i915_gem_execbuffer.c 73.5 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47
struct eb_vma_array {
	struct kref kref;
	struct eb_vma vma[];
};

48 49 50 51 52
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
53 54

#define __EXEC_HAS_RELOC	BIT(31)
55
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
56
#define UPDATE			PIN_OFFSET_FIXED
57 58

#define BATCH_OFFSET_BIAS (256*1024)
59

60
#define __I915_EXEC_ILLEGAL_FLAGS \
61 62 63
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
64

65 66 67 68 69 70 71 72 73
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

225
struct i915_execbuffer {
226 227 228 229
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
230
	struct eb_vma *vma;
231 232

	struct intel_engine_cs *engine; /** engine to queue the request to */
233 234
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
235

236
	struct i915_request *request; /** our request to build */
237
	struct eb_vma *batch; /** identity of the batch obj/vma */
238
	struct i915_vma *trampoline; /** trampoline used for chaining */
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
254
	struct reloc_cache {
255
		struct drm_mm_node node; /** temporary GTT binding */
256
		unsigned int gen; /** Cached value of INTEL_GEN */
257
		bool use_64bit_reloc : 1;
258 259 260
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
261

262
		struct i915_vma *target;
263
		struct i915_request *rq;
264
		struct i915_vma *rq_vma;
265 266
		u32 *rq_cmd;
		unsigned int rq_size;
267
	} reloc_cache;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
283
	struct eb_vma_array *array;
284 285
};

286 287
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
288
	return intel_engine_requires_cmd_parser(eb->engine) ||
289 290
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static struct eb_vma_array *eb_vma_array_create(unsigned int count)
{
	struct eb_vma_array *arr;

	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
	if (!arr)
		return NULL;

	kref_init(&arr->kref);
	arr->vma[0].vma = NULL;

	return arr;
}

static inline void eb_unreserve_vma(struct eb_vma *ev)
{
	struct i915_vma *vma = ev->vma;

	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
		__i915_vma_unpin(vma);

	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
		       __EXEC_OBJECT_HAS_FENCE);
}

static void eb_vma_array_destroy(struct kref *kref)
{
	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
	struct eb_vma *ev = arr->vma;

	while (ev->vma) {
		eb_unreserve_vma(ev);
		i915_vma_put(ev->vma);
		ev++;
	}

	kvfree(arr);
}

static void eb_vma_array_put(struct eb_vma_array *arr)
{
	kref_put(&arr->kref, eb_vma_array_destroy);
}

340
static int eb_create(struct i915_execbuffer *eb)
341
{
342 343 344 345 346 347 348
	/* Allocate an extra slot for use by the command parser + sentinel */
	eb->array = eb_vma_array_create(eb->buffer_count + 2);
	if (!eb->array)
		return -ENOMEM;

	eb->vma = eb->array->vma;

349 350
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
351

352 353 354 355 356 357 358 359 360 361 362
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
363
		do {
364
			gfp_t flags;
365 366 367 368 369 370 371

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
372
			flags = GFP_KERNEL;
373 374 375
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

376
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
377
					      flags);
378 379 380 381
			if (eb->buckets)
				break;
		} while (--size);

382 383
		if (unlikely(!size)) {
			eb_vma_array_put(eb->array);
384
			return -ENOMEM;
385
		}
386

387
		eb->lut_size = size;
388
	} else {
389
		eb->lut_size = -eb->buffer_count;
390
	}
391

392
	return 0;
393 394
}

395 396
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
397 398
		 const struct i915_vma *vma,
		 unsigned int flags)
399 400 401 402 403 404 405
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

406
	if (flags & EXEC_OBJECT_PINNED &&
407 408 409
	    vma->node.start != entry->offset)
		return true;

410
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
411 412 413
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

414
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
415 416 417
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

418 419 420 421
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

422 423 424
	return false;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

451
static inline bool
452
eb_pin_vma(struct i915_execbuffer *eb,
453
	   const struct drm_i915_gem_exec_object2 *entry,
454
	   struct eb_vma *ev)
455
{
456
	struct i915_vma *vma = ev->vma;
457
	u64 pin_flags;
458

459
	if (vma->node.size)
460
		pin_flags = vma->node.start;
461
	else
462
		pin_flags = entry->offset & PIN_OFFSET_MASK;
463

464
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
465
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
466
		pin_flags |= PIN_GLOBAL;
467

468 469 470 471 472 473 474 475 476 477 478 479 480
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
481

482
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
483
		if (unlikely(i915_vma_pin_fence(vma))) {
484
			i915_vma_unpin(vma);
485
			return false;
486 487
		}

488
		if (vma->fence)
489
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
490 491
	}

492 493
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
494 495 496 497 498 499
}

static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
500
{
501 502
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
503

504 505
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
506 507 508 509 510 511 512
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
513
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
514 515 516 517 518 519 520 521
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
522
	}
523 524 525 526 527 528 529
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

530 531 532 533 534 535 536 537 538 539 540 541
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

542
	return 0;
543 544
}

545
static void
546 547 548
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
549
{
550
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
551
	struct eb_vma *ev = &eb->vma[i];
552 553 554

	GEM_BUG_ON(i915_vma_is_closed(vma));

555
	ev->vma = vma;
556 557 558
	ev->exec = entry;
	ev->flags = entry->flags;

559
	if (eb->lut_size > 0) {
560 561
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
562 563
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
564
	}
565

566
	if (entry->relocation_count)
567
		list_add_tail(&ev->reloc_link, &eb->relocs);
568

569 570 571 572 573 574 575 576 577 578
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
579
		if (entry->relocation_count &&
580 581
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
582
		if (eb->reloc_cache.has_fence)
583
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
584

585
		eb->batch = ev;
586 587
	}

588
	if (eb_pin_vma(eb, entry, ev)) {
589 590 591 592
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
593
	} else {
594 595
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
596 597 598 599
	}
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
600
			  struct eb_vma *ev,
601
			  u64 pin_flags)
602
{
603 604
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
605 606
	int err;

607 608 609 610 611 612 613
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

614 615
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
616
			   eb_pin_flags(entry, ev->flags) | pin_flags);
617 618 619 620 621 622 623 624
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

625
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
626
		err = i915_vma_pin_fence(vma);
627 628 629 630 631
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

632
		if (vma->fence)
633
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
634 635
	}

636
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
637
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
638

639 640 641 642 643 644
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
645
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
646
	struct list_head last;
647
	struct eb_vma *ev;
648
	unsigned int i, pass;
649
	int err = 0;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

665 666 667
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

668 669
	pass = 0;
	do {
670 671
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
672 673 674
			if (err)
				break;
		}
675
		if (!(err == -ENOSPC || err == -EAGAIN))
676
			break;
677 678 679 680 681

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
682
			unsigned int flags;
683

684 685
			ev = &eb->vma[i];
			flags = ev->flags;
686 687
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
688 689
				continue;

690
			eb_unreserve_vma(ev);
691

692
			if (flags & EXEC_OBJECT_PINNED)
693
				/* Pinned must have their slot */
694
				list_add(&ev->bind_link, &eb->unbound);
695
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
696
				/* Map require the lowest 256MiB (aperture) */
697
				list_add_tail(&ev->bind_link, &eb->unbound);
698 699
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
700
				list_add(&ev->bind_link, &last);
701
			else
702
				list_add_tail(&ev->bind_link, &last);
703 704 705
		}
		list_splice_tail(&last, &eb->unbound);

706
		if (err == -EAGAIN) {
707
			mutex_unlock(&eb->i915->drm.struct_mutex);
708
			flush_workqueue(eb->i915->mm.userptr_wq);
709
			mutex_lock(&eb->i915->drm.struct_mutex);
710 711 712
			continue;
		}

713 714 715 716 717 718
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
719
			mutex_lock(&eb->context->vm->mutex);
720
			err = i915_gem_evict_vm(eb->context->vm);
721
			mutex_unlock(&eb->context->vm->mutex);
722
			if (err)
723
				goto unlock;
724 725 726
			break;

		default:
727 728
			err = -ENOSPC;
			goto unlock;
729
		}
730 731

		pin_flags = PIN_USER;
732
	} while (1);
733 734 735 736

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
737
}
738

739 740
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
741 742 743 744
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
745 746 747 748 749 750 751
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
752 753
	if (unlikely(!ctx))
		return -ENOENT;
754

755
	eb->gem_context = ctx;
756
	if (rcu_access_pointer(ctx->vm))
757
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
758 759

	eb->context_flags = 0;
760
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
761 762 763 764 765
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

766 767
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
768
{
769 770
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
771
	int err;
772

773 774 775 776 777 778 779 780 781 782 783 784
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
785 786 787 788 789 790
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
791
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
792 793
		else
			err = -ENOENT;
794 795 796
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

797
			spin_lock(&obj->lut_lock);
798 799 800 801 802 803
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
804
			spin_unlock(&obj->lut_lock);
805
		}
806
		mutex_unlock(&ctx->lut_mutex);
807 808 809
	}
	if (unlikely(err))
		goto err;
810

811
	return 0;
812

813
err:
C
Chris Wilson 已提交
814
	i915_vma_close(vma);
815 816 817 818
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
819

820 821
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
822 823
	struct i915_address_space *vm = eb->context->vm;

824 825
	do {
		struct drm_i915_gem_object *obj;
826
		struct i915_vma *vma;
827
		int err;
828

829 830
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
831
		if (likely(vma && vma->vm == vm))
832 833 834 835
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
836

837
		obj = i915_gem_object_lookup(eb->file, handle);
838 839
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
840

841
		vma = i915_vma_instance(obj, vm, NULL);
842
		if (IS_ERR(vma)) {
843 844
			i915_gem_object_put(obj);
			return vma;
845 846
		}

847 848 849
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
850

851 852 853 854 855
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
856

857 858 859 860 861
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
862

863 864 865 866 867 868 869 870 871 872 873
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
874

875
		err = eb_validate_vma(eb, &eb->exec[i], vma);
876 877 878 879
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
880

881
		eb_add_vma(eb, i, batch, vma);
882 883
	}

884
	eb->vma[i].vma = NULL;
885
	return err;
886 887
}

888
static struct eb_vma *
889
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
890
{
891 892
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
893
			return NULL;
894
		return &eb->vma[handle];
895 896
	} else {
		struct hlist_head *head;
897
		struct eb_vma *ev;
898

899
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
900 901 902
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
903 904 905
		}
		return NULL;
	}
906 907
}

908
static void eb_destroy(const struct i915_execbuffer *eb)
909
{
910 911
	GEM_BUG_ON(eb->reloc_cache.rq);

912 913 914
	if (eb->array)
		eb_vma_array_put(eb->array);

915
	if (eb->lut_size > 0)
916
		kfree(eb->buckets);
917 918
}

919
static inline u64
920
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
921
		  const struct i915_vma *target)
922
{
923
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
924 925
}

926 927
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
928
{
929
	/* Must be a variable in the struct to allow GCC to unroll. */
930
	cache->gen = INTEL_GEN(i915);
931
	cache->has_llc = HAS_LLC(i915);
932
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
933 934
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
935
	cache->node.flags = 0;
936
	cache->rq = NULL;
937
	cache->target = NULL;
938
}
939

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
#define RELOC_TAIL 4

static int reloc_gpu_chain(struct reloc_cache *cache)
{
	struct intel_gt_buffer_pool_node *pool;
	struct i915_request *rq = cache->rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);

	batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto out_pool;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto out_pool;

	GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
	cmd = cache->rq_cmd + cache->rq_size;
	*cmd++ = MI_ARB_CHECK;
967
	if (cache->gen >= 8)
968
		*cmd++ = MI_BATCH_BUFFER_START_GEN8;
969
	else if (cache->gen >= 6)
970
		*cmd++ = MI_BATCH_BUFFER_START;
971 972 973 974
	else
		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cmd++ = lower_32_bits(batch->node.start);
	*cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	i915_gem_object_flush_map(cache->rq_vma->obj);
	i915_gem_object_unpin_map(cache->rq_vma->obj);
	cache->rq_vma = NULL;

	err = intel_gt_buffer_pool_mark_active(pool, rq);
	if (err == 0) {
		i915_vma_lock(batch);
		err = i915_request_await_object(rq, batch->obj, false);
		if (err == 0)
			err = i915_vma_move_to_active(batch, rq, 0);
		i915_vma_unlock(batch);
	}
	i915_vma_unpin(batch);
	if (err)
		goto out_pool;

	cmd = i915_gem_object_pin_map(batch->obj,
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}

	/* Return with batch mapping (cmd) still pinned */
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
	cache->rq_vma = batch;

out_pool:
	intel_gt_buffer_pool_put(pool);
	return err;
}

static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
{
	return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
}

1015
static int reloc_gpu_flush(struct reloc_cache *cache)
1016
{
1017 1018
	struct i915_request *rq;
	int err;
1019

1020 1021
	rq = fetch_and_zero(&cache->rq);
	if (!rq)
1022
		return 0;
1023

1024 1025
	if (cache->rq_vma) {
		struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1026

1027 1028
		GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
		cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		__i915_gem_object_flush_map(obj,
					    0, sizeof(u32) * cache->rq_size);
		i915_gem_object_unpin_map(obj);
	}

	err = 0;
	if (rq->engine->emit_init_breadcrumb)
		err = rq->engine->emit_init_breadcrumb(rq);
	if (!err)
		err = rq->engine->emit_bb_start(rq,
						rq->batch->node.start,
						PAGE_SIZE,
						reloc_bb_flags(cache));
	if (err)
		i915_request_set_error_once(rq, err);

	intel_gt_chipset_flush(rq->engine->gt);
	i915_request_add(rq);
1048 1049

	return err;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1072
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1073
			     struct intel_engine_cs *engine,
1074 1075 1076
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1077
	struct intel_gt_buffer_pool_node *pool;
1078
	struct i915_request *rq;
1079 1080 1081 1082
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1083
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1084 1085
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1086

1087
	cmd = i915_gem_object_pin_map(pool->obj,
1088 1089 1090
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1091 1092 1093 1094
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1095

1096
	batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1097 1098 1099 1100 1101 1102 1103 1104 1105
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1106 1107 1108 1109 1110 1111 1112
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1113
			err = PTR_ERR(ce);
1114 1115 1116 1117 1118 1119 1120 1121 1122
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1123 1124 1125 1126 1127
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1128
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1129 1130 1131
	if (err)
		goto err_request;

1132
	i915_vma_lock(batch);
1133 1134 1135
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1136
	i915_vma_unlock(batch);
1137 1138
	if (err)
		goto skip_request;
1139 1140

	rq->batch = batch;
1141
	i915_vma_unpin(batch);
1142 1143 1144 1145

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1146
	cache->rq_vma = batch;
1147 1148

	/* Return with batch mapping (cmd) still pinned */
1149
	goto out_pool;
1150

1151
skip_request:
1152
	i915_request_set_error_once(rq, err);
1153
err_request:
1154
	i915_request_add(rq);
1155 1156 1157
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1158 1159
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1160
	intel_gt_buffer_pool_put(pool);
1161 1162 1163
	return err;
}

1164 1165 1166 1167 1168
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1169 1170 1171 1172 1173 1174
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1175
	int err;
1176 1177

	if (unlikely(!cache->rq)) {
1178 1179
		struct intel_engine_cs *engine = eb->engine;

1180
		if (!reloc_can_use_engine(engine)) {
1181
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1182
			if (!engine)
1183 1184
				return ERR_PTR(-ENODEV);
		}
1185

1186
		err = __reloc_gpu_alloc(eb, engine, len);
1187 1188 1189 1190
		if (unlikely(err))
			return ERR_PTR(err);
	}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (vma != cache->target) {
		err = reloc_move_to_gpu(cache->rq, vma);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}

		cache->target = vma;
	}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	if (unlikely(cache->rq_size + len >
		     PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
		err = reloc_gpu_chain(cache);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}
	}

	GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1211 1212 1213 1214 1215 1216
	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1217
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1218
{
1219 1220
	struct page *page;
	unsigned long addr;
1221

1222
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1223

1224 1225 1226
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1227

1228 1229 1230
	return addr + offset_in_page(offset);
}

1231 1232 1233 1234
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     u64 offset,
			     u64 target_addr)
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
1250
		return PTR_ERR(batch);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1261 1262

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1263 1264 1265
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1266
		} else {
1267 1268 1269 1270 1271
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1272
		}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1297 1298
	}

1299
	return 0;
1300 1301 1302
}

static u64
1303 1304
relocate_entry(struct i915_execbuffer *eb,
	       struct i915_vma *vma,
1305 1306 1307 1308
	       const struct drm_i915_gem_relocation_entry *reloc,
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1309 1310 1311 1312 1313
	int err;

	err = __reloc_entry_gpu(eb, vma, reloc->offset, target_addr);
	if (err)
		return err;
1314

1315
	return target->node.start | UPDATE;
1316 1317
}

1318 1319
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1320
		  struct eb_vma *ev,
1321
		  const struct drm_i915_gem_relocation_entry *reloc)
1322
{
1323
	struct drm_i915_private *i915 = eb->i915;
1324
	struct eb_vma *target;
1325
	int err;
1326

1327
	/* we've already hold a reference to all valid objects */
1328 1329
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1330
		return -ENOENT;
1331

1332
	/* Validate that the target is in a valid r/w GPU domain */
1333
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1334
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1335
			  "target %d offset %d "
1336
			  "read %08x write %08x",
1337
			  reloc->target_handle,
1338 1339 1340
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1341
		return -EINVAL;
1342
	}
1343 1344
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1345
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1346
			  "target %d offset %d "
1347
			  "read %08x write %08x",
1348
			  reloc->target_handle,
1349 1350 1351
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1352
		return -EINVAL;
1353 1354
	}

1355
	if (reloc->write_domain) {
1356
		target->flags |= EXEC_OBJECT_WRITE;
1357

1358 1359 1360 1361 1362 1363 1364
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1365
		    IS_GEN(eb->i915, 6)) {
1366 1367
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1368
					    PIN_GLOBAL, NULL);
1369
			if (err)
1370 1371
				return err;
		}
1372
	}
1373

1374 1375
	/*
	 * If the relocation already has the right value in it, no
1376 1377
	 * more work needs to be done.
	 */
1378
	if (gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1379
		return 0;
1380 1381

	/* Check that the relocation address is valid... */
1382
	if (unlikely(reloc->offset >
1383
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1384
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1385 1386 1387
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1388
			  (int)ev->vma->size);
1389
		return -EINVAL;
1390
	}
1391
	if (unlikely(reloc->offset & 3)) {
1392
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1393 1394 1395
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1396
		return -EINVAL;
1397 1398
	}

1399 1400 1401 1402 1403 1404
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1405
	 * out of our synchronisation.
1406
	 */
1407
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1408

1409
	/* and update the user's relocation entry */
1410
	return relocate_entry(eb, ev->vma, reloc, target->vma);
1411 1412
}

1413
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1414
{
1415
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1416
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1417
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1418 1419 1420
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1421

1422
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1423
		return -EINVAL;
1424

1425 1426 1427 1428 1429
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1430
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1431 1432 1433 1434 1435
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1436
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1437
		unsigned int copied;
1438

1439 1440
		/*
		 * This is the fast path and we cannot handle a pagefault
1441 1442 1443 1444 1445 1446
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1447
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1448 1449
		if (unlikely(copied))
			return -EFAULT;
1450

1451
		remain -= count;
1452
		do {
1453
			u64 offset = eb_relocate_entry(eb, ev, r);
1454

1455 1456
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1457
				return (int)offset;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1481 1482
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1483
			}
1484 1485 1486
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1487 1488

	return 0;
1489 1490
}

1491
static int eb_relocate(struct i915_execbuffer *eb)
1492
{
1493 1494 1495 1496 1497 1498
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1499 1500 1501 1502 1503
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1504 1505 1506

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1507
		struct eb_vma *ev;
1508
		int flush;
1509

1510
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1511 1512
			err = eb_relocate_vma(eb, ev);
			if (err)
1513
				break;
1514
		}
1515 1516 1517 1518

		flush = reloc_gpu_flush(&eb->reloc_cache);
		if (!err)
			err = flush;
1519 1520
	}

1521
	return err;
1522 1523 1524 1525 1526
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1527
	struct ww_acquire_ctx acquire;
1528
	unsigned int i;
1529 1530 1531
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1532

1533
	for (i = 0; i < count; i++) {
1534 1535
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1536 1537 1538 1539 1540 1541 1542

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1543
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1557 1558 1559
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1560
		struct drm_i915_gem_object *obj = vma->obj;
1561

1562 1563
		assert_vma_held(vma);

1564
		if (flags & EXEC_OBJECT_CAPTURE) {
1565
			struct i915_capture_list *capture;
1566 1567

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1568 1569 1570 1571 1572
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1573 1574
		}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1588
			if (i915_gem_clflush_object(obj, 0))
1589
				flags &= ~EXEC_OBJECT_ASYNC;
1590 1591
		}

1592 1593 1594 1595
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1596

1597 1598
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1599

1600
		i915_vma_unlock(vma);
1601
		eb_unreserve_vma(ev);
1602
	}
1603 1604
	ww_acquire_fini(&acquire);

1605 1606
	eb_vma_array_put(fetch_and_zero(&eb->array));

1607 1608 1609
	if (unlikely(err))
		goto err_skip;

1610
	/* Unconditionally flush any chipset caches (for streaming writes). */
1611
	intel_gt_chipset_flush(eb->engine->gt);
1612
	return 0;
1613 1614

err_skip:
1615
	i915_request_set_error_once(eb->request, err);
1616
	return err;
1617 1618
}

T
Tvrtko Ursulin 已提交
1619
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1620
{
1621
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1622
		return -EINVAL;
1623

C
Chris Wilson 已提交
1624
	/* Kernel clipping was a DRI1 misfeature */
1625 1626
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1627
			return -EINVAL;
1628
	}
C
Chris Wilson 已提交
1629 1630 1631 1632 1633 1634

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1635
		return -EINVAL;
C
Chris Wilson 已提交
1636 1637

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1638
		return -EINVAL;
C
Chris Wilson 已提交
1639

T
Tvrtko Ursulin 已提交
1640
	return 0;
1641 1642
}

1643
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1644
{
1645 1646
	u32 *cs;
	int i;
1647

1648 1649
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1650 1651
		return -EINVAL;
	}
1652

1653
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1654 1655
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1656

1657
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1658
	for (i = 0; i < 4; i++) {
1659 1660
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1661
	}
1662
	*cs++ = MI_NOOP;
1663
	intel_ring_advance(rq, cs);
1664 1665 1666 1667

	return 0;
}

1668
static struct i915_vma *
1669 1670 1671
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1672
{
1673 1674
	struct i915_vma *vma;
	int err;
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1685 1686
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1719 1720 1721
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1722
	.release = __eb_parse_release,
1723 1724
};

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

	return i915_active_ref(&node->active, tl, fence);
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1768
	err = i915_active_acquire(&eb->batch->vma->active);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1782 1783 1784
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1785
	pw->batch = eb->batch->vma;
1786 1787 1788 1789 1790
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1791 1792 1793 1794 1795
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

1796 1797
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
1798
		goto err_commit;
1799 1800 1801

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
1802
		goto err_commit_unlock;
1803 1804 1805 1806 1807 1808

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
1809
		goto err_commit_unlock;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

1821
	dma_fence_work_commit_imm(&pw->base);
1822 1823
	return 0;

1824
err_commit_unlock:
1825
	dma_resv_unlock(pw->batch->resv);
1826 1827 1828 1829 1830
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

1831 1832 1833
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
1834
	i915_active_release(&eb->batch->vma->active);
1835
err_free:
1836 1837 1838 1839
	kfree(pw);
	return err;
}

1840
static int eb_parse(struct i915_execbuffer *eb)
1841
{
1842
	struct drm_i915_private *i915 = eb->i915;
1843
	struct intel_gt_buffer_pool_node *pool;
1844 1845
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1846
	int err;
1847

1848 1849 1850
	if (!eb_use_cmdparser(eb))
		return 0;

1851 1852 1853 1854 1855 1856 1857
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
1858 1859
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
1860 1861 1862 1863 1864 1865
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

1866
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
1867
	if (IS_ERR(pool))
1868
		return PTR_ERR(pool);
1869

1870 1871 1872
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1873
		goto err;
1874
	}
1875
	i915_gem_object_set_readonly(shadow->obj);
1876
	shadow->private = pool;
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
1890
		shadow->private = pool;
1891 1892 1893

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
1894

1895
	err = eb_parse_pipeline(eb, shadow, trampoline);
1896 1897
	if (err)
		goto err_trampoline;
1898

1899
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1900
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1901
	eb->batch = &eb->vma[eb->buffer_count++];
1902
	eb->vma[eb->buffer_count].vma = NULL;
1903

1904
	eb->trampoline = trampoline;
1905 1906
	eb->batch_start_offset = 0;

1907
	return 0;
1908

1909 1910 1911 1912 1913
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
1914
err:
1915
	intel_gt_buffer_pool_put(pool);
1916
	return err;
1917
}
1918

1919
static void
1920
add_to_client(struct i915_request *rq, struct drm_file *file)
1921
{
1922 1923 1924 1925 1926 1927 1928
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
1929 1930
}

1931
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1932
{
1933
	int err;
1934

1935 1936 1937
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1938

1939
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1940 1941 1942
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1943 1944
	}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

1957
	err = eb->engine->emit_bb_start(eb->request,
1958
					batch->node.start +
1959 1960
					eb->batch_start_offset,
					eb->batch_len,
1961 1962 1963
					eb->batch_flags);
	if (err)
		return err;
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

1975
	if (intel_context_nopreempt(eb->context))
1976
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1977

C
Chris Wilson 已提交
1978
	return 0;
1979 1980
}

1981 1982
static int num_vcs_engines(const struct drm_i915_private *i915)
{
1983
	return hweight64(VDBOX_MASK(&i915->gt));
1984 1985
}

1986
/*
1987
 * Find one BSD ring to dispatch the corresponding BSD command.
1988
 * The engine index is returned.
1989
 */
1990
static unsigned int
1991 1992
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1993 1994 1995
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1996
	/* Check whether the file_priv has already selected one ring. */
1997
	if ((int)file_priv->bsd_engine < 0)
1998 1999
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2000

2001
	return file_priv->bsd_engine;
2002 2003
}

2004
static const enum intel_engine_id user_ring_map[] = {
2005 2006 2007 2008 2009
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2010 2011
};

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2052 2053 2054 2055
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2056
	err = intel_gt_terminally_wedged(ce->engine->gt);
2057 2058 2059
	if (err)
		return err;

2060 2061 2062
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2063 2064 2065 2066 2067
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2068
	err = intel_context_pin(ce);
2069 2070
	if (err)
		return err;
2071

2072 2073 2074 2075 2076 2077 2078 2079
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2080 2081 2082
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2083
		goto err_unpin;
2084
	}
2085 2086

	intel_context_enter(ce);
2087 2088 2089 2090 2091
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2092 2093 2094 2095 2096 2097
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2098

2099 2100 2101
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2102
		i915_request_put(rq);
2103 2104 2105 2106 2107

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2108
	}
2109

2110
	eb->engine = ce->engine;
2111 2112
	eb->context = ce;
	return 0;
2113

2114 2115 2116 2117
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2118
err_unpin:
2119
	intel_context_unpin(ce);
2120
	return err;
2121 2122
}

2123
static void eb_unpin_engine(struct i915_execbuffer *eb)
2124
{
2125
	struct intel_context *ce = eb->context;
2126
	struct intel_timeline *tl = ce->timeline;
2127 2128 2129 2130 2131

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2132
	intel_context_unpin(ce);
2133
}
2134

2135 2136 2137 2138
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2139
{
2140
	struct drm_i915_private *i915 = eb->i915;
2141 2142
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2143 2144
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2145 2146 2147
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2148
		return -1;
2149 2150
	}

2151
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2152 2153 2154
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2155
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2156 2157
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2158
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2159 2160
			bsd_idx--;
		} else {
2161 2162 2163
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2164
			return -1;
2165 2166
		}

2167
		return _VCS(bsd_idx);
2168 2169
	}

2170
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2171 2172
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2173
		return -1;
2174 2175
	}

2176 2177 2178 2179
	return user_ring_map[user_ring_id];
}

static int
2180 2181 2182
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2183 2184 2185 2186 2187
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2188 2189 2190 2191
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2192 2193 2194 2195 2196

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2197
	err = __eb_pin_engine(eb, ce);
2198 2199 2200
	intel_context_put(ce);

	return err;
2201 2202
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2215
	const unsigned long nfences = args->num_cliprects;
2216 2217
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2218
	unsigned long n;
2219 2220 2221 2222 2223
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2224 2225 2226 2227 2228
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2229 2230 2231
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2232
	if (!access_ok(user, nfences * sizeof(*user)))
2233 2234
		return ERR_PTR(-EFAULT);

2235
	fences = kvmalloc_array(nfences, sizeof(*fences),
2236
				__GFP_NOWARN | GFP_KERNEL);
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2249 2250 2251 2252 2253
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2254 2255 2256 2257 2258 2259 2260
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2261 2262 2263
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2299
		fence = drm_syncobj_fence_get(syncobj);
2300 2301 2302
		if (!fence)
			return -EINVAL;

2303
		err = i915_request_await_dma_fence(eb->request, fence);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2328
		drm_syncobj_replace_fence(syncobj, fence);
2329 2330 2331
	}
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2356
	if (likely(!intel_context_is_closed(eb->context))) {
2357 2358 2359
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2360 2361
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2373
static int
2374
i915_gem_do_execbuffer(struct drm_device *dev,
2375 2376
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2377 2378
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2379
{
2380
	struct drm_i915_private *i915 = to_i915(dev);
2381
	struct i915_execbuffer eb;
2382 2383
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2384
	struct i915_vma *batch;
2385
	int out_fence_fd = -1;
2386
	int err;
2387

2388
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2389 2390
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2391

2392
	eb.i915 = i915;
2393 2394
	eb.file = file;
	eb.args = args;
2395
	if (!(args->flags & I915_EXEC_NO_RELOC))
2396
		args->flags |= __EXEC_HAS_RELOC;
2397

2398
	eb.exec = exec;
2399

2400
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2401 2402
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2403
	eb.buffer_count = args->buffer_count;
2404 2405
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2406
	eb.trampoline = NULL;
2407

2408
	eb.batch_flags = 0;
2409
	if (args->flags & I915_EXEC_SECURE) {
2410 2411 2412 2413 2414 2415 2416
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2417
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2418
			return -EPERM;
2419

2420
		eb.batch_flags |= I915_DISPATCH_SECURE;
2421
	}
2422
	if (args->flags & I915_EXEC_IS_PINNED)
2423
		eb.batch_flags |= I915_DISPATCH_PINNED;
2424

2425 2426 2427 2428 2429
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

2430
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2431 2432
		if (!in_fence)
			return -EINVAL;
2433
	}
2434
#undef IN_FENCES
2435

2436 2437 2438
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2439
			err = out_fence_fd;
2440
			goto err_in_fence;
2441 2442 2443
		}
	}

2444 2445 2446 2447 2448
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2449

2450 2451 2452 2453
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2454
	err = eb_pin_engine(&eb, file, args);
2455
	if (unlikely(err))
2456
		goto err_context;
2457

2458
	err = eb_relocate(&eb);
2459
	if (err) {
2460 2461 2462 2463 2464 2465 2466 2467 2468
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2469
	}
2470

2471
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2472 2473
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2474 2475
		err = -EINVAL;
		goto err_vma;
2476
	}
2477 2478 2479 2480

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2481
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2482 2483
		err = -EINVAL;
		goto err_vma;
2484
	}
2485

2486
	if (eb.batch_len == 0)
2487
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2488

2489 2490 2491
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2492

2493 2494
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2495
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2496
	 * hsw should have this fixed, but bdw mucks it up again. */
2497
	batch = eb.batch->vma;
2498
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2499
		struct i915_vma *vma;
2500

2501 2502 2503 2504 2505 2506
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2507
		 *   so we don't really have issues with multiple objects not
2508 2509 2510
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2511
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2512
		if (IS_ERR(vma)) {
2513
			err = PTR_ERR(vma);
2514
			goto err_parse;
C
Chris Wilson 已提交
2515
		}
2516

2517
		batch = vma;
2518
	}
2519

2520 2521 2522
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2523
	/* Allocate a request for this batch buffer nice and early. */
2524
	eb.request = i915_request_create(eb.context);
2525
	if (IS_ERR(eb.request)) {
2526
		err = PTR_ERR(eb.request);
2527
		goto err_batch_unpin;
2528
	}
2529

2530
	if (in_fence) {
2531 2532 2533 2534 2535 2536 2537
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
2538 2539 2540 2541
		if (err < 0)
			goto err_request;
	}

2542 2543 2544 2545 2546 2547
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2548
	if (out_fence_fd != -1) {
2549
		out_fence = sync_file_create(&eb.request->fence);
2550
		if (!out_fence) {
2551
			err = -ENOMEM;
2552 2553 2554 2555
			goto err_request;
		}
	}

2556 2557
	/*
	 * Whilst this request exists, batch_obj will be on the
2558 2559 2560 2561 2562
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2563 2564
	eb.request->batch = batch;
	if (batch->private)
2565
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2566

2567
	trace_i915_request_queue(eb.request, eb.batch_flags);
2568
	err = eb_submit(&eb, batch);
2569
err_request:
2570
	add_to_client(eb.request, file);
2571
	i915_request_get(eb.request);
2572
	eb_request_add(&eb);
2573

2574 2575 2576
	if (fences)
		signal_fence_array(&eb, fences);

2577
	if (out_fence) {
2578
		if (err == 0) {
2579
			fd_install(out_fence_fd, out_fence->file);
2580
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2581 2582 2583 2584 2585 2586
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2587
	i915_request_put(eb.request);
2588

2589
err_batch_unpin:
2590
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2591
		i915_vma_unpin(batch);
2592
err_parse:
2593
	if (batch->private)
2594
		intel_gt_buffer_pool_put(batch->private);
2595
err_vma:
2596 2597
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2598
	eb_unpin_engine(&eb);
2599
err_context:
2600
	i915_gem_context_put(eb.gem_context);
2601
err_destroy:
2602
	eb_destroy(&eb);
2603
err_out_fence:
2604 2605
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2606
err_in_fence:
2607
	dma_fence_put(in_fence);
2608
	return err;
2609 2610
}

2611 2612
static size_t eb_element_size(void)
{
2613
	return sizeof(struct drm_i915_gem_exec_object2);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2629 2630 2631 2632 2633
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2634 2635
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2636
{
2637
	struct drm_i915_private *i915 = to_i915(dev);
2638 2639 2640 2641
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2642
	const size_t count = args->buffer_count;
2643 2644
	unsigned int i;
	int err;
2645

2646
	if (!check_buffer_count(count)) {
2647
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2648 2649 2650
		return -EINVAL;
	}

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2662 2663 2664
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2665

2666
	/* Copy in the exec list from userland */
2667
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2668
				   __GFP_NOWARN | GFP_KERNEL);
2669
	exec2_list = kvmalloc_array(count, eb_element_size(),
2670
				    __GFP_NOWARN | GFP_KERNEL);
2671
	if (exec_list == NULL || exec2_list == NULL) {
2672 2673 2674
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2675 2676
		kvfree(exec_list);
		kvfree(exec2_list);
2677 2678
		return -ENOMEM;
	}
2679
	err = copy_from_user(exec_list,
2680
			     u64_to_user_ptr(args->buffers_ptr),
2681
			     sizeof(*exec_list) * count);
2682
	if (err) {
2683 2684
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2685 2686
		kvfree(exec_list);
		kvfree(exec2_list);
2687 2688 2689 2690 2691 2692 2693 2694 2695
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2696
		if (INTEL_GEN(to_i915(dev)) < 4)
2697 2698 2699 2700 2701
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2702
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2703
	if (exec2.flags & __EXEC_HAS_RELOC) {
2704
		struct drm_i915_gem_exec_object __user *user_exec_list =
2705
			u64_to_user_ptr(args->buffers_ptr);
2706

2707
		/* Copy the new buffer offsets back to the user's exec list. */
2708
		for (i = 0; i < args->buffer_count; i++) {
2709 2710 2711
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2712
			exec2_list[i].offset =
2713 2714 2715 2716 2717
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2718
				break;
2719 2720 2721
		}
	}

M
Michal Hocko 已提交
2722 2723
	kvfree(exec_list);
	kvfree(exec2_list);
2724
	return err;
2725 2726 2727
}

int
2728 2729
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2730
{
2731
	struct drm_i915_private *i915 = to_i915(dev);
2732
	struct drm_i915_gem_execbuffer2 *args = data;
2733
	struct drm_i915_gem_exec_object2 *exec2_list;
2734
	struct drm_syncobj **fences = NULL;
2735
	const size_t count = args->buffer_count;
2736
	int err;
2737

2738
	if (!check_buffer_count(count)) {
2739
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2740 2741 2742
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2743 2744 2745
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2746

2747
	exec2_list = kvmalloc_array(count, eb_element_size(),
2748
				    __GFP_NOWARN | GFP_KERNEL);
2749
	if (exec2_list == NULL) {
2750 2751
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2752 2753
		return -ENOMEM;
	}
2754 2755
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2756
			   sizeof(*exec2_list) * count)) {
2757
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2758
		kvfree(exec2_list);
2759 2760 2761
		return -EFAULT;
	}

2762 2763 2764 2765 2766 2767 2768 2769 2770
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2771 2772 2773 2774 2775 2776 2777 2778

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2779
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2780 2781
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2782

2783
		/* Copy the new buffer offsets back to the user's exec list. */
2784 2785 2786 2787 2788 2789 2790
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
2791 2792
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
2793
			goto end;
2794

2795
		for (i = 0; i < args->buffer_count; i++) {
2796 2797 2798
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2799
			exec2_list[i].offset =
2800 2801 2802 2803
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2804
		}
2805
end_user:
2806
		user_write_access_end();
2807
end:;
2808 2809
	}

2810
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2811
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2812
	kvfree(exec2_list);
2813
	return err;
2814
}
2815 2816 2817 2818

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif