i915_gem_execbuffer.c 75.3 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24
#include "i915_drv.h"
25
#include "i915_gem_clflush.h"
26
#include "i915_gem_context.h"
27
#include "i915_gem_ioctls.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
36

37 38 39 40 41 42
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
43 44 45 46
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
47
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
48
#define UPDATE			PIN_OFFSET_FIXED
49 50

#define BATCH_OFFSET_BIAS (256*1024)
51

52
#define __I915_EXEC_ILLEGAL_FLAGS \
53 54 55
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
56

57 58 59 60 61 62 63 64 65
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

217
struct i915_execbuffer {
218 219 220 221
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
222 223
	struct i915_vma **vma;
	unsigned int *flags;
224 225

	struct intel_engine_cs *engine; /** engine to queue the request to */
226 227
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
228

229
	struct i915_request *request; /** our request to build */
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
246
	struct reloc_cache {
247 248 249
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
250
		unsigned int gen; /** Cached value of INTEL_GEN */
251
		bool use_64bit_reloc : 1;
252 253 254
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
255

256
		struct i915_request *rq;
257 258
		u32 *rq_cmd;
		unsigned int rq_size;
259
	} reloc_cache;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
275 276
};

277
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
278

279 280
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
281
	return intel_engine_requires_cmd_parser(eb->engine) ||
282 283
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
284 285
}

286
static int eb_create(struct i915_execbuffer *eb)
287
{
288 289
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
290

291 292 293 294 295 296 297 298 299 300 301
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
302
		do {
303
			gfp_t flags;
304 305 306 307 308 309 310

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
311
			flags = GFP_KERNEL;
312 313 314
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

315
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
316
					      flags);
317 318 319 320
			if (eb->buckets)
				break;
		} while (--size);

321 322
		if (unlikely(!size))
			return -ENOMEM;
323

324
		eb->lut_size = size;
325
	} else {
326
		eb->lut_size = -eb->buffer_count;
327
	}
328

329
	return 0;
330 331
}

332 333
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
334 335
		 const struct i915_vma *vma,
		 unsigned int flags)
336 337 338 339 340 341 342
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

343
	if (flags & EXEC_OBJECT_PINNED &&
344 345 346
	    vma->node.start != entry->offset)
		return true;

347
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
348 349 350
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

351
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
352 353 354
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

355 356 357 358
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

359 360 361
	return false;
}

362
static inline bool
363
eb_pin_vma(struct i915_execbuffer *eb,
364
	   const struct drm_i915_gem_exec_object2 *entry,
365 366
	   struct i915_vma *vma)
{
367 368
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
369

370
	if (vma->node.size)
371
		pin_flags = vma->node.start;
372
	else
373
		pin_flags = entry->offset & PIN_OFFSET_MASK;
374

375 376 377
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
378

379 380
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
381

382
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
383
		if (unlikely(i915_vma_pin_fence(vma))) {
384
			i915_vma_unpin(vma);
385
			return false;
386 387
		}

388
		if (vma->fence)
389
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
390 391
	}

392 393
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
394 395
}

396
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
397
{
398
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
399

400
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
401
		__i915_vma_unpin_fence(vma);
402

403
	__i915_vma_unpin(vma);
404 405
}

406
static inline void
407
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
408
{
409
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
410
		return;
411

412 413
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
414 415
}

416 417 418 419
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
420
{
421 422
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
423

424 425 426 427 428 429 430 431
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
432
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
433 434 435 436 437 438 439 440
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
441 442
	}

443
	if (unlikely(vma->exec_flags)) {
444 445 446 447 448 449 450 451 452 453 454 455
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

456 457 458 459 460 461 462 463 464 465 466 467
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

468
	return 0;
469 470
}

471
static int
472 473 474
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
475
{
476
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
477 478 479 480 481 482 483 484
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
485 486
	}

487
	if (eb->lut_size > 0) {
488
		vma->exec_handle = entry->handle;
489
		hlist_add_head(&vma->exec_node,
490 491
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
492
	}
493

494 495 496 497 498 499 500 501 502
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
503
	eb->vma[i] = vma;
504
	eb->flags[i] = entry->flags;
505
	vma->exec_flags = &eb->flags[i];
506

507 508 509 510 511 512 513 514 515 516
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
517 518
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
519 520 521 522 523 524 525
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

526
	err = 0;
527
	if (eb_pin_vma(eb, entry, vma)) {
528 529 530 531
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
532 533 534 535 536 537
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
538 539
		if (unlikely(err))
			vma->exec_flags = NULL;
540 541 542 543 544 545 546 547 548 549
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

550 551 552 553 554
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
555 556 557 558 559 560 561 562 563

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
564 565 566
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
567 568
	int err;

569 570 571
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
572 573 574 575 576

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
577 578
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
579

580 581
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
582

583 584 585 586 587
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
588 589
	}

590 591 592
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
593 594 595 596 597 598 599 600
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

601
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
602
		err = i915_vma_pin_fence(vma);
603 604 605 606 607
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

608
		if (vma->fence)
609
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
610 611
	}

612 613
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
655 656
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
657

658 659
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
660 661
				continue;

662
			eb_unreserve_vma(vma, &eb->flags[i]);
663

664
			if (flags & EXEC_OBJECT_PINNED)
665
				/* Pinned must have their slot */
666
				list_add(&vma->exec_link, &eb->unbound);
667
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
668
				/* Map require the lowest 256MiB (aperture) */
669
				list_add_tail(&vma->exec_link, &eb->unbound);
670 671 672
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
673 674 675 676 677 678 679 680 681 682 683
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
684
			mutex_lock(&eb->context->vm->mutex);
685
			err = i915_gem_evict_vm(eb->context->vm);
686
			mutex_unlock(&eb->context->vm->mutex);
687 688 689 690 691 692 693 694
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
695
}
696

697 698
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
699 700 701 702
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
703 704 705 706 707 708 709
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
710 711
	if (unlikely(!ctx))
		return -ENOENT;
712

713
	eb->gem_context = ctx;
714
	if (rcu_access_pointer(ctx->vm))
715
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
716 717

	eb->context_flags = 0;
718
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
719 720 721 722 723 724
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
725
{
726
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
727
	struct drm_i915_gem_object *obj;
728
	unsigned int i, batch;
729
	int err;
730

731
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
732 733
		return -EIO;

734 735
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
736

737 738
	batch = eb_batch_index(eb);

739 740 741 742 743 744
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

745 746
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
747
		struct i915_lut_handle *lut;
748
		struct i915_vma *vma;
749

750 751
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
752
			goto add_vma;
753

754
		obj = i915_gem_object_lookup(eb->file, handle);
755
		if (unlikely(!obj)) {
756
			err = -ENOENT;
757
			goto err_vma;
758 759
		}

760
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
761
		if (IS_ERR(vma)) {
762
			err = PTR_ERR(vma);
763
			goto err_obj;
764 765
		}

766
		lut = i915_lut_handle_alloc();
767 768 769 770 771 772 773
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
774
			i915_lut_handle_free(lut);
775
			goto err_obj;
776
		}
777

778 779
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
780
			i915_vma_reopen(vma);
781
		lut->handle = handle;
782 783 784 785 786
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
787

788
add_vma:
789
		err = eb_add_vma(eb, i, batch, vma);
790
		if (unlikely(err))
791
			goto err_vma;
792

793 794
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
795 796
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
797 798
	}

799 800
	mutex_unlock(&eb->gem_context->mutex);

801 802 803
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

804
err_obj:
805
	i915_gem_object_put(obj);
806 807
err_vma:
	eb->vma[i] = NULL;
808 809
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
810
	return err;
811 812
}

813
static struct i915_vma *
814
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
815
{
816 817
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
818
			return NULL;
819
		return eb->vma[handle];
820 821
	} else {
		struct hlist_head *head;
822
		struct i915_vma *vma;
823

824
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
825
		hlist_for_each_entry(vma, head, exec_node) {
826 827
			if (vma->exec_handle == handle)
				return vma;
828 829 830
		}
		return NULL;
	}
831 832
}

833
static void eb_release_vmas(const struct i915_execbuffer *eb)
834
{
835 836 837 838
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
839 840
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
841

842
		if (!vma)
843
			break;
844

845 846 847
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
848

849 850
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
851

852
		if (flags & __EXEC_OBJECT_HAS_REF)
853
			i915_vma_put(vma);
854
	}
855 856
}

857
static void eb_reset_vmas(const struct i915_execbuffer *eb)
858
{
859
	eb_release_vmas(eb);
860
	if (eb->lut_size > 0)
861 862
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
863 864
}

865
static void eb_destroy(const struct i915_execbuffer *eb)
866
{
867 868
	GEM_BUG_ON(eb->reloc_cache.rq);

869
	if (eb->lut_size > 0)
870
		kfree(eb->buckets);
871 872
}

873
static inline u64
874
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
875
		  const struct i915_vma *target)
876
{
877
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
878 879
}

880 881
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
882
{
883
	cache->page = -1;
884
	cache->vaddr = 0;
885
	/* Must be a variable in the struct to allow GCC to unroll. */
886
	cache->gen = INTEL_GEN(i915);
887
	cache->has_llc = HAS_LLC(i915);
888
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
889 890
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
891
	cache->node.flags = 0;
892 893
	cache->rq = NULL;
	cache->rq_size = 0;
894
}
895

896 897 898 899 900 901 902 903
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
904 905
}

906 907
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

908 909 910 911 912 913 914
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

915 916 917 918
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
919 920

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
921
	i915_gem_object_unpin_map(cache->rq->batch->obj);
922

923
	intel_gt_chipset_flush(cache->rq->engine->gt);
924

925
	i915_request_add(cache->rq);
926 927 928
	cache->rq = NULL;
}

929
static void reloc_cache_reset(struct reloc_cache *cache)
930
{
931
	void *vaddr;
932

933 934 935
	if (cache->rq)
		reloc_gpu_flush(cache);

936 937
	if (!cache->vaddr)
		return;
938

939 940 941 942
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
943

944
		kunmap_atomic(vaddr);
945
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
946
	} else {
947 948 949
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
950
		io_mapping_unmap_atomic((void __iomem *)vaddr);
951

952
		if (drm_mm_node_allocated(&cache->node)) {
953 954 955
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
956
			mutex_lock(&ggtt->vm.mutex);
957
			drm_mm_remove_node(&cache->node);
958
			mutex_unlock(&ggtt->vm.mutex);
959 960
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
961
		}
962
	}
963 964 965

	cache->vaddr = 0;
	cache->page = -1;
966 967 968 969
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
970
			unsigned long page)
971
{
972 973 974 975 976 977
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
978
		int err;
979

980
		err = i915_gem_object_prepare_write(obj, &flushes);
981 982
		if (err)
			return ERR_PTR(err);
983 984 985

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
986

987 988 989 990
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
991 992
	}

993 994
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
995
	cache->page = page;
996

997
	return vaddr;
998 999
}

1000 1001
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1002
			 unsigned long page)
1003
{
1004
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1005
	unsigned long offset;
1006
	void *vaddr;
1007

1008
	if (cache->vaddr) {
1009
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1010
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1011 1012
	} else {
		struct i915_vma *vma;
1013
		int err;
1014

1015 1016 1017
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1018
		if (use_cpu_reloc(cache, obj))
1019
			return NULL;
1020

1021
		i915_gem_object_lock(obj);
1022
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1023
		i915_gem_object_unlock(obj);
1024 1025
		if (err)
			return ERR_PTR(err);
1026

1027
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028
					       PIN_MAPPABLE |
1029 1030
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1031 1032
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1033
			mutex_lock(&ggtt->vm.mutex);
1034
			err = drm_mm_insert_node_in_range
1035
				(&ggtt->vm.mm, &cache->node,
1036
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1037
				 0, ggtt->mappable_end,
1038
				 DRM_MM_INSERT_LOW);
1039
			mutex_unlock(&ggtt->vm.mutex);
1040
			if (err) /* no inactive aperture space, use cpu reloc */
1041
				return NULL;
1042 1043 1044
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1045
		}
1046
	}
1047

1048
	offset = cache->node.start;
1049
	if (drm_mm_node_allocated(&cache->node)) {
1050 1051 1052
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1053 1054
	} else {
		offset += page << PAGE_SHIFT;
1055 1056
	}

1057
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1058
							 offset);
1059 1060
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1061

1062
	return vaddr;
1063 1064
}

1065 1066
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1067
			 unsigned long page)
1068
{
1069
	void *vaddr;
1070

1071 1072 1073 1074 1075 1076 1077 1078
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1079 1080
	}

1081
	return vaddr;
1082 1083
}

1084
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1085
{
1086 1087 1088 1089 1090
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1091

1092
		*addr = value;
1093

1094 1095
		/*
		 * Writes to the same cacheline are serialised by the CPU
1096 1097 1098 1099 1100 1101 1102 1103 1104
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1105 1106
}

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1127 1128 1129 1130 1131
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1132
	struct intel_engine_pool_node *pool;
1133
	struct i915_request *rq;
1134 1135 1136 1137
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1138
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1139 1140
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1141

1142
	cmd = i915_gem_object_pin_map(pool->obj,
1143 1144 1145
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1146 1147 1148 1149
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1150

1151
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1161
	rq = i915_request_create(eb->context);
1162 1163 1164 1165 1166
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1167 1168 1169 1170
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1171
	err = reloc_move_to_gpu(rq, vma);
1172 1173 1174 1175 1176 1177 1178
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1179
		goto skip_request;
1180

1181
	i915_vma_lock(batch);
1182 1183 1184
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1185
	i915_vma_unlock(batch);
1186 1187
	if (err)
		goto skip_request;
1188 1189

	rq->batch = batch;
1190
	i915_vma_unpin(batch);
1191 1192 1193 1194 1195 1196

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1197
	goto out_pool;
1198

1199 1200
skip_request:
	i915_request_skip(rq, err);
1201
err_request:
1202
	i915_request_add(rq);
1203 1204 1205
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1206 1207 1208
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1225 1226 1227 1228
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1229 1230 1231
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1243 1244
static u64
relocate_entry(struct i915_vma *vma,
1245
	       const struct drm_i915_gem_relocation_entry *reloc,
1246 1247
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1248
{
1249
	u64 offset = reloc->offset;
1250 1251
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1252
	void *vaddr;
1253

1254 1255
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1256
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1257 1258 1259 1260 1261 1262 1263 1264 1265
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1266
		else
1267
			len = 3;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1313
repeat:
1314
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1315 1316 1317 1318 1319
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1320
			eb->reloc_cache.vaddr);
1321 1322 1323 1324 1325 1326

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1327 1328
	}

1329
out:
1330
	return target->node.start | UPDATE;
1331 1332
}

1333 1334 1335 1336
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1337
{
1338
	struct i915_vma *target;
1339
	int err;
1340

1341
	/* we've already hold a reference to all valid objects */
1342 1343
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1344
		return -ENOENT;
1345

1346
	/* Validate that the target is in a valid r/w GPU domain */
1347
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1348
		DRM_DEBUG("reloc with multiple write domains: "
1349
			  "target %d offset %d "
1350
			  "read %08x write %08x",
1351
			  reloc->target_handle,
1352 1353 1354
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1355
		return -EINVAL;
1356
	}
1357 1358
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1359
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1360
			  "target %d offset %d "
1361
			  "read %08x write %08x",
1362
			  reloc->target_handle,
1363 1364 1365
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1366
		return -EINVAL;
1367 1368
	}

1369
	if (reloc->write_domain) {
1370
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1371

1372 1373 1374 1375 1376 1377 1378
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1379
		    IS_GEN(eb->i915, 6)) {
1380
			err = i915_vma_bind(target, target->obj->cache_level,
1381
					    PIN_GLOBAL, NULL);
1382 1383 1384 1385
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1386
	}
1387

1388 1389
	/*
	 * If the relocation already has the right value in it, no
1390 1391
	 * more work needs to be done.
	 */
1392 1393
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1394
		return 0;
1395 1396

	/* Check that the relocation address is valid... */
1397
	if (unlikely(reloc->offset >
1398
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1399
		DRM_DEBUG("Relocation beyond object bounds: "
1400 1401 1402 1403
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1404
		return -EINVAL;
1405
	}
1406
	if (unlikely(reloc->offset & 3)) {
1407
		DRM_DEBUG("Relocation not 4-byte aligned: "
1408 1409 1410
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1411
		return -EINVAL;
1412 1413
	}

1414 1415 1416 1417 1418 1419
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1420
	 * out of our synchronisation.
1421
	 */
1422
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1423

1424
	/* and update the user's relocation entry */
1425
	return relocate_entry(vma, reloc, eb, target);
1426 1427
}

1428
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1429
{
1430
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1431 1432
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1433
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1434
	unsigned int remain;
1435

1436
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1437
	remain = entry->relocation_count;
1438 1439
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1440

1441 1442 1443 1444 1445
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1446
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1447 1448 1449 1450 1451 1452 1453
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1454

1455 1456
		/*
		 * This is the fast path and we cannot handle a pagefault
1457 1458 1459 1460 1461 1462 1463
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1464
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1465
		pagefault_enable();
1466 1467
		if (unlikely(copied)) {
			remain = -EFAULT;
1468 1469
			goto out;
		}
1470

1471
		remain -= count;
1472
		do {
1473
			u64 offset = eb_relocate_entry(eb, vma, r);
1474

1475 1476 1477
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1478
				goto out;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1502 1503 1504 1505
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1506
			}
1507 1508 1509
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1510
out:
1511
	reloc_cache_reset(&eb->reloc_cache);
1512
	return remain;
1513 1514 1515
}

static int
1516
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1517
{
1518
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1519 1520 1521 1522
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1523 1524

	for (i = 0; i < entry->relocation_count; i++) {
1525
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1526

1527 1528 1529 1530
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1531
	}
1532 1533 1534 1535
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1536 1537
}

1538
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1539
{
1540 1541 1542
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1543

1544 1545 1546
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1547

1548 1549
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1550

1551 1552
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1553
	if (!access_ok(addr, size))
1554
		return -EFAULT;
1555

1556 1557 1558 1559 1560
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1561
	}
1562
	return __get_user(c, end - 1);
1563
}
1564

1565
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1566
{
1567
	struct drm_i915_gem_relocation_entry *relocs;
1568 1569 1570
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1571

1572 1573 1574 1575 1576
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1577

1578 1579
		if (nreloc == 0)
			continue;
1580

1581 1582 1583
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1584

1585 1586
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1587

1588
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1589 1590 1591 1592
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1593

1594 1595 1596 1597 1598 1599 1600
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1601
					     (char __user *)urelocs + copied,
1602 1603
					     len))
				goto end;
1604

1605 1606
			copied += len;
		} while (copied < size);
1607

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1618
		if (!user_access_begin(urelocs, size))
1619
			goto end;
1620

1621 1622 1623 1624 1625
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1626

1627 1628
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1629

1630
	return 0;
1631

1632 1633 1634 1635 1636
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1637 1638
err:
	while (i--) {
1639
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1640 1641 1642 1643
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1644 1645
}

1646
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1647
{
1648 1649
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1650

1651
	if (unlikely(i915_modparams.prefault_disable))
1652
		return 0;
1653

1654 1655
	for (i = 0; i < count; i++) {
		int err;
1656

1657 1658 1659 1660
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1661

1662
	return 0;
1663 1664
}

1665
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1666
{
1667
	struct drm_device *dev = &eb->i915->drm;
1668
	bool have_copy = false;
1669
	struct i915_vma *vma;
1670 1671 1672 1673 1674 1675 1676
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1677

1678
	/* We may process another execbuffer during the unlock... */
1679
	eb_reset_vmas(eb);
1680 1681
	mutex_unlock(&dev->struct_mutex);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1703
	}
1704 1705 1706
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1707 1708
	}

1709 1710 1711
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1712 1713
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1714
		mutex_lock(&dev->struct_mutex);
1715
		goto out;
1716 1717
	}

1718
	/* reacquire the objects */
1719 1720
	err = eb_lookup_vmas(eb);
	if (err)
1721
		goto err;
1722

1723 1724
	GEM_BUG_ON(!eb->batch);

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1737 1738
	}

1739 1740
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1741 1742 1743 1744 1745 1746
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1768
	return err;
1769 1770
}

1771
static int eb_relocate(struct i915_execbuffer *eb)
1772
{
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1795
	struct ww_acquire_ctx acquire;
1796
	unsigned int i;
1797 1798 1799
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1800

1801
	for (i = 0; i < count; i++) {
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1833 1834
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1835
		struct drm_i915_gem_object *obj = vma->obj;
1836

1837 1838
		assert_vma_held(vma);

1839
		if (flags & EXEC_OBJECT_CAPTURE) {
1840
			struct i915_capture_list *capture;
1841 1842

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1843 1844 1845 1846 1847
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1848 1849
		}

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1863
			if (i915_gem_clflush_object(obj, 0))
1864
				flags &= ~EXEC_OBJECT_ASYNC;
1865 1866
		}

1867 1868 1869 1870
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1871

1872 1873
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1874

1875
		i915_vma_unlock(vma);
1876

1877 1878 1879 1880
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1881
			i915_vma_put(vma);
1882
	}
1883 1884 1885 1886 1887
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1888
	eb->exec = NULL;
1889

1890
	/* Unconditionally flush any chipset caches (for streaming writes). */
1891
	intel_gt_chipset_flush(eb->engine->gt);
1892
	return 0;
1893 1894 1895 1896

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1897 1898
}

T
Tvrtko Ursulin 已提交
1899
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1900
{
1901
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1902
		return -EINVAL;
1903

C
Chris Wilson 已提交
1904
	/* Kernel clipping was a DRI1 misfeature */
1905 1906
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1907
			return -EINVAL;
1908
	}
C
Chris Wilson 已提交
1909 1910 1911 1912 1913 1914

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1915
		return -EINVAL;
C
Chris Wilson 已提交
1916 1917

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1918
		return -EINVAL;
C
Chris Wilson 已提交
1919

T
Tvrtko Ursulin 已提交
1920
	return 0;
1921 1922
}

1923
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1924
{
1925 1926
	u32 *cs;
	int i;
1927

1928
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1929 1930 1931
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1932

1933
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1934 1935
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1936

1937
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1938
	for (i = 0; i < 4; i++) {
1939 1940
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1941
	}
1942
	*cs++ = MI_NOOP;
1943
	intel_ring_advance(rq, cs);
1944 1945 1946 1947

	return 0;
}

1948 1949 1950 1951
static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
{
	struct i915_address_space *vm;
1952
	struct i915_vma *vma;
1953
	u64 flags;
1954
	int err;
1955 1956 1957 1958 1959

	/*
	 * PPGTT backed shadow buffers must be mapped RO, to prevent
	 * post-scan tampering
	 */
1960 1961
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		vm = &eb->engine->gt->ggtt->vm;
1962 1963
		flags = PIN_GLOBAL;
	} else {
1964 1965 1966 1967 1968 1969 1970 1971
		vm = eb->context->vm;
		if (!vm->has_read_only) {
			DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
			return ERR_PTR(-EINVAL);
		}

		i915_gem_object_set_readonly(obj);
		flags = PIN_USER;
1972 1973
	}

1974 1975 1976 1977 1978 1979 1980 1981 1982
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1983 1984
}

1985
static int eb_parse(struct i915_execbuffer *eb)
1986
{
1987
	struct intel_engine_pool_node *pool;
1988
	struct i915_vma *vma;
1989
	int err;
1990

1991 1992 1993
	if (!eb_use_cmdparser(eb))
		return 0;

1994
	pool = intel_engine_get_pool(eb->engine, eb->batch_len);
1995
	if (IS_ERR(pool))
1996
		return PTR_ERR(pool);
1997

1998
	vma = shadow_batch_pin(eb, pool->obj);
1999 2000
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
2001
		goto err;
2002
	}
2003

2004
	err = intel_engine_cmd_parser(eb->engine,
2005
				      eb->batch,
2006 2007
				      eb->batch_start_offset,
				      eb->batch_len,
2008
				      vma);
2009
	if (err) {
2010 2011 2012 2013 2014 2015
		/*
		 * Unsafe GGTT-backed buffers can still be submitted safely
		 * as non-secure.
		 * For PPGTT backing however, we have no choice but to forcibly
		 * reject unsafe buffers
		 */
2016
		if (i915_vma_is_ggtt(vma) && err == -EACCES)
2017 2018 2019
			err = 0;

		goto err_unpin;
C
Chris Wilson 已提交
2020
	}
2021

2022 2023 2024 2025 2026
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2027

2028 2029
	eb->batch_start_offset = 0;
	eb->batch = vma;
2030

2031
	if (i915_vma_is_ggtt(vma))
2032 2033
		eb->batch_flags |= I915_DISPATCH_SECURE;

2034 2035
	/* eb->batch_len unchanged */

2036
	vma->private = pool;
2037
	return 0;
2038

2039 2040
err_unpin:
	i915_vma_unpin(vma);
2041 2042
err:
	intel_engine_pool_put(pool);
2043
	return err;
2044
}
2045

2046
static void
2047
add_to_client(struct i915_request *rq, struct drm_file *file)
2048
{
2049 2050 2051 2052 2053 2054 2055
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2056 2057
}

2058
static int eb_submit(struct i915_execbuffer *eb)
2059
{
2060
	int err;
2061

2062 2063 2064
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2065

2066
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2067 2068 2069
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2070 2071
	}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2084
	err = eb->engine->emit_bb_start(eb->request,
2085 2086 2087
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2088 2089 2090
					eb->batch_flags);
	if (err)
		return err;
2091

2092 2093 2094
	if (i915_gem_context_nopreempt(eb->gem_context))
		eb->request->flags |= I915_REQUEST_NOPREEMPT;

C
Chris Wilson 已提交
2095
	return 0;
2096 2097
}

2098 2099 2100 2101 2102 2103
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2104
/*
2105
 * Find one BSD ring to dispatch the corresponding BSD command.
2106
 * The engine index is returned.
2107
 */
2108
static unsigned int
2109 2110
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2111 2112 2113
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2114
	/* Check whether the file_priv has already selected one ring. */
2115
	if ((int)file_priv->bsd_engine < 0)
2116 2117
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2118

2119
	return file_priv->bsd_engine;
2120 2121
}

2122
static const enum intel_engine_id user_ring_map[] = {
2123 2124 2125 2126 2127
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2128 2129
};

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2170 2171 2172 2173
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2174
	err = intel_gt_terminally_wedged(ce->engine->gt);
2175 2176 2177 2178 2179 2180 2181 2182
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2183
	err = intel_context_pin(ce);
2184 2185
	if (err)
		return err;
2186

2187 2188 2189 2190 2191 2192 2193 2194
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2195 2196 2197
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2198
		goto err_unpin;
2199
	}
2200 2201

	intel_context_enter(ce);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2217

2218
	eb->engine = ce->engine;
2219 2220
	eb->context = ce;
	return 0;
2221

2222 2223 2224 2225
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2226
err_unpin:
2227
	intel_context_unpin(ce);
2228
	return err;
2229 2230
}

2231
static void eb_unpin_engine(struct i915_execbuffer *eb)
2232
{
2233
	struct intel_context *ce = eb->context;
2234
	struct intel_timeline *tl = ce->timeline;
2235 2236 2237 2238 2239

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2240
	intel_context_unpin(ce);
2241
}
2242

2243 2244 2245 2246
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2247
{
2248
	struct drm_i915_private *i915 = eb->i915;
2249 2250
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2251 2252
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2253 2254
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2255
		return -1;
2256 2257
	}

2258
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2259 2260 2261
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2262
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2263 2264
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2265
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2266 2267 2268 2269
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2270
			return -1;
2271 2272
		}

2273
		return _VCS(bsd_idx);
2274 2275
	}

2276 2277 2278
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2279 2280
	}

2281 2282 2283 2284
	return user_ring_map[user_ring_id];
}

static int
2285 2286 2287
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2288 2289 2290 2291 2292
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2293 2294 2295 2296
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2297 2298 2299 2300 2301

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2302
	err = __eb_pin_engine(eb, ce);
2303 2304 2305
	intel_context_put(ce);

	return err;
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2320
	const unsigned long nfences = args->num_cliprects;
2321 2322
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2323
	unsigned long n;
2324 2325 2326 2327 2328
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2329 2330 2331 2332 2333
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2334 2335 2336
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2337
	if (!access_ok(user, nfences * sizeof(*user)))
2338 2339
		return ERR_PTR(-EFAULT);

2340
	fences = kvmalloc_array(nfences, sizeof(*fences),
2341
				__GFP_NOWARN | GFP_KERNEL);
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2354 2355 2356 2357 2358
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2359 2360 2361 2362 2363 2364 2365
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2366 2367 2368
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2404
		fence = drm_syncobj_fence_get(syncobj);
2405 2406 2407
		if (!fence)
			return -EINVAL;

2408
		err = i915_request_await_dma_fence(eb->request, fence);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2433
		drm_syncobj_replace_fence(syncobj, fence);
2434 2435 2436
	}
}

2437
static int
2438
i915_gem_do_execbuffer(struct drm_device *dev,
2439 2440
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2441 2442
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2443
{
2444
	struct drm_i915_private *i915 = to_i915(dev);
2445
	struct i915_execbuffer eb;
2446
	struct dma_fence *in_fence = NULL;
2447
	struct dma_fence *exec_fence = NULL;
2448 2449
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2450
	int err;
2451

2452
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2453 2454
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2455

2456
	eb.i915 = i915;
2457 2458
	eb.file = file;
	eb.args = args;
2459
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2460
		args->flags |= __EXEC_HAS_RELOC;
2461

2462
	eb.exec = exec;
2463 2464
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2465 2466
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2467
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2468 2469
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2470
	eb.buffer_count = args->buffer_count;
2471 2472 2473
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2474
	eb.batch_flags = 0;
2475
	if (args->flags & I915_EXEC_SECURE) {
2476 2477 2478 2479 2480 2481 2482
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2483
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2484
			return -EPERM;
2485

2486
		eb.batch_flags |= I915_DISPATCH_SECURE;
2487
	}
2488
	if (args->flags & I915_EXEC_IS_PINNED)
2489
		eb.batch_flags |= I915_DISPATCH_PINNED;
2490

2491 2492
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2493 2494
		if (!in_fence)
			return -EINVAL;
2495 2496
	}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2510 2511 2512
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2513
			err = out_fence_fd;
2514
			goto err_exec_fence;
2515 2516 2517
		}
	}

2518 2519 2520 2521 2522
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2523

2524 2525 2526 2527
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2528
	err = eb_pin_engine(&eb, file, args);
2529
	if (unlikely(err))
2530
		goto err_context;
2531

2532 2533
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2534 2535
		goto err_engine;

2536
	err = eb_relocate(&eb);
2537
	if (err) {
2538 2539 2540 2541 2542 2543 2544 2545 2546
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2547
	}
2548

2549
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2550
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2551 2552
		err = -EINVAL;
		goto err_vma;
2553
	}
2554 2555
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2556
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2557 2558
		err = -EINVAL;
		goto err_vma;
2559
	}
2560

2561 2562 2563
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;

2564 2565 2566
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2567

2568 2569
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2570
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2571
	 * hsw should have this fixed, but bdw mucks it up again. */
2572
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2573
		struct i915_vma *vma;
2574

2575 2576 2577 2578 2579 2580
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2581
		 *   so we don't really have issues with multiple objects not
2582 2583 2584
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2585
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2586
		if (IS_ERR(vma)) {
2587 2588
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2589
		}
2590

2591
		eb.batch = vma;
2592
	}
2593

2594 2595 2596
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2597
	/* Allocate a request for this batch buffer nice and early. */
2598
	eb.request = i915_request_create(eb.context);
2599
	if (IS_ERR(eb.request)) {
2600
		err = PTR_ERR(eb.request);
2601
		goto err_batch_unpin;
2602
	}
2603

2604
	if (in_fence) {
2605
		err = i915_request_await_dma_fence(eb.request, in_fence);
2606
		if (err < 0)
2607 2608 2609
			goto err_request;
	}

2610 2611 2612 2613 2614 2615 2616
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2617 2618 2619 2620 2621 2622
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2623
	if (out_fence_fd != -1) {
2624
		out_fence = sync_file_create(&eb.request->fence);
2625
		if (!out_fence) {
2626
			err = -ENOMEM;
2627 2628 2629 2630
			goto err_request;
		}
	}

2631 2632
	/*
	 * Whilst this request exists, batch_obj will be on the
2633 2634 2635 2636 2637
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2638
	eb.request->batch = eb.batch;
2639 2640
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2641

2642
	trace_i915_request_queue(eb.request, eb.batch_flags);
2643
	err = eb_submit(&eb);
2644
err_request:
2645
	add_to_client(eb.request, file);
2646
	i915_request_add(eb.request);
2647

2648 2649 2650
	if (fences)
		signal_fence_array(&eb, fences);

2651
	if (out_fence) {
2652
		if (err == 0) {
2653
			fd_install(out_fence_fd, out_fence->file);
2654
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2655 2656 2657 2658 2659 2660
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2661

2662
err_batch_unpin:
2663
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2664
		i915_vma_unpin(eb.batch);
2665 2666
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2667 2668 2669
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2670
	mutex_unlock(&dev->struct_mutex);
2671 2672
err_engine:
	eb_unpin_engine(&eb);
2673
err_context:
2674
	i915_gem_context_put(eb.gem_context);
2675
err_destroy:
2676
	eb_destroy(&eb);
2677
err_out_fence:
2678 2679
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2680 2681
err_exec_fence:
	dma_fence_put(exec_fence);
2682
err_in_fence:
2683
	dma_fence_put(in_fence);
2684
	return err;
2685 2686
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2707 2708 2709 2710 2711
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2712 2713
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2714 2715 2716 2717 2718
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2719
	const size_t count = args->buffer_count;
2720 2721
	unsigned int i;
	int err;
2722

2723 2724
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2725 2726 2727
		return -EINVAL;
	}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2739 2740 2741
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2742

2743
	/* Copy in the exec list from userland */
2744
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2745
				   __GFP_NOWARN | GFP_KERNEL);
2746
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2747
				    __GFP_NOWARN | GFP_KERNEL);
2748
	if (exec_list == NULL || exec2_list == NULL) {
2749
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2750
			  args->buffer_count);
M
Michal Hocko 已提交
2751 2752
		kvfree(exec_list);
		kvfree(exec2_list);
2753 2754
		return -ENOMEM;
	}
2755
	err = copy_from_user(exec_list,
2756
			     u64_to_user_ptr(args->buffers_ptr),
2757
			     sizeof(*exec_list) * count);
2758
	if (err) {
2759
		DRM_DEBUG("copy %d exec entries failed %d\n",
2760
			  args->buffer_count, err);
M
Michal Hocko 已提交
2761 2762
		kvfree(exec_list);
		kvfree(exec2_list);
2763 2764 2765 2766 2767 2768 2769 2770 2771
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2772
		if (INTEL_GEN(to_i915(dev)) < 4)
2773 2774 2775 2776 2777
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2778
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2779
	if (exec2.flags & __EXEC_HAS_RELOC) {
2780
		struct drm_i915_gem_exec_object __user *user_exec_list =
2781
			u64_to_user_ptr(args->buffers_ptr);
2782

2783
		/* Copy the new buffer offsets back to the user's exec list. */
2784
		for (i = 0; i < args->buffer_count; i++) {
2785 2786 2787
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2788
			exec2_list[i].offset =
2789 2790 2791 2792 2793
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2794
				break;
2795 2796 2797
		}
	}

M
Michal Hocko 已提交
2798 2799
	kvfree(exec_list);
	kvfree(exec2_list);
2800
	return err;
2801 2802 2803
}

int
2804 2805
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2806 2807
{
	struct drm_i915_gem_execbuffer2 *args = data;
2808
	struct drm_i915_gem_exec_object2 *exec2_list;
2809
	struct drm_syncobj **fences = NULL;
2810
	const size_t count = args->buffer_count;
2811
	int err;
2812

2813 2814
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2815 2816 2817
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2818 2819 2820
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2821 2822

	/* Allocate an extra slot for use by the command parser */
2823
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2824
				    __GFP_NOWARN | GFP_KERNEL);
2825
	if (exec2_list == NULL) {
2826 2827
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2828 2829
		return -ENOMEM;
	}
2830 2831
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2832 2833
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2834
		kvfree(exec2_list);
2835 2836 2837
		return -EFAULT;
	}

2838 2839 2840 2841 2842 2843 2844 2845 2846
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2847 2848 2849 2850 2851 2852 2853 2854

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2855
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2856 2857
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2858

2859
		/* Copy the new buffer offsets back to the user's exec list. */
2860 2861 2862 2863 2864 2865 2866 2867
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2868
			goto end;
2869

2870
		for (i = 0; i < args->buffer_count; i++) {
2871 2872 2873
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2874
			exec2_list[i].offset =
2875 2876 2877 2878
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2879
		}
2880 2881
end_user:
		user_access_end();
2882
end:;
2883 2884
	}

2885
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2886
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2887
	kvfree(exec2_list);
2888
	return err;
2889
}