i915_gem_execbuffer.c 78.7 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47
struct eb_vma_array {
	struct kref kref;
	struct eb_vma vma[];
};

48 49 50 51 52 53
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
54

55 56 57 58 59
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
60 61

#define __EXEC_HAS_RELOC	BIT(31)
62
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
63
#define UPDATE			PIN_OFFSET_FIXED
64 65

#define BATCH_OFFSET_BIAS (256*1024)
66

67
#define __I915_EXEC_ILLEGAL_FLAGS \
68 69 70
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
71

72 73 74 75 76 77 78 79 80
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

232
struct i915_execbuffer {
233 234 235 236
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
237
	struct eb_vma *vma;
238 239

	struct intel_engine_cs *engine; /** engine to queue the request to */
240 241
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
242

243
	struct i915_request *request; /** our request to build */
244
	struct eb_vma *batch; /** identity of the batch obj/vma */
245
	struct i915_vma *trampoline; /** trampoline used for chaining */
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
261
	struct reloc_cache {
262 263 264
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
265
		unsigned int gen; /** Cached value of INTEL_GEN */
266
		bool use_64bit_reloc : 1;
267 268 269
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
270

271
		struct i915_vma *target;
272
		struct i915_request *rq;
273
		struct i915_vma *rq_vma;
274 275
		u32 *rq_cmd;
		unsigned int rq_size;
276
	} reloc_cache;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
292
	struct eb_vma_array *array;
293 294
};

295 296
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
297
	return intel_engine_requires_cmd_parser(eb->engine) ||
298 299
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static struct eb_vma_array *eb_vma_array_create(unsigned int count)
{
	struct eb_vma_array *arr;

	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
	if (!arr)
		return NULL;

	kref_init(&arr->kref);
	arr->vma[0].vma = NULL;

	return arr;
}

static inline void eb_unreserve_vma(struct eb_vma *ev)
{
	struct i915_vma *vma = ev->vma;

	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
		__i915_vma_unpin(vma);

	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
		       __EXEC_OBJECT_HAS_FENCE);
}

static void eb_vma_array_destroy(struct kref *kref)
{
	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
	struct eb_vma *ev = arr->vma;

	while (ev->vma) {
		eb_unreserve_vma(ev);
		i915_vma_put(ev->vma);
		ev++;
	}

	kvfree(arr);
}

static void eb_vma_array_put(struct eb_vma_array *arr)
{
	kref_put(&arr->kref, eb_vma_array_destroy);
}

349
static int eb_create(struct i915_execbuffer *eb)
350
{
351 352 353 354 355 356 357
	/* Allocate an extra slot for use by the command parser + sentinel */
	eb->array = eb_vma_array_create(eb->buffer_count + 2);
	if (!eb->array)
		return -ENOMEM;

	eb->vma = eb->array->vma;

358 359
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
360

361 362 363 364 365 366 367 368 369 370 371
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
372
		do {
373
			gfp_t flags;
374 375 376 377 378 379 380

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
381
			flags = GFP_KERNEL;
382 383 384
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

385
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
386
					      flags);
387 388 389 390
			if (eb->buckets)
				break;
		} while (--size);

391 392
		if (unlikely(!size)) {
			eb_vma_array_put(eb->array);
393
			return -ENOMEM;
394
		}
395

396
		eb->lut_size = size;
397
	} else {
398
		eb->lut_size = -eb->buffer_count;
399
	}
400

401
	return 0;
402 403
}

404 405
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
406 407
		 const struct i915_vma *vma,
		 unsigned int flags)
408 409 410 411 412 413 414
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

415
	if (flags & EXEC_OBJECT_PINNED &&
416 417 418
	    vma->node.start != entry->offset)
		return true;

419
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
420 421 422
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

423
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
424 425 426
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

427 428 429 430
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

431 432 433
	return false;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

460
static inline bool
461
eb_pin_vma(struct i915_execbuffer *eb,
462
	   const struct drm_i915_gem_exec_object2 *entry,
463
	   struct eb_vma *ev)
464
{
465
	struct i915_vma *vma = ev->vma;
466
	u64 pin_flags;
467

468
	if (vma->node.size)
469
		pin_flags = vma->node.start;
470
	else
471
		pin_flags = entry->offset & PIN_OFFSET_MASK;
472

473
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
474
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
475
		pin_flags |= PIN_GLOBAL;
476

477 478 479 480 481 482 483 484 485 486 487 488 489
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
490

491
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
492
		if (unlikely(i915_vma_pin_fence(vma))) {
493
			i915_vma_unpin(vma);
494
			return false;
495 496
		}

497
		if (vma->fence)
498
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
499 500
	}

501 502
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
503 504 505 506 507 508
}

static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
509
{
510 511
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
512

513 514
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
515 516 517 518 519 520 521
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523 524 525 526 527 528 529 530
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
531
	}
532 533 534 535 536 537 538
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

539 540 541 542 543 544 545 546 547 548 549 550
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

551
	return 0;
552 553
}

554
static void
555 556 557
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
558
{
559
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
560
	struct eb_vma *ev = &eb->vma[i];
561 562 563

	GEM_BUG_ON(i915_vma_is_closed(vma));

564
	ev->vma = vma;
565 566 567
	ev->exec = entry;
	ev->flags = entry->flags;

568
	if (eb->lut_size > 0) {
569 570
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
571 572
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
573
	}
574

575
	if (entry->relocation_count)
576
		list_add_tail(&ev->reloc_link, &eb->relocs);
577

578 579 580 581 582 583 584 585 586 587
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
588
		if (entry->relocation_count &&
589 590
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
591
		if (eb->reloc_cache.has_fence)
592
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
593

594
		eb->batch = ev;
595 596
	}

597
	if (eb_pin_vma(eb, entry, ev)) {
598 599 600 601
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
602
	} else {
603 604
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
605 606 607 608 609 610 611 612 613
	}
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

614 615 616 617 618
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
619 620 621 622 623 624 625

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
626
			  struct eb_vma *ev,
627
			  u64 pin_flags)
628
{
629 630
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
631 632
	int err;

633 634 635 636 637 638 639
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

640 641
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
642
			   eb_pin_flags(entry, ev->flags) | pin_flags);
643 644 645 646 647 648 649 650
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

651
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
652
		err = i915_vma_pin_fence(vma);
653 654 655 656 657
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

658
		if (vma->fence)
659
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
660 661
	}

662
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
663
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
664

665 666 667 668 669 670
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
671
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
672
	struct list_head last;
673
	struct eb_vma *ev;
674
	unsigned int i, pass;
675
	int err = 0;
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

691 692 693
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

694 695
	pass = 0;
	do {
696 697
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
698 699 700
			if (err)
				break;
		}
701
		if (!(err == -ENOSPC || err == -EAGAIN))
702
			break;
703 704 705 706 707

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
708
			unsigned int flags;
709

710 711
			ev = &eb->vma[i];
			flags = ev->flags;
712 713
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
714 715
				continue;

716
			eb_unreserve_vma(ev);
717

718
			if (flags & EXEC_OBJECT_PINNED)
719
				/* Pinned must have their slot */
720
				list_add(&ev->bind_link, &eb->unbound);
721
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722
				/* Map require the lowest 256MiB (aperture) */
723
				list_add_tail(&ev->bind_link, &eb->unbound);
724 725
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
726
				list_add(&ev->bind_link, &last);
727
			else
728
				list_add_tail(&ev->bind_link, &last);
729 730 731
		}
		list_splice_tail(&last, &eb->unbound);

732
		if (err == -EAGAIN) {
733
			mutex_unlock(&eb->i915->drm.struct_mutex);
734
			flush_workqueue(eb->i915->mm.userptr_wq);
735
			mutex_lock(&eb->i915->drm.struct_mutex);
736 737 738
			continue;
		}

739 740 741 742 743 744
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
745
			mutex_lock(&eb->context->vm->mutex);
746
			err = i915_gem_evict_vm(eb->context->vm);
747
			mutex_unlock(&eb->context->vm->mutex);
748
			if (err)
749
				goto unlock;
750 751 752
			break;

		default:
753 754
			err = -ENOSPC;
			goto unlock;
755
		}
756 757

		pin_flags = PIN_USER;
758
	} while (1);
759 760 761 762

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
763
}
764

765 766
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
767 768 769 770
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
771 772 773 774 775 776 777
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
778 779
	if (unlikely(!ctx))
		return -ENOENT;
780

781
	eb->gem_context = ctx;
782
	if (rcu_access_pointer(ctx->vm))
783
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
784 785

	eb->context_flags = 0;
786
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
787 788 789 790 791
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

792 793
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
794
{
795 796
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
797
	int err;
798

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
	if (!mutex_lock_interruptible(&ctx->mutex)) {
		err = -ENOENT;
		if (likely(!i915_gem_context_is_closed(ctx)))
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

			i915_gem_object_lock(obj);
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
			i915_gem_object_unlock(obj);
		}
		mutex_unlock(&ctx->mutex);
	}
	if (unlikely(err))
		goto err;
831

832
	return 0;
833

834
err:
C
Chris Wilson 已提交
835
	i915_vma_close(vma);
836 837 838 839
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
840

841 842 843 844
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
	do {
		struct drm_i915_gem_object *obj;
845
		struct i915_vma *vma;
846
		int err;
847

848 849
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
850
		if (likely(vma))
851 852 853 854
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
855

856
		obj = i915_gem_object_lookup(eb->file, handle);
857 858
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
859

860
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
861
		if (IS_ERR(vma)) {
862 863
			i915_gem_object_put(obj);
			return vma;
864 865
		}

866 867 868
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
869

870 871 872 873 874
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
875

876 877 878 879 880
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
881

882 883 884 885 886 887 888 889 890 891 892
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
893

894
		err = eb_validate_vma(eb, &eb->exec[i], vma);
895 896 897 898
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
899

900
		eb_add_vma(eb, i, batch, vma);
901 902
	}

903
	eb->vma[i].vma = NULL;
904
	return err;
905 906
}

907
static struct eb_vma *
908
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
909
{
910 911
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
912
			return NULL;
913
		return &eb->vma[handle];
914 915
	} else {
		struct hlist_head *head;
916
		struct eb_vma *ev;
917

918
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
919 920 921
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
922 923 924
		}
		return NULL;
	}
925 926
}

927
static void eb_destroy(const struct i915_execbuffer *eb)
928
{
929 930
	GEM_BUG_ON(eb->reloc_cache.rq);

931 932 933
	if (eb->array)
		eb_vma_array_put(eb->array);

934
	if (eb->lut_size > 0)
935
		kfree(eb->buckets);
936 937
}

938
static inline u64
939
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
940
		  const struct i915_vma *target)
941
{
942
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
943 944
}

945 946
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
947
{
948
	cache->page = -1;
949
	cache->vaddr = 0;
950
	/* Must be a variable in the struct to allow GCC to unroll. */
951
	cache->gen = INTEL_GEN(i915);
952
	cache->has_llc = HAS_LLC(i915);
953
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
954 955
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
956
	cache->node.flags = 0;
957
	cache->rq = NULL;
958
	cache->target = NULL;
959
}
960

961 962 963 964 965 966 967 968
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
969 970
}

971 972
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

973 974 975 976 977 978 979
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
#define RELOC_TAIL 4

static int reloc_gpu_chain(struct reloc_cache *cache)
{
	struct intel_gt_buffer_pool_node *pool;
	struct i915_request *rq = cache->rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);

	batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto out_pool;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto out_pool;

	GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
	cmd = cache->rq_cmd + cache->rq_size;
	*cmd++ = MI_ARB_CHECK;
1007
	if (cache->gen >= 8)
1008
		*cmd++ = MI_BATCH_BUFFER_START_GEN8;
1009
	else if (cache->gen >= 6)
1010
		*cmd++ = MI_BATCH_BUFFER_START;
1011 1012 1013 1014
	else
		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cmd++ = lower_32_bits(batch->node.start);
	*cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	i915_gem_object_flush_map(cache->rq_vma->obj);
	i915_gem_object_unpin_map(cache->rq_vma->obj);
	cache->rq_vma = NULL;

	err = intel_gt_buffer_pool_mark_active(pool, rq);
	if (err == 0) {
		i915_vma_lock(batch);
		err = i915_request_await_object(rq, batch->obj, false);
		if (err == 0)
			err = i915_vma_move_to_active(batch, rq, 0);
		i915_vma_unlock(batch);
	}
	i915_vma_unpin(batch);
	if (err)
		goto out_pool;

	cmd = i915_gem_object_pin_map(batch->obj,
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}

	/* Return with batch mapping (cmd) still pinned */
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
	cache->rq_vma = batch;

out_pool:
	intel_gt_buffer_pool_put(pool);
	return err;
}

static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
{
	return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
}

1055
static int reloc_gpu_flush(struct reloc_cache *cache)
1056
{
1057 1058
	struct i915_request *rq;
	int err;
1059

1060 1061
	rq = fetch_and_zero(&cache->rq);
	if (!rq)
1062
		return 0;
1063

1064 1065
	if (cache->rq_vma) {
		struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1066

1067 1068
		GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
		cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		__i915_gem_object_flush_map(obj,
					    0, sizeof(u32) * cache->rq_size);
		i915_gem_object_unpin_map(obj);
	}

	err = 0;
	if (rq->engine->emit_init_breadcrumb)
		err = rq->engine->emit_init_breadcrumb(rq);
	if (!err)
		err = rq->engine->emit_bb_start(rq,
						rq->batch->node.start,
						PAGE_SIZE,
						reloc_bb_flags(cache));
	if (err)
		i915_request_set_error_once(rq, err);

	intel_gt_chipset_flush(rq->engine->gt);
	i915_request_add(rq);
1088 1089

	return err;
1090 1091
}

1092
static void reloc_cache_reset(struct reloc_cache *cache)
1093
{
1094
	void *vaddr;
1095

1096 1097
	if (!cache->vaddr)
		return;
1098

1099 1100 1101 1102
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
1103

1104
		kunmap_atomic(vaddr);
1105
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1106
	} else {
1107 1108 1109
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1110
		io_mapping_unmap_atomic((void __iomem *)vaddr);
1111

1112
		if (drm_mm_node_allocated(&cache->node)) {
1113 1114 1115
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1116
			mutex_lock(&ggtt->vm.mutex);
1117
			drm_mm_remove_node(&cache->node);
1118
			mutex_unlock(&ggtt->vm.mutex);
1119 1120
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1121
		}
1122
	}
1123 1124 1125

	cache->vaddr = 0;
	cache->page = -1;
1126 1127 1128 1129
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1130
			unsigned long page)
1131
{
1132 1133 1134 1135 1136 1137
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1138
		int err;
1139

1140
		err = i915_gem_object_prepare_write(obj, &flushes);
1141 1142
		if (err)
			return ERR_PTR(err);
1143 1144 1145

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1146

1147 1148 1149 1150
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1151 1152
	}

1153 1154
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1155
	cache->page = page;
1156

1157
	return vaddr;
1158 1159
}

1160 1161
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1162
			 unsigned long page)
1163
{
1164
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1165
	unsigned long offset;
1166
	void *vaddr;
1167

1168
	if (cache->vaddr) {
1169
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1170
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1171 1172
	} else {
		struct i915_vma *vma;
1173
		int err;
1174

1175 1176 1177
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1178
		if (use_cpu_reloc(cache, obj))
1179
			return NULL;
1180

1181
		i915_gem_object_lock(obj);
1182
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1183
		i915_gem_object_unlock(obj);
1184 1185
		if (err)
			return ERR_PTR(err);
1186

1187
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1188
					       PIN_MAPPABLE |
1189 1190
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1191 1192
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1193
			mutex_lock(&ggtt->vm.mutex);
1194
			err = drm_mm_insert_node_in_range
1195
				(&ggtt->vm.mm, &cache->node,
1196
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1197
				 0, ggtt->mappable_end,
1198
				 DRM_MM_INSERT_LOW);
1199
			mutex_unlock(&ggtt->vm.mutex);
1200
			if (err) /* no inactive aperture space, use cpu reloc */
1201
				return NULL;
1202 1203 1204
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1205
		}
1206
	}
1207

1208
	offset = cache->node.start;
1209
	if (drm_mm_node_allocated(&cache->node)) {
1210 1211 1212
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1213 1214
	} else {
		offset += page << PAGE_SHIFT;
1215 1216
	}

1217
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1218
							 offset);
1219 1220
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1221

1222
	return vaddr;
1223 1224
}

1225 1226
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1227
			 unsigned long page)
1228
{
1229
	void *vaddr;
1230

1231 1232 1233 1234 1235 1236 1237 1238
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1239 1240
	}

1241
	return vaddr;
1242 1243
}

1244
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1245
{
1246 1247 1248 1249 1250
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1251

1252
		*addr = value;
1253

1254 1255
		/*
		 * Writes to the same cacheline are serialised by the CPU
1256 1257 1258 1259 1260 1261 1262 1263 1264
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1287
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1288
			     struct intel_engine_cs *engine,
1289 1290 1291
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1292
	struct intel_gt_buffer_pool_node *pool;
1293
	struct i915_request *rq;
1294 1295 1296 1297
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1298
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1299 1300
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1301

1302
	cmd = i915_gem_object_pin_map(pool->obj,
1303 1304 1305
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1306 1307 1308 1309
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1310

1311
	batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1312 1313 1314 1315 1316 1317 1318 1319 1320
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1321 1322 1323 1324 1325 1326 1327
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1328
			err = PTR_ERR(ce);
1329 1330 1331 1332 1333 1334 1335 1336 1337
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1338 1339 1340 1341 1342
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1343
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1344 1345 1346
	if (err)
		goto err_request;

1347
	i915_vma_lock(batch);
1348 1349 1350
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1351
	i915_vma_unlock(batch);
1352 1353
	if (err)
		goto skip_request;
1354 1355

	rq->batch = batch;
1356
	i915_vma_unpin(batch);
1357 1358 1359 1360

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1361
	cache->rq_vma = batch;
1362 1363

	/* Return with batch mapping (cmd) still pinned */
1364
	goto out_pool;
1365

1366
skip_request:
1367
	i915_request_set_error_once(rq, err);
1368
err_request:
1369
	i915_request_add(rq);
1370 1371 1372
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1373 1374
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1375
	intel_gt_buffer_pool_put(pool);
1376 1377 1378
	return err;
}

1379 1380 1381 1382 1383
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1384 1385 1386 1387 1388 1389
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1390
	int err;
1391 1392

	if (unlikely(!cache->rq)) {
1393 1394
		struct intel_engine_cs *engine = eb->engine;

1395
		if (!reloc_can_use_engine(engine)) {
1396
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1397
			if (!engine)
1398 1399
				return ERR_PTR(-ENODEV);
		}
1400

1401
		err = __reloc_gpu_alloc(eb, engine, len);
1402 1403 1404 1405
		if (unlikely(err))
			return ERR_PTR(err);
	}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	if (vma != cache->target) {
		err = reloc_move_to_gpu(cache->rq, vma);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}

		cache->target = vma;
	}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	if (unlikely(cache->rq_size + len >
		     PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
		err = reloc_gpu_chain(cache);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}
	}

	GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1426 1427 1428 1429 1430 1431
	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1443
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1444
{
1445 1446
	struct page *page;
	unsigned long addr;
1447

1448
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1449

1450 1451 1452
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	return addr + offset_in_page(offset);
}

static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
		return false;

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1487 1488

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1489 1490 1491
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1492
		} else {
1493 1494 1495 1496 1497
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1498
		}
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1523 1524
	}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	return true;
}

static bool reloc_entry_gpu(struct i915_execbuffer *eb,
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
}

static u64
relocate_entry(struct i915_vma *vma,
	       const struct drm_i915_gem_relocation_entry *reloc,
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
	u64 offset = reloc->offset;

	if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

1555
repeat:
1556 1557 1558 1559 1560
		vaddr = reloc_vaddr(vma->obj,
				    &eb->reloc_cache,
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);
1561

1562 1563 1564 1565
		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);
1566

1567 1568 1569 1570 1571 1572
		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
1573 1574
	}

1575
	return target->node.start | UPDATE;
1576 1577
}

1578 1579
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1580
		  struct eb_vma *ev,
1581
		  const struct drm_i915_gem_relocation_entry *reloc)
1582
{
1583
	struct drm_i915_private *i915 = eb->i915;
1584
	struct eb_vma *target;
1585
	int err;
1586

1587
	/* we've already hold a reference to all valid objects */
1588 1589
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1590
		return -ENOENT;
1591

1592
	/* Validate that the target is in a valid r/w GPU domain */
1593
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1594
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1595
			  "target %d offset %d "
1596
			  "read %08x write %08x",
1597
			  reloc->target_handle,
1598 1599 1600
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1601
		return -EINVAL;
1602
	}
1603 1604
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1605
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1606
			  "target %d offset %d "
1607
			  "read %08x write %08x",
1608
			  reloc->target_handle,
1609 1610 1611
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1612
		return -EINVAL;
1613 1614
	}

1615
	if (reloc->write_domain) {
1616
		target->flags |= EXEC_OBJECT_WRITE;
1617

1618 1619 1620 1621 1622 1623 1624
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1625
		    IS_GEN(eb->i915, 6)) {
1626 1627
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1628
					    PIN_GLOBAL, NULL);
1629
			if (err)
1630 1631
				return err;
		}
1632
	}
1633

1634 1635
	/*
	 * If the relocation already has the right value in it, no
1636 1637
	 * more work needs to be done.
	 */
1638
	if (!DBG_FORCE_RELOC &&
1639
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1640
		return 0;
1641 1642

	/* Check that the relocation address is valid... */
1643
	if (unlikely(reloc->offset >
1644
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1645
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1646 1647 1648
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1649
			  (int)ev->vma->size);
1650
		return -EINVAL;
1651
	}
1652
	if (unlikely(reloc->offset & 3)) {
1653
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1654 1655 1656
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1657
		return -EINVAL;
1658 1659
	}

1660 1661 1662 1663 1664 1665
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1666
	 * out of our synchronisation.
1667
	 */
1668
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1669

1670
	/* and update the user's relocation entry */
1671
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1672 1673
}

1674
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1675
{
1676
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1677
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1678
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1679 1680 1681
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1682

1683
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1684
		return -EINVAL;
1685

1686 1687 1688 1689 1690
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1691
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1692 1693 1694 1695 1696
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1697
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1698
		unsigned int copied;
1699

1700 1701
		/*
		 * This is the fast path and we cannot handle a pagefault
1702 1703 1704 1705 1706 1707
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1708
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1709 1710
		if (unlikely(copied)) {
			remain = -EFAULT;
1711 1712
			goto out;
		}
1713

1714
		remain -= count;
1715
		do {
1716
			u64 offset = eb_relocate_entry(eb, ev, r);
1717

1718 1719 1720
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1721
				goto out;
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1745 1746
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1747
			}
1748 1749 1750
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1751
out:
1752
	reloc_cache_reset(&eb->reloc_cache);
1753
	return remain;
1754 1755
}

1756
static int eb_relocate(struct i915_execbuffer *eb)
1757
{
1758 1759 1760 1761 1762 1763
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1764 1765 1766 1767 1768
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1769 1770 1771

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1772
		struct eb_vma *ev;
1773
		int flush;
1774

1775
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1776 1777
			err = eb_relocate_vma(eb, ev);
			if (err)
1778
				break;
1779
		}
1780 1781 1782 1783

		flush = reloc_gpu_flush(&eb->reloc_cache);
		if (!err)
			err = flush;
1784 1785
	}

1786
	return err;
1787 1788 1789 1790 1791
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1792
	struct ww_acquire_ctx acquire;
1793
	unsigned int i;
1794 1795 1796
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1797

1798
	for (i = 0; i < count; i++) {
1799 1800
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1801 1802 1803 1804 1805 1806 1807

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1808
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1822 1823 1824
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1825
		struct drm_i915_gem_object *obj = vma->obj;
1826

1827 1828
		assert_vma_held(vma);

1829
		if (flags & EXEC_OBJECT_CAPTURE) {
1830
			struct i915_capture_list *capture;
1831 1832

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1833 1834 1835 1836 1837
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1838 1839
		}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1853
			if (i915_gem_clflush_object(obj, 0))
1854
				flags &= ~EXEC_OBJECT_ASYNC;
1855 1856
		}

1857 1858 1859 1860
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1861

1862 1863
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1864

1865
		i915_vma_unlock(vma);
1866
		eb_unreserve_vma(ev);
1867
	}
1868 1869
	ww_acquire_fini(&acquire);

1870 1871
	eb_vma_array_put(fetch_and_zero(&eb->array));

1872 1873 1874
	if (unlikely(err))
		goto err_skip;

1875
	/* Unconditionally flush any chipset caches (for streaming writes). */
1876
	intel_gt_chipset_flush(eb->engine->gt);
1877
	return 0;
1878 1879

err_skip:
1880
	i915_request_set_error_once(eb->request, err);
1881
	return err;
1882 1883
}

T
Tvrtko Ursulin 已提交
1884
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1885
{
1886
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1887
		return -EINVAL;
1888

C
Chris Wilson 已提交
1889
	/* Kernel clipping was a DRI1 misfeature */
1890 1891
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1892
			return -EINVAL;
1893
	}
C
Chris Wilson 已提交
1894 1895 1896 1897 1898 1899

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1900
		return -EINVAL;
C
Chris Wilson 已提交
1901 1902

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1903
		return -EINVAL;
C
Chris Wilson 已提交
1904

T
Tvrtko Ursulin 已提交
1905
	return 0;
1906 1907
}

1908
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1909
{
1910 1911
	u32 *cs;
	int i;
1912

1913 1914
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1915 1916
		return -EINVAL;
	}
1917

1918
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1919 1920
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1921

1922
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1923
	for (i = 0; i < 4; i++) {
1924 1925
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1926
	}
1927
	*cs++ = MI_NOOP;
1928
	intel_ring_advance(rq, cs);
1929 1930 1931 1932

	return 0;
}

1933
static struct i915_vma *
1934 1935 1936
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1937
{
1938 1939
	struct i915_vma *vma;
	int err;
1940

1941 1942 1943 1944 1945 1946 1947 1948 1949
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1984 1985 1986
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1987
	.release = __eb_parse_release,
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
};

static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2001
	err = i915_active_acquire(&eb->batch->vma->active);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2015 2016 2017
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2018
	pw->batch = eb->batch->vma;
2019 2020 2021 2022 2023
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2024 2025 2026
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
		goto err_trampoline;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
		goto err_batch_unlock;

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
		goto err_batch_unlock;

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

2049
	dma_fence_work_commit_imm(&pw->base);
2050 2051 2052 2053
	return 0;

err_batch_unlock:
	dma_resv_unlock(pw->batch->resv);
2054 2055 2056 2057 2058 2059
err_trampoline:
	if (trampoline)
		i915_active_release(&trampoline->active);
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2060
	i915_active_release(&eb->batch->vma->active);
2061
err_free:
2062 2063 2064 2065
	kfree(pw);
	return err;
}

2066
static int eb_parse(struct i915_execbuffer *eb)
2067
{
2068
	struct drm_i915_private *i915 = eb->i915;
2069
	struct intel_gt_buffer_pool_node *pool;
2070 2071
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2072
	int err;
2073

2074 2075 2076
	if (!eb_use_cmdparser(eb))
		return 0;

2077 2078 2079 2080 2081 2082 2083
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2084 2085
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2086 2087 2088 2089 2090 2091
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

2092
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2093
	if (IS_ERR(pool))
2094
		return PTR_ERR(pool);
2095

2096 2097 2098
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2099
		goto err;
2100
	}
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2118

2119
	err = eb_parse_pipeline(eb, shadow, trampoline);
2120 2121
	if (err)
		goto err_trampoline;
2122

2123
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2124
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2125
	eb->batch = &eb->vma[eb->buffer_count++];
2126
	eb->vma[eb->buffer_count].vma = NULL;
2127

2128
	eb->trampoline = trampoline;
2129 2130
	eb->batch_start_offset = 0;

2131
	shadow->private = pool;
2132
	return 0;
2133

2134 2135 2136 2137 2138
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2139
err:
2140
	intel_gt_buffer_pool_put(pool);
2141
	return err;
2142
}
2143

2144
static void
2145
add_to_client(struct i915_request *rq, struct drm_file *file)
2146
{
2147 2148 2149 2150 2151 2152 2153
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2154 2155
}

2156
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2157
{
2158
	int err;
2159

2160 2161 2162
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2163

2164
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2165 2166 2167
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2168 2169
	}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2182
	err = eb->engine->emit_bb_start(eb->request,
2183
					batch->node.start +
2184 2185
					eb->batch_start_offset,
					eb->batch_len,
2186 2187 2188
					eb->batch_flags);
	if (err)
		return err;
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2200
	if (intel_context_nopreempt(eb->context))
2201
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2202

C
Chris Wilson 已提交
2203
	return 0;
2204 2205
}

2206 2207 2208 2209 2210 2211
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2212
/*
2213
 * Find one BSD ring to dispatch the corresponding BSD command.
2214
 * The engine index is returned.
2215
 */
2216
static unsigned int
2217 2218
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2219 2220 2221
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2222
	/* Check whether the file_priv has already selected one ring. */
2223
	if ((int)file_priv->bsd_engine < 0)
2224 2225
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2226

2227
	return file_priv->bsd_engine;
2228 2229
}

2230
static const enum intel_engine_id user_ring_map[] = {
2231 2232 2233 2234 2235
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2236 2237
};

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2278 2279 2280 2281
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2282
	err = intel_gt_terminally_wedged(ce->engine->gt);
2283 2284 2285
	if (err)
		return err;

2286 2287 2288
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2289 2290 2291 2292 2293
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2294
	err = intel_context_pin(ce);
2295 2296
	if (err)
		return err;
2297

2298 2299 2300 2301 2302 2303 2304 2305
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2306 2307 2308
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2309
		goto err_unpin;
2310
	}
2311 2312

	intel_context_enter(ce);
2313 2314 2315 2316 2317
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2318 2319 2320 2321 2322 2323
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2324

2325 2326 2327
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2328
		i915_request_put(rq);
2329 2330 2331 2332 2333

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2334
	}
2335

2336
	eb->engine = ce->engine;
2337 2338
	eb->context = ce;
	return 0;
2339

2340 2341 2342 2343
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2344
err_unpin:
2345
	intel_context_unpin(ce);
2346
	return err;
2347 2348
}

2349
static void eb_unpin_engine(struct i915_execbuffer *eb)
2350
{
2351
	struct intel_context *ce = eb->context;
2352
	struct intel_timeline *tl = ce->timeline;
2353 2354 2355 2356 2357

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2358
	intel_context_unpin(ce);
2359
}
2360

2361 2362 2363 2364
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2365
{
2366
	struct drm_i915_private *i915 = eb->i915;
2367 2368
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2369 2370
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2371 2372 2373
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2374
		return -1;
2375 2376
	}

2377
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2378 2379 2380
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2381
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2382 2383
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2384
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2385 2386
			bsd_idx--;
		} else {
2387 2388 2389
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2390
			return -1;
2391 2392
		}

2393
		return _VCS(bsd_idx);
2394 2395
	}

2396
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2397 2398
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2399
		return -1;
2400 2401
	}

2402 2403 2404 2405
	return user_ring_map[user_ring_id];
}

static int
2406 2407 2408
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2409 2410 2411 2412 2413
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2414 2415 2416 2417
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2418 2419 2420 2421 2422

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2423
	err = __eb_pin_engine(eb, ce);
2424 2425 2426
	intel_context_put(ce);

	return err;
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2441
	const unsigned long nfences = args->num_cliprects;
2442 2443
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2444
	unsigned long n;
2445 2446 2447 2448 2449
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2450 2451 2452 2453 2454
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2455 2456 2457
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2458
	if (!access_ok(user, nfences * sizeof(*user)))
2459 2460
		return ERR_PTR(-EFAULT);

2461
	fences = kvmalloc_array(nfences, sizeof(*fences),
2462
				__GFP_NOWARN | GFP_KERNEL);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2475 2476 2477 2478 2479
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2480 2481 2482 2483 2484 2485 2486
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2487 2488 2489
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2525
		fence = drm_syncobj_fence_get(syncobj);
2526 2527 2528
		if (!fence)
			return -EINVAL;

2529
		err = i915_request_await_dma_fence(eb->request, fence);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2554
		drm_syncobj_replace_fence(syncobj, fence);
2555 2556 2557
	}
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2582
	if (likely(!intel_context_is_closed(eb->context))) {
2583 2584 2585
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2586 2587
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2599
static int
2600
i915_gem_do_execbuffer(struct drm_device *dev,
2601 2602
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2603 2604
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2605
{
2606
	struct drm_i915_private *i915 = to_i915(dev);
2607
	struct i915_execbuffer eb;
2608 2609
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2610
	struct i915_vma *batch;
2611
	int out_fence_fd = -1;
2612
	int err;
2613

2614
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2615 2616
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2617

2618
	eb.i915 = i915;
2619 2620
	eb.file = file;
	eb.args = args;
2621
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2622
		args->flags |= __EXEC_HAS_RELOC;
2623

2624
	eb.exec = exec;
2625

2626
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2627 2628
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2629
	eb.buffer_count = args->buffer_count;
2630 2631
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2632
	eb.trampoline = NULL;
2633

2634
	eb.batch_flags = 0;
2635
	if (args->flags & I915_EXEC_SECURE) {
2636 2637 2638 2639 2640 2641 2642
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2643
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2644
			return -EPERM;
2645

2646
		eb.batch_flags |= I915_DISPATCH_SECURE;
2647
	}
2648
	if (args->flags & I915_EXEC_IS_PINNED)
2649
		eb.batch_flags |= I915_DISPATCH_PINNED;
2650

2651 2652 2653 2654 2655
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

2656
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2657 2658
		if (!in_fence)
			return -EINVAL;
2659
	}
2660
#undef IN_FENCES
2661

2662 2663 2664
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2665
			err = out_fence_fd;
2666
			goto err_in_fence;
2667 2668 2669
		}
	}

2670 2671 2672 2673 2674
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2675

2676 2677 2678 2679
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2680
	err = eb_pin_engine(&eb, file, args);
2681
	if (unlikely(err))
2682
		goto err_context;
2683

2684
	err = eb_relocate(&eb);
2685
	if (err) {
2686 2687 2688 2689 2690 2691 2692 2693 2694
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2695
	}
2696

2697
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2698 2699
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2700 2701
		err = -EINVAL;
		goto err_vma;
2702
	}
2703 2704 2705 2706

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2707
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2708 2709
		err = -EINVAL;
		goto err_vma;
2710
	}
2711

2712
	if (eb.batch_len == 0)
2713
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2714

2715 2716 2717
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2718

2719 2720
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2721
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2722
	 * hsw should have this fixed, but bdw mucks it up again. */
2723
	batch = eb.batch->vma;
2724
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2725
		struct i915_vma *vma;
2726

2727 2728 2729 2730 2731 2732
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2733
		 *   so we don't really have issues with multiple objects not
2734 2735 2736
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2737
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2738
		if (IS_ERR(vma)) {
2739
			err = PTR_ERR(vma);
2740
			goto err_parse;
C
Chris Wilson 已提交
2741
		}
2742

2743
		batch = vma;
2744
	}
2745

2746 2747 2748
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2749
	/* Allocate a request for this batch buffer nice and early. */
2750
	eb.request = i915_request_create(eb.context);
2751
	if (IS_ERR(eb.request)) {
2752
		err = PTR_ERR(eb.request);
2753
		goto err_batch_unpin;
2754
	}
2755

2756
	if (in_fence) {
2757 2758 2759 2760 2761 2762 2763
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
2764 2765 2766 2767
		if (err < 0)
			goto err_request;
	}

2768 2769 2770 2771 2772 2773
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2774
	if (out_fence_fd != -1) {
2775
		out_fence = sync_file_create(&eb.request->fence);
2776
		if (!out_fence) {
2777
			err = -ENOMEM;
2778 2779 2780 2781
			goto err_request;
		}
	}

2782 2783
	/*
	 * Whilst this request exists, batch_obj will be on the
2784 2785 2786 2787 2788
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2789 2790
	eb.request->batch = batch;
	if (batch->private)
2791
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2792

2793
	trace_i915_request_queue(eb.request, eb.batch_flags);
2794
	err = eb_submit(&eb, batch);
2795
err_request:
2796
	add_to_client(eb.request, file);
2797
	i915_request_get(eb.request);
2798
	eb_request_add(&eb);
2799

2800 2801 2802
	if (fences)
		signal_fence_array(&eb, fences);

2803
	if (out_fence) {
2804
		if (err == 0) {
2805
			fd_install(out_fence_fd, out_fence->file);
2806
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2807 2808 2809 2810 2811 2812
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2813
	i915_request_put(eb.request);
2814

2815
err_batch_unpin:
2816
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2817
		i915_vma_unpin(batch);
2818
err_parse:
2819
	if (batch->private)
2820
		intel_gt_buffer_pool_put(batch->private);
2821
err_vma:
2822 2823
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2824
	eb_unpin_engine(&eb);
2825
err_context:
2826
	i915_gem_context_put(eb.gem_context);
2827
err_destroy:
2828
	eb_destroy(&eb);
2829
err_out_fence:
2830 2831
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2832
err_in_fence:
2833
	dma_fence_put(in_fence);
2834
	return err;
2835 2836
}

2837 2838
static size_t eb_element_size(void)
{
2839
	return sizeof(struct drm_i915_gem_exec_object2);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2855 2856 2857 2858 2859
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2860 2861
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2862
{
2863
	struct drm_i915_private *i915 = to_i915(dev);
2864 2865 2866 2867
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2868
	const size_t count = args->buffer_count;
2869 2870
	unsigned int i;
	int err;
2871

2872
	if (!check_buffer_count(count)) {
2873
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2874 2875 2876
		return -EINVAL;
	}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2888 2889 2890
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2891

2892
	/* Copy in the exec list from userland */
2893
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2894
				   __GFP_NOWARN | GFP_KERNEL);
2895
	exec2_list = kvmalloc_array(count, eb_element_size(),
2896
				    __GFP_NOWARN | GFP_KERNEL);
2897
	if (exec_list == NULL || exec2_list == NULL) {
2898 2899 2900
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2901 2902
		kvfree(exec_list);
		kvfree(exec2_list);
2903 2904
		return -ENOMEM;
	}
2905
	err = copy_from_user(exec_list,
2906
			     u64_to_user_ptr(args->buffers_ptr),
2907
			     sizeof(*exec_list) * count);
2908
	if (err) {
2909 2910
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2911 2912
		kvfree(exec_list);
		kvfree(exec2_list);
2913 2914 2915 2916 2917 2918 2919 2920 2921
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2922
		if (INTEL_GEN(to_i915(dev)) < 4)
2923 2924 2925 2926 2927
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2928
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2929
	if (exec2.flags & __EXEC_HAS_RELOC) {
2930
		struct drm_i915_gem_exec_object __user *user_exec_list =
2931
			u64_to_user_ptr(args->buffers_ptr);
2932

2933
		/* Copy the new buffer offsets back to the user's exec list. */
2934
		for (i = 0; i < args->buffer_count; i++) {
2935 2936 2937
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2938
			exec2_list[i].offset =
2939 2940 2941 2942 2943
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2944
				break;
2945 2946 2947
		}
	}

M
Michal Hocko 已提交
2948 2949
	kvfree(exec_list);
	kvfree(exec2_list);
2950
	return err;
2951 2952 2953
}

int
2954 2955
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2956
{
2957
	struct drm_i915_private *i915 = to_i915(dev);
2958
	struct drm_i915_gem_execbuffer2 *args = data;
2959
	struct drm_i915_gem_exec_object2 *exec2_list;
2960
	struct drm_syncobj **fences = NULL;
2961
	const size_t count = args->buffer_count;
2962
	int err;
2963

2964
	if (!check_buffer_count(count)) {
2965
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2966 2967 2968
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2969 2970 2971
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2972

2973
	exec2_list = kvmalloc_array(count, eb_element_size(),
2974
				    __GFP_NOWARN | GFP_KERNEL);
2975
	if (exec2_list == NULL) {
2976 2977
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2978 2979
		return -ENOMEM;
	}
2980 2981
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2982
			   sizeof(*exec2_list) * count)) {
2983
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2984
		kvfree(exec2_list);
2985 2986 2987
		return -EFAULT;
	}

2988 2989 2990 2991 2992 2993 2994 2995 2996
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2997 2998 2999 3000 3001 3002 3003 3004

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3005
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3006 3007
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3008

3009
		/* Copy the new buffer offsets back to the user's exec list. */
3010 3011 3012 3013 3014 3015 3016 3017
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
3018
			goto end;
3019

3020
		for (i = 0; i < args->buffer_count; i++) {
3021 3022 3023
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3024
			exec2_list[i].offset =
3025 3026 3027 3028
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3029
		}
3030 3031
end_user:
		user_access_end();
3032
end:;
3033 3034
	}

3035
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3036
	put_fence_array(args, fences);
M
Michal Hocko 已提交
3037
	kvfree(exec2_list);
3038
	return err;
3039
}
3040 3041 3042 3043

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif