i915_gem_execbuffer.c 90.0 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gpu_commands.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_buffer_pool.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24
#include "i915_drv.h"
25
#include "i915_gem_clflush.h"
26
#include "i915_gem_context.h"
27
#include "i915_gem_ioctls.h"
28
#include "i915_sw_fence_work.h"
29
#include "i915_trace.h"
30
#include "i915_user_extensions.h"
31
#include "i915_memcpy.h"
32

33 34 35 36 37 38 39 40 41 42 43 44 45
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

46 47 48 49 50 51 52
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

53 54 55 56 57
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
58
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 60

#define __EXEC_HAS_RELOC	BIT(31)
61 62
#define __EXEC_ENGINE_PINNED	BIT(30)
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
63
#define UPDATE			PIN_OFFSET_FIXED
64 65

#define BATCH_OFFSET_BIAS (256*1024)
66

67
#define __I915_EXEC_ILLEGAL_FLAGS \
68 69 70
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
71

72 73 74 75 76 77 78 79 80
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

232 233 234 235 236 237 238
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

239
struct i915_execbuffer {
240 241 242 243
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
244
	struct eb_vma *vma;
245 246

	struct intel_engine_cs *engine; /** engine to queue the request to */
247 248
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
249

250
	struct i915_request *request; /** our request to build */
251
	struct eb_vma *batch; /** identity of the batch obj/vma */
252
	struct i915_vma *trampoline; /** trampoline used for chaining */
253 254 255 256 257 258 259 260 261 262

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

263 264
	struct i915_gem_ww_ctx ww;

265 266 267 268 269
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
270
	struct reloc_cache {
271
		struct drm_mm_node node; /** temporary GTT binding */
272 273
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
274
		unsigned int gen; /** Cached value of INTEL_GEN */
275
		bool use_64bit_reloc : 1;
276 277 278
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
279

280
		struct i915_request *rq;
281 282
		u32 *rq_cmd;
		unsigned int rq_size;
283
		struct intel_gt_buffer_pool_node *pool;
284
	} reloc_cache;
285

286
	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
287
	struct intel_context *reloc_context;
288

289 290 291
	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

292
	u64 batch_len; /** Length of batch within object */
293 294
	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
295
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
296 297 298 299 300 301 302 303

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
304

305 306
	struct eb_fence *fences;
	unsigned long num_fences;
307 308
};

309
static int eb_parse(struct i915_execbuffer *eb);
310 311 312
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
					  bool throttle);
static void eb_unpin_engine(struct i915_execbuffer *eb);
313

314 315
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
316
	return intel_engine_requires_cmd_parser(eb->engine) ||
317 318
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
319 320
}

321
static int eb_create(struct i915_execbuffer *eb)
322
{
323 324
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
325

326 327 328 329 330 331 332 333 334 335 336
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
337
		do {
338
			gfp_t flags;
339 340 341 342 343 344 345

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
346
			flags = GFP_KERNEL;
347 348 349
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

350
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
351
					      flags);
352 353 354 355
			if (eb->buckets)
				break;
		} while (--size);

356
		if (unlikely(!size))
357
			return -ENOMEM;
358

359
		eb->lut_size = size;
360
	} else {
361
		eb->lut_size = -eb->buffer_count;
362
	}
363

364
	return 0;
365 366
}

367 368
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
369 370
		 const struct i915_vma *vma,
		 unsigned int flags)
371 372 373 374 375 376 377
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

378
	if (flags & EXEC_OBJECT_PINNED &&
379 380 381
	    vma->node.start != entry->offset)
		return true;

382
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
383 384 385
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

386
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
387
	    (vma->node.start + vma->node.size + 4095) >> 32)
388 389
		return true;

390 391 392 393
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

394 395 396
	return false;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

423
static inline int
424
eb_pin_vma(struct i915_execbuffer *eb,
425
	   const struct drm_i915_gem_exec_object2 *entry,
426
	   struct eb_vma *ev)
427
{
428
	struct i915_vma *vma = ev->vma;
429
	u64 pin_flags;
430
	int err;
431

432
	if (vma->node.size)
433
		pin_flags = vma->node.start;
434
	else
435
		pin_flags = entry->offset & PIN_OFFSET_MASK;
436

437
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
438
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
439
		pin_flags |= PIN_GLOBAL;
440

441
	/* Attempt to reuse the current location if available */
442 443 444 445 446
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
	if (err == -EDEADLK)
		return err;

	if (unlikely(err)) {
447
		if (entry->flags & EXEC_OBJECT_PINNED)
448
			return err;
449 450

		/* Failing that pick any _free_ space if suitable */
451
		err = i915_vma_pin_ww(vma, &eb->ww,
452 453 454
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
455 456 457
					     PIN_USER | PIN_NOEVICT);
		if (unlikely(err))
			return err;
458
	}
459

460
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
461 462
		err = i915_vma_pin_fence(vma);
		if (unlikely(err)) {
463
			i915_vma_unpin(vma);
464
			return err;
465 466
		}

467
		if (vma->fence)
468
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
469 470
	}

471
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
472 473 474 475
	if (eb_vma_misplaced(entry, vma, ev->flags))
		return -EBADSLT;

	return 0;
476 477
}

478 479 480 481 482 483
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

484 485 486 487
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
488 489 490
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

491 492 493 494
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
495
{
496 497 498 499 500 501 502
	/* Relocations are disallowed for all platforms after TGL-LP.  This
	 * also covers all platforms with local memory.
	 */
	if (entry->relocation_count &&
	    INTEL_GEN(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
		return -EINVAL;

503 504
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
505

506 507
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
508 509 510 511 512 513 514
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
515
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
516 517 518 519 520 521 522 523
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
524
	}
525 526 527 528 529 530 531
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

532 533 534 535 536 537 538 539 540 541 542 543
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

544
	return 0;
545 546
}

547
static void
548 549 550
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
551
{
552
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
553
	struct eb_vma *ev = &eb->vma[i];
554

555
	ev->vma = vma;
556 557 558
	ev->exec = entry;
	ev->flags = entry->flags;

559
	if (eb->lut_size > 0) {
560 561
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
562 563
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
564
	}
565

566
	if (entry->relocation_count)
567
		list_add_tail(&ev->reloc_link, &eb->relocs);
568

569 570 571 572 573 574 575 576 577 578
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
579
		if (entry->relocation_count &&
580 581
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
582
		if (eb->reloc_cache.has_fence)
583
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
584

585
		eb->batch = ev;
586
	}
587 588
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

606
static int eb_reserve_vma(struct i915_execbuffer *eb,
607
			  struct eb_vma *ev,
608
			  u64 pin_flags)
609
{
610 611
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
612 613
	int err;

614 615 616 617 618 619 620
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

621
	err = i915_vma_pin_ww(vma, &eb->ww,
622
			   entry->pad_to_size, entry->alignment,
623
			   eb_pin_flags(entry, ev->flags) | pin_flags);
624 625 626 627 628 629 630 631
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

632
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
633
		err = i915_vma_pin_fence(vma);
634 635 636 637 638
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

639
		if (vma->fence)
640
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
641 642
	}

643
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
644
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
645

646 647 648 649 650 651
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
652
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
653
	struct list_head last;
654
	struct eb_vma *ev;
655
	unsigned int i, pass;
656
	int err = 0;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
673 674
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
675 676 677
			if (err)
				break;
		}
678
		if (err != -ENOSPC)
679
			return err;
680 681 682 683 684

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
685
			unsigned int flags;
686

687 688
			ev = &eb->vma[i];
			flags = ev->flags;
689 690
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
691 692
				continue;

693
			eb_unreserve_vma(ev);
694

695
			if (flags & EXEC_OBJECT_PINNED)
696
				/* Pinned must have their slot */
697
				list_add(&ev->bind_link, &eb->unbound);
698
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
699
				/* Map require the lowest 256MiB (aperture) */
700
				list_add_tail(&ev->bind_link, &eb->unbound);
701 702
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
703
				list_add(&ev->bind_link, &last);
704
			else
705
				list_add_tail(&ev->bind_link, &last);
706 707 708 709 710 711 712 713 714
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
715
			mutex_lock(&eb->context->vm->mutex);
716
			err = i915_gem_evict_vm(eb->context->vm);
717
			mutex_unlock(&eb->context->vm->mutex);
718
			if (err)
719
				return err;
720 721 722
			break;

		default:
723
			return -ENOSPC;
724
		}
725 726

		pin_flags = PIN_USER;
727
	} while (1);
728
}
729

730 731
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
732 733 734 735
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
736 737 738 739 740 741 742
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
743 744
	if (unlikely(!ctx))
		return -ENOENT;
745

746
	eb->gem_context = ctx;
747
	if (rcu_access_pointer(ctx->vm))
748
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
749 750

	eb->context_flags = 0;
751
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
752 753 754 755 756
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

757 758
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
759
{
760 761
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
762
	int err;
763

764 765 766 767 768 769 770 771 772 773 774 775
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
776 777 778 779 780 781
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
782
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
783 784
		else
			err = -ENOENT;
785 786 787
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

788
			spin_lock(&obj->lut_lock);
789 790 791 792 793 794
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
795
			spin_unlock(&obj->lut_lock);
796
		}
797
		mutex_unlock(&ctx->lut_mutex);
798 799 800
	}
	if (unlikely(err))
		goto err;
801

802
	return 0;
803

804
err:
C
Chris Wilson 已提交
805
	i915_vma_close(vma);
806 807 808 809
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
810

811 812
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
813 814
	struct i915_address_space *vm = eb->context->vm;

815 816
	do {
		struct drm_i915_gem_object *obj;
817
		struct i915_vma *vma;
818
		int err;
819

820 821
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
822
		if (likely(vma && vma->vm == vm))
823 824 825 826
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
827

828
		obj = i915_gem_object_lookup(eb->file, handle);
829 830
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
831

832
		vma = i915_vma_instance(obj, vm, NULL);
833
		if (IS_ERR(vma)) {
834 835
			i915_gem_object_put(obj);
			return vma;
836 837
		}

838 839 840
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
841

842 843 844 845 846
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
847

848 849
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
850
	struct drm_i915_private *i915 = eb->i915;
851 852 853
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
854

855 856 857 858 859 860 861 862
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
863
			goto err;
864
		}
865

866
		err = eb_validate_vma(eb, &eb->exec[i], vma);
867 868
		if (unlikely(err)) {
			i915_vma_put(vma);
869
			goto err;
870
		}
871

872
		eb_add_vma(eb, i, batch, vma);
873 874
	}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
		return -EINVAL;
	}

	if (range_overflows_t(u64,
			      eb->batch_start_offset, eb->batch_len,
			      eb->batch->vma->size)) {
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
		return -EINVAL;
	}

	if (eb->batch_len == 0)
		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
890 891 892 893
	if (unlikely(eb->batch_len == 0)) { /* impossible! */
		drm_dbg(&i915->drm, "Invalid batch length\n");
		return -EINVAL;
	}
894 895 896 897

	return 0;

err:
898
	eb->vma[i].vma = NULL;
899
	return err;
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;

918 919 920 921 922
		err = eb_pin_vma(eb, entry, ev);
		if (err == -EDEADLK)
			return err;

		if (!err) {
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

948
static struct eb_vma *
949
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
950
{
951 952
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
953
			return NULL;
954
		return &eb->vma[handle];
955 956
	} else {
		struct hlist_head *head;
957
		struct eb_vma *ev;
958

959
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
960 961 962
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
963 964 965
		}
		return NULL;
	}
966 967
}

968
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
969 970 971 972 973 974 975 976 977 978 979
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

