i915_gem_execbuffer.c 90.6 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48 49 50
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

51 52 53 54 55
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 58

#define __EXEC_HAS_RELOC	BIT(31)
59 60
#define __EXEC_ENGINE_PINNED	BIT(30)
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
61
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65
#define __I915_EXEC_ILLEGAL_FLAGS \
66 67 68
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
69

70 71 72 73 74 75 76 77 78
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

230 231 232 233 234 235 236
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

237
struct i915_execbuffer {
238 239 240 241
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
242
	struct eb_vma *vma;
243 244

	struct intel_engine_cs *engine; /** engine to queue the request to */
245 246
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
247

248
	struct i915_request *request; /** our request to build */
249
	struct eb_vma *batch; /** identity of the batch obj/vma */
250
	struct i915_vma *trampoline; /** trampoline used for chaining */
251 252 253 254 255 256 257 258 259 260

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

261 262
	struct i915_gem_ww_ctx ww;

263 264 265 266 267
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
268
	struct reloc_cache {
269
		struct drm_mm_node node; /** temporary GTT binding */
270 271
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
272
		unsigned int gen; /** Cached value of INTEL_GEN */
273
		bool use_64bit_reloc : 1;
274 275 276
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
277

278
		struct i915_request *rq;
279 280
		u32 *rq_cmd;
		unsigned int rq_size;
281
		struct intel_gt_buffer_pool_node *pool;
282
	} reloc_cache;
283

284
	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
285
	struct intel_context *reloc_context;
286

287 288 289 290 291 292
	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
293
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
294 295 296 297 298 299 300 301

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
302

303 304
	struct eb_fence *fences;
	unsigned long num_fences;
305 306
};

307
static int eb_parse(struct i915_execbuffer *eb);
308 309 310
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
					  bool throttle);
static void eb_unpin_engine(struct i915_execbuffer *eb);
311

312 313
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
314
	return intel_engine_requires_cmd_parser(eb->engine) ||
315 316
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
317 318
}

319
static int eb_create(struct i915_execbuffer *eb)
320
{
321 322
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
323

324 325 326 327 328 329 330 331 332 333 334
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
335
		do {
336
			gfp_t flags;
337 338 339 340 341 342 343

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
344
			flags = GFP_KERNEL;
345 346 347
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

348
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
349
					      flags);
350 351 352 353
			if (eb->buckets)
				break;
		} while (--size);

354
		if (unlikely(!size))
355
			return -ENOMEM;
356

357
		eb->lut_size = size;
358
	} else {
359
		eb->lut_size = -eb->buffer_count;
360
	}
361

362
	return 0;
363 364
}

365 366
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
367 368
		 const struct i915_vma *vma,
		 unsigned int flags)
369 370 371 372 373 374 375
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

376
	if (flags & EXEC_OBJECT_PINNED &&
377 378 379
	    vma->node.start != entry->offset)
		return true;

380
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
381 382 383
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

384
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
385 386 387
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

388 389 390 391
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

392 393 394
	return false;
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

421
static inline bool
422
eb_pin_vma(struct i915_execbuffer *eb,
423
	   const struct drm_i915_gem_exec_object2 *entry,
424
	   struct eb_vma *ev)
425
{
426
	struct i915_vma *vma = ev->vma;
427
	u64 pin_flags;
428

429
	if (vma->node.size)
430
		pin_flags = vma->node.start;
431
	else
432
		pin_flags = entry->offset & PIN_OFFSET_MASK;
433

434
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
435
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
436
		pin_flags |= PIN_GLOBAL;
437

438
	/* Attempt to reuse the current location if available */
439 440
	/* TODO: Add -EDEADLK handling here */
	if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
441 442 443 444
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
445 446 447 448 449
		if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
					     PIN_USER | PIN_NOEVICT)))
450 451
			return false;
	}
452

453
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
454
		if (unlikely(i915_vma_pin_fence(vma))) {
455
			i915_vma_unpin(vma);
456
			return false;
457 458
		}

459
		if (vma->fence)
460
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
461 462
	}

463 464
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
465 466
}

467 468 469 470 471 472
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

473 474 475 476
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
477 478 479
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

480 481 482 483
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
484
{
485 486
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
487

488 489
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
490 491 492 493 494 495 496
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
497
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
498 499 500 501 502 503 504 505
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
506
	}
507 508 509 510 511 512 513
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

514 515 516 517 518 519 520 521 522 523 524 525
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

526
	return 0;
527 528
}

529
static void
530 531 532
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
533
{
534
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
535
	struct eb_vma *ev = &eb->vma[i];
536 537 538

	GEM_BUG_ON(i915_vma_is_closed(vma));

539
	ev->vma = vma;
540 541 542
	ev->exec = entry;
	ev->flags = entry->flags;

543
	if (eb->lut_size > 0) {
544 545
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
546 547
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
548
	}
549

550
	if (entry->relocation_count)
551
		list_add_tail(&ev->reloc_link, &eb->relocs);
552

553 554 555 556 557 558 559 560 561 562
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
563
		if (entry->relocation_count &&
564 565
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
566
		if (eb->reloc_cache.has_fence)
567
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
568

569
		eb->batch = ev;
570
	}
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

590
static int eb_reserve_vma(struct i915_execbuffer *eb,
591
			  struct eb_vma *ev,
592
			  u64 pin_flags)
593
{
594 595
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
596 597
	int err;

598 599 600 601 602 603 604
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

605
	err = i915_vma_pin_ww(vma, &eb->ww,
606
			   entry->pad_to_size, entry->alignment,
607
			   eb_pin_flags(entry, ev->flags) | pin_flags);
608 609 610 611 612 613 614 615
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

616
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
617
		err = i915_vma_pin_fence(vma);
618 619 620 621 622
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

623
		if (vma->fence)
624
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
625 626
	}

627
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
628
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
629

630 631 632 633 634 635
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
636
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
637
	struct list_head last;
638
	struct eb_vma *ev;
639
	unsigned int i, pass;
640
	int err = 0;
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
657 658
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
659 660 661
			if (err)
				break;
		}
662
		if (err != -ENOSPC)
663
			return err;
664 665 666 667 668

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
669
			unsigned int flags;
670

671 672
			ev = &eb->vma[i];
			flags = ev->flags;
673 674
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
675 676
				continue;

677
			eb_unreserve_vma(ev);
678

679
			if (flags & EXEC_OBJECT_PINNED)
680
				/* Pinned must have their slot */
681
				list_add(&ev->bind_link, &eb->unbound);
682
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
683
				/* Map require the lowest 256MiB (aperture) */
684
				list_add_tail(&ev->bind_link, &eb->unbound);
685 686
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
687
				list_add(&ev->bind_link, &last);
688
			else
689
				list_add_tail(&ev->bind_link, &last);
690 691 692 693 694 695 696 697 698
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
699
			mutex_lock(&eb->context->vm->mutex);
700
			err = i915_gem_evict_vm(eb->context->vm);
701
			mutex_unlock(&eb->context->vm->mutex);
702
			if (err)
703
				return err;
704 705 706
			break;

		default:
707
			return -ENOSPC;
708
		}
709 710

		pin_flags = PIN_USER;
711
	} while (1);
712
}
713

714 715
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
716 717 718 719
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
720 721 722 723 724 725 726
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
727 728
	if (unlikely(!ctx))
		return -ENOENT;
729

730
	eb->gem_context = ctx;
731
	if (rcu_access_pointer(ctx->vm))
732
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
733 734

	eb->context_flags = 0;
735
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736 737 738 739 740
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

741 742
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
743
{
744 745
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
746
	int err;
747

748 749 750 751 752 753 754 755 756 757 758 759
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
760 761 762 763 764 765
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
766
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
767 768
		else
			err = -ENOENT;
769 770 771
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

772
			spin_lock(&obj->lut_lock);
773 774 775 776 777 778
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
779
			spin_unlock(&obj->lut_lock);
780
		}
781
		mutex_unlock(&ctx->lut_mutex);
782 783 784
	}
	if (unlikely(err))
		goto err;
785

786
	return 0;
787

788
err:
C
Chris Wilson 已提交
789
	i915_vma_close(vma);
790 791 792 793
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
794

795 796
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
797 798
	struct i915_address_space *vm = eb->context->vm;

799 800
	do {
		struct drm_i915_gem_object *obj;
801
		struct i915_vma *vma;
802
		int err;
803

804 805
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
806
		if (likely(vma && vma->vm == vm))
807 808 809 810
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
811

812
		obj = i915_gem_object_lookup(eb->file, handle);
813 814
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
815

816
		vma = i915_vma_instance(obj, vm, NULL);
817
		if (IS_ERR(vma)) {
818 819
			i915_gem_object_put(obj);
			return vma;
820 821
		}

822 823 824
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
825

826 827 828 829 830
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
831

832 833
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
834
	struct drm_i915_private *i915 = eb->i915;
835 836 837
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
838

839 840 841 842 843 844 845 846
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
847
			goto err;
848
		}
849

850
		err = eb_validate_vma(eb, &eb->exec[i], vma);
851 852
		if (unlikely(err)) {
			i915_vma_put(vma);
853
			goto err;
854
		}
855

856
		eb_add_vma(eb, i, batch, vma);
857 858
	}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
		return -EINVAL;
	}

	if (range_overflows_t(u64,
			      eb->batch_start_offset, eb->batch_len,
			      eb->batch->vma->size)) {
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
		return -EINVAL;
	}

	if (eb->batch_len == 0)
		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;

	return 0;

err:
878
	eb->vma[i].vma = NULL;
879
	return err;
880 881
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;

		if (eb_pin_vma(eb, entry, ev)) {
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

924
static struct eb_vma *
925
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
926
{
927 928
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
929
			return NULL;
930
		return &eb->vma[handle];
931 932
	} else {
		struct hlist_head *head;
933
		struct eb_vma *ev;
934

935
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
936 937 938
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
939 940 941
		}
		return NULL;
	}
942 943
}

944
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
945 946 947 948 949 950 951 952 953 954 955
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

956
		eb_unreserve_vma(ev);
957

958 959
		if (final)
			i915_vma_put(vma);
960
	}
961 962

	eb_unpin_engine(eb);
963 964
}

965
static void eb_destroy(const struct i915_execbuffer *eb)
966
{
967 968
	GEM_BUG_ON(eb->reloc_cache.rq);

969
	if (eb->lut_size > 0)
970
		kfree(eb->buckets);
971 972
}

973
static inline u64
974
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
975
		  const struct i915_vma *target)
976
{
977
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
978 979
}

980 981 982 983 984 985 986 987
static void reloc_cache_clear(struct reloc_cache *cache)
{
	cache->rq = NULL;
	cache->rq_cmd = NULL;
	cache->pool = NULL;
	cache->rq_size = 0;
}

988 989
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
990
{
991 992
	cache->page = -1;
	cache->vaddr = 0;
993
	/* Must be a variable in the struct to allow GCC to unroll. */
994
	cache->gen = INTEL_GEN(i915);
995
	cache->has_llc = HAS_LLC(i915);
996
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
997 998
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
999
	cache->node.flags = 0;
1000
	reloc_cache_clear(cache);
1001
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1022
static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1023
{
1024 1025
	if (!cache->pool)
		return;
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035
	/*
	 * This is a bit nasty, normally we keep objects locked until the end
	 * of execbuffer, but we already submit this, and have to unlock before
	 * dropping the reference. Fortunately we can only hold 1 pool node at
	 * a time, so this should be harmless.
	 */
	i915_gem_ww_unlock_single(cache->pool->obj);
	intel_gt_buffer_pool_put(cache->pool);
	cache->pool = NULL;
1036 1037
}

1038
static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1039
{
1040
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1041

1042 1043
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1044

1045 1046
	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
	i915_gem_object_unpin_map(obj);
1047

1048
	intel_gt_chipset_flush(cache->rq->engine->gt);
1049

1050
	i915_request_add(cache->rq);
1051 1052
	reloc_cache_put_pool(eb, cache);
	reloc_cache_clear(cache);
1053

1054
	eb->reloc_pool = NULL;
1055 1056
}

1057
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1058 1059 1060
{
	void *vaddr;

1061
	if (cache->rq)
1062
		reloc_gpu_flush(eb, cache);
1063

1064 1065 1066 1067 1068
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1069 1070
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1071 1072 1073 1074
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1075
		i915_gem_object_finish_access(obj);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1100
			unsigned long pageno)
1101 1102
{
	void *vaddr;
1103
	struct page *page;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1124 1125 1126 1127 1128
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1129
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1130
	cache->page = pageno;
1131 1132 1133 1134 1135

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1136
			 struct i915_execbuffer *eb,
1137 1138
			 unsigned long page)
{
1139
	struct reloc_cache *cache = &eb->reloc_cache;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1161 1162 1163 1164 1165 1166 1167
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1203
			 struct i915_execbuffer *eb,
1204 1205
			 unsigned long page)
{
1206
	struct reloc_cache *cache = &eb->reloc_cache;
1207 1208 1209 1210 1211 1212 1213
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1214
			vaddr = reloc_iomap(obj, eb, page);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1245 1246 1247 1248 1249
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

1250
	assert_vma_held(vma);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	return err;
}

1263
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1264
			     struct intel_engine_cs *engine,
1265
			     struct i915_vma *vma,
1266 1267 1268
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1269
	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1270
	struct i915_request *rq;
1271 1272 1273 1274
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	if (!pool) {
		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
		if (IS_ERR(pool))
			return PTR_ERR(pool);
	}
	eb->reloc_pool = NULL;

	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err_pool;
1285

1286
	cmd = i915_gem_object_pin_map(pool->obj,
1287 1288 1289
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1290 1291
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
1292
		goto err_pool;
1293
	}
1294

1295
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1296 1297 1298 1299 1300
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

1301
	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1302 1303 1304
	if (err)
		goto err_unmap;

1305 1306 1307
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
1308
		struct intel_context *ce = eb->reloc_context;
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		if (!ce) {
			ce = intel_context_create(engine);
			if (IS_ERR(ce)) {
				err = PTR_ERR(ce);
				goto err_unpin;
			}

			i915_vm_put(ce->vm);
			ce->vm = i915_vm_get(eb->context->vm);
			eb->reloc_context = ce;
1320 1321
		}

1322
		err = intel_context_pin_ww(ce, &eb->ww);
1323 1324
		if (err)
			goto err_unpin;
1325

1326 1327
		rq = i915_request_create(ce);
		intel_context_unpin(ce);
1328
	}
1329 1330 1331 1332 1333
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1334
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1335 1336 1337
	if (err)
		goto err_request;

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1348
	assert_vma_held(batch);
1349 1350 1351
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1352 1353
	if (err)
		goto skip_request;
1354 1355

	rq->batch = batch;
1356
	i915_vma_unpin(batch);
1357 1358 1359 1360

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1361
	cache->pool = pool;
1362 1363

	/* Return with batch mapping (cmd) still pinned */
1364
	return 0;
1365

1366
skip_request:
1367
	i915_request_set_error_once(rq, err);
1368
err_request:
1369
	i915_request_add(rq);
1370 1371 1372
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1373
	i915_gem_object_unpin_map(pool->obj);
1374 1375
err_pool:
	eb->reloc_pool = pool;
1376 1377 1378
	return err;
}

1379 1380 1381 1382 1383
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1384 1385 1386 1387 1388 1389
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1390 1391

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1392
		reloc_gpu_flush(eb, cache);
1393 1394

	if (unlikely(!cache->rq)) {
1395
		int err;
1396 1397
		struct intel_engine_cs *engine = eb->engine;

1398
		if (!reloc_can_use_engine(engine)) {
1399
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1400
			if (!engine)
1401 1402
				return ERR_PTR(-ENODEV);
		}
1403

1404
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1426
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1427
{
1428 1429
	struct page *page;
	unsigned long addr;
1430

1431
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1432

1433 1434 1435
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1436

1437 1438 1439
	return addr + offset_in_page(offset);
}

1440
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1441 1442 1443
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
1458
	if (batch == ERR_PTR(-EDEADLK))
1459
		return -EDEADLK;
1460
	else if (IS_ERR(batch))
1461
		return false;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1472 1473

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1474 1475 1476
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1477
		} else {
1478 1479 1480 1481 1482
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1483
		}
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1508 1509
	}

1510 1511 1512
	return true;
}

1513
static int reloc_entry_gpu(struct i915_execbuffer *eb,
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1525 1526 1527
}

static u64
1528
relocate_entry(struct i915_vma *vma,
1529
	       const struct drm_i915_gem_relocation_entry *reloc,
1530
	       struct i915_execbuffer *eb,
1531 1532 1533
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1534
	u64 offset = reloc->offset;
1535 1536 1537 1538
	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);

	if (reloc_gpu < 0)
		return reloc_gpu;
1539

1540
	if (!reloc_gpu) {
1541 1542 1543 1544
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
1545
		vaddr = reloc_vaddr(vma->obj, eb,
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1562

1563
	return target->node.start | UPDATE;
1564 1565
}

1566 1567
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1568
		  struct eb_vma *ev,
1569
		  const struct drm_i915_gem_relocation_entry *reloc)
1570
{
1571
	struct drm_i915_private *i915 = eb->i915;
1572
	struct eb_vma *target;
1573
	int err;
1574

1575
	/* we've already hold a reference to all valid objects */
1576 1577
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1578
		return -ENOENT;
1579

1580
	/* Validate that the target is in a valid r/w GPU domain */
1581
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1582
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1583
			  "target %d offset %d "
1584
			  "read %08x write %08x",
1585
			  reloc->target_handle,
1586 1587 1588
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1589
		return -EINVAL;
1590
	}
1591 1592
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1593
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1594
			  "target %d offset %d "
1595
			  "read %08x write %08x",
1596
			  reloc->target_handle,
1597 1598 1599
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1600
		return -EINVAL;
1601 1602
	}

1603
	if (reloc->write_domain) {
1604
		target->flags |= EXEC_OBJECT_WRITE;
1605

1606 1607 1608 1609 1610 1611 1612
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1613
		    IS_GEN(eb->i915, 6)) {
1614 1615
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1616
					    PIN_GLOBAL, NULL);
1617
			if (err)
1618 1619
				return err;
		}
1620
	}
1621

1622 1623
	/*
	 * If the relocation already has the right value in it, no
1624 1625
	 * more work needs to be done.
	 */
1626 1627
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1628
		return 0;
1629 1630

	/* Check that the relocation address is valid... */
1631
	if (unlikely(reloc->offset >
1632
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1633
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1634 1635 1636
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1637
			  (int)ev->vma->size);
1638
		return -EINVAL;
1639
	}
1640
	if (unlikely(reloc->offset & 3)) {
1641
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1642 1643 1644
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1645
		return -EINVAL;
1646 1647
	}

1648 1649 1650 1651 1652 1653
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1654
	 * out of our synchronisation.
1655
	 */
1656
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1657

1658
	/* and update the user's relocation entry */
1659
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1660 1661
}

1662
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1663
{
1664
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1665
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1666
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1667 1668 1669
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1670

1671
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1672
		return -EINVAL;
1673

1674 1675 1676 1677 1678
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1679
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1680 1681 1682 1683 1684
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1685
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1686
		unsigned int copied;
1687

1688 1689
		/*
		 * This is the fast path and we cannot handle a pagefault
1690 1691 1692 1693 1694 1695
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1696 1697 1698
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1699 1700 1701 1702
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1703

1704
		remain -= count;
1705
		do {
1706
			u64 offset = eb_relocate_entry(eb, ev, r);
1707

1708 1709
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1710 1711
				remain = (int)offset;
				goto out;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1735 1736
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1737
			}
1738 1739 1740
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1741
out:
1742
	reloc_cache_reset(&eb->reloc_cache, eb);
1743
	return remain;
1744 1745
}

1746 1747
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1748
{
1749 1750 1751 1752
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1753 1754
	int err;

1755 1756
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1757

1758 1759 1760 1761
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1762
	}
1763 1764
	err = 0;
err:
1765
	reloc_cache_reset(&eb->reloc_cache, eb);
1766 1767
	return err;
}
1768

1769 1770 1771 1772 1773
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1774

1775 1776 1777
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1778

1779 1780
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1781

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1794 1795
}

1796
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1797
{
1798
	struct drm_i915_gem_relocation_entry *relocs;
1799 1800
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1801
	int err;
1802

1803
	for (i = 0; i < count; i++) {
1804 1805 1806 1807
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1808

1809 1810
		if (nreloc == 0)
			continue;
1811

1812 1813 1814
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1815

1816 1817
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1818

1819 1820 1821 1822
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1823
		}
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1893 1894
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
					   struct i915_request *rq)
1895 1896 1897 1898 1899 1900 1901 1902 1903
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1904
	}
1905

1906 1907 1908 1909
	/* We may process another execbuffer during the unlock... */
	eb_release_vmas(eb, false);
	i915_gem_ww_ctx_fini(&eb->ww);

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	if (rq) {
		/* nonblocking is always false */
		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			rq = NULL;

			err = -EINTR;
			goto err_relock;
		}

		i915_request_put(rq);
		rq = NULL;
	}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1948 1949
	if (!err)
		flush_workqueue(eb->i915->mm.userptr_wq);
1950

1951
err_relock:
1952
	i915_gem_ww_ctx_init(&eb->ww, true);
1953 1954 1955
	if (err)
		goto out;

1956 1957
	/* reacquire the objects */
repeat_validate:
1958 1959 1960
	rq = eb_pin_engine(eb, false);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
1961
		rq = NULL;
1962 1963 1964 1965 1966 1967
		goto err;
	}

	/* We didn't throttle, should be NULL */
	GEM_WARN_ON(rq);

1968
	err = eb_validate_vmas(eb);
1969
	if (err)
1970 1971 1972
		goto err;

	GEM_BUG_ON(!eb->batch);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, ev);
			pagefault_enable();
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1988 1989 1990
	if (err == -EDEADLK)
		goto err;

1991 1992 1993 1994 1995 1996
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1997 1998 1999 2000 2001
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
2010 2011 2012 2013 2014 2015 2016
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

2038 2039 2040
	if (rq)
		i915_request_put(rq);

2041 2042 2043
	return err;
}

2044
static int eb_relocate_parse(struct i915_execbuffer *eb)
2045
{
2046
	int err;
2047 2048
	struct i915_request *rq = NULL;
	bool throttle = true;
2049

2050
retry:
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	rq = eb_pin_engine(eb, throttle);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		rq = NULL;
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;

		/* Need to drop all locks now for throttling, take slowpath */
		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
		if (err == -ETIME) {
			if (nonblock) {
				err = -EWOULDBLOCK;
				i915_request_put(rq);
				goto err;
			}
			goto slow;
		}
		i915_request_put(rq);
		rq = NULL;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

2081 2082 2083 2084 2085
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
2086 2087 2088

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
2089
		struct eb_vma *ev;
2090

2091
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2092 2093
			err = eb_relocate_vma(eb, ev);
			if (err)
2094
				break;
2095
		}
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
2112 2113
	}

2114 2115 2116
	return err;

slow:
2117
	err = eb_relocate_parse_slow(eb, rq);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
2129 2130 2131 2132 2133
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
2134
	unsigned int i = count;
2135 2136 2137
	int err = 0;

	while (i--) {
2138 2139 2140
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
2141
		struct drm_i915_gem_object *obj = vma->obj;
2142

2143 2144
		assert_vma_held(vma);

2145
		if (flags & EXEC_OBJECT_CAPTURE) {
2146
			struct i915_capture_list *capture;
2147 2148

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2149 2150 2151 2152 2153
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
2154 2155
		}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2169
			if (i915_gem_clflush_object(obj, 0))
2170
				flags &= ~EXEC_OBJECT_ASYNC;
2171 2172
		}

2173 2174 2175 2176
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
2177

2178 2179
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
2180
	}
2181

2182 2183 2184
	if (unlikely(err))
		goto err_skip;

2185
	/* Unconditionally flush any chipset caches (for streaming writes). */
2186
	intel_gt_chipset_flush(eb->engine->gt);
2187
	return 0;
2188 2189

err_skip:
2190
	i915_request_set_error_once(eb->request, err);
2191
	return err;
2192 2193
}

T
Tvrtko Ursulin 已提交
2194
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2195
{
2196
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2197
		return -EINVAL;
2198

C
Chris Wilson 已提交
2199
	/* Kernel clipping was a DRI1 misfeature */
2200 2201
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2202
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2203
			return -EINVAL;
2204
	}
C
Chris Wilson 已提交
2205 2206 2207 2208 2209 2210

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2211
		return -EINVAL;
C
Chris Wilson 已提交
2212 2213

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2214
		return -EINVAL;
C
Chris Wilson 已提交
2215

T
Tvrtko Ursulin 已提交
2216
	return 0;
2217 2218
}

2219
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2220
{
2221 2222
	u32 *cs;
	int i;
2223

2224 2225
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2226 2227
		return -EINVAL;
	}
2228

2229
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2230 2231
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2232

2233
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2234
	for (i = 0; i < 4; i++) {
2235 2236
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2237
	}
2238
	*cs++ = MI_NOOP;
2239
	intel_ring_advance(rq, cs);
2240 2241 2242 2243

	return 0;
}

2244
static struct i915_vma *
2245 2246
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2247 2248
		 struct i915_address_space *vm,
		 unsigned int flags)
2249
{
2250 2251
	struct i915_vma *vma;
	int err;
2252

2253 2254 2255 2256
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2257
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2258 2259 2260 2261
	if (err)
		return ERR_PTR(err);

	return vma;
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

2296 2297 2298
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
2299
	.release = __eb_parse_release,
2300 2301
};

2302 2303 2304 2305 2306 2307 2308
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

2309
	return i915_active_ref(&node->active, tl->fence_context, fence);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2345
	err = i915_active_acquire(&eb->batch->vma->active);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2359 2360 2361
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2362
	pw->batch = eb->batch->vma;
2363 2364 2365 2366 2367
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2368 2369 2370 2371 2372
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

2373 2374
	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
2375
		goto err_commit;
2376 2377 2378 2379 2380 2381

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
2382
		goto err_commit;
2383 2384 2385 2386 2387 2388 2389

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	/* Force execution to wait for completion of the parser */
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);

2390
	dma_fence_work_commit_imm(&pw->base);
2391 2392
	return 0;

2393 2394 2395 2396 2397
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2398 2399 2400
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2401
	i915_active_release(&eb->batch->vma->active);
2402
err_free:
2403 2404 2405 2406
	kfree(pw);
	return err;
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2419
static int eb_parse(struct i915_execbuffer *eb)
2420
{
2421
	struct drm_i915_private *i915 = eb->i915;
2422
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2423
	struct i915_vma *shadow, *trampoline, *batch;
2424
	unsigned int len;
2425
	int err;
2426

2427 2428 2429 2430 2431 2432 2433
	if (!eb_use_cmdparser(eb)) {
		batch = eb_dispatch_secure(eb, eb->batch->vma);
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2434

2435 2436 2437 2438 2439 2440 2441
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2442 2443
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2444 2445 2446 2447 2448 2449
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

2450 2451 2452 2453 2454 2455
	if (!pool) {
		pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2456

2457 2458 2459
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2460

2461
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2462 2463
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2464
		goto err;
2465
	}
2466
	i915_gem_object_set_readonly(shadow->obj);
2467
	shadow->private = pool;
2468 2469 2470 2471 2472

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2473
		shadow = shadow_batch_pin(eb, pool->obj,
2474 2475 2476 2477 2478 2479 2480
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2481
		shadow->private = pool;
2482 2483 2484

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2485

2486 2487 2488 2489 2490 2491
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2492
	err = eb_parse_pipeline(eb, shadow, trampoline);
2493
	if (err)
2494
		goto err_unpin_batch;
2495

2496
	eb->batch = &eb->vma[eb->buffer_count++];
2497 2498
	eb->batch->vma = i915_vma_get(shadow);
	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2499

2500
	eb->trampoline = trampoline;
2501 2502
	eb->batch_start_offset = 0;

2503 2504 2505 2506 2507 2508
secure_batch:
	if (batch) {
		eb->batch = &eb->vma[eb->buffer_count++];
		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batch->vma = i915_vma_get(batch);
	}
2509
	return 0;
2510

2511 2512 2513
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2514 2515 2516 2517 2518
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2519
err:
2520
	return err;
2521
}
2522

2523
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2524
{
2525
	int err;
2526

2527 2528 2529
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2530

2531
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2532 2533 2534
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2535 2536
	}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2549
	err = eb->engine->emit_bb_start(eb->request,
2550
					batch->node.start +
2551 2552
					eb->batch_start_offset,
					eb->batch_len,
2553 2554 2555
					eb->batch_flags);
	if (err)
		return err;
2556

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2567
	if (intel_context_nopreempt(eb->context))
2568
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2569

C
Chris Wilson 已提交
2570
	return 0;
2571 2572
}

2573 2574
static int num_vcs_engines(const struct drm_i915_private *i915)
{
2575
	return hweight64(VDBOX_MASK(&i915->gt));
2576 2577
}

2578
/*
2579
 * Find one BSD ring to dispatch the corresponding BSD command.
2580
 * The engine index is returned.
2581
 */
2582
static unsigned int
2583 2584
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2585 2586 2587
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2588
	/* Check whether the file_priv has already selected one ring. */
2589
	if ((int)file_priv->bsd_engine < 0)
2590 2591
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2592

2593
	return file_priv->bsd_engine;
2594 2595
}

2596
static const enum intel_engine_id user_ring_map[] = {
2597 2598 2599 2600 2601
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2602 2603
};

2604
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

2638
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2639
{
2640
	struct intel_context *ce = eb->context;
2641
	struct intel_timeline *tl;
2642
	struct i915_request *rq = NULL;
2643 2644
	int err;

2645
	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2646

2647
	if (unlikely(intel_context_is_banned(ce)))
2648
		return ERR_PTR(-EIO);
2649

2650 2651 2652 2653 2654
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2655
	err = intel_context_pin_ww(ce, &eb->ww);
2656
	if (err)
2657
		return ERR_PTR(err);
2658

2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2667 2668
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
2669 2670
		intel_context_unpin(ce);
		return ERR_CAST(tl);
2671
	}
2672 2673

	intel_context_enter(ce);
2674 2675
	if (throttle)
		rq = eb_throttle(eb, ce);
2676 2677
	intel_context_timeline_unlock(tl);

2678 2679
	eb->args->flags |= __EXEC_ENGINE_PINNED;
	return rq;
2680 2681
}

2682
static void eb_unpin_engine(struct i915_execbuffer *eb)
2683
{
2684
	struct intel_context *ce = eb->context;
2685
	struct intel_timeline *tl = ce->timeline;
2686

2687 2688 2689 2690 2691
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

2692 2693 2694 2695
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2696
	intel_context_unpin(ce);
2697
}
2698

2699
static unsigned int
2700
eb_select_legacy_ring(struct i915_execbuffer *eb)
2701
{
2702
	struct drm_i915_private *i915 = eb->i915;
2703
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2704 2705
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2706 2707
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2708 2709 2710
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2711
		return -1;
2712 2713
	}

2714
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2715 2716 2717
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2718
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2719 2720
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2721
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2722 2723
			bsd_idx--;
		} else {
2724 2725 2726
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2727
			return -1;
2728 2729
		}

2730
		return _VCS(bsd_idx);
2731 2732
	}

2733
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2734 2735
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2736
		return -1;
2737 2738
	}

2739 2740 2741 2742
	return user_ring_map[user_ring_id];
}

static int
2743
eb_select_engine(struct i915_execbuffer *eb)
2744 2745 2746 2747 2748
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2749
	if (i915_gem_context_user_engines(eb->gem_context))
2750
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2751
	else
2752
		idx = eb_select_legacy_ring(eb);
2753 2754 2755 2756 2757

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2758
	intel_gt_pm_get(ce->engine->gt);
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
	eb->engine = ce->engine;

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
	intel_context_put(ce);
2787
	return err;
2788 2789
}

2790 2791 2792 2793 2794 2795 2796
static void
eb_put_engine(struct i915_execbuffer *eb)
{
	intel_gt_pm_put(eb->engine->gt);
	intel_context_put(eb->context);
}

2797
static void
2798
__free_fence_array(struct eb_fence *fences, unsigned int n)
2799
{
2800
	while (n--) {
2801
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2802 2803 2804
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2805 2806 2807
	kvfree(fences);
}

2808
static int
2809 2810
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2811
{
2812 2813 2814 2815 2816
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2817

2818 2819
	nfences = timeline_fences->fence_count;
	if (!nfences)
2820
		return 0;
2821

2822 2823 2824
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2825 2826
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2827
		return -EINVAL;
2828

2829 2830 2831 2832 2833 2834
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2835
		return -EFAULT;
2836

2837 2838 2839 2840
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2841
		return -ENOMEM;
2842

2843 2844 2845 2846 2847 2848 2849 2850
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2851
		struct drm_syncobj *syncobj;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2873

2874 2875 2876 2877 2878
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2879 2880
		}

2881 2882 2883 2884 2885
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2886
			dma_fence_put(fence);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2927 2928
		}

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2983 2984
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2995 2996
		}

2997 2998 2999
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

3000 3001 3002 3003 3004 3005
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
3006 3007
	}

3008
	return 0;
3009
}
3010

3011 3012 3013 3014
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
3015 3016 3017
}

static int
3018
await_fence_array(struct i915_execbuffer *eb)
3019 3020 3021 3022
{
	unsigned int n;
	int err;

3023
	for (n = 0; n < eb->num_fences; n++) {
3024 3025 3026
		struct drm_syncobj *syncobj;
		unsigned int flags;

3027
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3028

3029 3030
		if (!eb->fences[n].dma_fence)
			continue;
3031

3032 3033
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
3034 3035 3036 3037 3038 3039 3040
		if (err < 0)
			return err;
	}

	return 0;
}

3041
static void signal_fence_array(const struct i915_execbuffer *eb)
3042 3043 3044 3045
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

3046
	for (n = 0; n < eb->num_fences; n++) {
3047 3048 3049
		struct drm_syncobj *syncobj;
		unsigned int flags;

3050
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3051 3052 3053
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
3067 3068 3069
	}
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
3106
	if (likely(!intel_context_is_closed(eb->context))) {
3107 3108 3109
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
3110 3111
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

3123
static const i915_user_extension_fn execbuf_extensions[] = {
3124
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

3149
static int
3150
i915_gem_do_execbuffer(struct drm_device *dev,
3151 3152
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3153
		       struct drm_i915_gem_exec_object2 *exec)
3154
{
3155
	struct drm_i915_private *i915 = to_i915(dev);
3156
	struct i915_execbuffer eb;
3157 3158
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
3159
	struct i915_vma *batch;
3160
	int out_fence_fd = -1;
3161
	int err;
3162

3163
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3164 3165
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3166

3167
	eb.i915 = i915;
3168 3169
	eb.file = file;
	eb.args = args;
3170
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3171
		args->flags |= __EXEC_HAS_RELOC;
3172

3173
	eb.exec = exec;
3174 3175
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
3176
	eb.reloc_pool = eb.batch_pool = NULL;
3177
	eb.reloc_context = NULL;
3178

3179
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3180 3181
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3182
	eb.buffer_count = args->buffer_count;
3183 3184
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
3185
	eb.trampoline = NULL;
3186

3187
	eb.fences = NULL;
3188
	eb.num_fences = 0;
3189

3190
	eb.batch_flags = 0;
3191
	if (args->flags & I915_EXEC_SECURE) {
3192 3193 3194 3195 3196 3197 3198
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3199
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3200
			return -EPERM;
3201

3202
		eb.batch_flags |= I915_DISPATCH_SECURE;
3203
	}
3204
	if (args->flags & I915_EXEC_IS_PINNED)
3205
		eb.batch_flags |= I915_DISPATCH_PINNED;
3206

3207 3208 3209 3210 3211 3212 3213 3214
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3215 3216 3217 3218 3219
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3220
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3221 3222 3223 3224
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3225
	}
3226
#undef IN_FENCES
3227

3228 3229 3230
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3231
			err = out_fence_fd;
3232
			goto err_in_fence;
3233 3234 3235
		}
	}

3236 3237
	err = eb_create(&eb);
	if (err)
3238
		goto err_out_fence;
3239

3240
	GEM_BUG_ON(!eb.lut_size);
3241

3242 3243 3244 3245
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3246
	err = eb_select_engine(&eb);
3247
	if (unlikely(err))
3248
		goto err_context;
3249

3250 3251 3252 3253 3254 3255 3256 3257
	err = eb_lookup_vmas(&eb);
	if (err) {
		eb_release_vmas(&eb, true);
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3258
	err = eb_relocate_parse(&eb);
3259
	if (err) {
3260 3261 3262 3263 3264 3265 3266 3267 3268
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3269
	}
3270

3271
	ww_acquire_done(&eb.ww.ctx);
3272 3273

	batch = eb.batch->vma;
3274

3275 3276 3277
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

3278
	/* Allocate a request for this batch buffer nice and early. */
3279
	eb.request = i915_request_create(eb.context);
3280
	if (IS_ERR(eb.request)) {
3281
		err = PTR_ERR(eb.request);
3282
		goto err_vma;
3283
	}
3284

3285
	if (in_fence) {
3286 3287 3288 3289 3290 3291 3292
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
3293 3294 3295 3296
		if (err < 0)
			goto err_request;
	}

3297
	if (eb.fences) {
3298
		err = await_fence_array(&eb);
3299 3300 3301 3302
		if (err)
			goto err_request;
	}

3303
	if (out_fence_fd != -1) {
3304
		out_fence = sync_file_create(&eb.request->fence);
3305
		if (!out_fence) {
3306
			err = -ENOMEM;
3307 3308 3309 3310
			goto err_request;
		}
	}

3311 3312
	/*
	 * Whilst this request exists, batch_obj will be on the
3313 3314 3315 3316 3317
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
3318
	eb.request->batch = batch;
3319 3320
	if (eb.batch_pool)
		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3321

3322
	trace_i915_request_queue(eb.request, eb.batch_flags);
3323
	err = eb_submit(&eb, batch);
3324
err_request:
3325
	i915_request_get(eb.request);
3326
	eb_request_add(&eb);
3327

3328
	if (eb.fences)
3329
		signal_fence_array(&eb);
3330

3331
	if (out_fence) {
3332
		if (err == 0) {
3333
			fd_install(out_fence_fd, out_fence->file);
3334
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3335 3336 3337 3338 3339 3340
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3341
	i915_request_put(eb.request);
3342

3343
err_vma:
3344
	eb_release_vmas(&eb, true);
3345 3346
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3347 3348 3349 3350 3351 3352 3353
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
	if (eb.reloc_pool)
		intel_gt_buffer_pool_put(eb.reloc_pool);
3354 3355
	if (eb.reloc_context)
		intel_context_put(eb.reloc_context);
3356
err_engine:
3357
	eb_put_engine(&eb);
3358
err_context:
3359
	i915_gem_context_put(eb.gem_context);
3360
err_destroy:
3361
	eb_destroy(&eb);
3362
err_out_fence:
3363 3364
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3365
err_in_fence:
3366
	dma_fence_put(in_fence);
3367 3368
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3369
	return err;
3370 3371
}

3372 3373
static size_t eb_element_size(void)
{
3374
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3390 3391 3392 3393 3394
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
3395 3396
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
3397
{
3398
	struct drm_i915_private *i915 = to_i915(dev);
3399 3400 3401 3402
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3403
	const size_t count = args->buffer_count;
3404 3405
	unsigned int i;
	int err;
3406

3407
	if (!check_buffer_count(count)) {
3408
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3409 3410 3411
		return -EINVAL;
	}

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
3423 3424 3425
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
3426

3427
	/* Copy in the exec list from userland */
3428
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3429
				   __GFP_NOWARN | GFP_KERNEL);
3430 3431 3432

	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3433
				    __GFP_NOWARN | GFP_KERNEL);
3434
	if (exec_list == NULL || exec2_list == NULL) {
3435 3436 3437
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
3438 3439
		kvfree(exec_list);
		kvfree(exec2_list);
3440 3441
		return -ENOMEM;
	}
3442
	err = copy_from_user(exec_list,
3443
			     u64_to_user_ptr(args->buffers_ptr),
3444
			     sizeof(*exec_list) * count);
3445
	if (err) {
3446 3447
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
3448 3449
		kvfree(exec_list);
		kvfree(exec2_list);
3450 3451 3452 3453 3454 3455 3456 3457 3458
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3459
		if (INTEL_GEN(to_i915(dev)) < 4)
3460 3461 3462 3463 3464
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

3465
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3466
	if (exec2.flags & __EXEC_HAS_RELOC) {
3467
		struct drm_i915_gem_exec_object __user *user_exec_list =
3468
			u64_to_user_ptr(args->buffers_ptr);
3469

3470
		/* Copy the new buffer offsets back to the user's exec list. */
3471
		for (i = 0; i < args->buffer_count; i++) {
3472 3473 3474
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3475
			exec2_list[i].offset =
3476 3477 3478 3479 3480
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
3481
				break;
3482 3483 3484
		}
	}

M
Michal Hocko 已提交
3485 3486
	kvfree(exec_list);
	kvfree(exec2_list);
3487
	return err;
3488 3489 3490
}

int
3491 3492
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3493
{
3494
	struct drm_i915_private *i915 = to_i915(dev);
3495
	struct drm_i915_gem_execbuffer2 *args = data;
3496
	struct drm_i915_gem_exec_object2 *exec2_list;
3497
	const size_t count = args->buffer_count;
3498
	int err;
3499

3500
	if (!check_buffer_count(count)) {
3501
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3502 3503 3504
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3505 3506 3507
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3508

3509 3510
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3511
				    __GFP_NOWARN | GFP_KERNEL);
3512
	if (exec2_list == NULL) {
3513 3514
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3515 3516
		return -ENOMEM;
	}
3517 3518
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3519
			   sizeof(*exec2_list) * count)) {
3520
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3521
		kvfree(exec2_list);
3522 3523 3524
		return -EFAULT;
	}

3525
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3526 3527 3528 3529 3530 3531 3532 3533

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3534
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3535 3536
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3537

3538
		/* Copy the new buffer offsets back to the user's exec list. */
3539 3540 3541 3542 3543 3544 3545
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3546 3547
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3548
			goto end;
3549

3550
		for (i = 0; i < args->buffer_count; i++) {
3551 3552 3553
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3554
			exec2_list[i].offset =
3555 3556 3557 3558
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3559
		}
3560
end_user:
3561
		user_write_access_end();
3562
end:;
3563 3564
	}

3565
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3566
	kvfree(exec2_list);
3567
	return err;
3568
}
3569 3570 3571 3572

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif