i915_gem_execbuffer.c 75.0 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_engine_pool.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47
struct eb_vma_array {
	struct kref kref;
	struct eb_vma vma[];
};

48 49 50 51 52 53
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
54

55 56 57 58 59
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
60 61

#define __EXEC_HAS_RELOC	BIT(31)
62
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
63
#define UPDATE			PIN_OFFSET_FIXED
64 65

#define BATCH_OFFSET_BIAS (256*1024)
66

67
#define __I915_EXEC_ILLEGAL_FLAGS \
68 69 70
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
71

72 73 74 75 76 77 78 79 80
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

232
struct i915_execbuffer {
233 234 235 236
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
237
	struct eb_vma *vma;
238 239

	struct intel_engine_cs *engine; /** engine to queue the request to */
240 241
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
242

243
	struct i915_request *request; /** our request to build */
244
	struct eb_vma *batch; /** identity of the batch obj/vma */
245
	struct i915_vma *trampoline; /** trampoline used for chaining */
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
261
	struct reloc_cache {
262 263 264
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
265
		unsigned int gen; /** Cached value of INTEL_GEN */
266
		bool use_64bit_reloc : 1;
267 268 269
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
270

271
		struct i915_request *rq;
272 273
		u32 *rq_cmd;
		unsigned int rq_size;
274
	} reloc_cache;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
290
	struct eb_vma_array *array;
291 292
};

293 294
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
295
	return intel_engine_requires_cmd_parser(eb->engine) ||
296 297
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
298 299
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static struct eb_vma_array *eb_vma_array_create(unsigned int count)
{
	struct eb_vma_array *arr;

	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
	if (!arr)
		return NULL;

	kref_init(&arr->kref);
	arr->vma[0].vma = NULL;

	return arr;
}

static inline void eb_unreserve_vma(struct eb_vma *ev)
{
	struct i915_vma *vma = ev->vma;

	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
		__i915_vma_unpin(vma);

	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
		       __EXEC_OBJECT_HAS_FENCE);
}

static void eb_vma_array_destroy(struct kref *kref)
{
	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
	struct eb_vma *ev = arr->vma;

	while (ev->vma) {
		eb_unreserve_vma(ev);
		i915_vma_put(ev->vma);
		ev++;
	}

	kvfree(arr);
}

static void eb_vma_array_put(struct eb_vma_array *arr)
{
	kref_put(&arr->kref, eb_vma_array_destroy);
}

347
static int eb_create(struct i915_execbuffer *eb)
348
{
349 350 351 352 353 354 355
	/* Allocate an extra slot for use by the command parser + sentinel */
	eb->array = eb_vma_array_create(eb->buffer_count + 2);
	if (!eb->array)
		return -ENOMEM;

	eb->vma = eb->array->vma;

356 357
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
358

359 360 361 362 363 364 365 366 367 368 369
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
370
		do {
371
			gfp_t flags;
372 373 374 375 376 377 378

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
379
			flags = GFP_KERNEL;
380 381 382
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

383
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
384
					      flags);
385 386 387 388
			if (eb->buckets)
				break;
		} while (--size);

389 390
		if (unlikely(!size)) {
			eb_vma_array_put(eb->array);
391
			return -ENOMEM;
392
		}
393

394
		eb->lut_size = size;
395
	} else {
396
		eb->lut_size = -eb->buffer_count;
397
	}
398

399
	return 0;
400 401
}

402 403
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
404 405
		 const struct i915_vma *vma,
		 unsigned int flags)
406 407 408 409 410 411 412
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

413
	if (flags & EXEC_OBJECT_PINNED &&
414 415 416
	    vma->node.start != entry->offset)
		return true;

417
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
418 419 420
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

421
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
422 423 424
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

425 426 427 428
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

429 430 431
	return false;
}

432
static inline bool
433
eb_pin_vma(struct i915_execbuffer *eb,
434
	   const struct drm_i915_gem_exec_object2 *entry,
435
	   struct eb_vma *ev)
436
{
437
	struct i915_vma *vma = ev->vma;
438
	u64 pin_flags;
439

440
	if (vma->node.size)
441
		pin_flags = vma->node.start;
442
	else
443
		pin_flags = entry->offset & PIN_OFFSET_MASK;
444

445
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
446
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
447
		pin_flags |= PIN_GLOBAL;
448

449 450
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
451

452
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
453
		if (unlikely(i915_vma_pin_fence(vma))) {
454
			i915_vma_unpin(vma);
455
			return false;
456 457
		}

458
		if (vma->fence)
459
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
460 461
	}

462 463
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
464 465 466 467 468 469
}

static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
470
{
471 472
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
473

474 475
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
476 477 478 479 480 481 482
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
483
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
484 485 486 487 488 489 490 491
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
492
	}
493 494 495 496 497 498 499
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

500 501 502 503 504 505 506 507 508 509 510 511
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

512
	return 0;
513 514
}

515
static void
516 517 518
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
519
{
520
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
521
	struct eb_vma *ev = &eb->vma[i];
522 523 524

	GEM_BUG_ON(i915_vma_is_closed(vma));

525
	ev->vma = vma;
526 527 528
	ev->exec = entry;
	ev->flags = entry->flags;

529
	if (eb->lut_size > 0) {
530 531
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
532 533
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
534
	}
535

536
	if (entry->relocation_count)
537
		list_add_tail(&ev->reloc_link, &eb->relocs);
538

539 540 541 542 543 544 545 546 547 548
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
549
		if (entry->relocation_count &&
550 551
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
552
		if (eb->reloc_cache.has_fence)
553
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
554

555
		eb->batch = ev;
556 557
	}

558
	if (eb_pin_vma(eb, entry, ev)) {
559 560 561 562
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
563
	} else {
564 565
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
566 567 568 569 570 571 572 573 574
	}
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

575 576 577 578 579
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
580 581 582 583 584 585 586

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
587
			  struct eb_vma *ev,
588
			  u64 pin_flags)
589
{
590 591 592
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	unsigned int exec_flags = ev->flags;
	struct i915_vma *vma = ev->vma;
593 594
	int err;

595 596
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
597 598 599 600 601

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
602 603
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
604

605 606
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
607

608
	if (exec_flags & EXEC_OBJECT_PINNED)
609
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
610
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
611
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
612

613 614 615 616 617 618 619
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

620 621 622
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
623 624 625 626 627 628 629 630
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

631
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
632
		err = i915_vma_pin_fence(vma);
633 634 635 636 637
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

638
		if (vma->fence)
639
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
640 641
	}

642 643
	ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
644

645 646 647 648 649 650
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
651
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
652
	struct list_head last;
653
	struct eb_vma *ev;
654
	unsigned int i, pass;
655
	int err = 0;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

671 672 673
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

674 675
	pass = 0;
	do {
676 677
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
678 679 680
			if (err)
				break;
		}
681
		if (!(err == -ENOSPC || err == -EAGAIN))
682
			break;
683 684 685 686 687

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
688
			unsigned int flags;
689

690 691
			ev = &eb->vma[i];
			flags = ev->flags;
692 693
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
694 695
				continue;

696
			eb_unreserve_vma(ev);
697

698
			if (flags & EXEC_OBJECT_PINNED)
699
				/* Pinned must have their slot */
700
				list_add(&ev->bind_link, &eb->unbound);
701
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
702
				/* Map require the lowest 256MiB (aperture) */
703
				list_add_tail(&ev->bind_link, &eb->unbound);
704 705
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
706
				list_add(&ev->bind_link, &last);
707
			else
708
				list_add_tail(&ev->bind_link, &last);
709 710 711
		}
		list_splice_tail(&last, &eb->unbound);

712
		if (err == -EAGAIN) {
713
			mutex_unlock(&eb->i915->drm.struct_mutex);
714
			flush_workqueue(eb->i915->mm.userptr_wq);
715
			mutex_lock(&eb->i915->drm.struct_mutex);
716 717 718
			continue;
		}

719 720 721 722 723 724
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
725
			mutex_lock(&eb->context->vm->mutex);
726
			err = i915_gem_evict_vm(eb->context->vm);
727
			mutex_unlock(&eb->context->vm->mutex);
728
			if (err)
729
				goto unlock;
730 731 732
			break;

		default:
733 734
			err = -ENOSPC;
			goto unlock;
735
		}
736 737

		pin_flags = PIN_USER;
738
	} while (1);
739 740 741 742

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
743
}
744

745 746
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
747 748 749 750
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
751 752 753 754 755 756 757
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
758 759
	if (unlikely(!ctx))
		return -ENOENT;
760

761
	eb->gem_context = ctx;
762
	if (rcu_access_pointer(ctx->vm))
763
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
764 765

	eb->context_flags = 0;
766
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
767 768 769 770 771
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

772 773
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
774
{
775 776
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
777
	int err;
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
	if (!mutex_lock_interruptible(&ctx->mutex)) {
		err = -ENOENT;
		if (likely(!i915_gem_context_is_closed(ctx)))
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

			i915_gem_object_lock(obj);
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
			i915_gem_object_unlock(obj);
		}
		mutex_unlock(&ctx->mutex);
	}
	if (unlikely(err))
		goto err;
811

812
	return 0;
813

814 815 816 817 818 819
err:
	atomic_dec(&vma->open_count);
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
820

821 822 823 824
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
	do {
		struct drm_i915_gem_object *obj;
825
		struct i915_vma *vma;
826
		int err;
827

828 829
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
830
		if (likely(vma))
831 832 833 834
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
835

836
		obj = i915_gem_object_lookup(eb->file, handle);
837 838
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
839

840
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
841
		if (IS_ERR(vma)) {
842 843
			i915_gem_object_put(obj);
			return vma;
844 845
		}

846 847 848
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
849

850 851 852 853 854
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
855

856 857 858 859 860
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
861

862 863 864 865 866 867 868 869 870 871 872
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
873

874
		err = eb_validate_vma(eb, &eb->exec[i], vma);
875 876 877 878
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
879

880
		eb_add_vma(eb, i, batch, vma);
881 882
	}

883
	eb->vma[i].vma = NULL;
884
	return err;
885 886
}

887
static struct eb_vma *
888
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
889
{
890 891
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
892
			return NULL;
893
		return &eb->vma[handle];
894 895
	} else {
		struct hlist_head *head;
896
		struct eb_vma *ev;
897

898
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
899 900 901
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
902 903 904
		}
		return NULL;
	}
905 906
}

907
static void eb_destroy(const struct i915_execbuffer *eb)
908
{
909 910
	GEM_BUG_ON(eb->reloc_cache.rq);

911 912 913
	if (eb->array)
		eb_vma_array_put(eb->array);

914
	if (eb->lut_size > 0)
915
		kfree(eb->buckets);
916 917
}

918
static inline u64
919
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
920
		  const struct i915_vma *target)
921
{
922
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
923 924
}

925 926
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
927
{
928
	cache->page = -1;
929
	cache->vaddr = 0;
930
	/* Must be a variable in the struct to allow GCC to unroll. */
931
	cache->gen = INTEL_GEN(i915);
932
	cache->has_llc = HAS_LLC(i915);
933
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
934 935
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
936
	cache->node.flags = 0;
937 938
	cache->rq = NULL;
	cache->rq_size = 0;
939
}
940

941 942 943 944 945 946 947 948
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
949 950
}

951 952
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

953 954 955 956 957 958 959
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

960 961 962 963
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
964 965

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
966
	i915_gem_object_unpin_map(cache->rq->batch->obj);
967

968
	intel_gt_chipset_flush(cache->rq->engine->gt);
969

970
	i915_request_add(cache->rq);
971 972 973
	cache->rq = NULL;
}

974
static void reloc_cache_reset(struct reloc_cache *cache)
975
{
976
	void *vaddr;
977

978 979 980
	if (cache->rq)
		reloc_gpu_flush(cache);

981 982
	if (!cache->vaddr)
		return;
983

984 985 986 987
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
988

989
		kunmap_atomic(vaddr);
990
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
991
	} else {
992 993 994
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
995
		io_mapping_unmap_atomic((void __iomem *)vaddr);
996

997
		if (drm_mm_node_allocated(&cache->node)) {
998 999 1000
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1001
			mutex_lock(&ggtt->vm.mutex);
1002
			drm_mm_remove_node(&cache->node);
1003
			mutex_unlock(&ggtt->vm.mutex);
1004 1005
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1006
		}
1007
	}
1008 1009 1010

	cache->vaddr = 0;
	cache->page = -1;
1011 1012 1013 1014
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1015
			unsigned long page)
1016
{
1017 1018 1019 1020 1021 1022
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1023
		int err;
1024

1025
		err = i915_gem_object_prepare_write(obj, &flushes);
1026 1027
		if (err)
			return ERR_PTR(err);
1028 1029 1030

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1031

1032 1033 1034 1035
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1036 1037
	}

1038 1039
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1040
	cache->page = page;
1041

1042
	return vaddr;
1043 1044
}

1045 1046
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1047
			 unsigned long page)
1048
{
1049
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1050
	unsigned long offset;
1051
	void *vaddr;
1052

1053
	if (cache->vaddr) {
1054
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1055
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1056 1057
	} else {
		struct i915_vma *vma;
1058
		int err;
1059

1060 1061 1062
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1063
		if (use_cpu_reloc(cache, obj))
1064
			return NULL;
1065

1066
		i915_gem_object_lock(obj);
1067
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1068
		i915_gem_object_unlock(obj);
1069 1070
		if (err)
			return ERR_PTR(err);
1071

1072
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1073
					       PIN_MAPPABLE |
1074 1075
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1076 1077
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1078
			mutex_lock(&ggtt->vm.mutex);
1079
			err = drm_mm_insert_node_in_range
1080
				(&ggtt->vm.mm, &cache->node,
1081
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1082
				 0, ggtt->mappable_end,
1083
				 DRM_MM_INSERT_LOW);
1084
			mutex_unlock(&ggtt->vm.mutex);
1085
			if (err) /* no inactive aperture space, use cpu reloc */
1086
				return NULL;
1087 1088 1089
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1090
		}
1091
	}
1092

1093
	offset = cache->node.start;
1094
	if (drm_mm_node_allocated(&cache->node)) {
1095 1096 1097
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1098 1099
	} else {
		offset += page << PAGE_SHIFT;
1100 1101
	}

1102
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1103
							 offset);
1104 1105
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1106

1107
	return vaddr;
1108 1109
}

1110 1111
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1112
			 unsigned long page)
1113
{
1114
	void *vaddr;
1115

1116 1117 1118 1119 1120 1121 1122 1123
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1124 1125
	}

1126
	return vaddr;
1127 1128
}

1129
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1130
{
1131 1132 1133 1134 1135
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1136

1137
		*addr = value;
1138

1139 1140
		/*
		 * Writes to the same cacheline are serialised by the CPU
1141 1142 1143 1144 1145 1146 1147 1148 1149
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1172 1173 1174 1175 1176
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1177
	struct intel_engine_pool_node *pool;
1178
	struct i915_request *rq;
1179 1180 1181 1182
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1183
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1184 1185
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1186

1187
	cmd = i915_gem_object_pin_map(pool->obj,
1188 1189 1190
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1191 1192 1193 1194
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1195

1196
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1197 1198 1199 1200 1201 1202 1203 1204 1205
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1206
	rq = i915_request_create(eb->context);
1207 1208 1209 1210 1211
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1212 1213 1214 1215
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1216
	err = reloc_move_to_gpu(rq, vma);
1217 1218 1219 1220 1221 1222 1223
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1224
		goto skip_request;
1225

1226
	i915_vma_lock(batch);
1227 1228 1229
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1230
	i915_vma_unlock(batch);
1231 1232
	if (err)
		goto skip_request;
1233 1234

	rq->batch = batch;
1235
	i915_vma_unpin(batch);
1236 1237 1238 1239 1240 1241

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1242
	goto out_pool;
1243

1244
skip_request:
1245
	i915_request_set_error_once(rq, err);
1246
err_request:
1247
	i915_request_add(rq);
1248 1249 1250
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1251 1252 1253
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1270 1271 1272
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1284 1285
static u64
relocate_entry(struct i915_vma *vma,
1286
	       const struct drm_i915_gem_relocation_entry *reloc,
1287 1288
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1289
{
1290
	u64 offset = reloc->offset;
1291 1292
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1293
	void *vaddr;
1294

1295 1296
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1297
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1298 1299 1300 1301 1302 1303 1304 1305 1306
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1307
		else
1308
			len = 3;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1354
repeat:
1355
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1356 1357 1358 1359 1360
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1361
			eb->reloc_cache.vaddr);
1362 1363 1364 1365 1366 1367

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1368 1369
	}

1370
out:
1371
	return target->node.start | UPDATE;
1372 1373
}

1374 1375
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1376
		  struct eb_vma *ev,
1377
		  const struct drm_i915_gem_relocation_entry *reloc)
1378
{
1379
	struct drm_i915_private *i915 = eb->i915;
1380
	struct eb_vma *target;
1381
	int err;
1382

1383
	/* we've already hold a reference to all valid objects */
1384 1385
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1386
		return -ENOENT;
1387

1388
	/* Validate that the target is in a valid r/w GPU domain */
1389
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1390
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1391
			  "target %d offset %d "
1392
			  "read %08x write %08x",
1393
			  reloc->target_handle,
1394 1395 1396
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1397
		return -EINVAL;
1398
	}
1399 1400
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1401
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1402
			  "target %d offset %d "
1403
			  "read %08x write %08x",
1404
			  reloc->target_handle,
1405 1406 1407
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1408
		return -EINVAL;
1409 1410
	}

1411
	if (reloc->write_domain) {
1412
		target->flags |= EXEC_OBJECT_WRITE;
1413

1414 1415 1416 1417 1418 1419 1420
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1421
		    IS_GEN(eb->i915, 6)) {
1422 1423
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1424
					    PIN_GLOBAL, NULL);
1425 1426 1427 1428
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1429
	}
1430

1431 1432
	/*
	 * If the relocation already has the right value in it, no
1433 1434
	 * more work needs to be done.
	 */
1435
	if (!DBG_FORCE_RELOC &&
1436
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1437
		return 0;
1438 1439

	/* Check that the relocation address is valid... */
1440
	if (unlikely(reloc->offset >
1441
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1442
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1443 1444 1445
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1446
			  (int)ev->vma->size);
1447
		return -EINVAL;
1448
	}
1449
	if (unlikely(reloc->offset & 3)) {
1450
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1451 1452 1453
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1454
		return -EINVAL;
1455 1456
	}

1457 1458 1459 1460 1461 1462
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1463
	 * out of our synchronisation.
1464
	 */
1465
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1466

1467
	/* and update the user's relocation entry */
1468
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1469 1470
}

1471
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1472
{
1473
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1474 1475
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1476
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1477
	unsigned int remain;
1478

1479
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1480
	remain = entry->relocation_count;
1481
	if (unlikely((unsigned long)remain > N_RELOC(ULONG_MAX)))
1482
		return -EINVAL;
1483

1484 1485 1486 1487 1488
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1489
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1490 1491 1492 1493 1494 1495 1496
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1497

1498 1499
		/*
		 * This is the fast path and we cannot handle a pagefault
1500 1501 1502 1503 1504 1505
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1506
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1507 1508
		if (unlikely(copied)) {
			remain = -EFAULT;
1509 1510
			goto out;
		}
1511

1512
		remain -= count;
1513
		do {
1514
			u64 offset = eb_relocate_entry(eb, ev, r);
1515

1516 1517 1518
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1519
				goto out;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1543 1544 1545 1546
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1547
			}
1548 1549 1550
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1551
out:
1552
	reloc_cache_reset(&eb->reloc_cache);
1553
	return remain;
1554 1555
}

1556
static int eb_relocate(struct i915_execbuffer *eb)
1557
{
1558 1559 1560 1561 1562 1563
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1564 1565 1566 1567 1568
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1569 1570 1571

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1572
		struct eb_vma *ev;
1573

1574
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1575 1576 1577
			err = eb_relocate_vma(eb, ev);
			if (err)
				return err;
1578 1579 1580 1581 1582 1583 1584 1585 1586
		}
	}

	return 0;
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1587
	struct ww_acquire_ctx acquire;
1588
	unsigned int i;
1589 1590 1591
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1592

1593
	for (i = 0; i < count; i++) {
1594 1595
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1596 1597 1598 1599 1600 1601 1602

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1603
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1617 1618 1619
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1620
		struct drm_i915_gem_object *obj = vma->obj;
1621

1622 1623
		assert_vma_held(vma);

1624
		if (flags & EXEC_OBJECT_CAPTURE) {
1625
			struct i915_capture_list *capture;
1626 1627

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1628 1629 1630 1631 1632
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1633 1634
		}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1648
			if (i915_gem_clflush_object(obj, 0))
1649
				flags &= ~EXEC_OBJECT_ASYNC;
1650 1651
		}

1652 1653 1654 1655
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1656

1657 1658
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1659

1660
		i915_vma_unlock(vma);
1661
		eb_unreserve_vma(ev);
1662
	}
1663 1664
	ww_acquire_fini(&acquire);

1665 1666
	eb_vma_array_put(fetch_and_zero(&eb->array));

1667 1668 1669
	if (unlikely(err))
		goto err_skip;

1670
	/* Unconditionally flush any chipset caches (for streaming writes). */
1671
	intel_gt_chipset_flush(eb->engine->gt);
1672
	return 0;
1673 1674

err_skip:
1675
	i915_request_set_error_once(eb->request, err);
1676
	return err;
1677 1678
}

T
Tvrtko Ursulin 已提交
1679
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1680
{
1681
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1682
		return -EINVAL;
1683

C
Chris Wilson 已提交
1684
	/* Kernel clipping was a DRI1 misfeature */
1685 1686
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1687
			return -EINVAL;
1688
	}
C
Chris Wilson 已提交
1689 1690 1691 1692 1693 1694

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1695
		return -EINVAL;
C
Chris Wilson 已提交
1696 1697

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1698
		return -EINVAL;
C
Chris Wilson 已提交
1699

T
Tvrtko Ursulin 已提交
1700
	return 0;
1701 1702
}

1703
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1704
{
1705 1706
	u32 *cs;
	int i;
1707

1708
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1709
		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1710 1711
		return -EINVAL;
	}
1712

1713
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1714 1715
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1716

1717
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1718
	for (i = 0; i < 4; i++) {
1719 1720
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1721
	}
1722
	*cs++ = MI_NOOP;
1723
	intel_ring_advance(rq, cs);
1724 1725 1726 1727

	return 0;
}

1728
static struct i915_vma *
1729 1730 1731
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1732
{
1733 1734
	struct i915_vma *vma;
	int err;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1745 1746
}

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1779 1780 1781
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1782
	.release = __eb_parse_release,
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
};

static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1796
	err = i915_active_acquire(&eb->batch->vma->active);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1810 1811 1812
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1813
	pw->batch = eb->batch->vma;
1814 1815 1816 1817 1818
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1819 1820 1821
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
		goto err_trampoline;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
		goto err_batch_unlock;

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
		goto err_batch_unlock;

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

1844
	dma_fence_work_commit_imm(&pw->base);
1845 1846 1847 1848
	return 0;

err_batch_unlock:
	dma_resv_unlock(pw->batch->resv);
1849 1850 1851 1852 1853 1854
err_trampoline:
	if (trampoline)
		i915_active_release(&trampoline->active);
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
1855
	i915_active_release(&eb->batch->vma->active);
1856
err_free:
1857 1858 1859 1860
	kfree(pw);
	return err;
}

1861
static int eb_parse(struct i915_execbuffer *eb)
1862
{
1863
	struct drm_i915_private *i915 = eb->i915;
1864
	struct intel_engine_pool_node *pool;
1865 1866
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1867
	int err;
1868

1869 1870 1871
	if (!eb_use_cmdparser(eb))
		return 0;

1872 1873 1874 1875 1876 1877 1878
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
1879 1880
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
1881 1882 1883 1884 1885 1886 1887
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

	pool = intel_engine_get_pool(eb->engine, len);
1888
	if (IS_ERR(pool))
1889
		return PTR_ERR(pool);
1890

1891 1892 1893
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1894
		goto err;
1895
	}
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
1913

1914
	err = eb_parse_pipeline(eb, shadow, trampoline);
1915 1916
	if (err)
		goto err_trampoline;
1917

1918
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1919
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1920
	eb->batch = &eb->vma[eb->buffer_count++];
1921
	eb->vma[eb->buffer_count].vma = NULL;
1922

1923
	eb->trampoline = trampoline;
1924 1925
	eb->batch_start_offset = 0;

1926
	shadow->private = pool;
1927
	return 0;
1928

1929 1930 1931 1932 1933
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
1934 1935
err:
	intel_engine_pool_put(pool);
1936
	return err;
1937
}
1938

1939
static void
1940
add_to_client(struct i915_request *rq, struct drm_file *file)
1941
{
1942 1943 1944 1945 1946 1947 1948
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
1949 1950
}

1951
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1952
{
1953
	int err;
1954

1955 1956 1957
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1958

1959
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1960 1961 1962
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1963 1964
	}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

1977
	err = eb->engine->emit_bb_start(eb->request,
1978
					batch->node.start +
1979 1980
					eb->batch_start_offset,
					eb->batch_len,
1981 1982 1983
					eb->batch_flags);
	if (err)
		return err;
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

1995
	if (intel_context_nopreempt(eb->context))
1996
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1997

C
Chris Wilson 已提交
1998
	return 0;
1999 2000
}

2001 2002 2003 2004 2005 2006
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2007
/*
2008
 * Find one BSD ring to dispatch the corresponding BSD command.
2009
 * The engine index is returned.
2010
 */
2011
static unsigned int
2012 2013
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2014 2015 2016
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2017
	/* Check whether the file_priv has already selected one ring. */
2018
	if ((int)file_priv->bsd_engine < 0)
2019 2020
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2021

2022
	return file_priv->bsd_engine;
2023 2024
}

2025
static const enum intel_engine_id user_ring_map[] = {
2026 2027 2028 2029 2030
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2031 2032
};

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2073 2074 2075 2076
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2077
	err = intel_gt_terminally_wedged(ce->engine->gt);
2078 2079 2080
	if (err)
		return err;

2081 2082 2083
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2084 2085 2086 2087 2088
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2089
	err = intel_context_pin(ce);
2090 2091
	if (err)
		return err;
2092

2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2101 2102 2103
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2104
		goto err_unpin;
2105
	}
2106 2107

	intel_context_enter(ce);
2108 2109 2110 2111 2112
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2113 2114 2115 2116 2117 2118
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2119

2120 2121 2122
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2123
		i915_request_put(rq);
2124 2125 2126 2127 2128

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2129
	}
2130

2131
	eb->engine = ce->engine;
2132 2133
	eb->context = ce;
	return 0;
2134

2135 2136 2137 2138
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2139
err_unpin:
2140
	intel_context_unpin(ce);
2141
	return err;
2142 2143
}

2144
static void eb_unpin_engine(struct i915_execbuffer *eb)
2145
{
2146
	struct intel_context *ce = eb->context;
2147
	struct intel_timeline *tl = ce->timeline;
2148 2149 2150 2151 2152

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2153
	intel_context_unpin(ce);
2154
}
2155

2156 2157 2158 2159
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2160
{
2161
	struct drm_i915_private *i915 = eb->i915;
2162 2163
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2164 2165
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2166 2167 2168
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2169
		return -1;
2170 2171
	}

2172
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2173 2174 2175
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2176
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2177 2178
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2179
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2180 2181
			bsd_idx--;
		} else {
2182 2183 2184
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2185
			return -1;
2186 2187
		}

2188
		return _VCS(bsd_idx);
2189 2190
	}

2191
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2192 2193
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2194
		return -1;
2195 2196
	}

2197 2198 2199 2200
	return user_ring_map[user_ring_id];
}

static int
2201 2202 2203
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2204 2205 2206 2207 2208
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2209 2210 2211 2212
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2213 2214 2215 2216 2217

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2218
	err = __eb_pin_engine(eb, ce);
2219 2220 2221
	intel_context_put(ce);

	return err;
2222 2223
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2236
	const unsigned long nfences = args->num_cliprects;
2237 2238
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2239
	unsigned long n;
2240 2241 2242 2243 2244
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2245 2246 2247 2248 2249
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2250 2251 2252
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2253
	if (!access_ok(user, nfences * sizeof(*user)))
2254 2255
		return ERR_PTR(-EFAULT);

2256
	fences = kvmalloc_array(nfences, sizeof(*fences),
2257
				__GFP_NOWARN | GFP_KERNEL);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2270 2271 2272 2273 2274
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2275 2276 2277 2278 2279 2280 2281
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2282 2283 2284
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2320
		fence = drm_syncobj_fence_get(syncobj);
2321 2322 2323
		if (!fence)
			return -EINVAL;

2324
		err = i915_request_await_dma_fence(eb->request, fence);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2349
		drm_syncobj_replace_fence(syncobj, fence);
2350 2351 2352
	}
}

2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2377
	if (likely(!intel_context_is_closed(eb->context))) {
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		attr = eb->gem_context->sched;

		/*
		 * Boost actual workloads past semaphores!
		 *
		 * With semaphores we spin on one engine waiting for another,
		 * simply to reduce the latency of starting our work when
		 * the signaler completes. However, if there is any other
		 * work that we could be doing on this engine instead, that
		 * is better utilisation and will reduce the overall duration
		 * of the current work. To avoid PI boosting a semaphore
		 * far in the distance past over useful work, we keep a history
		 * of any semaphore use along our dependency chain.
		 */
		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
			attr.priority |= I915_PRIORITY_NOSEMAPHORE;

		/*
		 * Boost priorities to new clients (new request flows).
		 *
		 * Allow interactive/synchronous clients to jump ahead of
		 * the bulk clients. (FQ_CODEL)
		 */
		if (list_empty(&rq->sched.signalers_list))
			attr.priority |= I915_PRIORITY_WAIT;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2405 2406
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2418
static int
2419
i915_gem_do_execbuffer(struct drm_device *dev,
2420 2421
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2422 2423
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2424
{
2425
	struct drm_i915_private *i915 = to_i915(dev);
2426
	struct i915_execbuffer eb;
2427
	struct dma_fence *in_fence = NULL;
2428
	struct dma_fence *exec_fence = NULL;
2429
	struct sync_file *out_fence = NULL;
2430
	struct i915_vma *batch;
2431
	int out_fence_fd = -1;
2432
	int err;
2433

2434
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2435 2436
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2437

2438
	eb.i915 = i915;
2439 2440
	eb.file = file;
	eb.args = args;
2441
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2442
		args->flags |= __EXEC_HAS_RELOC;
2443

2444
	eb.exec = exec;
2445

2446
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2447 2448
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2449
	eb.buffer_count = args->buffer_count;
2450 2451
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2452
	eb.trampoline = NULL;
2453

2454
	eb.batch_flags = 0;
2455
	if (args->flags & I915_EXEC_SECURE) {
2456 2457 2458 2459 2460 2461 2462
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2463
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2464
			return -EPERM;
2465

2466
		eb.batch_flags |= I915_DISPATCH_SECURE;
2467
	}
2468
	if (args->flags & I915_EXEC_IS_PINNED)
2469
		eb.batch_flags |= I915_DISPATCH_PINNED;
2470

2471 2472
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2473 2474
		if (!in_fence)
			return -EINVAL;
2475 2476
	}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2490 2491 2492
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2493
			err = out_fence_fd;
2494
			goto err_exec_fence;
2495 2496 2497
		}
	}

2498 2499 2500 2501 2502
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2503

2504 2505 2506 2507
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2508
	err = eb_pin_engine(&eb, file, args);
2509
	if (unlikely(err))
2510
		goto err_context;
2511

2512
	err = eb_relocate(&eb);
2513
	if (err) {
2514 2515 2516 2517 2518 2519 2520 2521 2522
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2523
	}
2524

2525
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2526 2527
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2528 2529
		err = -EINVAL;
		goto err_vma;
2530
	}
2531 2532 2533 2534

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2535
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2536 2537
		err = -EINVAL;
		goto err_vma;
2538
	}
2539

2540
	if (eb.batch_len == 0)
2541
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2542

2543 2544 2545
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2546

2547 2548
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2549
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2550
	 * hsw should have this fixed, but bdw mucks it up again. */
2551
	batch = eb.batch->vma;
2552
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2553
		struct i915_vma *vma;
2554

2555 2556 2557 2558 2559 2560
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2561
		 *   so we don't really have issues with multiple objects not
2562 2563 2564
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2565
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2566
		if (IS_ERR(vma)) {
2567
			err = PTR_ERR(vma);
2568
			goto err_parse;
C
Chris Wilson 已提交
2569
		}
2570

2571
		batch = vma;
2572
	}
2573

2574 2575 2576
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2577
	/* Allocate a request for this batch buffer nice and early. */
2578
	eb.request = i915_request_create(eb.context);
2579
	if (IS_ERR(eb.request)) {
2580
		err = PTR_ERR(eb.request);
2581
		goto err_batch_unpin;
2582
	}
2583

2584
	if (in_fence) {
2585
		err = i915_request_await_dma_fence(eb.request, in_fence);
2586
		if (err < 0)
2587 2588 2589
			goto err_request;
	}

2590 2591 2592 2593 2594 2595 2596
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2597 2598 2599 2600 2601 2602
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2603
	if (out_fence_fd != -1) {
2604
		out_fence = sync_file_create(&eb.request->fence);
2605
		if (!out_fence) {
2606
			err = -ENOMEM;
2607 2608 2609 2610
			goto err_request;
		}
	}

2611 2612
	/*
	 * Whilst this request exists, batch_obj will be on the
2613 2614 2615 2616 2617
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2618 2619 2620
	eb.request->batch = batch;
	if (batch->private)
		intel_engine_pool_mark_active(batch->private, eb.request);
2621

2622
	trace_i915_request_queue(eb.request, eb.batch_flags);
2623
	err = eb_submit(&eb, batch);
2624
err_request:
2625
	add_to_client(eb.request, file);
2626
	i915_request_get(eb.request);
2627
	eb_request_add(&eb);
2628

2629 2630 2631
	if (fences)
		signal_fence_array(&eb, fences);

2632
	if (out_fence) {
2633
		if (err == 0) {
2634
			fd_install(out_fence_fd, out_fence->file);
2635
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2636 2637 2638 2639 2640 2641
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2642
	i915_request_put(eb.request);
2643

2644
err_batch_unpin:
2645
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2646
		i915_vma_unpin(batch);
2647
err_parse:
2648 2649
	if (batch->private)
		intel_engine_pool_put(batch->private);
2650
err_vma:
2651 2652
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2653
	eb_unpin_engine(&eb);
2654
err_context:
2655
	i915_gem_context_put(eb.gem_context);
2656
err_destroy:
2657
	eb_destroy(&eb);
2658
err_out_fence:
2659 2660
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2661 2662
err_exec_fence:
	dma_fence_put(exec_fence);
2663
err_in_fence:
2664
	dma_fence_put(in_fence);
2665
	return err;
2666 2667
}

2668 2669
static size_t eb_element_size(void)
{
2670
	return sizeof(struct drm_i915_gem_exec_object2);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2686 2687 2688 2689 2690
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2691 2692
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2693
{
2694
	struct drm_i915_private *i915 = to_i915(dev);
2695 2696 2697 2698
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2699
	const size_t count = args->buffer_count;
2700 2701
	unsigned int i;
	int err;
2702

2703
	if (!check_buffer_count(count)) {
2704
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2705 2706 2707
		return -EINVAL;
	}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2719 2720 2721
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2722

2723
	/* Copy in the exec list from userland */
2724
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2725
				   __GFP_NOWARN | GFP_KERNEL);
2726
	exec2_list = kvmalloc_array(count, eb_element_size(),
2727
				    __GFP_NOWARN | GFP_KERNEL);
2728
	if (exec_list == NULL || exec2_list == NULL) {
2729 2730 2731
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2732 2733
		kvfree(exec_list);
		kvfree(exec2_list);
2734 2735
		return -ENOMEM;
	}
2736
	err = copy_from_user(exec_list,
2737
			     u64_to_user_ptr(args->buffers_ptr),
2738
			     sizeof(*exec_list) * count);
2739
	if (err) {
2740 2741
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2742 2743
		kvfree(exec_list);
		kvfree(exec2_list);
2744 2745 2746 2747 2748 2749 2750 2751 2752
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2753
		if (INTEL_GEN(to_i915(dev)) < 4)
2754 2755 2756 2757 2758
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2759
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2760
	if (exec2.flags & __EXEC_HAS_RELOC) {
2761
		struct drm_i915_gem_exec_object __user *user_exec_list =
2762
			u64_to_user_ptr(args->buffers_ptr);
2763

2764
		/* Copy the new buffer offsets back to the user's exec list. */
2765
		for (i = 0; i < args->buffer_count; i++) {
2766 2767 2768
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2769
			exec2_list[i].offset =
2770 2771 2772 2773 2774
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2775
				break;
2776 2777 2778
		}
	}

M
Michal Hocko 已提交
2779 2780
	kvfree(exec_list);
	kvfree(exec2_list);
2781
	return err;
2782 2783 2784
}

int
2785 2786
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2787
{
2788
	struct drm_i915_private *i915 = to_i915(dev);
2789
	struct drm_i915_gem_execbuffer2 *args = data;
2790
	struct drm_i915_gem_exec_object2 *exec2_list;
2791
	struct drm_syncobj **fences = NULL;
2792
	const size_t count = args->buffer_count;
2793
	int err;
2794

2795
	if (!check_buffer_count(count)) {
2796
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2797 2798 2799
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2800 2801 2802
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2803

2804
	exec2_list = kvmalloc_array(count, eb_element_size(),
2805
				    __GFP_NOWARN | GFP_KERNEL);
2806
	if (exec2_list == NULL) {
2807 2808
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2809 2810
		return -ENOMEM;
	}
2811 2812
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2813
			   sizeof(*exec2_list) * count)) {
2814
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2815
		kvfree(exec2_list);
2816 2817 2818
		return -EFAULT;
	}

2819 2820 2821 2822 2823 2824 2825 2826 2827
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2828 2829 2830 2831 2832 2833 2834 2835

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2836
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2837 2838
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2839

2840
		/* Copy the new buffer offsets back to the user's exec list. */
2841 2842 2843 2844 2845 2846 2847 2848
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2849
			goto end;
2850

2851
		for (i = 0; i < args->buffer_count; i++) {
2852 2853 2854
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2855
			exec2_list[i].offset =
2856 2857 2858 2859
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2860
		}
2861 2862
end_user:
		user_access_end();
2863
end:;
2864 2865
	}

2866
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2867
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2868
	kvfree(exec2_list);
2869
	return err;
2870
}