980
		eb_unreserve_vma(ev);
981

982 983
		if (final)
			i915_vma_put(vma);
984
	}
985 986

	eb_unpin_engine(eb);
987 988
}

989
static void eb_destroy(const struct i915_execbuffer *eb)
990
{
991 992
	GEM_BUG_ON(eb->reloc_cache.rq);

993
	if (eb->lut_size > 0)
994
		kfree(eb->buckets);
995 996
}

997
static inline u64
998
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
999
		  const struct i915_vma *target)
1000
{
1001
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011
static void reloc_cache_clear(struct reloc_cache *cache)
{
	cache->rq = NULL;
	cache->rq_cmd = NULL;
	cache->pool = NULL;
	cache->rq_size = 0;
}

1012 1013
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
1014
{
1015 1016
	cache->page = -1;
	cache->vaddr = 0;
1017
	/* Must be a variable in the struct to allow GCC to unroll. */
1018
	cache->gen = INTEL_GEN(i915);
1019
	cache->has_llc = HAS_LLC(i915);
1020
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1021 1022
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1023
	cache->node.flags = 0;
1024
	reloc_cache_clear(cache);
1025
}
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1046
static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1047
{
1048 1049
	if (!cache->pool)
		return;
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059
	/*
	 * This is a bit nasty, normally we keep objects locked until the end
	 * of execbuffer, but we already submit this, and have to unlock before
	 * dropping the reference. Fortunately we can only hold 1 pool node at
	 * a time, so this should be harmless.
	 */
	i915_gem_ww_unlock_single(cache->pool->obj);
	intel_gt_buffer_pool_put(cache->pool);
	cache->pool = NULL;
1060 1061
}

1062
static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1063
{
1064
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1065

1066 1067
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1068

M
Matthew Auld 已提交
1069
	i915_gem_object_flush_map(obj);
1070
	i915_gem_object_unpin_map(obj);
1071

1072
	intel_gt_chipset_flush(cache->rq->engine->gt);
1073

1074
	i915_request_add(cache->rq);
1075 1076
	reloc_cache_put_pool(eb, cache);
	reloc_cache_clear(cache);
1077

1078
	eb->reloc_pool = NULL;
1079 1080
}

1081
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1082 1083 1084
{
	void *vaddr;

1085
	if (cache->rq)
1086
		reloc_gpu_flush(eb, cache);
1087

1088 1089 1090 1091 1092
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1093 1094
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1095 1096 1097 1098
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1099
		i915_gem_object_finish_access(obj);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1124
			unsigned long pageno)
1125 1126
{
	void *vaddr;
1127
	struct page *page;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1148 1149 1150 1151 1152
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1153
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1154
	cache->page = pageno;
1155 1156 1157 1158 1159

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1160
			 struct i915_execbuffer *eb,
1161 1162
			 unsigned long page)
{
1163
	struct reloc_cache *cache = &eb->reloc_cache;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1185 1186 1187 1188 1189 1190 1191
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1227
			 struct i915_execbuffer *eb,
1228 1229
			 unsigned long page)
{
1230
	struct reloc_cache *cache = &eb->reloc_cache;
1231 1232 1233 1234 1235 1236 1237
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1238
			vaddr = reloc_iomap(obj, eb, page);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1269 1270 1271 1272 1273
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

1274
	assert_vma_held(vma);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	return err;
}

1287
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1288
			     struct intel_engine_cs *engine,
1289
			     struct i915_vma *vma,
1290 1291 1292
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1293
	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1294
	struct i915_request *rq;
1295 1296 1297 1298
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1299
	if (!pool) {
1300 1301 1302 1303
		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
						cache->has_llc ?
						I915_MAP_WB :
						I915_MAP_WC);
1304 1305 1306 1307 1308 1309 1310 1311
		if (IS_ERR(pool))
			return PTR_ERR(pool);
	}
	eb->reloc_pool = NULL;

	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err_pool;
1312

1313
	cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1314 1315
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
1316
		goto err_pool;
1317
	}
1318

M
Matthew Auld 已提交
1319 1320
	memset32(cmd, 0, pool->obj->base.size / sizeof(u32));

1321
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1322 1323 1324 1325 1326
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

1327
	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1328 1329 1330
	if (err)
		goto err_unmap;

1331 1332 1333
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
1334
		struct intel_context *ce = eb->reloc_context;
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		if (!ce) {
			ce = intel_context_create(engine);
			if (IS_ERR(ce)) {
				err = PTR_ERR(ce);
				goto err_unpin;
			}

			i915_vm_put(ce->vm);
			ce->vm = i915_vm_get(eb->context->vm);
			eb->reloc_context = ce;
1346 1347
		}

1348
		err = intel_context_pin_ww(ce, &eb->ww);
1349 1350
		if (err)
			goto err_unpin;
1351

1352 1353
		rq = i915_request_create(ce);
		intel_context_unpin(ce);
1354
	}
1355 1356 1357 1358 1359
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1360
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1361 1362 1363
	if (err)
		goto err_request;

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1374
	assert_vma_held(batch);
1375 1376 1377
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1378 1379
	if (err)
		goto skip_request;
1380 1381

	rq->batch = batch;
1382
	i915_vma_unpin(batch);
1383 1384 1385 1386

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1387
	cache->pool = pool;
1388 1389

	/* Return with batch mapping (cmd) still pinned */
1390
	return 0;
1391

1392
skip_request:
1393
	i915_request_set_error_once(rq, err);
1394
err_request:
1395
	i915_request_add(rq);
1396 1397 1398
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1399
	i915_gem_object_unpin_map(pool->obj);
1400 1401
err_pool:
	eb->reloc_pool = pool;
1402 1403 1404
	return err;
}

1405 1406 1407 1408 1409
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1410 1411 1412 1413 1414 1415
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1416 1417

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1418
		reloc_gpu_flush(eb, cache);
1419 1420

	if (unlikely(!cache->rq)) {
1421
		int err;
1422 1423
		struct intel_engine_cs *engine = eb->engine;

1424
		if (!reloc_can_use_engine(engine)) {
1425
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1426
			if (!engine)
1427 1428
				return ERR_PTR(-ENODEV);
		}
1429

1430
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1452
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1453
{
1454 1455
	struct page *page;
	unsigned long addr;
1456

1457
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1458

1459 1460 1461
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1462

1463 1464 1465
	return addr + offset_in_page(offset);
}

1466
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1467 1468 1469
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
1484
	if (batch == ERR_PTR(-EDEADLK))
1485
		return -EDEADLK;
1486
	else if (IS_ERR(batch))
1487
		return false;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1498 1499

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1500 1501 1502
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1503
		} else {
1504 1505 1506 1507 1508
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1509
		}
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1534 1535
	}

1536 1537 1538
	return true;
}

1539
static int reloc_entry_gpu(struct i915_execbuffer *eb,
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1551 1552 1553
}

static u64
1554
relocate_entry(struct i915_vma *vma,
1555
	       const struct drm_i915_gem_relocation_entry *reloc,
1556
	       struct i915_execbuffer *eb,
1557 1558 1559
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1560
	u64 offset = reloc->offset;
1561 1562 1563 1564
	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);

	if (reloc_gpu < 0)
		return reloc_gpu;
1565

1566
	if (!reloc_gpu) {
1567 1568 1569 1570
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
1571
		vaddr = reloc_vaddr(vma->obj, eb,
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1588

1589
	return target->node.start | UPDATE;
1590 1591
}

1592 1593
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1594
		  struct eb_vma *ev,
1595
		  const struct drm_i915_gem_relocation_entry *reloc)
1596
{
1597
	struct drm_i915_private *i915 = eb->i915;
1598
	struct eb_vma *target;
1599
	int err;
1600

1601
	/* we've already hold a reference to all valid objects */
1602 1603
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1604
		return -ENOENT;
1605

1606
	/* Validate that the target is in a valid r/w GPU domain */
1607
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1608
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1609
			  "target %d offset %d "
1610
			  "read %08x write %08x",
1611
			  reloc->target_handle,
1612 1613 1614
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1615
		return -EINVAL;
1616
	}
1617 1618
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1619
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1620
			  "target %d offset %d "
1621
			  "read %08x write %08x",
1622
			  reloc->target_handle,
1623 1624 1625
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1626
		return -EINVAL;
1627 1628
	}

1629
	if (reloc->write_domain) {
1630
		target->flags |= EXEC_OBJECT_WRITE;
1631

1632 1633 1634 1635 1636 1637 1638
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1639
		    IS_GEN(eb->i915, 6)) {
1640 1641
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1642
					    PIN_GLOBAL, NULL);
1643
			if (err)
1644 1645
				return err;
		}
1646
	}
1647

1648 1649
	/*
	 * If the relocation already has the right value in it, no
1650 1651
	 * more work needs to be done.
	 */
1652 1653
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1654
		return 0;
1655 1656

	/* Check that the relocation address is valid... */
1657
	if (unlikely(reloc->offset >
1658
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1659
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1660 1661 1662
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1663
			  (int)ev->vma->size);
1664
		return -EINVAL;
1665
	}
1666
	if (unlikely(reloc->offset & 3)) {
1667
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1668 1669 1670
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1671
		return -EINVAL;
1672 1673
	}

1674 1675 1676 1677 1678 1679
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1680
	 * out of our synchronisation.
1681
	 */
1682
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1683

1684
	/* and update the user's relocation entry */
1685
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1686 1687
}

1688
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1689
{
1690
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1691
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1692
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1693 1694 1695
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1696

1697
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1698
		return -EINVAL;
1699

1700 1701 1702 1703 1704
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1705
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1706 1707 1708 1709 1710
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1711
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1712
		unsigned int copied;
1713

1714 1715
		/*
		 * This is the fast path and we cannot handle a pagefault
1716 1717 1718 1719 1720 1721
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1722 1723 1724
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1725 1726 1727 1728
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1729

1730
		remain -= count;
1731
		do {
1732
			u64 offset = eb_relocate_entry(eb, ev, r);
1733

1734 1735
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1736 1737
				remain = (int)offset;
				goto out;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1761 1762
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1763
			}
1764 1765 1766
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1767
out:
1768
	reloc_cache_reset(&eb->reloc_cache, eb);
1769
	return remain;
1770 1771
}

1772 1773
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1774
{
1775 1776 1777 1778
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1779 1780
	int err;

1781 1782
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1783

1784 1785 1786 1787
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1788
	}
1789 1790
	err = 0;
err:
1791
	reloc_cache_reset(&eb->reloc_cache, eb);
1792 1793
	return err;
}
1794

1795 1796 1797 1798 1799
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1800

1801 1802 1803
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1804

1805 1806
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1820 1821
}

1822
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1823
{
1824
	struct drm_i915_gem_relocation_entry *relocs;
1825 1826
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1827
	int err;
1828

1829
	for (i = 0; i < count; i++) {
1830 1831 1832 1833
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1834

1835 1836
		if (nreloc == 0)
			continue;
1837

1838 1839 1840
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1841

1842 1843
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1844

1845 1846 1847 1848
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1849
		}
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1919 1920
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
					   struct i915_request *rq)
1921 1922 1923 1924 1925 1926 1927 1928 1929
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1930
	}
1931

1932 1933 1934 1935
	/* We may process another execbuffer during the unlock... */
	eb_release_vmas(eb, false);
	i915_gem_ww_ctx_fini(&eb->ww);

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	if (rq) {
		/* nonblocking is always false */
		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			rq = NULL;

			err = -EINTR;
			goto err_relock;
		}

		i915_request_put(rq);
		rq = NULL;
	}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1974 1975
	if (!err)
		flush_workqueue(eb->i915->mm.userptr_wq);
1976

1977
err_relock:
1978
	i915_gem_ww_ctx_init(&eb->ww, true);
1979 1980 1981
	if (err)
		goto out;

1982 1983
	/* reacquire the objects */
repeat_validate:
1984 1985 1986
	rq = eb_pin_engine(eb, false);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
1987
		rq = NULL;
1988 1989 1990 1991 1992 1993
		goto err;
	}

	/* We didn't throttle, should be NULL */
	GEM_WARN_ON(rq);

1994
	err = eb_validate_vmas(eb);
1995
	if (err)
1996 1997 1998
		goto err;

	GEM_BUG_ON(!eb->batch);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, ev);
			pagefault_enable();
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

2014 2015 2016
	if (err == -EDEADLK)
		goto err;

2017 2018 2019 2020 2021 2022
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

2023 2024 2025 2026 2027
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

2028 2029 2030 2031 2032 2033 2034 2035
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
2036 2037 2038 2039 2040 2041 2042
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

2064 2065 2066
	if (rq)
		i915_request_put(rq);

2067 2068 2069
	return err;
}

2070
static int eb_relocate_parse(struct i915_execbuffer *eb)
2071
{
2072
	int err;
2073 2074
	struct i915_request *rq = NULL;
	bool throttle = true;
2075

2076
retry:
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	rq = eb_pin_engine(eb, throttle);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		rq = NULL;
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;

		/* Need to drop all locks now for throttling, take slowpath */
		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
		if (err == -ETIME) {
			if (nonblock) {
				err = -EWOULDBLOCK;
				i915_request_put(rq);
				goto err;
			}
			goto slow;
		}
		i915_request_put(rq);
		rq = NULL;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

2107 2108 2109 2110 2111
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
2112 2113 2114

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
2115
		struct eb_vma *ev;
2116

2117
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2118 2119
			err = eb_relocate_vma(eb, ev);
			if (err)
2120
				break;
2121
		}
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
2138 2139
	}

2140 2141 2142
	return err;

slow:
2143
	err = eb_relocate_parse_slow(eb, rq);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
2155 2156 2157 2158 2159
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
2160
	unsigned int i = count;
2161 2162 2163
	int err = 0;

	while (i--) {
2164 2165 2166
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
2167
		struct drm_i915_gem_object *obj = vma->obj;
2168

2169 2170
		assert_vma_held(vma);

2171
		if (flags & EXEC_OBJECT_CAPTURE) {
2172
			struct i915_capture_list *capture;
2173 2174

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2175 2176 2177 2178 2179
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
2180 2181
		}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2195
			if (i915_gem_clflush_object(obj, 0))
2196
				flags &= ~EXEC_OBJECT_ASYNC;
2197 2198
		}

2199 2200 2201 2202
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
2203

2204 2205
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
2206
	}
2207

2208 2209 2210
	if (unlikely(err))
		goto err_skip;

2211
	/* Unconditionally flush any chipset caches (for streaming writes). */
2212
	intel_gt_chipset_flush(eb->engine->gt);
2213
	return 0;
2214 2215

err_skip:
2216
	i915_request_set_error_once(eb->request, err);
2217
	return err;
2218 2219
}

T
Tvrtko Ursulin 已提交
2220
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2221
{
2222
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2223
		return -EINVAL;
2224

C
Chris Wilson 已提交
2225
	/* Kernel clipping was a DRI1 misfeature */
2226 2227
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2228
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2229
			return -EINVAL;
2230
	}
C
Chris Wilson 已提交
2231 2232 2233 2234 2235 2236

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2237
		return -EINVAL;
C
Chris Wilson 已提交
2238 2239

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2240
		return -EINVAL;
C
Chris Wilson 已提交
2241

T
Tvrtko Ursulin 已提交
2242
	return 0;
2243 2244
}

2245
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2246
{
2247 2248
	u32 *cs;
	int i;
2249

2250 2251
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2252 2253
		return -EINVAL;
	}
2254

2255
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2256 2257
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2258

2259
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2260
	for (i = 0; i < 4; i++) {
2261 2262
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2263
	}
2264
	*cs++ = MI_NOOP;
2265
	intel_ring_advance(rq, cs);
2266 2267 2268 2269

	return 0;
}

2270
static struct i915_vma *
2271 2272
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2273 2274
		 struct i915_address_space *vm,
		 unsigned int flags)
2275
{
2276 2277
	struct i915_vma *vma;
	int err;
2278

2279 2280 2281 2282
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2283
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2284 2285 2286 2287
	if (err)
		return ERR_PTR(err);

	return vma;
2288 2289
}

2290 2291 2292 2293 2294 2295
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
2296 2297
	unsigned long batch_offset;
	unsigned long batch_length;
2298 2299 2300
	unsigned long *jump_whitelist;
	const void *batch_map;
	void *shadow_map;
2301 2302 2303 2304 2305
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	int ret;
	bool cookie;

	cookie = dma_fence_begin_signalling();
	ret = intel_engine_cmd_parser(pw->engine,
				      pw->batch,
				      pw->batch_offset,
				      pw->batch_length,
				      pw->shadow,
				      pw->jump_whitelist,
				      pw->shadow_map,
				      pw->batch_map);
	dma_fence_end_signalling(cookie);

	return ret;
2321 2322
}

2323 2324 2325 2326
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	if (!IS_ERR_OR_NULL(pw->jump_whitelist))
		kfree(pw->jump_whitelist);

	if (pw->batch_map)
		i915_gem_object_unpin_map(pw->batch->obj);
	else
		i915_gem_object_unpin_pages(pw->batch->obj);

	i915_gem_object_unpin_map(pw->shadow->obj);

2337 2338 2339 2340 2341 2342
	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

2343 2344 2345
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
2346
	.release = __eb_parse_release,
2347 2348
};

2349 2350 2351 2352 2353 2354 2355
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

2356
	return i915_active_ref(&node->active, tl->fence_context, fence);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

2381 2382 2383 2384 2385
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
2386 2387
	struct drm_i915_gem_object *batch = eb->batch->vma->obj;
	bool needs_clflush;
2388 2389
	int err;

2390 2391 2392
	GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
	GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));

2393 2394 2395 2396
	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2397
	err = i915_active_acquire(&eb->batch->vma->active);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	pw->shadow_map = i915_gem_object_pin_map(shadow->obj, I915_MAP_WB);
	if (IS_ERR(pw->shadow_map)) {
		err = PTR_ERR(pw->shadow_map);
		goto err_trampoline;
	}

	needs_clflush =
		!(batch->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);

	pw->batch_map = ERR_PTR(-ENODEV);
	if (needs_clflush && i915_has_memcpy_from_wc())
		pw->batch_map = i915_gem_object_pin_map(batch, I915_MAP_WC);

	if (IS_ERR(pw->batch_map)) {
		err = i915_gem_object_pin_pages(batch);
		if (err)
			goto err_unmap_shadow;
		pw->batch_map = NULL;
	}

	pw->jump_whitelist =
		intel_engine_cmd_parser_alloc_jump_whitelist(eb->batch_len,
							     trampoline);
	if (IS_ERR(pw->jump_whitelist)) {
		err = PTR_ERR(pw->jump_whitelist);
		goto err_unmap_batch;
	}

2439 2440 2441
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2442
	pw->batch = eb->batch->vma;
2443 2444 2445 2446 2447
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2448 2449 2450 2451 2452
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

2453 2454
	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
2455
		goto err_commit;
2456 2457 2458 2459 2460 2461

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
2462
		goto err_commit;
2463 2464 2465 2466 2467 2468 2469

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	/* Force execution to wait for completion of the parser */
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);

2470
	dma_fence_work_commit_imm(&pw->base);
2471 2472
	return 0;

2473 2474 2475 2476 2477
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
err_unmap_batch:
	if (pw->batch_map)
		i915_gem_object_unpin_map(batch);
	else
		i915_gem_object_unpin_pages(batch);
err_unmap_shadow:
	i915_gem_object_unpin_map(shadow->obj);
err_trampoline:
	if (trampoline)
		i915_active_release(&trampoline->active);
2488 2489 2490
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2491
	i915_active_release(&eb->batch->vma->active);
2492
err_free:
2493 2494 2495 2496
	kfree(pw);
	return err;
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2509
static int eb_parse(struct i915_execbuffer *eb)
2510
{
2511
	struct drm_i915_private *i915 = eb->i915;
2512
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2513
	struct i915_vma *shadow, *trampoline, *batch;
2514
	unsigned long len;
2515
	int err;
2516

2517 2518 2519 2520 2521 2522 2523
	if (!eb_use_cmdparser(eb)) {
		batch = eb_dispatch_secure(eb, eb->batch->vma);
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2524

2525 2526 2527 2528 2529 2530 2531
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2532 2533
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2534 2535 2536 2537 2538
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}
2539 2540
	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
		return -EINVAL;
2541

2542
	if (!pool) {
2543 2544
		pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
						I915_MAP_WB);
2545 2546 2547 2548
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2549

2550 2551 2552
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2553

2554
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2555 2556
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2557
		goto err;
2558
	}
2559
	i915_gem_object_set_readonly(shadow->obj);
2560
	shadow->private = pool;
2561 2562 2563 2564 2565

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2566
		shadow = shadow_batch_pin(eb, pool->obj,
2567 2568 2569 2570 2571 2572 2573
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2574
		shadow->private = pool;
2575 2576 2577

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2578

2579 2580 2581 2582 2583 2584
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2585
	err = eb_parse_pipeline(eb, shadow, trampoline);
2586
	if (err)
2587
		goto err_unpin_batch;
2588

2589
	eb->batch = &eb->vma[eb->buffer_count++];
2590 2591
	eb->batch->vma = i915_vma_get(shadow);
	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2592

2593
	eb->trampoline = trampoline;
2594 2595
	eb->batch_start_offset = 0;

2596 2597 2598 2599 2600 2601
secure_batch:
	if (batch) {
		eb->batch = &eb->vma[eb->buffer_count++];
		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batch->vma = i915_vma_get(batch);
	}
2602
	return 0;
2603

2604 2605 2606
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2607 2608 2609 2610 2611
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2612
err:
2613
	return err;
2614
}
2615

2616
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2617
{
2618
	int err;
2619

2620 2621 2622
	if (intel_context_nopreempt(eb->context))
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);

2623 2624 2625
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2626

2627
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2628 2629 2630
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2631 2632
	}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2645
	err = eb->engine->emit_bb_start(eb->request,
2646
					batch->node.start +
2647 2648
					eb->batch_start_offset,
					eb->batch_len,
2649 2650 2651
					eb->batch_flags);
	if (err)
		return err;
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

C
Chris Wilson 已提交
2663
	return 0;
2664 2665
}

2666 2667
static int num_vcs_engines(const struct drm_i915_private *i915)
{
A
Arnd Bergmann 已提交
2668
	return hweight_long(VDBOX_MASK(&i915->gt));
2669 2670
}

2671
/*
2672
 * Find one BSD ring to dispatch the corresponding BSD command.
2673
 * The engine index is returned.
2674
 */
2675
static unsigned int
2676 2677
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2678 2679 2680
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2681
	/* Check whether the file_priv has already selected one ring. */
2682
	if ((int)file_priv->bsd_engine < 0)
2683 2684
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2685

2686
	return file_priv->bsd_engine;
2687 2688
}

2689
static const enum intel_engine_id user_ring_map[] = {
2690 2691 2692 2693 2694
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2695 2696
};

2697
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

2731
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2732
{
2733
	struct intel_context *ce = eb->context;
2734
	struct intel_timeline *tl;
2735
	struct i915_request *rq = NULL;
2736 2737
	int err;

2738
	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2739

2740
	if (unlikely(intel_context_is_banned(ce)))
2741
		return ERR_PTR(-EIO);
2742

2743 2744 2745 2746 2747
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2748
	err = intel_context_pin_ww(ce, &eb->ww);
2749
	if (err)
2750
		return ERR_PTR(err);
2751

2752 2753 2754 2755 2756 2757 2758 2759
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2760 2761
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
2762 2763
		intel_context_unpin(ce);
		return ERR_CAST(tl);
2764
	}
2765 2766

	intel_context_enter(ce);
2767 2768
	if (throttle)
		rq = eb_throttle(eb, ce);
2769 2770
	intel_context_timeline_unlock(tl);

2771 2772
	eb->args->flags |= __EXEC_ENGINE_PINNED;
	return rq;
2773 2774
}

2775
static void eb_unpin_engine(struct i915_execbuffer *eb)
2776
{
2777
	struct intel_context *ce = eb->context;
2778
	struct intel_timeline *tl = ce->timeline;
2779

2780 2781 2782 2783 2784
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

2785 2786 2787 2788
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2789
	intel_context_unpin(ce);
2790
}
2791

2792
static unsigned int
2793
eb_select_legacy_ring(struct i915_execbuffer *eb)
2794
{
2795
	struct drm_i915_private *i915 = eb->i915;
2796
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2797 2798
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2799 2800
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2801 2802 2803
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2804
		return -1;
2805 2806
	}

2807
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2808 2809 2810
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2811
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2812 2813
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2814
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2815 2816
			bsd_idx--;
		} else {
2817 2818 2819
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2820
			return -1;
2821 2822
		}

2823
		return _VCS(bsd_idx);
2824 2825
	}

2826
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2827 2828
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2829
		return -1;
2830 2831
	}

2832 2833 2834 2835
	return user_ring_map[user_ring_id];
}

static int
2836
eb_select_engine(struct i915_execbuffer *eb)
2837 2838 2839 2840 2841
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2842
	if (i915_gem_context_user_engines(eb->gem_context))
2843
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2844
	else
2845
		idx = eb_select_legacy_ring(eb);
2846 2847 2848 2849 2850

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2851
	intel_gt_pm_get(ce->engine->gt);
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
	eb->engine = ce->engine;

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
	intel_context_put(ce);
2880
	return err;
2881 2882
}

2883 2884 2885 2886 2887 2888 2889
static void
eb_put_engine(struct i915_execbuffer *eb)
{
	intel_gt_pm_put(eb->engine->gt);
	intel_context_put(eb->context);
}

2890
static void
2891
__free_fence_array(struct eb_fence *fences, unsigned int n)
2892
{
2893
	while (n--) {
2894
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2895 2896 2897
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2898 2899 2900
	kvfree(fences);
}

2901
static int
2902 2903
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2904
{
2905 2906 2907 2908 2909
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2910

2911 2912
	nfences = timeline_fences->fence_count;
	if (!nfences)
2913
		return 0;
2914

2915 2916 2917
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2918 2919
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2920
		return -EINVAL;
2921

2922 2923 2924 2925 2926 2927
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2928
		return -EFAULT;
2929

2930 2931 2932 2933
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2934
		return -ENOMEM;
2935

2936 2937 2938 2939 2940 2941 2942 2943
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2944
		struct drm_syncobj *syncobj;
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2966

2967 2968 2969 2970 2971
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2972 2973
		}

2974 2975 2976 2977 2978
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2979
			dma_fence_put(fence);
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
3020 3021
		}

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3076 3077
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
3088 3089
		}

3090 3091 3092
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

3093 3094 3095 3096 3097 3098
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
3099 3100
	}

3101
	return 0;
3102
}
3103

3104 3105 3106 3107
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
3108 3109 3110
}

static int
3111
await_fence_array(struct i915_execbuffer *eb)
3112 3113 3114 3115
{
	unsigned int n;
	int err;

3116
	for (n = 0; n < eb->num_fences; n++) {
3117 3118 3119
		struct drm_syncobj *syncobj;
		unsigned int flags;

3120
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3121

3122 3123
		if (!eb->fences[n].dma_fence)
			continue;
3124

3125 3126
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
3127 3128 3129 3130 3131 3132 3133
		if (err < 0)
			return err;
	}

	return 0;
}

3134
static void signal_fence_array(const struct i915_execbuffer *eb)
3135 3136 3137 3138
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

3139
	for (n = 0; n < eb->num_fences; n++) {
3140 3141 3142
		struct drm_syncobj *syncobj;
		unsigned int flags;

3143
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3144 3145 3146
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
3160 3161 3162
	}
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

3175 3176 3177 3178 3179 3180 3181 3182 3183
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

3184
static int eb_request_add(struct i915_execbuffer *eb, int err)
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
3199
	if (likely(!intel_context_is_closed(eb->context))) {
3200 3201 3202
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
3203 3204
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
3205
		err = -ENOENT; /* override any transient errors */
3206 3207 3208 3209 3210 3211 3212 3213 3214
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
3215 3216

	return err;
3217 3218
}

3219
static const i915_user_extension_fn execbuf_extensions[] = {
3220
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

3245
static int
3246
i915_gem_do_execbuffer(struct drm_device *dev,
3247 3248
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3249
		       struct drm_i915_gem_exec_object2 *exec)
3250
{
3251
	struct drm_i915_private *i915 = to_i915(dev);
3252
	struct i915_execbuffer eb;
3253 3254
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
3255
	struct i915_vma *batch;
3256
	int out_fence_fd = -1;
3257
	int err;
3258

3259
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3260 3261
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3262

3263
	eb.i915 = i915;
3264 3265
	eb.file = file;
	eb.args = args;
3266
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3267
		args->flags |= __EXEC_HAS_RELOC;
3268

3269
	eb.exec = exec;
3270 3271
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
3272
	eb.reloc_pool = eb.batch_pool = NULL;
3273
	eb.reloc_context = NULL;
3274

3275
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3276 3277
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3278
	eb.buffer_count = args->buffer_count;
3279 3280
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
3281
	eb.trampoline = NULL;
3282

3283
	eb.fences = NULL;
3284
	eb.num_fences = 0;
3285

3286
	eb.batch_flags = 0;
3287
	if (args->flags & I915_EXEC_SECURE) {
3288 3289 3290 3291 3292 3293 3294
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3295
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3296
			return -EPERM;
3297

3298
		eb.batch_flags |= I915_DISPATCH_SECURE;
3299
	}
3300
	if (args->flags & I915_EXEC_IS_PINNED)
3301
		eb.batch_flags |= I915_DISPATCH_PINNED;
3302

3303 3304 3305 3306 3307 3308 3309 3310
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3311 3312 3313 3314 3315
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3316
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3317 3318 3319 3320
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3321
	}
3322
#undef IN_FENCES
3323

3324 3325 3326
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3327
			err = out_fence_fd;
3328
			goto err_in_fence;
3329 3330 3331
		}
	}

3332 3333
	err = eb_create(&eb);
	if (err)
3334
		goto err_out_fence;
3335

3336
	GEM_BUG_ON(!eb.lut_size);
3337

3338 3339 3340 3341
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3342
	err = eb_select_engine(&eb);
3343
	if (unlikely(err))
3344
		goto err_context;
3345

3346 3347 3348 3349 3350 3351 3352 3353
	err = eb_lookup_vmas(&eb);
	if (err) {
		eb_release_vmas(&eb, true);
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3354
	err = eb_relocate_parse(&eb);
3355
	if (err) {
3356 3357 3358 3359 3360 3361 3362 3363 3364
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3365
	}
3366

3367
	ww_acquire_done(&eb.ww.ctx);
3368 3369

	batch = eb.batch->vma;
3370

3371 3372 3373
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

3374
	/* Allocate a request for this batch buffer nice and early. */
3375
	eb.request = i915_request_create(eb.context);
3376
	if (IS_ERR(eb.request)) {
3377
		err = PTR_ERR(eb.request);
3378
		goto err_vma;
3379
	}
3380

3381
	if (in_fence) {
3382 3383 3384 3385 3386 3387 3388
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
3389 3390 3391 3392
		if (err < 0)
			goto err_request;
	}

3393
	if (eb.fences) {
3394
		err = await_fence_array(&eb);
3395 3396 3397 3398
		if (err)
			goto err_request;
	}

3399
	if (out_fence_fd != -1) {
3400
		out_fence = sync_file_create(&eb.request->fence);
3401
		if (!out_fence) {
3402
			err = -ENOMEM;
3403 3404 3405 3406
			goto err_request;
		}
	}

3407 3408
	/*
	 * Whilst this request exists, batch_obj will be on the
3409 3410 3411 3412 3413
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
3414
	eb.request->batch = batch;
3415 3416
	if (eb.batch_pool)
		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3417

3418
	trace_i915_request_queue(eb.request, eb.batch_flags);
3419
	err = eb_submit(&eb, batch);
3420
err_request:
3421
	i915_request_get(eb.request);
3422
	err = eb_request_add(&eb, err);
3423

3424
	if (eb.fences)
3425
		signal_fence_array(&eb);
3426

3427
	if (out_fence) {
3428
		if (err == 0) {
3429
			fd_install(out_fence_fd, out_fence->file);
3430
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3431 3432 3433 3434 3435 3436
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3437
	i915_request_put(eb.request);
3438

3439
err_vma:
3440
	eb_release_vmas(&eb, true);
3441 3442
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3443 3444 3445 3446 3447 3448 3449
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
	if (eb.reloc_pool)
		intel_gt_buffer_pool_put(eb.reloc_pool);
3450 3451
	if (eb.reloc_context)
		intel_context_put(eb.reloc_context);
3452
err_engine:
3453
	eb_put_engine(&eb);
3454
err_context:
3455
	i915_gem_context_put(eb.gem_context);
3456
err_destroy:
3457
	eb_destroy(&eb);
3458
err_out_fence:
3459 3460
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3461
err_in_fence:
3462
	dma_fence_put(in_fence);
3463 3464
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3465
	return err;
3466 3467
}

3468 3469
static size_t eb_element_size(void)
{
3470
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3486
int
3487 3488
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3489
{
3490
	struct drm_i915_private *i915 = to_i915(dev);
3491
	struct drm_i915_gem_execbuffer2 *args = data;
3492
	struct drm_i915_gem_exec_object2 *exec2_list;
3493
	const size_t count = args->buffer_count;
3494
	int err;
3495

3496
	if (!check_buffer_count(count)) {
3497
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3498 3499 3500
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3501 3502 3503
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3504

3505 3506
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3507
				    __GFP_NOWARN | GFP_KERNEL);
3508
	if (exec2_list == NULL) {
3509 3510
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3511 3512
		return -ENOMEM;
	}
3513 3514
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3515
			   sizeof(*exec2_list) * count)) {
3516
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3517
		kvfree(exec2_list);
3518 3519 3520
		return -EFAULT;
	}

3521
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3522 3523 3524 3525 3526 3527 3528 3529

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3530
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3531 3532
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3533

3534
		/* Copy the new buffer offsets back to the user's exec list. */
3535 3536 3537 3538 3539 3540 3541
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3542 3543
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3544
			goto end;
3545

3546
		for (i = 0; i < args->buffer_count; i++) {
3547 3548 3549
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3550
			exec2_list[i].offset =
3551 3552 3553 3554
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3555
		}
3556
end_user:
3557
		user_write_access_end();
3558
end:;
3559 3560
	}

3561
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3562
	kvfree(exec2_list);
3563
	return err;
3564
}
3565 3566 3567 3568

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif