“e25001d8be225b09a9a660f121892961bb58a09a”上不存在“drivers/gpu/drm/omapdrm/dss/sdi.c”
i915_gem_execbuffer.c 87.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48 49 50
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

51 52 53 54 55
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 58

#define __EXEC_HAS_RELOC	BIT(31)
59
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
60
#define UPDATE			PIN_OFFSET_FIXED
61 62

#define BATCH_OFFSET_BIAS (256*1024)
63

64
#define __I915_EXEC_ILLEGAL_FLAGS \
65 66 67
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229 230 231 232 233 234 235
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

236
struct i915_execbuffer {
237 238 239 240
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
241
	struct eb_vma *vma;
242 243

	struct intel_engine_cs *engine; /** engine to queue the request to */
244 245
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
246

247
	struct i915_request *request; /** our request to build */
248
	struct eb_vma *batch; /** identity of the batch obj/vma */
249
	struct i915_vma *trampoline; /** trampoline used for chaining */
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
265
	struct reloc_cache {
266
		struct drm_mm_node node; /** temporary GTT binding */
267 268
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
269
		unsigned int gen; /** Cached value of INTEL_GEN */
270
		bool use_64bit_reloc : 1;
271 272 273
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
274

275
		struct i915_request *rq;
276 277
		u32 *rq_cmd;
		unsigned int rq_size;
278
	} reloc_cache;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
294

295 296
	struct eb_fence *fences;
	unsigned long num_fences;
297 298
};

299 300
static int eb_parse(struct i915_execbuffer *eb);

301 302
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
303
	return intel_engine_requires_cmd_parser(eb->engine) ||
304 305
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
306 307
}

308
static int eb_create(struct i915_execbuffer *eb)
309
{
310 311
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
312

313 314 315 316 317 318 319 320 321 322 323
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
324
		do {
325
			gfp_t flags;
326 327 328 329 330 331 332

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
333
			flags = GFP_KERNEL;
334 335 336
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

337
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
338
					      flags);
339 340 341 342
			if (eb->buckets)
				break;
		} while (--size);

343
		if (unlikely(!size))
344
			return -ENOMEM;
345

346
		eb->lut_size = size;
347
	} else {
348
		eb->lut_size = -eb->buffer_count;
349
	}
350

351
	return 0;
352 353
}

354 355
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
356 357
		 const struct i915_vma *vma,
		 unsigned int flags)
358 359 360 361 362 363 364
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

365
	if (flags & EXEC_OBJECT_PINNED &&
366 367 368
	    vma->node.start != entry->offset)
		return true;

369
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
370 371 372
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

373
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
374 375 376
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

377 378 379 380
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

381 382 383
	return false;
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

410
static inline bool
411
eb_pin_vma(struct i915_execbuffer *eb,
412
	   const struct drm_i915_gem_exec_object2 *entry,
413
	   struct eb_vma *ev)
414
{
415
	struct i915_vma *vma = ev->vma;
416
	u64 pin_flags;
417

418
	if (vma->node.size)
419
		pin_flags = vma->node.start;
420
	else
421
		pin_flags = entry->offset & PIN_OFFSET_MASK;
422

423
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
424
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
425
		pin_flags |= PIN_GLOBAL;
426

427 428 429 430 431 432 433 434 435 436 437 438 439
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
440

441
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
442
		if (unlikely(i915_vma_pin_fence(vma))) {
443
			i915_vma_unpin(vma);
444
			return false;
445 446
		}

447
		if (vma->fence)
448
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
449 450
	}

451 452
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
453 454
}

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
{
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));

	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	__i915_vma_unpin(vma);
}

static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

	__eb_unreserve_vma(ev->vma, ev->flags);
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

475 476 477 478
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
479
{
480 481
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
482

483 484
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
485 486 487 488 489 490 491
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
492
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
493 494 495 496 497 498 499 500
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
501
	}
502 503 504 505 506 507 508
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

509 510 511 512 513 514 515 516 517 518 519 520
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

521
	return 0;
522 523
}

524
static void
525 526 527
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
528
{
529
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
530
	struct eb_vma *ev = &eb->vma[i];
531 532 533

	GEM_BUG_ON(i915_vma_is_closed(vma));

534
	ev->vma = vma;
535 536 537
	ev->exec = entry;
	ev->flags = entry->flags;

538
	if (eb->lut_size > 0) {
539 540
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
541 542
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
543
	}
544

545
	if (entry->relocation_count)
546
		list_add_tail(&ev->reloc_link, &eb->relocs);
547

548 549 550 551 552 553 554 555 556 557
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
558
		if (entry->relocation_count &&
559 560
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
561
		if (eb->reloc_cache.has_fence)
562
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
563

564
		eb->batch = ev;
565 566
	}

567
	if (eb_pin_vma(eb, entry, ev)) {
568 569 570 571
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
572
	} else {
573 574
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
575 576 577
	}
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

595
static int eb_reserve_vma(const struct i915_execbuffer *eb,
596
			  struct eb_vma *ev,
597
			  u64 pin_flags)
598
{
599 600
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
601 602
	int err;

603 604 605 606 607 608 609
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

610 611
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
612
			   eb_pin_flags(entry, ev->flags) | pin_flags);
613 614 615 616 617 618 619 620
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

621
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
622
		err = i915_vma_pin_fence(vma);
623 624 625 626 627
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

628
		if (vma->fence)
629
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
630 631
	}

632
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
633
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
634

635 636 637 638 639 640
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
641
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
642
	struct list_head last;
643
	struct eb_vma *ev;
644
	unsigned int i, pass;
645
	int err = 0;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

661 662 663
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

664 665
	pass = 0;
	do {
666 667
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
668 669 670
			if (err)
				break;
		}
671
		if (err != -ENOSPC)
672
			break;
673 674 675 676 677

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
678
			unsigned int flags;
679

680 681
			ev = &eb->vma[i];
			flags = ev->flags;
682 683
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
684 685
				continue;

686
			eb_unreserve_vma(ev);
687

688
			if (flags & EXEC_OBJECT_PINNED)
689
				/* Pinned must have their slot */
690
				list_add(&ev->bind_link, &eb->unbound);
691
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
692
				/* Map require the lowest 256MiB (aperture) */
693
				list_add_tail(&ev->bind_link, &eb->unbound);
694 695
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
696
				list_add(&ev->bind_link, &last);
697
			else
698
				list_add_tail(&ev->bind_link, &last);
699 700 701 702 703 704 705 706 707
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
708
			mutex_lock(&eb->context->vm->mutex);
709
			err = i915_gem_evict_vm(eb->context->vm);
710
			mutex_unlock(&eb->context->vm->mutex);
711
			if (err)
712
				goto unlock;
713 714 715
			break;

		default:
716 717
			err = -ENOSPC;
			goto unlock;
718
		}
719 720

		pin_flags = PIN_USER;
721
	} while (1);
722 723 724 725

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
726
}
727

728 729
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
730 731 732 733
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
734 735 736 737 738 739 740
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
741 742
	if (unlikely(!ctx))
		return -ENOENT;
743

744
	eb->gem_context = ctx;
745
	if (rcu_access_pointer(ctx->vm))
746
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
747 748

	eb->context_flags = 0;
749
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
750 751 752 753 754
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

755 756
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
757
{
758 759
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
760
	int err;
761

762 763 764 765 766 767 768 769 770 771 772 773
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
774 775 776 777 778 779
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
780
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
781 782
		else
			err = -ENOENT;
783 784 785
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

786
			spin_lock(&obj->lut_lock);
787 788 789 790 791 792
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
793
			spin_unlock(&obj->lut_lock);
794
		}
795
		mutex_unlock(&ctx->lut_mutex);
796 797 798
	}
	if (unlikely(err))
		goto err;
799

800
	return 0;
801

802
err:
C
Chris Wilson 已提交
803
	i915_vma_close(vma);
804 805 806 807
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
808

809 810
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
811 812
	struct i915_address_space *vm = eb->context->vm;

813 814
	do {
		struct drm_i915_gem_object *obj;
815
		struct i915_vma *vma;
816
		int err;
817

818 819
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
820
		if (likely(vma && vma->vm == vm))
821 822 823 824
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
825

826
		obj = i915_gem_object_lookup(eb->file, handle);
827 828
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
829

830
		vma = i915_vma_instance(obj, vm, NULL);
831
		if (IS_ERR(vma)) {
832 833
			i915_gem_object_put(obj);
			return vma;
834 835
		}

836 837 838
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
839

840 841 842 843 844
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
845

846 847
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
848
	struct drm_i915_private *i915 = eb->i915;
849 850 851
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
852

853 854 855 856 857 858 859 860 861
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
862
			goto err;
863
		}
864

865
		err = eb_validate_vma(eb, &eb->exec[i], vma);
866 867
		if (unlikely(err)) {
			i915_vma_put(vma);
868
			goto err;
869
		}
870

871
		eb_add_vma(eb, i, batch, vma);
872 873
	}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
		return -EINVAL;
	}

	if (range_overflows_t(u64,
			      eb->batch_start_offset, eb->batch_len,
			      eb->batch->vma->size)) {
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
		return -EINVAL;
	}

	if (eb->batch_len == 0)
		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;

	return 0;

err:
893
	eb->vma[i].vma = NULL;
894
	return err;
895 896
}

897
static struct eb_vma *
898
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
899
{
900 901
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
902
			return NULL;
903
		return &eb->vma[handle];
904 905
	} else {
		struct hlist_head *head;
906
		struct eb_vma *ev;
907

908
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
909 910 911
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
912 913 914
		}
		return NULL;
	}
915 916
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static void eb_release_vmas(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

		eb->vma[i].vma = NULL;

		if (ev->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, ev->flags);

		i915_vma_put(vma);
	}
}

938
static void eb_destroy(const struct i915_execbuffer *eb)
939
{
940 941
	GEM_BUG_ON(eb->reloc_cache.rq);

942
	if (eb->lut_size > 0)
943
		kfree(eb->buckets);
944 945
}

946
static inline u64
947
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
948
		  const struct i915_vma *target)
949
{
950
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
951 952
}

953 954
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
955
{
956 957
	cache->page = -1;
	cache->vaddr = 0;
958
	/* Must be a variable in the struct to allow GCC to unroll. */
959
	cache->gen = INTEL_GEN(i915);
960
	cache->has_llc = HAS_LLC(i915);
961
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
962 963
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
964
	cache->node.flags = 0;
965
	cache->rq = NULL;
966
	cache->rq_size = 0;
967
}
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

988
static void reloc_gpu_flush(struct reloc_cache *cache)
989
{
990
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
991

992 993
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
994

995 996
	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
	i915_gem_object_unpin_map(obj);
997

998
	intel_gt_chipset_flush(cache->rq->engine->gt);
999

1000 1001
	i915_request_add(cache->rq);
	cache->rq = NULL;
1002 1003
}

1004 1005 1006 1007
static void reloc_cache_reset(struct reloc_cache *cache)
{
	void *vaddr;

1008 1009 1010
	if (cache->rq)
		reloc_gpu_flush(cache);

1011 1012 1013 1014 1015
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1016 1017
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1018 1019 1020 1021
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1022 1023
		i915_gem_object_finish_access(obj);
		i915_gem_object_unlock(obj);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
			unsigned long pageno)
{
	void *vaddr;
	struct page *page;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

1059
		err = i915_gem_object_lock_interruptible(obj, NULL);
1060 1061 1062
		if (err)
			return ERR_PTR(err);

1063 1064 1065 1066 1067 1068
		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err) {
			i915_gem_object_unlock(obj);
			return ERR_PTR(err);
		}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
	cache->page = pageno;

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

1110
		i915_gem_object_lock(obj, NULL);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		i915_gem_object_unlock(obj);
		if (err)
			return ERR_PTR(err);

		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE |
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1216
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1217
			     struct intel_engine_cs *engine,
1218
			     struct i915_vma *vma,
1219 1220 1221
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1222
	struct intel_gt_buffer_pool_node *pool;
1223
	struct i915_request *rq;
1224 1225 1226 1227
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1228
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1229 1230
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1231

1232
	cmd = i915_gem_object_pin_map(pool->obj,
1233 1234 1235
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1236 1237 1238 1239
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1240

1241
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1242 1243 1244 1245 1246 1247 1248 1249 1250
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1251 1252 1253 1254 1255 1256 1257
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1258
			err = PTR_ERR(ce);
1259 1260 1261 1262 1263 1264 1265 1266 1267
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1268 1269 1270 1271 1272
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1273
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1274 1275 1276
	if (err)
		goto err_request;

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1287
	i915_vma_lock(batch);
1288 1289 1290
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1291
	i915_vma_unlock(batch);
1292 1293
	if (err)
		goto skip_request;
1294 1295

	rq->batch = batch;
1296
	i915_vma_unpin(batch);
1297 1298 1299 1300 1301 1302

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1303
	goto out_pool;
1304

1305
skip_request:
1306
	i915_request_set_error_once(rq, err);
1307
err_request:
1308
	i915_request_add(rq);
1309 1310 1311
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1312 1313
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1314
	intel_gt_buffer_pool_put(pool);
1315 1316 1317
	return err;
}

1318 1319 1320 1321 1322
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1323 1324 1325 1326 1327 1328
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1329 1330 1331

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);
1332 1333

	if (unlikely(!cache->rq)) {
1334
		int err;
1335 1336
		struct intel_engine_cs *engine = eb->engine;

1337
		if (!reloc_can_use_engine(engine)) {
1338
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1339
			if (!engine)
1340 1341
				return ERR_PTR(-ENODEV);
		}
1342

1343
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1365
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1366
{
1367 1368
	struct page *page;
	unsigned long addr;
1369

1370
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1371

1372 1373 1374
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1375

1376 1377 1378
	return addr + offset_in_page(offset);
}

1379 1380 1381 1382
static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
1398
		return false;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1409 1410

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1411 1412 1413
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1414
		} else {
1415 1416 1417 1418 1419
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1420
		}
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1445 1446
	}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	return true;
}

static bool reloc_entry_gpu(struct i915_execbuffer *eb,
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1462 1463 1464
}

static u64
1465
relocate_entry(struct i915_vma *vma,
1466
	       const struct drm_i915_gem_relocation_entry *reloc,
1467
	       struct i915_execbuffer *eb,
1468 1469 1470
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	u64 offset = reloc->offset;

	if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
		vaddr = reloc_vaddr(vma->obj,
				    &eb->reloc_cache,
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1496

1497
	return target->node.start | UPDATE;
1498 1499
}

1500 1501
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1502
		  struct eb_vma *ev,
1503
		  const struct drm_i915_gem_relocation_entry *reloc)
1504
{
1505
	struct drm_i915_private *i915 = eb->i915;
1506
	struct eb_vma *target;
1507
	int err;
1508

1509
	/* we've already hold a reference to all valid objects */
1510 1511
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1512
		return -ENOENT;
1513

1514
	/* Validate that the target is in a valid r/w GPU domain */
1515
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1516
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1517
			  "target %d offset %d "
1518
			  "read %08x write %08x",
1519
			  reloc->target_handle,
1520 1521 1522
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1523
		return -EINVAL;
1524
	}
1525 1526
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1527
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1528
			  "target %d offset %d "
1529
			  "read %08x write %08x",
1530
			  reloc->target_handle,
1531 1532 1533
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1534
		return -EINVAL;
1535 1536
	}

1537
	if (reloc->write_domain) {
1538
		target->flags |= EXEC_OBJECT_WRITE;
1539

1540 1541 1542 1543 1544 1545 1546
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1547
		    IS_GEN(eb->i915, 6)) {
1548 1549
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1550
					    PIN_GLOBAL, NULL);
1551
			if (err)
1552 1553
				return err;
		}
1554
	}
1555

1556 1557
	/*
	 * If the relocation already has the right value in it, no
1558 1559
	 * more work needs to be done.
	 */
1560 1561
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1562
		return 0;
1563 1564

	/* Check that the relocation address is valid... */
1565
	if (unlikely(reloc->offset >
1566
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1567
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1568 1569 1570
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1571
			  (int)ev->vma->size);
1572
		return -EINVAL;
1573
	}
1574
	if (unlikely(reloc->offset & 3)) {
1575
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1576 1577 1578
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1579
		return -EINVAL;
1580 1581
	}

1582 1583 1584 1585 1586 1587
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1588
	 * out of our synchronisation.
1589
	 */
1590
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1591

1592
	/* and update the user's relocation entry */
1593
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1594 1595
}

1596
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1597
{
1598
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1599
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1600
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1601 1602 1603
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1604

1605
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1606
		return -EINVAL;
1607

1608 1609 1610 1611 1612
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1613
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1614 1615 1616 1617 1618
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1619
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1620
		unsigned int copied;
1621

1622 1623
		/*
		 * This is the fast path and we cannot handle a pagefault
1624 1625 1626 1627 1628 1629
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1630 1631 1632
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1633 1634 1635 1636
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1637

1638
		remain -= count;
1639
		do {
1640
			u64 offset = eb_relocate_entry(eb, ev, r);
1641

1642 1643
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1644 1645
				remain = (int)offset;
				goto out;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1669 1670
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1671
			}
1672 1673 1674
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1675 1676 1677
out:
	reloc_cache_reset(&eb->reloc_cache);
	return remain;
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
{
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;

	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);

		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
	}
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
}

static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;

	size = entry->relocation_count;
	if (size == 0)
		return 0;

	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;

	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
}

static int eb_copy_relocations(const struct i915_execbuffer *eb)
{
	struct drm_i915_gem_relocation_entry *relocs;
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;

	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;

		if (nreloc == 0)
			continue;

		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;

		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);

		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1827
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}

	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

	flush_workqueue(eb->i915->mm.userptr_wq);

	if (err)
		goto out;

	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
	if (err)
		goto out;

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, ev);
			pagefault_enable();
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

	mutex_unlock(&eb->i915->drm.struct_mutex);
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1892 1893 1894 1895 1896
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err;
}

1929
static int eb_relocate_parse(struct i915_execbuffer *eb)
1930
{
1931 1932 1933 1934 1935 1936
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1937 1938 1939 1940 1941
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1942 1943 1944

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1945
		struct eb_vma *ev;
1946

1947
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1948 1949
			err = eb_relocate_vma(eb, ev);
			if (err)
1950
				break;
1951
		}
1952 1953

		if (err)
1954
			return eb_relocate_parse_slow(eb);
1955 1956
	}

1957
	return eb_parse(eb);
1958 1959 1960 1961 1962
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1963
	struct ww_acquire_ctx acquire;
1964
	unsigned int i;
1965 1966 1967
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1968

1969
	for (i = 0; i < count; i++) {
1970 1971
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1972 1973 1974 1975 1976 1977 1978

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1979
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1993 1994 1995
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1996
		struct drm_i915_gem_object *obj = vma->obj;
1997

1998 1999
		assert_vma_held(vma);

2000
		if (flags & EXEC_OBJECT_CAPTURE) {
2001
			struct i915_capture_list *capture;
2002 2003

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2004 2005 2006 2007 2008
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
2009 2010
		}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2024
			if (i915_gem_clflush_object(obj, 0))
2025
				flags &= ~EXEC_OBJECT_ASYNC;
2026 2027
		}

2028 2029 2030 2031
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
2032

2033 2034
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
2035

2036
		i915_vma_unlock(vma);
2037
	}
2038 2039 2040 2041 2042
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

2043
	/* Unconditionally flush any chipset caches (for streaming writes). */
2044
	intel_gt_chipset_flush(eb->engine->gt);
2045
	return 0;
2046 2047

err_skip:
2048
	i915_request_set_error_once(eb->request, err);
2049
	return err;
2050 2051
}

T
Tvrtko Ursulin 已提交
2052
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2053
{
2054
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2055
		return -EINVAL;
2056

C
Chris Wilson 已提交
2057
	/* Kernel clipping was a DRI1 misfeature */
2058 2059
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2060
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2061
			return -EINVAL;
2062
	}
C
Chris Wilson 已提交
2063 2064 2065 2066 2067 2068

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2069
		return -EINVAL;
C
Chris Wilson 已提交
2070 2071

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2072
		return -EINVAL;
C
Chris Wilson 已提交
2073

T
Tvrtko Ursulin 已提交
2074
	return 0;
2075 2076
}

2077
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2078
{
2079 2080
	u32 *cs;
	int i;
2081

2082 2083
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2084 2085
		return -EINVAL;
	}
2086

2087
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2088 2089
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2090

2091
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2092
	for (i = 0; i < 4; i++) {
2093 2094
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2095
	}
2096
	*cs++ = MI_NOOP;
2097
	intel_ring_advance(rq, cs);
2098 2099 2100 2101

	return 0;
}

2102
static struct i915_vma *
2103 2104 2105
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
2106
{
2107 2108
	struct i915_vma *vma;
	int err;
2109

2110 2111 2112 2113 2114 2115 2116 2117 2118
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

2153 2154 2155
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
2156
	.release = __eb_parse_release,
2157 2158
};

2159 2160 2161 2162 2163 2164 2165
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

2166
	return i915_active_ref(&node->active, tl->fence_context, fence);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2202
	err = i915_active_acquire(&eb->batch->vma->active);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2216 2217 2218
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2219
	pw->batch = eb->batch->vma;
2220 2221 2222 2223 2224
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2225 2226 2227 2228 2229
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

2230 2231
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
2232
		goto err_commit;
2233 2234 2235

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
2236
		goto err_commit_unlock;
2237 2238 2239 2240 2241 2242

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
2243
		goto err_commit_unlock;
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

2255
	dma_fence_work_commit_imm(&pw->base);
2256 2257
	return 0;

2258
err_commit_unlock:
2259
	dma_resv_unlock(pw->batch->resv);
2260 2261 2262 2263 2264
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2265 2266 2267
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2268
	i915_active_release(&eb->batch->vma->active);
2269
err_free:
2270 2271 2272 2273
	kfree(pw);
	return err;
}

2274
static int eb_parse(struct i915_execbuffer *eb)
2275
{
2276
	struct drm_i915_private *i915 = eb->i915;
2277
	struct intel_gt_buffer_pool_node *pool;
2278 2279
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2280
	int err;
2281

2282 2283 2284
	if (!eb_use_cmdparser(eb))
		return 0;

2285 2286 2287 2288 2289 2290 2291
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2292 2293
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2294 2295 2296 2297 2298 2299
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

2300
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2301
	if (IS_ERR(pool))
2302
		return PTR_ERR(pool);
2303

2304 2305 2306
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2307
		goto err;
2308
	}
2309
	i915_gem_object_set_readonly(shadow->obj);
2310
	shadow->private = pool;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2324
		shadow->private = pool;
2325 2326 2327

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2328

2329
	err = eb_parse_pipeline(eb, shadow, trampoline);
2330 2331
	if (err)
		goto err_trampoline;
2332

2333
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2334
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2335
	eb->batch = &eb->vma[eb->buffer_count++];
2336

2337
	eb->trampoline = trampoline;
2338 2339
	eb->batch_start_offset = 0;

2340
	return 0;
2341

2342 2343 2344 2345 2346
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2347
err:
2348
	intel_gt_buffer_pool_put(pool);
2349
	return err;
2350
}
2351

2352
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2353
{
2354
	int err;
2355

2356 2357 2358
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2359

2360
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2361 2362 2363
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2364 2365
	}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2378
	err = eb->engine->emit_bb_start(eb->request,
2379
					batch->node.start +
2380 2381
					eb->batch_start_offset,
					eb->batch_len,
2382 2383 2384
					eb->batch_flags);
	if (err)
		return err;
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2396
	if (intel_context_nopreempt(eb->context))
2397
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2398

C
Chris Wilson 已提交
2399
	return 0;
2400 2401
}

2402 2403
static int num_vcs_engines(const struct drm_i915_private *i915)
{
2404
	return hweight64(VDBOX_MASK(&i915->gt));
2405 2406
}

2407
/*
2408
 * Find one BSD ring to dispatch the corresponding BSD command.
2409
 * The engine index is returned.
2410
 */
2411
static unsigned int
2412 2413
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2414 2415 2416
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2417
	/* Check whether the file_priv has already selected one ring. */
2418
	if ((int)file_priv->bsd_engine < 0)
2419 2420
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2421

2422
	return file_priv->bsd_engine;
2423 2424
}

2425
static const enum intel_engine_id user_ring_map[] = {
2426 2427 2428 2429 2430
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2431 2432
};

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2473 2474 2475 2476
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2477
	err = intel_gt_terminally_wedged(ce->engine->gt);
2478 2479 2480
	if (err)
		return err;

2481 2482 2483
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2484 2485 2486 2487 2488
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2489
	err = intel_context_pin(ce);
2490 2491
	if (err)
		return err;
2492

2493 2494 2495 2496 2497 2498 2499 2500
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2501 2502 2503
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2504
		goto err_unpin;
2505
	}
2506 2507

	intel_context_enter(ce);
2508 2509 2510 2511 2512
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2513 2514 2515 2516 2517 2518
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2519

2520 2521 2522
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2523
		i915_request_put(rq);
2524 2525 2526 2527 2528

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2529
	}
2530

2531
	eb->engine = ce->engine;
2532 2533
	eb->context = ce;
	return 0;
2534

2535 2536 2537 2538
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2539
err_unpin:
2540
	intel_context_unpin(ce);
2541
	return err;
2542 2543
}

2544
static void eb_unpin_engine(struct i915_execbuffer *eb)
2545
{
2546
	struct intel_context *ce = eb->context;
2547
	struct intel_timeline *tl = ce->timeline;
2548 2549 2550 2551 2552

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2553
	intel_context_unpin(ce);
2554
}
2555

2556 2557 2558 2559
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2560
{
2561
	struct drm_i915_private *i915 = eb->i915;
2562 2563
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2564 2565
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2566 2567 2568
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2569
		return -1;
2570 2571
	}

2572
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2573 2574 2575
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2576
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2577 2578
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2579
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2580 2581
			bsd_idx--;
		} else {
2582 2583 2584
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2585
			return -1;
2586 2587
		}

2588
		return _VCS(bsd_idx);
2589 2590
	}

2591
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2592 2593
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2594
		return -1;
2595 2596
	}

2597 2598 2599 2600
	return user_ring_map[user_ring_id];
}

static int
2601 2602 2603
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2604 2605 2606 2607 2608
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2609 2610 2611 2612
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2613 2614 2615 2616 2617

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2618
	err = __eb_pin_engine(eb, ce);
2619 2620 2621
	intel_context_put(ce);

	return err;
2622 2623
}

2624
static void
2625
__free_fence_array(struct eb_fence *fences, unsigned int n)
2626
{
2627
	while (n--) {
2628
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2629 2630 2631
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2632 2633 2634
	kvfree(fences);
}

2635
static int
2636 2637
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2638
{
2639 2640 2641 2642 2643
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2644

2645 2646
	nfences = timeline_fences->fence_count;
	if (!nfences)
2647
		return 0;
2648

2649 2650 2651
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2652 2653
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2654
		return -EINVAL;
2655

2656 2657 2658 2659 2660 2661
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2662
		return -EFAULT;
2663

2664 2665 2666 2667
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2668
		return -ENOMEM;
2669

2670 2671 2672 2673 2674 2675 2676 2677
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2678
		struct drm_syncobj *syncobj;
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2700

2701 2702 2703 2704 2705
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2706 2707
		}

2708 2709 2710 2711 2712
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2713
			dma_fence_put(fence);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2754 2755
		}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2810 2811
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2822 2823
		}

2824 2825 2826
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2827 2828 2829 2830 2831 2832
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2833 2834
	}

2835
	return 0;
2836
}
2837

2838 2839 2840 2841
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2842 2843 2844
}

static int
2845
await_fence_array(struct i915_execbuffer *eb)
2846 2847 2848 2849
{
	unsigned int n;
	int err;

2850
	for (n = 0; n < eb->num_fences; n++) {
2851 2852 2853
		struct drm_syncobj *syncobj;
		unsigned int flags;

2854
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2855

2856 2857
		if (!eb->fences[n].dma_fence)
			continue;
2858

2859 2860
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
2861 2862 2863 2864 2865 2866 2867
		if (err < 0)
			return err;
	}

	return 0;
}

2868
static void signal_fence_array(const struct i915_execbuffer *eb)
2869 2870 2871 2872
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

2873
	for (n = 0; n < eb->num_fences; n++) {
2874 2875 2876
		struct drm_syncobj *syncobj;
		unsigned int flags;

2877
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2878 2879 2880
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2894 2895 2896
	}
}

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2933
	if (likely(!intel_context_is_closed(eb->context))) {
2934 2935 2936
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2937 2938
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2950
static const i915_user_extension_fn execbuf_extensions[] = {
2951
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

2976
static int
2977
i915_gem_do_execbuffer(struct drm_device *dev,
2978 2979
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2980
		       struct drm_i915_gem_exec_object2 *exec)
2981
{
2982
	struct drm_i915_private *i915 = to_i915(dev);
2983
	struct i915_execbuffer eb;
2984 2985
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2986
	struct i915_vma *batch;
2987
	int out_fence_fd = -1;
2988
	int err;
2989

2990
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2991 2992
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2993

2994
	eb.i915 = i915;
2995 2996
	eb.file = file;
	eb.args = args;
2997
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2998
		args->flags |= __EXEC_HAS_RELOC;
2999

3000
	eb.exec = exec;
3001 3002
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
3003

3004
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3005 3006
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3007
	eb.buffer_count = args->buffer_count;
3008 3009
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
3010
	eb.trampoline = NULL;
3011

3012
	eb.fences = NULL;
3013
	eb.num_fences = 0;
3014

3015
	eb.batch_flags = 0;
3016
	if (args->flags & I915_EXEC_SECURE) {
3017 3018 3019 3020 3021 3022 3023
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3024
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3025
			return -EPERM;
3026

3027
		eb.batch_flags |= I915_DISPATCH_SECURE;
3028
	}
3029
	if (args->flags & I915_EXEC_IS_PINNED)
3030
		eb.batch_flags |= I915_DISPATCH_PINNED;
3031

3032 3033 3034 3035 3036 3037 3038 3039
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3040 3041 3042 3043 3044
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3045
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3046 3047 3048 3049
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3050
	}
3051
#undef IN_FENCES
3052

3053 3054 3055
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3056
			err = out_fence_fd;
3057
			goto err_in_fence;
3058 3059 3060
		}
	}

3061 3062
	err = eb_create(&eb);
	if (err)
3063
		goto err_out_fence;
3064

3065
	GEM_BUG_ON(!eb.lut_size);
3066

3067 3068 3069 3070
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3071
	err = eb_pin_engine(&eb, file, args);
3072
	if (unlikely(err))
3073
		goto err_context;
3074

3075
	err = eb_relocate_parse(&eb);
3076
	if (err) {
3077 3078 3079 3080 3081 3082 3083 3084 3085
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3086
	}
3087

3088 3089
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
3090
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
3091
	 * hsw should have this fixed, but bdw mucks it up again. */
3092
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
3093
		struct i915_vma *vma;
3094

3095 3096 3097 3098 3099 3100
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
3101
		 *   so we don't really have issues with multiple objects not
3102 3103 3104
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
3105
		vma = i915_gem_object_ggtt_pin(eb.batch->vma->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
3106
		if (IS_ERR(vma)) {
3107
			err = PTR_ERR(vma);
3108
			goto err_parse;
C
Chris Wilson 已提交
3109
		}
3110

3111
		batch = vma;
3112 3113
	} else {
		batch = eb.batch->vma;
3114
	}
3115

3116 3117 3118
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

3119
	/* Allocate a request for this batch buffer nice and early. */
3120
	eb.request = i915_request_create(eb.context);
3121
	if (IS_ERR(eb.request)) {
3122
		err = PTR_ERR(eb.request);
3123
		goto err_batch_unpin;
3124
	}
3125

3126
	if (in_fence) {
3127 3128 3129 3130 3131 3132 3133
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
3134 3135 3136 3137
		if (err < 0)
			goto err_request;
	}

3138
	if (eb.fences) {
3139
		err = await_fence_array(&eb);
3140 3141 3142 3143
		if (err)
			goto err_request;
	}

3144
	if (out_fence_fd != -1) {
3145
		out_fence = sync_file_create(&eb.request->fence);
3146
		if (!out_fence) {
3147
			err = -ENOMEM;
3148 3149 3150 3151
			goto err_request;
		}
	}

3152 3153
	/*
	 * Whilst this request exists, batch_obj will be on the
3154 3155 3156 3157 3158
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
3159 3160
	eb.request->batch = batch;
	if (batch->private)
3161
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
3162

3163
	trace_i915_request_queue(eb.request, eb.batch_flags);
3164
	err = eb_submit(&eb, batch);
3165
err_request:
3166
	i915_request_get(eb.request);
3167
	eb_request_add(&eb);
3168

3169
	if (eb.fences)
3170
		signal_fence_array(&eb);
3171

3172
	if (out_fence) {
3173
		if (err == 0) {
3174
			fd_install(out_fence_fd, out_fence->file);
3175
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3176 3177 3178 3179 3180 3181
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3182
	i915_request_put(eb.request);
3183

3184
err_batch_unpin:
3185
	if (eb.batch_flags & I915_DISPATCH_SECURE)
3186
		i915_vma_unpin(batch);
3187
err_parse:
3188
	if (batch->private)
3189
		intel_gt_buffer_pool_put(batch->private);
3190
err_vma:
3191 3192
	if (eb.exec)
		eb_release_vmas(&eb);
3193 3194
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3195
	eb_unpin_engine(&eb);
3196
err_context:
3197
	i915_gem_context_put(eb.gem_context);
3198
err_destroy:
3199
	eb_destroy(&eb);
3200
err_out_fence:
3201 3202
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3203
err_in_fence:
3204
	dma_fence_put(in_fence);
3205 3206
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3207
	return err;
3208 3209
}

3210 3211
static size_t eb_element_size(void)
{
3212
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3228 3229 3230 3231 3232
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
3233 3234
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
3235
{
3236
	struct drm_i915_private *i915 = to_i915(dev);
3237 3238 3239 3240
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3241
	const size_t count = args->buffer_count;
3242 3243
	unsigned int i;
	int err;
3244

3245
	if (!check_buffer_count(count)) {
3246
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3247 3248 3249
		return -EINVAL;
	}

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
3261 3262 3263
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
3264

3265
	/* Copy in the exec list from userland */
3266
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3267
				   __GFP_NOWARN | GFP_KERNEL);
3268
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
3269
				    __GFP_NOWARN | GFP_KERNEL);
3270
	if (exec_list == NULL || exec2_list == NULL) {
3271 3272 3273
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
3274 3275
		kvfree(exec_list);
		kvfree(exec2_list);
3276 3277
		return -ENOMEM;
	}
3278
	err = copy_from_user(exec_list,
3279
			     u64_to_user_ptr(args->buffers_ptr),
3280
			     sizeof(*exec_list) * count);
3281
	if (err) {
3282 3283
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
3284 3285
		kvfree(exec_list);
		kvfree(exec2_list);
3286 3287 3288 3289 3290 3291 3292 3293 3294
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3295
		if (INTEL_GEN(to_i915(dev)) < 4)
3296 3297 3298 3299 3300
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

3301
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3302
	if (exec2.flags & __EXEC_HAS_RELOC) {
3303
		struct drm_i915_gem_exec_object __user *user_exec_list =
3304
			u64_to_user_ptr(args->buffers_ptr);
3305

3306
		/* Copy the new buffer offsets back to the user's exec list. */
3307
		for (i = 0; i < args->buffer_count; i++) {
3308 3309 3310
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3311
			exec2_list[i].offset =
3312 3313 3314 3315 3316
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
3317
				break;
3318 3319 3320
		}
	}

M
Michal Hocko 已提交
3321 3322
	kvfree(exec_list);
	kvfree(exec2_list);
3323
	return err;
3324 3325 3326
}

int
3327 3328
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3329
{
3330
	struct drm_i915_private *i915 = to_i915(dev);
3331
	struct drm_i915_gem_execbuffer2 *args = data;
3332
	struct drm_i915_gem_exec_object2 *exec2_list;
3333
	const size_t count = args->buffer_count;
3334
	int err;
3335

3336
	if (!check_buffer_count(count)) {
3337
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3338 3339 3340
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3341 3342 3343
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3344

3345 3346
	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
3347
				    __GFP_NOWARN | GFP_KERNEL);
3348
	if (exec2_list == NULL) {
3349 3350
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3351 3352
		return -ENOMEM;
	}
3353 3354
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3355
			   sizeof(*exec2_list) * count)) {
3356
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3357
		kvfree(exec2_list);
3358 3359 3360
		return -EFAULT;
	}

3361
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3362 3363 3364 3365 3366 3367 3368 3369

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3370
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3371 3372
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3373

3374
		/* Copy the new buffer offsets back to the user's exec list. */
3375 3376 3377 3378 3379 3380 3381
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3382 3383
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3384
			goto end;
3385

3386
		for (i = 0; i < args->buffer_count; i++) {
3387 3388 3389
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3390
			exec2_list[i].offset =
3391 3392 3393 3394
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3395
		}
3396
end_user:
3397
		user_write_access_end();
3398
end:;
3399 3400
	}

3401
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3402
	kvfree(exec2_list);
3403
	return err;
3404
}
3405 3406 3407 3408

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif