V
Ville Syrjälä 已提交
755
	lockdep_assert_held(&dev_priv->pps_mutex);
756

757
	/* We should never land here with regular DP ports */
758
	WARN_ON(!intel_dp_is_edp(intel_dp));
759

760 761 762
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

763 764 765
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

766
	pipe = vlv_find_free_pps(dev_priv);
767 768 769 770 771

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
772
	if (WARN_ON(pipe == INVALID_PIPE))
773
		pipe = PIPE_A;
774

775
	vlv_steal_power_sequencer(dev_priv, pipe);
776
	intel_dp->pps_pipe = pipe;
777 778 779

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
780
		      port_name(intel_dig_port->base.port));
781 782

	/* init power sequencer on this pipe and port */
783 784
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
785

786 787 788 789 790
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
791 792 793 794

	return intel_dp->pps_pipe;
}

795 796 797
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
798
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
799
	int backlight_controller = dev_priv->vbt.backlight.controller;
800 801 802 803

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
804
	WARN_ON(!intel_dp_is_edp(intel_dp));
805 806

	if (!intel_dp->pps_reset)
807
		return backlight_controller;
808 809 810 811 812 813 814

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
815
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
816

817
	return backlight_controller;
818 819
}

820 821 822 823 824 825
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
826
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
827 828 829 830 831
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
832
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
833 834 835 836 837 838 839
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
840

841
static enum pipe
842 843 844
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
845 846
{
	enum pipe pipe;
847 848

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
849
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
850
			PANEL_PORT_SELECT_MASK;
851 852 853 854

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

855 856 857
		if (!pipe_check(dev_priv, pipe))
			continue;

858
		return pipe;
859 860
	}

861 862 863 864 865 866
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
867
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
868
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
869
	enum port port = intel_dig_port->base.port;
870 871 872 873

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
874 875 876 877 878 879 880 881 882 883 884
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
885 886 887 888 889 890

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
891 892
	}

893 894 895
	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

896 897
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
898 899
}

900
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
901 902 903
{
	struct intel_encoder *encoder;

904
	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
905
		    !IS_GEN9_LP(dev_priv)))
906 907 908 909 910 911 912 913 914 915 916 917
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

918 919
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
920

921 922 923 924 925
		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

926
		if (IS_GEN9_LP(dev_priv))
927 928 929
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
930
	}
931 932
}

933 934 935 936 937 938 939 940
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

941
static void intel_pps_get_registers(struct intel_dp *intel_dp,
942 943
				    struct pps_registers *regs)
{
944
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
945 946
	int pps_idx = 0;

947 948
	memset(regs, 0, sizeof(*regs));

949
	if (IS_GEN9_LP(dev_priv))
950 951 952
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
953

954 955 956 957
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
958 959

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
960
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
961 962
		regs->pp_div = INVALID_MMIO_REG;
	else
963
		regs->pp_div = PP_DIVISOR(pps_idx);
964 965
}

966 967
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
968
{
969
	struct pps_registers regs;
970

971
	intel_pps_get_registers(intel_dp, &regs);
972 973

	return regs.pp_ctrl;
974 975
}

976 977
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
978
{
979
	struct pps_registers regs;
980

981
	intel_pps_get_registers(intel_dp, &regs);
982 983

	return regs.pp_stat;
984 985
}

986 987 988 989 990 991 992
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
993
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
994
	intel_wakeref_t wakeref;
995

996
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
997 998
		return 0;

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
1012
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1013 1014
			msleep(intel_dp->panel_power_cycle_delay);
		}
1015 1016 1017 1018 1019
	}

	return 0;
}

1020
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1021
{
1022
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1023

V
Ville Syrjälä 已提交
1024 1025
	lockdep_assert_held(&dev_priv->pps_mutex);

1026
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1027 1028 1029
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1030
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1031 1032
}

1033
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1034
{
1035
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1036

V
Ville Syrjälä 已提交
1037 1038
	lockdep_assert_held(&dev_priv->pps_mutex);

1039
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1040 1041 1042
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1043
	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1044 1045
}

1046 1047 1048
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1049
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1050

1051
	if (!intel_dp_is_edp(intel_dp))
1052
		return;
1053

1054
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1055 1056
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1057 1058
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
1059 1060 1061
	}
}

1062
static u32
1063
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1064
{
1065
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1066
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1067
	u32 status;
1068 1069
	bool done;

1070
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1071 1072
	done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));
1073 1074 1075 1076

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1077
	if (!done)
1078
		DRM_ERROR("dp aux hw did not signal timeout!\n");
1079 1080 1081 1082 1083
#undef C

	return status;
}

1084
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1085
{
1086
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1087

1088 1089 1090
	if (index)
		return 0;

1091 1092
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1093
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1094
	 */
1095
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1096 1097
}

1098
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1099
{
1100
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1101
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1102 1103 1104 1105

	if (index)
		return 0;

1106 1107 1108 1109 1110
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1111
	if (dig_port->aux_ch == AUX_CH_A)
1112
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1113 1114
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1115 1116
}

1117
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1118
{
1119
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1120
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1121

1122
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1123
		/* Workaround for non-ULT HSW */
1124 1125 1126 1127 1128
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1129
	}
1130 1131

	return ilk_get_aux_clock_divider(intel_dp, index);
1132 1133
}

1134
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1135 1136 1137 1138 1139 1140 1141 1142 1143
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1144 1145 1146
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1147 1148
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1149 1150
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1151
	u32 precharge, timeout;
1152

1153
	if (IS_GEN(dev_priv, 6))
1154 1155 1156 1157
		precharge = 3;
	else
		precharge = 5;

1158
	if (IS_BROADWELL(dev_priv))
1159 1160 1161 1162 1163
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1164
	       DP_AUX_CH_CTL_DONE |
1165
	       DP_AUX_CH_CTL_INTERRUPT |
1166
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1167
	       timeout |
1168
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1169 1170
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1171
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1172 1173
}

1174 1175 1176
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1177
{
1178
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1179
	u32 ret;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_type == TC_PORT_TBT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1195 1196
}

1197
static int
1198
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1199 1200
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1201
		  u32 aux_send_ctl_flags)
1202 1203
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1204 1205
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1206
	i915_reg_t ch_ctl, ch_data[5];
1207
	u32 aux_clock_divider;
1208
	intel_wakeref_t wakeref;
1209
	int i, ret, recv_bytes;
1210
	int try, clock = 0;
1211
	u32 status;
1212 1213
	bool vdd;

1214 1215 1216 1217
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1218
	wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1219

1220 1221 1222 1223 1224 1225
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1226
	vdd = edp_panel_vdd_on(intel_dp);
1227 1228 1229 1230 1231 1232 1233 1234

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
1235

1236 1237
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1238
		status = I915_READ_NOTRACE(ch_ctl);
1239 1240 1241 1242
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1243 1244
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1245 1246

	if (try == 3) {
1247 1248 1249 1250 1251 1252 1253 1254 1255
		static u32 last_status = -1;
		const u32 status = I915_READ(ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

1256 1257
		ret = -EBUSY;
		goto out;
1258 1259
	}

1260 1261 1262 1263 1264 1265
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

1266
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1267 1268 1269 1270 1271
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1272

1273 1274 1275 1276
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1277
				I915_WRITE(ch_data[i >> 2],
1278 1279
					   intel_dp_pack_aux(send + i,
							     send_bytes - i));
1280 1281

			/* Send the command and wait for it to complete */
1282
			I915_WRITE(ch_ctl, send_ctl);
1283

1284
			status = intel_dp_aux_wait_done(intel_dp);
1285 1286 1287 1288 1289 1290 1291 1292

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

1293 1294 1295 1296 1297
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1298 1299 1300
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1301 1302
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1303
				continue;
1304
			}
1305
			if (status & DP_AUX_CH_CTL_DONE)
1306
				goto done;
1307
		}
1308 1309 1310
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1311
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1312 1313
		ret = -EBUSY;
		goto out;
1314 1315
	}

1316
done:
1317 1318 1319
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1320
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1321
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1322 1323
		ret = -EIO;
		goto out;
1324
	}
1325 1326 1327

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1328
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1329
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1330 1331
		ret = -ETIMEDOUT;
		goto out;
1332 1333 1334 1335 1336
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

1350 1351
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1352

1353
	for (i = 0; i < recv_bytes; i += 4)
1354
		intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1355
				    recv + i, recv_bytes - i);
1356

1357 1358 1359 1360
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);

1361 1362 1363
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1364
	pps_unlock(intel_dp, wakeref);
V
Ville Syrjälä 已提交
1365

1366
	return ret;
1367 1368
}

1369 1370
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1382 1383
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1384
{
1385
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1386
	u8 txbuf[20], rxbuf[20];
1387
	size_t txsize, rxsize;
1388 1389
	int ret;

1390
	intel_dp_aux_header(txbuf, msg);
1391

1392 1393 1394
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1395
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1396
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1397
		rxsize = 2; /* 0 or 1 data bytes */
1398

1399 1400
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1401

1402 1403
		WARN_ON(!msg->buffer != !msg->size);

1404 1405
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1406

1407
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1408
					rxbuf, rxsize, 0);
1409 1410
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1411

1412 1413 1414 1415 1416 1417 1418
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1419 1420
		}
		break;
1421

1422 1423
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1424
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1425
		rxsize = msg->size + 1;
1426

1427 1428
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1429

1430
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1431
					rxbuf, rxsize, 0);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1442
		}
1443 1444 1445 1446 1447
		break;

	default:
		ret = -EINVAL;
		break;
1448
	}
1449

1450
	return ret;
1451 1452
}

1453

1454
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1455
{
1456
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1457 1458
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1459

1460 1461 1462 1463 1464
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1465
	default:
1466 1467
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1468 1469 1470
	}
}

1471
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1472
{
1473
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1474 1475
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1476

1477 1478 1479 1480 1481
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1482
	default:
1483 1484
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1485 1486 1487
	}
}

1488
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1489
{
1490
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1491 1492
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1493

1494 1495 1496 1497 1498 1499 1500
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1501
	default:
1502 1503
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1504 1505 1506
	}
}

1507
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1508
{
1509
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1510 1511
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1512

1513 1514 1515 1516 1517 1518 1519
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1520
	default:
1521 1522
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1523 1524 1525
	}
}

1526
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1527
{
1528
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1529 1530
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1531

1532 1533 1534 1535 1536
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1537
	case AUX_CH_E:
1538 1539
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
1540
	default:
1541 1542
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1543 1544 1545
	}
}

1546
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1547
{
1548
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1549 1550
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1551

1552 1553 1554 1555 1556
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1557
	case AUX_CH_E:
1558 1559
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
1560
	default:
1561 1562
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1563 1564 1565
	}
}

1566 1567 1568 1569 1570 1571 1572 1573
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1574
{
1575
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1576 1577
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1589

1590 1591 1592 1593 1594 1595 1596 1597
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1598

1599 1600 1601 1602
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1603

1604
	drm_dp_aux_init(&intel_dp->aux);
1605

1606
	/* Failure to allocate our preferred name is not critical */
1607 1608
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
1609
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1610 1611
}

1612
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1613
{
1614
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1615

1616
	return max_rate >= 540000;
1617 1618
}

1619 1620 1621 1622 1623 1624 1625
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1626 1627
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1628
		   struct intel_crtc_state *pipe_config)
1629
{
1630
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1631 1632
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1633

1634
	if (IS_G4X(dev_priv)) {
1635 1636
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1637
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1638 1639
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1640
	} else if (IS_CHERRYVIEW(dev_priv)) {
1641 1642
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1643
	} else if (IS_VALLEYVIEW(dev_priv)) {
1644 1645
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1646
	}
1647 1648 1649

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1650
			if (pipe_config->port_clock == divisor[i].clock) {
1651 1652 1653 1654 1655
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1656 1657 1658
	}
}

1659 1660 1661 1662 1663 1664 1665 1666
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1667
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

1682 1683
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1684 1685
	DRM_DEBUG_KMS("source rates: %s\n", str);

1686 1687
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1688 1689
	DRM_DEBUG_KMS("sink rates: %s\n", str);

1690 1691
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1692
	DRM_DEBUG_KMS("common rates: %s\n", str);
1693 1694
}

1695 1696 1697 1698 1699
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1700
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1701 1702 1703
	if (WARN_ON(len <= 0))
		return 162000;

1704
	return intel_dp->common_rates[len - 1];
1705 1706
}

1707 1708
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1709 1710
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1711 1712 1713 1714 1715

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1716 1717
}

1718
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1719
			   u8 *link_bw, u8 *rate_select)
1720
{
1721 1722
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1723 1724 1725 1726 1727 1728 1729 1730 1731
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1732
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1733 1734 1735 1736
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1752 1753 1754 1755 1756 1757 1758 1759

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
1760 1761 1762
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

1763 1764 1765 1766
	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1767 1768
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1769
{
1770
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1771
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1772 1773 1774 1775 1776 1777 1778 1779
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1790 1791 1792
	return bpp;
}

1793
/* Adjust link config limits based on compliance test requests. */
1794
void
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

1829
/* Optimize link config in order: max bpp, min clock, min lanes */
1830
static int
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1856
					return 0;
1857 1858 1859 1860 1861
				}
			}
		}
	}

1862
	return -EINVAL;
1863 1864
}

1865
/* Optimize link config in order: max bpp, min lanes, min clock */
1866
static int
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);

		for (lane_count = limits->min_lane_count;
		     lane_count <= limits->max_lane_count;
		     lane_count <<= 1) {
			for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

1892
					return 0;
1893 1894 1895 1896 1897
				}
			}
		}
	}

1898
	return -EINVAL;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

1916 1917 1918 1919
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
1920 1921 1922 1923 1924 1925
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
1926
	int ret;
1927 1928

	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1929
		return -EINVAL;
1930 1931 1932 1933 1934 1935 1936

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1937
		return -EINVAL;
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1971
			return -EINVAL;
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1988
			return -EINVAL;
1989 1990
		}
	}
1991 1992 1993

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
1994 1995 1996 1997
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
1998
		return ret;
1999
	}
2000

2001 2002 2003 2004 2005 2006 2007
	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

2008
	return 0;
2009 2010
}

2011
static int
2012
intel_dp_compute_link_config(struct intel_encoder *encoder,
2013 2014
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2015
{
2016
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2017
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2018
	struct link_config_limits limits;
2019
	int common_len;
2020
	int ret;
2021

2022
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2023
						    intel_dp->max_link_rate);
2024 2025

	/* No common link rates between source and sink */
2026
	WARN_ON(common_len <= 0);
2027

2028 2029 2030 2031 2032 2033 2034 2035
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = 6 * 3;
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2036

2037
	if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
2038 2039
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2040 2041 2042 2043 2044 2045
		 * advertizes being capable of. The eDP 1.3 and earlier panels
		 * are generally designed to support only a single clock and
		 * lane configuration, and typically these values correspond to
		 * the native resolution of the panel. With eDP 1.4 rate select
		 * and DSC, this is decreasingly the case, and we need to be
		 * able to select less than maximum link config.
2046
		 */
2047 2048
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2049
	}
2050

2051 2052
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2053 2054 2055 2056 2057 2058
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

2059
	if (intel_dp_is_edp(intel_dp))
2060 2061 2062 2063 2064 2065 2066 2067 2068
		/*
		 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
		 * section A.1: "It is recommended that the minimum number of
		 * lanes be used, using the minimum link rate allowed for that
		 * lane configuration."
		 *
		 * Note that we use the max clock and lane count for eDP 1.3 and
		 * earlier, and fast vs. wide is irrelevant.
		 */
2069 2070 2071
		ret = intel_dp_compute_link_config_fast(intel_dp, pipe_config,
							&limits);
	else
2072
		/* Optimize for slow and wide. */
2073 2074 2075 2076
		ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
							&limits);

	/* enable compression if the mode doesn't fit available BW */
2077
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2078 2079 2080 2081 2082
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2083
	}
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
2107
	return 0;
2108 2109
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2133
int
2134 2135 2136 2137 2138 2139 2140
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2141
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2142 2143 2144 2145 2146
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
2147 2148
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
2149
	int ret;
2150 2151 2152 2153

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2154
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2155 2156 2157
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);

2158 2159 2160 2161 2162 2163 2164 2165 2166
	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2167 2168
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2169 2170 2171 2172 2173 2174 2175

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

R
Rodrigo Vivi 已提交
2176
		if (HAS_GMCH(dev_priv))
2177 2178 2179 2180 2181 2182 2183
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

2184
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2185
		return -EINVAL;
2186

R
Rodrigo Vivi 已提交
2187
	if (HAS_GMCH(dev_priv) &&
2188
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2189
		return -EINVAL;
2190 2191

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2192
		return -EINVAL;
2193

2194 2195 2196
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
				  intel_dp_supports_fec(intel_dp, pipe_config);

2197 2198 2199
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2200

2201 2202
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2203

2204 2205 2206 2207 2208 2209 2210 2211
	if (!pipe_config->dsc_params.compression_enable)
		intel_link_compute_m_n(pipe_config->pipe_bpp,
				       pipe_config->lane_count,
				       adjusted_mode->crtc_clock,
				       pipe_config->port_clock,
				       &pipe_config->dp_m_n,
				       constant_n);
	else
2212
		intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
2213 2214 2215 2216 2217
				       pipe_config->lane_count,
				       adjusted_mode->crtc_clock,
				       pipe_config->port_clock,
				       &pipe_config->dp_m_n,
				       constant_n);
2218

2219
	if (intel_connector->panel.downclock_mode != NULL &&
2220
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2221
			pipe_config->has_drrs = true;
2222 2223 2224 2225 2226
			intel_link_compute_m_n(pipe_config->pipe_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2227
					       constant_n);
2228 2229
	}

2230
	if (!HAS_DDI(dev_priv))
2231
		intel_dp_set_clock(encoder, pipe_config);
2232

2233 2234
	intel_psr_compute_config(intel_dp, pipe_config);

2235
	return 0;
2236 2237
}

2238
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2239
			      int link_rate, u8 lane_count,
2240
			      bool link_mst)
2241
{
2242
	intel_dp->link_trained = false;
2243 2244 2245
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2246 2247
}

2248
static void intel_dp_prepare(struct intel_encoder *encoder,
2249
			     const struct intel_crtc_state *pipe_config)
2250
{
2251
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2252
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2253
	enum port port = encoder->port;
2254
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2255
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2256

2257 2258 2259 2260
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2261

2262
	/*
K
Keith Packard 已提交
2263
	 * There are four kinds of DP registers:
2264 2265
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2266 2267
	 * 	SNB CPU
	 *	IVB CPU
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
2278

2279 2280 2281 2282
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2283

2284 2285
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2286
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2287

2288
	/* Split out the IBX/CPU vs CPT settings */
2289

2290
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2291 2292 2293 2294 2295 2296
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2297
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2298 2299
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2300
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2301
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2302 2303
		u32 trans_dp;

2304
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2305 2306 2307 2308 2309 2310 2311

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2312
	} else {
2313
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2314
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2315 2316 2317 2318 2319 2320 2321

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2322
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2323 2324
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2325
		if (IS_CHERRYVIEW(dev_priv))
2326 2327 2328
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2329
	}
2330 2331
}

2332 2333
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2334

2335 2336
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2337

2338 2339
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2340

2341
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2342

2343
static void wait_panel_status(struct intel_dp *intel_dp,
2344 2345
				       u32 mask,
				       u32 value)
2346
{
2347
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2348
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2349

V
Ville Syrjälä 已提交
2350 2351
	lockdep_assert_held(&dev_priv->pps_mutex);

2352
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2353

2354 2355
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2356

2357
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2358 2359 2360
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
2361

2362
	if (intel_wait_for_register(&dev_priv->uncore,
2363 2364
				    pp_stat_reg, mask, value,
				    5000))
2365
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2366 2367
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
2368 2369

	DRM_DEBUG_KMS("Wait complete\n");
2370
}
2371

2372
static void wait_panel_on(struct intel_dp *intel_dp)
2373 2374
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
2375
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2376 2377
}

2378
static void wait_panel_off(struct intel_dp *intel_dp)
2379 2380
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
2381
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2382 2383
}

2384
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2385
{
2386 2387 2388
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2389
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
2390

2391 2392 2393 2394 2395
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2396 2397
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2398 2399 2400
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2401

2402
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2403 2404
}

2405
static void wait_backlight_on(struct intel_dp *intel_dp)
2406 2407 2408 2409 2410
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2411
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2412 2413 2414 2415
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2416

2417 2418 2419 2420
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2421
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2422
{
2423
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2424
	u32 control;
2425

V
Ville Syrjälä 已提交
2426 2427
	lockdep_assert_held(&dev_priv->pps_mutex);

2428
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2429 2430
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2431 2432 2433
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2434
	return control;
2435 2436
}

2437 2438 2439 2440 2441
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2442
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2443
{
2444
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2445
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2446
	u32 pp;
2447
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2448
	bool need_to_disable = !intel_dp->want_panel_vdd;
2449

V
Ville Syrjälä 已提交
2450 2451
	lockdep_assert_held(&dev_priv->pps_mutex);

2452
	if (!intel_dp_is_edp(intel_dp))
2453
		return false;
2454

2455
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2456
	intel_dp->want_panel_vdd = true;
2457

2458
	if (edp_have_panel_vdd(intel_dp))
2459
		return need_to_disable;
2460

2461 2462
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2463

V
Ville Syrjälä 已提交
2464
	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2465
		      port_name(intel_dig_port->base.port));
2466

2467 2468
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2469

2470
	pp = ironlake_get_pp_control(intel_dp);
2471
	pp |= EDP_FORCE_VDD;
2472

2473 2474
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2475 2476 2477 2478 2479

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2480 2481 2482
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2483
	if (!edp_have_panel_power(intel_dp)) {
V
Ville Syrjälä 已提交
2484
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2485
			      port_name(intel_dig_port->base.port));
2486 2487
		msleep(intel_dp->panel_power_up_delay);
	}
2488 2489 2490 2491

	return need_to_disable;
}

2492 2493 2494 2495 2496 2497 2498
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2499
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2500
{
2501
	intel_wakeref_t wakeref;
2502
	bool vdd;
2503

2504
	if (!intel_dp_is_edp(intel_dp))
2505 2506
		return;

2507 2508 2509
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
R
Rob Clark 已提交
2510
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2511
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2512 2513
}

2514
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2515
{
2516
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2517 2518
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2519
	u32 pp;
2520
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2521

V
Ville Syrjälä 已提交
2522
	lockdep_assert_held(&dev_priv->pps_mutex);
2523

2524
	WARN_ON(intel_dp->want_panel_vdd);
2525

2526
	if (!edp_have_panel_vdd(intel_dp))
2527
		return;
2528

V
Ville Syrjälä 已提交
2529
	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2530
		      port_name(intel_dig_port->base.port));
2531

2532 2533
	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;
2534

2535 2536
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2537

2538 2539
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
P
Paulo Zanoni 已提交
2540

2541 2542 2543
	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2544

2545
	if ((pp & PANEL_POWER_ON) == 0)
2546
		intel_dp->panel_power_off_time = ktime_get_boottime();
2547

2548 2549
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2550
}
2551

2552
static void edp_panel_vdd_work(struct work_struct *__work)
2553
{
2554 2555 2556 2557
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2558

2559 2560 2561 2562
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2563 2564
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2578 2579 2580 2581 2582
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2583
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2584
{
2585
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2586 2587 2588

	lockdep_assert_held(&dev_priv->pps_mutex);

2589
	if (!intel_dp_is_edp(intel_dp))
2590
		return;
2591

R
Rob Clark 已提交
2592
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2593
	     port_name(dp_to_dig_port(intel_dp)->base.port));
2594

2595 2596
	intel_dp->want_panel_vdd = false;

2597
	if (sync)
2598
		edp_panel_vdd_off_sync(intel_dp);
2599 2600
	else
		edp_panel_vdd_schedule_off(intel_dp);
2601 2602
}

2603
static void edp_panel_on(struct intel_dp *intel_dp)
2604
{
2605
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2606
	u32 pp;
2607
	i915_reg_t pp_ctrl_reg;
2608

2609 2610
	lockdep_assert_held(&dev_priv->pps_mutex);

2611
	if (!intel_dp_is_edp(intel_dp))
2612
		return;
2613

V
Ville Syrjälä 已提交
2614
	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2615
		      port_name(dp_to_dig_port(intel_dp)->base.port));
V
Ville Syrjälä 已提交
2616

2617 2618
	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
2619
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
2620
		return;
2621

2622
	wait_panel_power_cycle(intel_dp);
2623

2624
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2625
	pp = ironlake_get_pp_control(intel_dp);
2626
	if (IS_GEN(dev_priv, 5)) {
2627 2628
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
2629 2630
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2631
	}
2632

2633
	pp |= PANEL_POWER_ON;
2634
	if (!IS_GEN(dev_priv, 5))
2635 2636
		pp |= PANEL_POWER_RESET;

2637 2638
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2639

2640
	wait_panel_on(intel_dp);
2641
	intel_dp->last_power_on = jiffies;
2642

2643
	if (IS_GEN(dev_priv, 5)) {
2644
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2645 2646
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
2647
	}
2648
}
V
Ville Syrjälä 已提交
2649

2650 2651
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
2652 2653
	intel_wakeref_t wakeref;

2654
	if (!intel_dp_is_edp(intel_dp))
2655 2656
		return;

2657 2658
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
2659 2660
}

2661 2662

static void edp_panel_off(struct intel_dp *intel_dp)
2663
{
2664
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2665
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2666
	u32 pp;
2667
	i915_reg_t pp_ctrl_reg;
2668

2669 2670
	lockdep_assert_held(&dev_priv->pps_mutex);

2671
	if (!intel_dp_is_edp(intel_dp))
2672
		return;
2673

V
Ville Syrjälä 已提交
2674
	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2675
		      port_name(dig_port->base.port));
2676

V
Ville Syrjälä 已提交
2677
	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2678
	     port_name(dig_port->base.port));
2679

2680
	pp = ironlake_get_pp_control(intel_dp);
2681 2682
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
2683
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2684
		EDP_BLC_ENABLE);
2685

2686
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2687

2688 2689
	intel_dp->want_panel_vdd = false;

2690 2691
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
2692

2693
	wait_panel_off(intel_dp);
2694
	intel_dp->panel_power_off_time = ktime_get_boottime();
2695 2696

	/* We got a reference when we enabled the VDD. */
2697
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2698
}
V
Ville Syrjälä 已提交
2699

2700 2701
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
2702 2703
	intel_wakeref_t wakeref;

2704
	if (!intel_dp_is_edp(intel_dp))
2705
		return;
V
Ville Syrjälä 已提交
2706

2707 2708
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
2709 2710
}

2711 2712
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2713
{
2714
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2715
	intel_wakeref_t wakeref;
2716

2717 2718 2719 2720 2721 2722
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
2723
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
2724

2725 2726 2727
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
2728

2729 2730
		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;
2731

2732 2733 2734
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
2735 2736
}

2737
/* Enable backlight PWM and backlight PP control. */
2738 2739
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
2740
{
2741 2742
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

2743
	if (!intel_dp_is_edp(intel_dp))
2744 2745 2746 2747
		return;

	DRM_DEBUG_KMS("\n");

2748
	intel_panel_enable_backlight(crtc_state, conn_state);
2749 2750 2751 2752 2753
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2754
{
2755
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2756
	intel_wakeref_t wakeref;
2757

2758
	if (!intel_dp_is_edp(intel_dp))
2759 2760
		return;

2761 2762 2763
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
2764

2765 2766
		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;
2767

2768 2769 2770
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
V
Ville Syrjälä 已提交
2771 2772

	intel_dp->last_backlight_off = jiffies;
2773
	edp_wait_backlight_off(intel_dp);
2774
}
2775

2776
/* Disable backlight PP control and backlight PWM. */
2777
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2778
{
2779 2780
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

2781
	if (!intel_dp_is_edp(intel_dp))
2782 2783 2784
		return;

	DRM_DEBUG_KMS("\n");
2785

2786
	_intel_edp_backlight_off(intel_dp);
2787
	intel_panel_disable_backlight(old_conn_state);
2788
}
2789

2790 2791 2792 2793 2794 2795 2796 2797
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2798
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
2799 2800
	bool is_enabled;

2801 2802 2803
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2804 2805 2806
	if (is_enabled == enable)
		return;

2807 2808
	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");
2809 2810 2811 2812 2813 2814 2815

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

2816 2817 2818 2819 2820 2821 2822 2823
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
2824
			port_name(dig_port->base.port),
2825
			onoff(state), onoff(cur_state));
2826 2827 2828 2829 2830 2831 2832 2833 2834
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
2835
			onoff(state), onoff(cur_state));
2836 2837 2838 2839
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

2840
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2841
				const struct intel_crtc_state *pipe_config)
2842
{
2843
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2844
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2845

2846 2847 2848
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
2849

2850
	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2851
		      pipe_config->port_clock);
2852 2853 2854

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

2855
	if (pipe_config->port_clock == 162000)
2856 2857 2858 2859 2860 2861 2862 2863
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

2864 2865 2866 2867 2868 2869
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
2870
	if (IS_GEN(dev_priv, 5))
2871
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2872

2873
	intel_dp->DP |= DP_PLL_ENABLE;
2874

2875
	I915_WRITE(DP_A, intel_dp->DP);
2876 2877
	POSTING_READ(DP_A);
	udelay(200);
2878 2879
}

2880 2881
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
2882
{
2883
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2884
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2885

2886 2887 2888
	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
2889

2890 2891
	DRM_DEBUG_KMS("disabling eDP PLL\n");

2892
	intel_dp->DP &= ~DP_PLL_ENABLE;
2893

2894
	I915_WRITE(DP_A, intel_dp->DP);
2895
	POSTING_READ(DP_A);
2896 2897 2898
	udelay(200);
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

2930
/* If the sink supports it, try to set the power state appropriately */
2931
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2932 2933 2934 2935 2936 2937 2938 2939
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
2940 2941 2942
		if (downstream_hpd_needs_d0(intel_dp))
			return;

2943 2944
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
2945
	} else {
2946 2947
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

2948 2949 2950 2951 2952
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
2953 2954
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
2955 2956 2957 2958
			if (ret == 1)
				break;
			msleep(1);
		}
2959 2960 2961

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
2962
	}
2963 2964 2965 2966

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3015 3016
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3017
{
3018
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3019
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3020
	intel_wakeref_t wakeref;
3021
	bool ret;
3022

3023 3024 3025
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3026 3027
		return false;

3028 3029
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3030

3031
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3032 3033

	return ret;
3034
}
3035

3036
static void intel_dp_get_config(struct intel_encoder *encoder,
3037
				struct intel_crtc_state *pipe_config)
3038
{
3039
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3040 3041
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
3042
	enum port port = encoder->port;
3043
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3044

3045 3046 3047 3048
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3049

3050
	tmp = I915_READ(intel_dp->output_reg);
3051 3052

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3053

3054
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3055 3056 3057
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3058 3059 3060
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3061

3062
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3063 3064 3065 3066
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3067
		if (tmp & DP_SYNC_HS_HIGH)
3068 3069 3070
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3071

3072
		if (tmp & DP_SYNC_VS_HIGH)
3073 3074 3075 3076
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3077

3078
	pipe_config->base.adjusted_mode.flags |= flags;
3079

3080
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3081 3082
		pipe_config->limited_color_range = true;

3083 3084 3085
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3086 3087
	intel_dp_get_m_n(crtc, pipe_config);

3088
	if (port == PORT_A) {
3089
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3090 3091 3092 3093
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3094

3095 3096 3097
	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3098

3099
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3100
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3115 3116
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3117
	}
3118 3119
}

3120
static void intel_disable_dp(struct intel_encoder *encoder,
3121 3122
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3123
{
3124
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3125

3126 3127
	intel_dp->link_trained = false;

3128
	if (old_crtc_state->has_audio)
3129 3130
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3131 3132 3133

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3134
	intel_edp_panel_vdd_on(intel_dp);
3135
	intel_edp_backlight_off(old_conn_state);
3136
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3137
	intel_edp_panel_off(intel_dp);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3152 3153
}

3154
static void g4x_post_disable_dp(struct intel_encoder *encoder,
3155 3156
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3157
{
3158
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3159
	enum port port = encoder->port;
3160

3161 3162 3163 3164 3165 3166
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3167
	intel_dp_link_down(encoder, old_crtc_state);
3168 3169

	/* Only ilk+ has port A */
3170
	if (port == PORT_A)
3171
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
3172 3173
}

3174
static void vlv_post_disable_dp(struct intel_encoder *encoder,
3175 3176
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3177
{
3178
	intel_dp_link_down(encoder, old_crtc_state);
3179 3180
}

3181
static void chv_post_disable_dp(struct intel_encoder *encoder,
3182 3183
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3184
{
3185
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3186

3187
	intel_dp_link_down(encoder, old_crtc_state);
3188 3189 3190 3191

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
3192
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3193

V
Ville Syrjälä 已提交
3194
	mutex_unlock(&dev_priv->sb_lock);
3195 3196
}

3197 3198
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
3199 3200
			 u32 *DP,
			 u8 dp_train_pat)
3201
{
3202
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3203
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3204
	enum port port = intel_dig_port->base.port;
3205
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3206

3207
	if (dp_train_pat & train_pat_mask)
3208
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3209
			      dp_train_pat & train_pat_mask);
3210

3211
	if (HAS_DDI(dev_priv)) {
3212
		u32 temp = I915_READ(DP_TP_CTL(port));
3213 3214 3215 3216 3217 3218 3219

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3220
		switch (dp_train_pat & train_pat_mask) {
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
3234 3235 3236
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
3237 3238 3239
		}
		I915_WRITE(DP_TP_CTL(port), temp);

3240
	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3241
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
3255
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3256 3257 3258 3259 3260
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
3261
		*DP &= ~DP_LINK_TRAIN_MASK;
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
3274 3275
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
3276 3277 3278 3279 3280
			break;
		}
	}
}

3281
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3282
				 const struct intel_crtc_state *old_crtc_state)
3283
{
3284
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3285 3286 3287

	/* enable with pattern 1 (as per spec) */

3288
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3289 3290 3291 3292 3293 3294 3295 3296

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3297
	if (old_crtc_state->has_audio)
3298
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3299 3300 3301

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3302 3303
}

3304
static void intel_enable_dp(struct intel_encoder *encoder,
3305 3306
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3307
{
3308
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3309
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3310
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3311
	u32 dp_reg = I915_READ(intel_dp->output_reg);
3312
	enum pipe pipe = crtc->pipe;
3313
	intel_wakeref_t wakeref;
3314

3315 3316
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
3317

3318 3319 3320
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3321

3322
		intel_dp_enable_port(intel_dp, pipe_config);
3323

3324 3325 3326 3327
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3328

3329
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3330 3331
		unsigned int lane_mask = 0x0;

3332
		if (IS_CHERRYVIEW(dev_priv))
3333
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3334

3335 3336
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3337
	}
3338

3339
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3340
	intel_dp_start_link_train(intel_dp);
3341
	intel_dp_stop_link_train(intel_dp);
3342

3343
	if (pipe_config->has_audio) {
3344
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3345
				 pipe_name(pipe));
3346
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3347
	}
3348
}
3349

3350
static void g4x_enable_dp(struct intel_encoder *encoder,
3351 3352
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3353
{
3354
	intel_enable_dp(encoder, pipe_config, conn_state);
3355
	intel_edp_backlight_on(pipe_config, conn_state);
3356
}
3357

3358
static void vlv_enable_dp(struct intel_encoder *encoder,
3359 3360
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3361
{
3362
	intel_edp_backlight_on(pipe_config, conn_state);
3363 3364
}

3365
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3366 3367
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3368 3369
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3370
	enum port port = encoder->port;
3371

3372
	intel_dp_prepare(encoder, pipe_config);
3373

3374
	/* Only ilk+ has port A */
3375
	if (port == PORT_A)
3376
		ironlake_edp_pll_on(intel_dp, pipe_config);
3377 3378
}

3379 3380 3381
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3382
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3383
	enum pipe pipe = intel_dp->pps_pipe;
3384
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3385

3386 3387
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

3388 3389 3390
	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

3391 3392 3393
	edp_panel_vdd_off_sync(intel_dp);

	/*
3394
	 * VLV seems to get confused when multiple power sequencers
3395 3396 3397
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3398
	 * selected in multiple power sequencers, but let's clear the
3399 3400 3401 3402
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3403
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
3404 3405 3406 3407 3408 3409
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

3410
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3411 3412 3413 3414 3415 3416
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3417 3418 3419
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;
3420

3421 3422 3423 3424
		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

3425 3426 3427 3428
		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3429
			      pipe_name(pipe), port_name(port));
3430 3431

		/* make sure vdd is off before we steal it */
3432
		vlv_detach_power_sequencer(intel_dp);
3433 3434 3435
	}
}

3436 3437
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3438
{
3439
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3440 3441
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3442 3443 3444

	lockdep_assert_held(&dev_priv->pps_mutex);

3445
	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3446

3447 3448 3449 3450 3451 3452 3453
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3454
		vlv_detach_power_sequencer(intel_dp);
3455
	}
3456 3457 3458 3459 3460

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3461
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3462

3463 3464
	intel_dp->active_pipe = crtc->pipe;

3465
	if (!intel_dp_is_edp(intel_dp))
3466 3467
		return;

3468 3469 3470 3471
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3472
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3473 3474

	/* init power sequencer on this pipe and port */
3475 3476
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3477 3478
}

3479
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3480 3481
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3482
{
3483
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3484

3485
	intel_enable_dp(encoder, pipe_config, conn_state);
3486 3487
}

3488
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3489 3490
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3491
{
3492
	intel_dp_prepare(encoder, pipe_config);
3493

3494
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3495 3496
}

3497
static void chv_pre_enable_dp(struct intel_encoder *encoder,
3498 3499
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3500
{
3501
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3502

3503
	intel_enable_dp(encoder, pipe_config, conn_state);
3504 3505

	/* Second common lane will stay alive on its own now */
3506
	chv_phy_release_cl2_override(encoder);
3507 3508
}

3509
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3510 3511
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3512
{
3513
	intel_dp_prepare(encoder, pipe_config);
3514

3515
	chv_phy_pre_pll_enable(encoder, pipe_config);
3516 3517
}

3518
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3519 3520
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3521
{
3522
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3523 3524
}

3525 3526 3527 3528
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3529
bool
3530
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3531
{
3532 3533
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3534 3535
}

3536
/* These are source-specific values. */
3537
u8
K
Keith Packard 已提交
3538
intel_dp_voltage_max(struct intel_dp *intel_dp)
3539
{
3540
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3541 3542
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3543

3544
	if (HAS_DDI(dev_priv))
3545
		return intel_ddi_dp_voltage_max(encoder);
3546
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3547
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3548
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3549
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3550
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3551
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3552
	else
3553
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3554 3555
}

3556 3557
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3558
{
3559
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3560 3561
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3562

3563 3564
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3565
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3566
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3567 3568 3569 3570 3571 3572 3573
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3574
		default:
3575
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3576
		}
3577
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3578
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3579 3580 3581 3582 3583
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3584
		default:
3585
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3586 3587 3588
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3589 3590 3591 3592 3593 3594 3595
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
3596
		default:
3597
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
3598
		}
3599 3600 3601
	}
}

3602
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3603
{
3604
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3605 3606
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
3607
	u8 train_set = intel_dp->train_set[0];
3608 3609

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3610
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3611 3612
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3613
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3614 3615 3616
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
3617
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3618 3619 3620
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
3621
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3622 3623 3624
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
3625
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3626 3627 3628 3629 3630 3631 3632
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
3633
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3634 3635
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3636
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3637 3638 3639
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
3640
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3641 3642 3643
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
3644
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3645 3646 3647 3648 3649 3650 3651
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3652
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3653 3654
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3655
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3656 3657 3658
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
3659
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3660 3661 3662 3663 3664 3665 3666
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
3667
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3668 3669
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3670
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3682 3683
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
3684 3685 3686 3687

	return 0;
}

3688
static u32 chv_signal_levels(struct intel_dp *intel_dp)
3689
{
3690 3691 3692
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
3693
	u8 train_set = intel_dp->train_set[0];
3694 3695

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3696
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3697
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3698
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3699 3700 3701
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
3702
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3703 3704 3705
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
3706
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3707 3708 3709
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
3710
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3711 3712
			deemph_reg_value = 128;
			margin_reg_value = 154;
3713
			uniq_trans_scale = true;
3714 3715 3716 3717 3718
			break;
		default:
			return 0;
		}
		break;
3719
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3720
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3721
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3722 3723 3724
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
3725
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3726 3727 3728
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
3729
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3730 3731 3732 3733 3734 3735 3736
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3737
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3738
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3739
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3740 3741 3742
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
3743
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3744 3745 3746 3747 3748 3749 3750
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
3751
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3752
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3753
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

3765 3766
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
3767 3768 3769 3770

	return 0;
}

3771 3772
static u32
g4x_signal_levels(u8 train_set)
3773
{
3774
	u32 signal_levels = 0;
3775

3776
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3777
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3778 3779 3780
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
3781
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3782 3783
		signal_levels |= DP_VOLTAGE_0_6;
		break;
3784
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3785 3786
		signal_levels |= DP_VOLTAGE_0_8;
		break;
3787
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3788 3789 3790
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
3791
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3792
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
3793 3794 3795
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
3796
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
3797 3798
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
3799
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
3800 3801
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
3802
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
3803 3804 3805 3806 3807 3808
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

3809
/* SNB CPU eDP voltage swing and pre-emphasis control */
3810 3811
static u32
snb_cpu_edp_signal_levels(u8 train_set)
3812
{
3813 3814 3815
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3816 3817
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3818
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3819
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3820
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3821 3822
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3823
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3824 3825
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3826
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3827 3828
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3829
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3830
	default:
3831 3832 3833
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3834 3835 3836
	}
}

3837
/* IVB CPU eDP voltage swing and pre-emphasis control */
3838 3839
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
3840 3841 3842 3843
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
3844
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3845
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
3846
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3847
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3848
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
3849 3850
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

3851
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3852
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
3853
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3854 3855
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

3856
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
3857
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
3858
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

3868
void
3869
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3870
{
3871
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3872
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3873
	enum port port = intel_dig_port->base.port;
3874 3875
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];
3876

R
Rodrigo Vivi 已提交
3877
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3878 3879
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
3880
		signal_levels = ddi_signal_levels(intel_dp);
3881
		mask = DDI_BUF_EMP_MASK;
3882
	} else if (IS_CHERRYVIEW(dev_priv)) {
3883
		signal_levels = chv_signal_levels(intel_dp);
3884
	} else if (IS_VALLEYVIEW(dev_priv)) {
3885
		signal_levels = vlv_signal_levels(intel_dp);
3886
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3887
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
3888
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3889
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3890
		signal_levels = snb_cpu_edp_signal_levels(train_set);
3891 3892
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
3893
		signal_levels = g4x_signal_levels(train_set);
3894 3895 3896
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

3897 3898 3899 3900 3901 3902 3903 3904
	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);
3905

3906
	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3907 3908 3909

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
3910 3911
}

3912
void
3913
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3914
				       u8 dp_train_pat)
3915
{
3916
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3917 3918
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);
3919

3920
	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3921

3922
	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
C
Chris Wilson 已提交
3923
	POSTING_READ(intel_dp->output_reg);
3924 3925
}

3926
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3927
{
3928
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3929
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3930
	enum port port = intel_dig_port->base.port;
3931
	u32 val;
3932

3933
	if (!HAS_DDI(dev_priv))
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

3951
	if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3952 3953 3954
				    DP_TP_STATUS_IDLE_DONE,
				    DP_TP_STATUS_IDLE_DONE,
				    1))
3955 3956 3957
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

3958
static void
3959 3960
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
3961
{
3962 3963 3964 3965
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
3966
	u32 DP = intel_dp->DP;
3967

3968
	if (WARN_ON(HAS_DDI(dev_priv)))
3969 3970
		return;

3971
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3972 3973
		return;

3974
	DRM_DEBUG_KMS("\n");
3975

3976
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3977
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3978
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3979
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3980
	} else {
3981
		DP &= ~DP_LINK_TRAIN_MASK;
3982
		DP |= DP_LINK_TRAIN_PAT_IDLE;
3983
	}
3984
	I915_WRITE(intel_dp->output_reg, DP);
3985
	POSTING_READ(intel_dp->output_reg);
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
3996
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3997 3998 3999 4000 4001 4002 4003
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4004
		/* always enable with pattern 1 (as per spec) */
4005 4006 4007
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4008 4009 4010 4011
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
4012
		I915_WRITE(intel_dp->output_reg, DP);
4013
		POSTING_READ(intel_dp->output_reg);
4014

4015
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4016 4017
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4018 4019
	}

4020
	msleep(intel_dp->panel_power_down_delay);
4021 4022

	intel_dp->DP = DP;
4023 4024

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4025 4026 4027 4028
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4029
	}
4030 4031
}

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4068
bool
4069
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4070
{
4071 4072
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4073
		return false; /* aux transfer failed */
4074

4075 4076
	intel_dp_extended_receiver_capabilities(intel_dp);

4077
	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4078

4079 4080
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4081

4082 4083 4084 4085 4086 4087 4088 4089
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4090 4091 4092
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);
4105

4106
		/* FEC is supported only on DP 1.4 */
4107 4108 4109 4110
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");
4111

4112
		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4113 4114 4115
	}
}

4116 4117 4118 4119 4120
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4121

4122 4123
	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4124

4125
	if (!intel_dp_read_dpcd(intel_dp))
4126 4127
		return false;

4128 4129
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4130

4131 4132 4133
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
		dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
			DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4134

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4145 4146
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4147
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4148
			      intel_dp->edp_dpcd);
4149

4150 4151 4152 4153 4154 4155
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4156 4157
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4158
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4159 4160
		int i;

4161 4162
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4163

4164 4165
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4166 4167 4168 4169

			if (val == 0)
				break;

4170 4171 4172 4173 4174 4175
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4176
			intel_dp->sink_rates[i] = (val * 200) / 10;
4177
		}
4178
		intel_dp->num_sink_rates = i;
4179
	}
4180

4181 4182 4183 4184
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4185 4186 4187 4188 4189
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4190 4191
	intel_dp_set_common_rates(intel_dp);

4192 4193 4194 4195
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4206
	/* Don't clobber cached eDP rates. */
4207
	if (!intel_dp_is_edp(intel_dp)) {
4208
		intel_dp_set_sink_rates(intel_dp);
4209 4210
		intel_dp_set_common_rates(intel_dp);
	}
4211

4212
	/*
4213 4214
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4215
	 */
4216 4217 4218
	if (!intel_dp_is_edp(intel_dp)) {
		u8 count;
		ssize_t r;
4219

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4241

4242
	if (!drm_dp_is_branch(intel_dp->dpcd))
4243 4244 4245 4246 4247
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4248 4249 4250
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4251 4252 4253
		return false; /* downstream port status fetch failed */

	return true;
4254 4255
}

4256
static bool
4257
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4258
{
4259
	u8 mstm_cap;
4260 4261 4262 4263

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4264
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4265
		return false;
4266

4267
	return mstm_cap & DP_MST_CAP;
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4278 4279 4280
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4281 4282 4283 4284 4285 4286 4287
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4288 4289 4290 4291

	if (!intel_dp->can_mst)
		return;

4292 4293
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4294 4295 4296

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4297 4298 4299 4300 4301
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4302 4303 4304
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4305 4306
}

4307
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
				int mode_clock, int mode_hdisplay)
{
	u16 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
	 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8 *
			  DP_DSC_FEC_OVERHEAD_FACTOR) /
		mode_clock;

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
		mode_hdisplay;

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				int mode_clock,
				int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
4374
	min_slice_count = min_t(u8, min_slice_count,
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

4392
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4393
{
4394
	int status = 0;
4395
	int test_link_rate;
4396
	u8 test_lane_count, test_link_bw;
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4417 4418 4419 4420

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
4421 4422 4423 4424 4425 4426
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
4427 4428
}

4429
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4430
{
4431 4432
	u8 test_pattern;
	u8 test_misc;
4433 4434 4435 4436
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
4437 4438
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

4460 4461
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
4488 4489
}

4490
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4491
{
4492
	u8 test_result = DP_TEST_ACK;
4493 4494 4495 4496
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
4497
	    connector->edid_corrupt ||
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
4511
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4512
	} else {
4513 4514 4515 4516 4517 4518 4519
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

4520 4521
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
4522 4523 4524
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4525
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4526 4527 4528
	}

	/* Set test active flag here so userspace doesn't interrupt things */
4529
	intel_dp->compliance.test_active = 1;
4530

4531 4532 4533
	return test_result;
}

4534
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4535
{
4536
	u8 test_result = DP_TEST_NAK;
4537 4538 4539 4540 4541
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
4542 4543
	u8 response = DP_TEST_NAK;
	u8 request = 0;
4544
	int status;
4545

4546
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4547 4548 4549 4550 4551
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

4552
	switch (request) {
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
4570
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4571 4572 4573
		break;
	}

4574 4575 4576
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

4577
update_status:
4578
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4579 4580
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
4581 4582
}

4583 4584 4585 4586 4587 4588
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
4589
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4590 4591 4592
		int ret = 0;
		int retry;
		bool handled;
4593 4594

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4595 4596 4597 4598 4599
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
4600
			if (intel_dp->active_mst_links > 0 &&
4601
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4602 4603 4604 4605 4606
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

4607
			DRM_DEBUG_KMS("got esi %3ph\n", esi);
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
4623
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4624 4625 4626 4627 4628 4629 4630 4631 4632
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
4633 4634
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
4635 4636 4637 4638 4639
		}
	}
	return -EINVAL;
}

4640 4641 4642 4643 4644
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

4645
	if (!intel_dp->link_trained)
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
4657 4658 4659
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
4676 4677
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;
4718 4719 4720

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4721
	if (crtc_state->has_pch_encoder)
4722 4723 4724 4725 4726 4727 4728
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
4729
	intel_wait_for_vblank(dev_priv, crtc->pipe);
4730 4731

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4732
	if (crtc_state->has_pch_encoder)
4733 4734
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);
4735 4736

	return 0;
4737 4738
}

4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static bool intel_dp_hotplug(struct intel_encoder *encoder,
			     struct intel_connector *connector)
4753
{
4754 4755 4756
	struct drm_modeset_acquire_ctx ctx;
	bool changed;
	int ret;
4757

4758
	changed = intel_encoder_hotplug(encoder, connector);
4759

4760
	drm_modeset_acquire_init(&ctx, 0);
4761

4762 4763
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
4764

4765 4766 4767 4768
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
4769

4770 4771
		break;
	}
4772

4773 4774 4775
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4776

4777
	return changed;
4778 4779
}

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

4796
	if (val & DP_CP_IRQ)
4797
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4798 4799 4800

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4801 4802
}

4803 4804 4805 4806 4807 4808 4809
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
4810 4811 4812 4813 4814
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
4815
 */
4816
static bool
4817
intel_dp_short_pulse(struct intel_dp *intel_dp)
4818
{
4819
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4820 4821
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
4822

4823 4824 4825 4826
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
4827
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4828

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
4840 4841
	}

4842
	intel_dp_check_service_irq(intel_dp);
4843

4844 4845 4846
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

4847 4848 4849
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
4850

4851 4852
	intel_psr_short_pulse(intel_dp);

4853 4854 4855
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
4856
		drm_kms_helper_hotplug_event(&dev_priv->drm);
4857
	}
4858 4859

	return true;
4860 4861
}

4862
/* XXX this is probably wrong for multiple downstream ports */
4863
static enum drm_connector_status
4864
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4865
{
4866
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4867 4868
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
4869

4870 4871 4872
	if (lspcon->active)
		lspcon_resume(lspcon);

4873 4874 4875
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

4876
	if (intel_dp_is_edp(intel_dp))
4877 4878
		return connector_status_connected;

4879
	/* if there's no downstream port, we're done */
4880
	if (!drm_dp_is_branch(dpcd))
4881
		return connector_status_connected;
4882 4883

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4884 4885
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4886

4887 4888
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
4889 4890
	}

4891 4892 4893
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

4894
	/* If no HPD, poke DDC gently */
4895
	if (drm_probe_ddc(&intel_dp->aux.ddc))
4896
		return connector_status_connected;
4897 4898

	/* Well we tried, say unknown for unreliable port types */
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
4911 4912 4913

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4914
	return connector_status_disconnected;
4915 4916
}

4917 4918 4919
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
4920
	return connector_status_connected;
4921 4922
}

4923
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4924
{
4925
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4926
	u32 bit;
4927

4928 4929
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4930 4931
		bit = SDE_PORTB_HOTPLUG;
		break;
4932
	case HPD_PORT_C:
4933 4934
		bit = SDE_PORTC_HOTPLUG;
		break;
4935
	case HPD_PORT_D:
4936 4937 4938
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
4939
		MISSING_CASE(encoder->hpd_pin);
4940 4941 4942 4943 4944 4945
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4946
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4947
{
4948
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4949 4950
	u32 bit;

4951 4952
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4953 4954
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
4955
	case HPD_PORT_C:
4956 4957
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
4958
	case HPD_PORT_D:
4959 4960
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
4961
	default:
4962
		MISSING_CASE(encoder->hpd_pin);
4963 4964 4965 4966 4967 4968
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

4969
static bool spt_digital_port_connected(struct intel_encoder *encoder)
4970
{
4971
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4972 4973
	u32 bit;

4974 4975
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
4976 4977
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
4978
	case HPD_PORT_E:
4979 4980
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
4981
	default:
4982
		return cpt_digital_port_connected(encoder);
4983
	}
4984

4985
	return I915_READ(SDEISR) & bit;
4986 4987
}

4988
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4989
{
4990
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4991
	u32 bit;
4992

4993 4994
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
4995 4996
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
4997
	case HPD_PORT_C:
4998 4999
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
5000
	case HPD_PORT_D:
5001 5002 5003
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
5004
		MISSING_CASE(encoder->hpd_pin);
5005 5006 5007 5008 5009 5010
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

5011
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5012
{
5013
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5014 5015
	u32 bit;

5016 5017
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
5018
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5019
		break;
5020
	case HPD_PORT_C:
5021
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5022
		break;
5023
	case HPD_PORT_D:
5024
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5025 5026
		break;
	default:
5027
		MISSING_CASE(encoder->hpd_pin);
5028
		return false;
5029 5030
	}

5031
	return I915_READ(PORT_HOTPLUG_STAT) & bit;
5032 5033
}

5034
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5035
{
5036 5037 5038
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5039 5040
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5041
		return ibx_digital_port_connected(encoder);
5042 5043
}

5044
static bool snb_digital_port_connected(struct intel_encoder *encoder)
5045
{
5046 5047 5048
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5049 5050
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
5051
		return cpt_digital_port_connected(encoder);
5052 5053
}

5054
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5055
{
5056 5057 5058
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5059 5060
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
5061
		return cpt_digital_port_connected(encoder);
5062 5063
}

5064
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5065
{
5066 5067 5068
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
5069 5070
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
5071
		return cpt_digital_port_connected(encoder);
5072 5073
}

5074
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5075
{
5076
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5077 5078
	u32 bit;

5079 5080
	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
5081 5082
		bit = BXT_DE_PORT_HP_DDIA;
		break;
5083
	case HPD_PORT_B:
5084 5085
		bit = BXT_DE_PORT_HP_DDIB;
		break;
5086
	case HPD_PORT_C:
5087 5088 5089
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
5090
		MISSING_CASE(encoder->hpd_pin);
5091 5092 5093 5094 5095 5096
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

5097 5098 5099 5100 5101 5102 5103 5104
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
static const char *tc_type_name(enum tc_port_type type)
{
	static const char * const names[] = {
		[TC_PORT_UNKNOWN] = "unknown",
		[TC_PORT_LEGACY] = "legacy",
		[TC_PORT_TYPEC] = "typec",
		[TC_PORT_TBT] = "tbt",
	};

	if (WARN_ON(type >= ARRAY_SIZE(names)))
		type = TC_PORT_UNKNOWN;

	return names[type];
}

5120 5121 5122 5123 5124 5125 5126 5127 5128
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
				    struct intel_digital_port *intel_dig_port,
				    bool is_legacy, bool is_typec, bool is_tbt)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port_type old_type = intel_dig_port->tc_type;

	WARN_ON(is_legacy + is_typec + is_tbt != 1);

5129
	if (is_legacy)
5130
		intel_dig_port->tc_type = TC_PORT_LEGACY;
5131
	else if (is_typec)
5132
		intel_dig_port->tc_type = TC_PORT_TYPEC;
5133
	else if (is_tbt)
5134
		intel_dig_port->tc_type = TC_PORT_TBT;
5135
	else
5136 5137 5138 5139 5140 5141 5142 5143
		return;

	/* Types are not supposed to be changed at runtime. */
	WARN_ON(old_type != TC_PORT_UNKNOWN &&
		old_type != intel_dig_port->tc_type);

	if (old_type != intel_dig_port->tc_type)
		DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5144
			      tc_type_name(intel_dig_port->tc_type));
5145 5146
}

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
/*
 * This function implements the first part of the Connect Flow described by our
 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
 * lanes, EDID, etc) is done as needed in the typical places.
 *
 * Unlike the other ports, type-C ports are not available to use as soon as we
 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
 * display, USB, etc. As a result, handshaking through FIA is required around
 * connect and disconnect to cleanly transfer ownership with the controller and
 * set the type-C power state.
 *
 * We could opt to only do the connect flow when we actually try to use the AUX
 * channels or do a modeset, then immediately run the disconnect flow after
 * usage, but there are some implications on this for a dynamic environment:
 * things may go away or change behind our backs. So for now our driver is
 * always trying to acquire ownership of the controller as soon as it gets an
 * interrupt (or polls state and sees a port is connected) and only gives it
 * back when it sees a disconnect. Implementation of a more fine-grained model
 * will require a lot of coordination with user space and thorough testing for
 * the extra possible cases.
 */
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
			       struct intel_digital_port *dig_port)
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
	u32 val;

	if (dig_port->tc_type != TC_PORT_LEGACY &&
	    dig_port->tc_type != TC_PORT_TYPEC)
		return true;

	val = I915_READ(PORT_TX_DFLEXDPPMS);
	if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
		DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5181
		WARN_ON(dig_port->tc_legacy_port);
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
		return false;
	}

	/*
	 * This function may be called many times in a row without an HPD event
	 * in between, so try to avoid the write when we can.
	 */
	val = I915_READ(PORT_TX_DFLEXDPCSSS);
	if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
		val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}

	/*
	 * Now we have to re-check the live state, in case the port recently
	 * became disconnected. Not necessary for legacy mode.
	 */
	if (dig_port->tc_type == TC_PORT_TYPEC &&
	    !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
		DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5202
		icl_tc_phy_disconnect(dev_priv, dig_port);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
		return false;
	}

	return true;
}

/*
 * See the comment at the connect function. This implements the Disconnect
 * Flow.
 */
5213 5214
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
			   struct intel_digital_port *dig_port)
5215 5216 5217
{
	enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);

5218
	if (dig_port->tc_type == TC_PORT_UNKNOWN)
5219 5220 5221
		return;

	/*
5222 5223
	 * TBT disconnection flow is read the live status, what was done in
	 * caller.
5224
	 */
5225 5226 5227 5228 5229
	if (dig_port->tc_type == TC_PORT_TYPEC ||
	    dig_port->tc_type == TC_PORT_LEGACY) {
		u32 val;

		val = I915_READ(PORT_TX_DFLEXDPCSSS);
5230 5231 5232
		val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
		I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
	}
5233

5234 5235 5236 5237
	DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
		      port_name(dig_port->base.port),
		      tc_type_name(dig_port->tc_type));

5238
	dig_port->tc_type = TC_PORT_UNKNOWN;
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
}

/*
 * The type-C ports are different because even when they are connected, they may
 * not be available/usable by the graphics driver: see the comment on
 * icl_tc_phy_connect(). So in our driver instead of adding the additional
 * concept of "usable" and make everything check for "connected and usable" we
 * define a port as "connected" when it is not only connected, but also when it
 * is usable by the rest of the driver. That maintains the old assumption that
 * connected ports are usable, and avoids exposing to the users objects they
 * can't really use.
 */
5251 5252 5253 5254 5255 5256 5257 5258
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
				  struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;
	enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
	bool is_legacy, is_typec, is_tbt;
	u32 dpsp;

5259 5260 5261 5262 5263 5264 5265 5266
	/*
	 * WARN if we got a legacy port HPD, but VBT didn't mark the port as
	 * legacy. Treat the port as legacy from now on.
	 */
	if (WARN_ON(!intel_dig_port->tc_legacy_port &&
		    I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
		intel_dig_port->tc_legacy_port = true;
	is_legacy = intel_dig_port->tc_legacy_port;
5267 5268 5269 5270 5271 5272 5273 5274 5275

	/*
	 * The spec says we shouldn't be using the ISR bits for detecting
	 * between TC and TBT. We should use DFLEXDPSP.
	 */
	dpsp = I915_READ(PORT_TX_DFLEXDPSP);
	is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
	is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);

5276 5277
	if (!is_legacy && !is_typec && !is_tbt) {
		icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5278

5279
		return false;
5280
	}
5281 5282 5283

	icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
				is_tbt);
5284

5285 5286 5287
	if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
		return false;

5288
	return true;
5289 5290 5291 5292 5293 5294 5295
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);

5296
	if (intel_port_is_combophy(dev_priv, encoder->port))
5297
		return icl_combo_port_connected(dev_priv, dig_port);
5298
	else if (intel_port_is_tc(dev_priv, encoder->port))
5299
		return icl_tc_port_connected(dev_priv, dig_port);
5300
	else
5301
		MISSING_CASE(encoder->hpd_pin);
5302 5303

	return false;
5304 5305
}

5306 5307
/*
 * intel_digital_port_connected - is the specified port connected?
5308
 * @encoder: intel_encoder
5309
 *
5310 5311 5312 5313 5314
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
5315
 * Return %true if port is connected, %false otherwise.
5316
 */
5317
bool intel_digital_port_connected(struct intel_encoder *encoder)
5318
{
5319 5320
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

R
Rodrigo Vivi 已提交
5321
	if (HAS_GMCH(dev_priv)) {
5322
		if (IS_GM45(dev_priv))
5323
			return gm45_digital_port_connected(encoder);
5324
		else
5325
			return g4x_digital_port_connected(encoder);
5326 5327
	}

5328 5329
	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
5330
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5331
		return spt_digital_port_connected(encoder);
5332
	else if (IS_GEN9_LP(dev_priv))
5333
		return bxt_digital_port_connected(encoder);
5334
	else if (IS_GEN(dev_priv, 8))
5335
		return bdw_digital_port_connected(encoder);
5336
	else if (IS_GEN(dev_priv, 7))
5337
		return ivb_digital_port_connected(encoder);
5338
	else if (IS_GEN(dev_priv, 6))
5339
		return snb_digital_port_connected(encoder);
5340
	else if (IS_GEN(dev_priv, 5))
5341 5342 5343 5344
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
5345 5346
}

5347
static struct edid *
5348
intel_dp_get_edid(struct intel_dp *intel_dp)
5349
{
5350
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5351

5352 5353 5354 5355
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
5356 5357
			return NULL;

J
Jani Nikula 已提交
5358
		return drm_edid_duplicate(intel_connector->edid);
5359 5360 5361 5362
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
5363

5364 5365 5366 5367 5368
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
5369

5370
	intel_dp_unset_edid(intel_dp);
5371 5372 5373
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

5374
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
5375
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
5376 5377
}

5378 5379
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
5380
{
5381
	struct intel_connector *intel_connector = intel_dp->attached_connector;
5382

5383
	drm_dp_cec_unset_edid(&intel_dp->aux);
5384 5385
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
5386

5387 5388
	intel_dp->has_audio = false;
}
5389

5390
static int
5391 5392 5393
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
5394
{
5395 5396
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5397 5398
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
5399
	enum drm_connector_status status;
5400 5401
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5402
	intel_wakeref_t wakeref;
Z
Zhenyu Wang 已提交
5403

5404 5405
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
5406
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5407

5408
	wakeref = intel_display_power_get(dev_priv, aux_domain);
Z
Zhenyu Wang 已提交
5409

5410
	/* Can't disconnect eDP */
5411
	if (intel_dp_is_edp(intel_dp))
5412
		status = edp_detect(intel_dp);
5413
	else if (intel_digital_port_connected(encoder))
5414
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
5415
	else
5416 5417
		status = connector_status_disconnected;

5418
	if (status == connector_status_disconnected) {
5419
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5420
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5421

5422 5423 5424 5425 5426 5427 5428 5429 5430
		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

5431
		goto out;
5432
	}
Z
Zhenyu Wang 已提交
5433

5434
	if (intel_dp->reset_link_params) {
5435 5436
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5437

5438 5439
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5440 5441 5442

		intel_dp->reset_link_params = false;
	}
5443

5444 5445
	intel_dp_print_rates(intel_dp);

5446 5447 5448 5449
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

5450 5451
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
5452

5453 5454 5455
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
5456 5457 5458 5459 5460
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
5461 5462
		status = connector_status_disconnected;
		goto out;
5463 5464 5465 5466 5467 5468
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
5469 5470 5471 5472 5473
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret) {
5474
			intel_display_power_put(dev_priv, aux_domain, wakeref);
5475 5476 5477
			return ret;
		}
	}
5478

5479 5480 5481 5482 5483 5484 5485 5486
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

5487
	intel_dp_set_edid(intel_dp);
5488 5489
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
5490
		status = connector_status_connected;
5491

5492
	intel_dp_check_service_irq(intel_dp);
5493

5494
out:
5495
	if (status != connector_status_connected && !intel_dp->is_mst)
5496
		intel_dp_unset_edid(intel_dp);
5497

5498
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5499
	return status;
5500 5501
}

5502 5503
static void
intel_dp_force(struct drm_connector *connector)
5504
{
5505
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5506 5507
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
5508
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5509 5510
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
5511
	intel_wakeref_t wakeref;
5512

5513 5514 5515
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);
5516

5517 5518
	if (connector->status != connector_status_connected)
		return;
5519

5520
	wakeref = intel_display_power_get(dev_priv, aux_domain);
5521 5522 5523

	intel_dp_set_edid(intel_dp);

5524
	intel_display_power_put(dev_priv, aux_domain, wakeref);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
5538

5539
	/* if eDP has no EDID, fall back to fixed mode */
5540
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5541
	    intel_connector->panel.fixed_mode) {
5542
		struct drm_display_mode *mode;
5543 5544

		mode = drm_mode_duplicate(connector->dev,
5545
					  intel_connector->panel.fixed_mode);
5546
		if (mode) {
5547 5548 5549 5550
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
5551

5552
	return 0;
5553 5554
}

5555 5556 5557 5558
static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5559
	struct drm_device *dev = connector->dev;
5560 5561 5562 5563 5564
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
5565 5566 5567 5568 5569 5570 5571

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
5572 5573 5574 5575 5576
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
5577 5578
}

5579 5580 5581
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
5582 5583 5584 5585
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
5586 5587 5588
	intel_connector_unregister(connector);
}

5589
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5590
{
5591 5592
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
5593

5594
	intel_dp_mst_encoder_cleanup(intel_dig_port);
5595
	if (intel_dp_is_edp(intel_dp)) {
5596 5597
		intel_wakeref_t wakeref;

5598
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5599 5600 5601 5602
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
5603 5604
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
5605

5606 5607 5608 5609
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
5610
	}
5611 5612

	intel_dp_aux_fini(intel_dp);
5613 5614 5615 5616 5617
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
5618

5619
	drm_encoder_cleanup(encoder);
5620
	kfree(enc_to_dig_port(encoder));
5621 5622
}

5623
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5624 5625
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5626
	intel_wakeref_t wakeref;
5627

5628
	if (!intel_dp_is_edp(intel_dp))
5629 5630
		return;

5631 5632 5633 5634
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
5635
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5636 5637
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
5638 5639
}

5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

5652 5653 5654 5655 5656
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5657 5658 5659 5660 5661
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
5662
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5663 5664 5665 5666 5667 5668 5669
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
5670 5671
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
5672 5673 5674 5675 5676 5677 5678 5679 5680
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
5681
	intel_dp_aux_header(txbuf, &msg);
5682

5683
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5684 5685
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5686
	if (ret < 0) {
5687
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5688 5689
		return ret;
	} else if (ret == 0) {
5690
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5691 5692 5693 5694
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5695 5696 5697 5698 5699 5700
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
5701 5702 5703 5704 5705 5706 5707 5708 5709
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
5710
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
5728
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5729 5730 5731 5732 5733 5734
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
5735 5736
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
5737 5738
{
	ssize_t ret;
5739

5740
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5741
			       bcaps, 1);
5742
	if (ret != 1) {
5743
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5744 5745
		return ret >= 0 ? -EIO : ret;
	}
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
5773
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5788
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
5810 5811
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5831
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;
5850

5851 5852 5853
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
5854
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5855
		return false;
5856
	}
5857

5858 5859 5860
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

static struct hdcp2_dp_msg_data {
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
	} hdcp2_msg_data[] = {
		{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
				false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
		{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
				false, 0, 0},
		{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
				true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
				HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
		{HDCP_2_2_AKE_SEND_PAIRING_INFO,
				DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
				HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
		{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
		{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
				false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
		{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_SEND_RECVID_LIST,
				DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
				HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
		{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_MANAGE,
				DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
				0, 0},
		{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
				false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
		{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
				DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
				0, 0},
		};

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
			    struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
5996 5997 5998 5999 6000 6001 6002
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
		if (hdcp2_msg_data[i].msg_id == msg_id)
			return &hdcp2_msg_data[i];

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6029 6030
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6046 6047
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
	struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6217
	.hdcp_capable = intel_dp_hdcp_capable,
6218 6219 6220 6221 6222 6223
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6224 6225
};

6226 6227
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6228
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6229
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6243
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6244 6245 6246 6247

	edp_panel_vdd_schedule_off(intel_dp);
}

6248 6249
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
6250
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6251 6252
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
6253

6254 6255 6256
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
6257

6258
	return INVALID_PIPE;
6259 6260
}

6261
void intel_dp_encoder_reset(struct drm_encoder *encoder)
6262
{
6263
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6264 6265
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6266
	intel_wakeref_t wakeref;
6267 6268 6269

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);
6270

6271
	if (lspcon->active)
6272 6273
		lspcon_resume(lspcon);

6274 6275
	intel_dp->reset_link_params = true;

6276 6277 6278
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6279

6280 6281 6282 6283 6284 6285 6286 6287
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
6288
	}
6289 6290
}

6291
static const struct drm_connector_funcs intel_dp_connector_funcs = {
6292
	.force = intel_dp_force,
6293
	.fill_modes = drm_helper_probe_single_connector_modes,
6294 6295
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
6296
	.late_register = intel_dp_connector_register,
6297
	.early_unregister = intel_dp_connector_unregister,
6298
	.destroy = intel_connector_destroy,
6299
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6300
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
6301 6302 6303
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6304
	.detect_ctx = intel_dp_detect,
6305 6306
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
6307
	.atomic_check = intel_digital_connector_atomic_check,
6308 6309 6310
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6311
	.reset = intel_dp_encoder_reset,
6312
	.destroy = intel_dp_encoder_destroy,
6313 6314
};

6315
enum irqreturn
6316 6317 6318
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6319
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6320
	enum irqreturn ret = IRQ_NONE;
6321
	intel_wakeref_t wakeref;
6322

6323 6324 6325 6326 6327 6328 6329 6330
	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6331
			      port_name(intel_dig_port->base.port));
6332
		return IRQ_HANDLED;
6333 6334
	}

6335
	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6336
		      port_name(intel_dig_port->base.port),
6337
		      long_hpd ? "long" : "short");
6338

6339
	if (long_hpd) {
6340
		intel_dp->reset_link_params = true;
6341 6342 6343
		return IRQ_NONE;
	}

6344 6345
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
6346

6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
			goto put_power;
6359
		}
6360
	}
6361

6362
	if (!intel_dp->is_mst) {
6363
		bool handled;
6364 6365 6366

		handled = intel_dp_short_pulse(intel_dp);

6367
		if (!handled)
6368
			goto put_power;
6369
	}
6370 6371 6372

	ret = IRQ_HANDLED;

6373
put_power:
6374
	intel_display_power_put(dev_priv,
6375 6376
				intel_aux_power_domain(intel_dig_port),
				wakeref);
6377 6378

	return ret;
6379 6380
}

6381
/* check the VBT to see whether the eDP is on another port */
6382
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6383
{
6384 6385 6386 6387
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
6388
	if (INTEL_GEN(dev_priv) < 5)
6389 6390
		return false;

6391
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6392 6393
		return true;

6394
	return intel_bios_is_port_edp(dev_priv, port);
6395 6396
}

6397
static void
6398 6399
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
6400
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6401 6402 6403 6404
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
6405

6406
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
6407
	if (HAS_GMCH(dev_priv))
6408 6409 6410
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
6411

6412
	if (intel_dp_is_edp(intel_dp)) {
6413 6414 6415
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
6416
		if (!HAS_GMCH(dev_priv))
6417 6418 6419 6420
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

6421
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6422

6423
	}
6424 6425
}

6426 6427
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
6428
	intel_dp->panel_power_off_time = ktime_get_boottime();
6429 6430 6431 6432
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

6433
static void
6434
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6435
{
6436
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6437
	u32 pp_on, pp_off, pp_ctl;
6438
	struct pps_registers regs;
6439

6440
	intel_pps_get_registers(intel_dp, &regs);
6441

6442
	pp_ctl = ironlake_get_pp_control(intel_dp);
6443

6444 6445 6446 6447
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

6448 6449
	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);
6450 6451

	/* Pull timing values out of registers */
6452 6453 6454 6455
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6456

6457 6458 6459 6460 6461
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

6462
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6463
	} else {
6464
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6465
	}
6466 6467
}

I
Imre Deak 已提交
6468 6469 6470 6471 6472 6473 6474 6475 6476
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
6477
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
6478 6479 6480 6481
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

6482
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

6492
static void
6493
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6494
{
6495
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6496 6497 6498 6499 6500 6501 6502 6503 6504
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

6505
	intel_pps_readout_hw_state(intel_dp, &cur);
6506

I
Imre Deak 已提交
6507
	intel_pps_dump_state("cur", &cur);
6508

6509
	vbt = dev_priv->vbt.edp.pps;
6510 6511 6512 6513 6514 6515
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6516
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6517 6518 6519
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
6520 6521 6522 6523 6524
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
6538
	intel_pps_dump_state("vbt", &vbt);
6539 6540 6541

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
6542
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
6543 6544 6545 6546 6547 6548 6549 6550 6551
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

6552
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
6553 6554 6555 6556 6557 6558 6559
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

6560 6561 6562 6563 6564 6565
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
I
Imre Deak 已提交
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
6576 6577 6578 6579 6580 6581

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6582 6583 6584
}

static void
6585
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6586
					      bool force_disable_vdd)
6587
{
6588
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6589
	u32 pp_on, pp_off, port_sel = 0;
6590
	int div = dev_priv->rawclk_freq / 1000;
6591
	struct pps_registers regs;
6592
	enum port port = dp_to_dig_port(intel_dp)->base.port;
6593
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
6594

V
Ville Syrjälä 已提交
6595
	lockdep_assert_held(&dev_priv->pps_mutex);
6596

6597
	intel_pps_get_registers(intel_dp, &regs);
6598

6599 6600
	/*
	 * On some VLV machines the BIOS can leave the VDD
6601
	 * enabled even on power sequencers which aren't
6602 6603 6604 6605 6606 6607 6608
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
6609
	 * soon as the new power sequencer gets initialized.
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

6624 6625 6626 6627
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6628 6629 6630

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
6631
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6632
		port_sel = PANEL_PORT_SELECT_VLV(port);
6633
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6634 6635
		switch (port) {
		case PORT_A:
6636
			port_sel = PANEL_PORT_SELECT_DPA;
6637 6638 6639 6640 6641
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
6642
			port_sel = PANEL_PORT_SELECT_DPD;
6643 6644 6645 6646 6647
			break;
		default:
			MISSING_CASE(port);
			break;
		}
6648 6649
	}

6650 6651
	pp_on |= port_sel;

6652 6653
	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);
6654 6655 6656 6657 6658

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
6659 6660 6661
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6662 6663 6664 6665 6666
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6667
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6668 6669
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}
6670 6671

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6672 6673
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
6674 6675 6676
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6677 6678
}

6679
static void intel_dp_pps_init(struct intel_dp *intel_dp)
6680
{
6681
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6682 6683

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6684 6685
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
6686 6687
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6688 6689 6690
	}
}

6691 6692
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6693
 * @dev_priv: i915 device
6694
 * @crtc_state: a pointer to the active intel_crtc_state
6695 6696 6697 6698 6699 6700 6701 6702 6703
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
6704
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6705
				    const struct intel_crtc_state *crtc_state,
6706
				    int refresh_rate)
6707 6708
{
	struct intel_encoder *encoder;
6709 6710
	struct intel_digital_port *dig_port = NULL;
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
6711
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6712
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6713 6714 6715 6716 6717 6718

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

6719 6720
	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
6721 6722 6723
		return;
	}

6724 6725
	dig_port = dp_to_dig_port(intel_dp);
	encoder = &dig_port->base;
6726 6727 6728 6729 6730 6731

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

6732
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6733 6734 6735 6736
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

6737 6738
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
6739 6740
		index = DRRS_LOW_RR;

6741
	if (index == dev_priv->drrs.refresh_rate_type) {
6742 6743 6744 6745 6746
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

6747
	if (!crtc_state->base.active) {
6748 6749 6750 6751
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

6752
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6753 6754
		switch (index) {
		case DRRS_HIGH_RR:
6755
			intel_dp_set_m_n(crtc_state, M1_N1);
6756 6757
			break;
		case DRRS_LOW_RR:
6758
			intel_dp_set_m_n(crtc_state, M2_N2);
6759 6760 6761 6762 6763
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
6764 6765
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6766
		u32 val;
6767

6768
		val = I915_READ(reg);
6769
		if (index > DRRS_HIGH_RR) {
6770
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6771 6772 6773
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
6774
		} else {
6775
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6776 6777 6778
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6779 6780 6781 6782
		}
		I915_WRITE(reg, val);
	}

6783 6784 6785 6786 6787
	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

6788 6789 6790
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
6791
 * @crtc_state: A pointer to the active crtc state.
6792 6793 6794
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
6795
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6796
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
6797
{
6798
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6799

6800
	if (!crtc_state->has_drrs) {
V
Vandana Kannan 已提交
6801 6802 6803 6804
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

6805 6806 6807 6808 6809
	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

V
Vandana Kannan 已提交
6810
	mutex_lock(&dev_priv->drrs.mutex);
6811 6812
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
V
Vandana Kannan 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

6824 6825 6826
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
6827
 * @old_crtc_state: Pointer to old crtc_state.
6828 6829
 *
 */
6830
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6831
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
6832
{
6833
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
6834

6835
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
6836 6837 6838 6839 6840 6841 6842 6843 6844
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6845 6846
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
6847 6848 6849 6850 6851 6852 6853

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

6867
	/*
6868 6869
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
6870 6871
	 */

6872 6873
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
6874

6875 6876 6877 6878 6879 6880
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
6881

6882 6883
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
6884 6885
}

6886
/**
6887
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6888
 * @dev_priv: i915 device
6889 6890
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6891 6892
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6893 6894 6895
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6896 6897
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
6898 6899 6900 6901
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6902
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6903 6904
		return;

6905
	cancel_delayed_work(&dev_priv->drrs.work);
6906

6907
	mutex_lock(&dev_priv->drrs.mutex);
6908 6909 6910 6911 6912
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6913 6914 6915
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

6916 6917 6918
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

6919
	/* invalidate means busy screen hence upclock */
6920
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6921 6922
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6923 6924 6925 6926

	mutex_unlock(&dev_priv->drrs.mutex);
}

6927
/**
6928
 * intel_edp_drrs_flush - Restart Idleness DRRS
6929
 * @dev_priv: i915 device
6930 6931
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
6932 6933 6934 6935
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
6936 6937 6938
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
6939 6940
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
6941 6942 6943 6944
{
	struct drm_crtc *crtc;
	enum pipe pipe;

6945
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6946 6947
		return;

6948
	cancel_delayed_work(&dev_priv->drrs.work);
6949

6950
	mutex_lock(&dev_priv->drrs.mutex);
6951 6952 6953 6954 6955
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

6956 6957
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
6958 6959

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6960 6961
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

6962
	/* flush means busy screen hence upclock */
6963
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6964 6965
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6966 6967 6968 6969 6970 6971

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
6972 6973 6974 6975 6976
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7000 7001 7002 7003 7004 7005 7006 7007
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7008 7009 7010 7011 7012 7013 7014 7015
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7016
 * @connector: eDP connector
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7027
static struct drm_display_mode *
7028 7029
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7030
{
7031
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7032 7033
	struct drm_display_mode *downclock_mode = NULL;

7034 7035 7036
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7037
	if (INTEL_GEN(dev_priv) <= 6) {
7038 7039 7040 7041 7042
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7043
		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7044 7045 7046
		return NULL;
	}

7047
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7048
	if (!downclock_mode) {
7049
		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7050 7051 7052
		return NULL;
	}

7053
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7054

7055
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7056
	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7057 7058 7059
	return downclock_mode;
}

7060
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7061
				     struct intel_connector *intel_connector)
7062
{
7063 7064
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7065
	struct drm_connector *connector = &intel_connector->base;
7066
	struct drm_display_mode *fixed_mode = NULL;
7067
	struct drm_display_mode *downclock_mode = NULL;
7068
	bool has_dpcd;
7069
	enum pipe pipe = INVALID_PIPE;
7070 7071
	intel_wakeref_t wakeref;
	struct edid *edid;
7072

7073
	if (!intel_dp_is_edp(intel_dp))
7074 7075
		return true;

7076 7077
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7078 7079 7080 7081 7082 7083
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
7084
	if (intel_get_lvds_encoder(dev_priv)) {
7085 7086 7087 7088 7089 7090
		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
		DRM_INFO("LVDS was detected, not registering eDP\n");

		return false;
	}

7091 7092 7093 7094 7095
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
7096

7097
	/* Cache DPCD and EDID for edp. */
7098
	has_dpcd = intel_edp_init_dpcd(intel_dp);
7099

7100
	if (!has_dpcd) {
7101 7102
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
7103
		goto out_vdd_off;
7104 7105
	}

7106
	mutex_lock(&dev->mode_config.mutex);
7107
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7108 7109
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
7110
			drm_connector_update_edid_property(connector,
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
								edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

7121 7122 7123
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7124 7125

	/* fallback to VBT if available for eDP */
7126 7127
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7128
	mutex_unlock(&dev->mode_config.mutex);
7129

7130
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7131 7132
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
7133 7134 7135 7136 7137 7138

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
7139
		pipe = vlv_active_pipe(intel_dp);
7140 7141 7142 7143 7144 7145 7146 7147 7148

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
			      pipe_name(pipe));
7149 7150
	}

7151
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7152
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
7153
	intel_panel_setup_backlight(connector, pipe);
7154

7155 7156 7157 7158
	if (fixed_mode)
		drm_connector_init_panel_orientation_property(
			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);

7159
	return true;
7160 7161 7162 7163 7164 7165 7166

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
7167 7168
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
7169 7170

	return false;
7171 7172
}

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
7189 7190
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
7191 7192 7193 7194 7195
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

7196
bool
7197 7198
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
7199
{
7200 7201 7202 7203
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
7204
	struct drm_i915_private *dev_priv = to_i915(dev);
7205
	enum port port = intel_encoder->port;
7206
	int type;
7207

7208 7209 7210 7211
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

7212 7213 7214 7215 7216
	if (WARN(intel_dig_port->max_lanes < 1,
		 "Not enough lanes (%d) for DP on port %c\n",
		 intel_dig_port->max_lanes, port_name(port)))
		return false;

7217 7218
	intel_dp_set_source_rates(intel_dp);

7219
	intel_dp->reset_link_params = true;
7220
	intel_dp->pps_pipe = INVALID_PIPE;
7221
	intel_dp->active_pipe = INVALID_PIPE;
7222

7223
	/* intel_dp vfuncs */
7224
	if (HAS_DDI(dev_priv))
7225 7226
		intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;

7227 7228
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
7229
	intel_dp->attached_connector = intel_connector;
7230

7231
	if (intel_dp_is_port_edp(dev_priv, port))
7232
		type = DRM_MODE_CONNECTOR_eDP;
7233 7234
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
7235

7236 7237 7238
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

7239 7240 7241 7242 7243 7244 7245 7246
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

7247
	/* eDP only on port B and/or C on vlv/chv */
7248
	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7249 7250
		    intel_dp_is_edp(intel_dp) &&
		    port != PORT_B && port != PORT_C))
7251 7252
		return false;

7253 7254 7255 7256
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

7257
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7258 7259
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
7260
	if (!HAS_GMCH(dev_priv))
7261
		connector->interlace_allowed = true;
7262 7263
	connector->doublescan_allowed = 0;

7264
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7265

7266
	intel_dp_aux_init(intel_dp);
7267

7268
	intel_connector_attach_encoder(intel_connector, intel_encoder);
7269

7270
	if (HAS_DDI(dev_priv))
7271 7272 7273 7274
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

7275
	/* init MST on ports that can support it */
7276
	if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7277 7278
	    (port == PORT_B || port == PORT_C ||
	     port == PORT_D || port == PORT_F))
7279 7280
		intel_dp_mst_encoder_init(intel_dig_port,
					  intel_connector->base.base.id);
7281

7282
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7283 7284 7285
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
7286
	}
7287

7288
	intel_dp_add_properties(intel_dp, connector);
7289

7290
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7291 7292 7293 7294
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
	}
7295

7296 7297 7298 7299
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
7300
	if (IS_G45(dev_priv)) {
7301 7302 7303
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
7304 7305

	return true;
7306 7307 7308 7309 7310

fail:
	drm_connector_cleanup(connector);

	return false;
7311
}
7312

7313
bool intel_dp_init(struct drm_i915_private *dev_priv,
7314 7315
		   i915_reg_t output_reg,
		   enum port port)
7316 7317 7318 7319 7320 7321
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

7322
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7323
	if (!intel_dig_port)
7324
		return false;
7325

7326
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
7327 7328
	if (!intel_connector)
		goto err_connector_alloc;
7329 7330 7331 7332

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

7333 7334 7335
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
7336
		goto err_encoder_init;
7337

7338
	intel_encoder->hotplug = intel_dp_hotplug;
7339
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
7340
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
7341
	intel_encoder->get_config = intel_dp_get_config;
7342
	intel_encoder->update_pipe = intel_panel_update_backlight;
7343
	intel_encoder->suspend = intel_dp_encoder_suspend;
7344
	if (IS_CHERRYVIEW(dev_priv)) {
7345
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7346 7347
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7348
		intel_encoder->disable = vlv_disable_dp;
7349
		intel_encoder->post_disable = chv_post_disable_dp;
7350
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7351
	} else if (IS_VALLEYVIEW(dev_priv)) {
7352
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7353 7354
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
7355
		intel_encoder->disable = vlv_disable_dp;
7356
		intel_encoder->post_disable = vlv_post_disable_dp;
7357
	} else {
7358 7359
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
7360
		intel_encoder->disable = g4x_disable_dp;
7361
		intel_encoder->post_disable = g4x_post_disable_dp;
7362
	}
7363 7364

	intel_dig_port->dp.output_reg = output_reg;
7365
	intel_dig_port->max_lanes = 4;
7366

7367
	intel_encoder->type = INTEL_OUTPUT_DP;
7368
	intel_encoder->power_domain = intel_port_to_power_domain(port);
7369
	if (IS_CHERRYVIEW(dev_priv)) {
7370 7371 7372 7373 7374 7375 7376
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
7377
	intel_encoder->cloneable = 0;
7378
	intel_encoder->port = port;
7379

7380 7381
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

7382 7383 7384
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

7385
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
7386 7387 7388
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

7389
	return true;
S
Sudip Mukherjee 已提交
7390 7391 7392

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
7393
err_encoder_init:
S
Sudip Mukherjee 已提交
7394 7395 7396
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
7397
	return false;
7398
}
7399

7400
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7401
{
7402 7403 7404 7405
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7406

7407 7408
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
7409

7410
		intel_dp = enc_to_intel_dp(&encoder->base);
7411

7412
		if (!intel_dp->can_mst)
7413 7414
			continue;

7415 7416
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7417 7418 7419
	}
}

7420
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7421
{
7422
	struct intel_encoder *encoder;
7423

7424 7425
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
7426
		int ret;
7427

7428 7429 7430 7431 7432 7433
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

		intel_dp = enc_to_intel_dp(&encoder->base);

		if (!intel_dp->can_mst)
7434
			continue;
7435

7436
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7437 7438 7439 7440 7441
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
7442 7443
	}
}