i915_gem_execbuffer.c 90.4 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48 49 50
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

51 52 53 54 55
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 58

#define __EXEC_HAS_RELOC	BIT(31)
59 60
#define __EXEC_ENGINE_PINNED	BIT(30)
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
61
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65
#define __I915_EXEC_ILLEGAL_FLAGS \
66 67 68
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
69

70 71 72 73 74 75 76 77 78
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

230 231 232 233 234 235 236
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

237
struct i915_execbuffer {
238 239 240 241
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
242
	struct eb_vma *vma;
243 244

	struct intel_engine_cs *engine; /** engine to queue the request to */
245 246
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
247

248
	struct i915_request *request; /** our request to build */
249
	struct eb_vma *batch; /** identity of the batch obj/vma */
250
	struct i915_vma *trampoline; /** trampoline used for chaining */
251 252 253 254 255 256 257 258 259 260

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

261 262
	struct i915_gem_ww_ctx ww;

263 264 265 266 267
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
268
	struct reloc_cache {
269
		struct drm_mm_node node; /** temporary GTT binding */
270 271
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
272
		unsigned int gen; /** Cached value of INTEL_GEN */
273
		bool use_64bit_reloc : 1;
274 275 276
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
277

278
		struct i915_request *rq;
279 280
		u32 *rq_cmd;
		unsigned int rq_size;
281
		struct intel_gt_buffer_pool_node *pool;
282
	} reloc_cache;
283

284
	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
285
	struct intel_context *reloc_context;
286

287 288 289 290 291 292
	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
293
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
294 295 296 297 298 299 300 301

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
302

303 304
	struct eb_fence *fences;
	unsigned long num_fences;
305 306
};

307
static int eb_parse(struct i915_execbuffer *eb);
308 309 310
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
					  bool throttle);
static void eb_unpin_engine(struct i915_execbuffer *eb);
311

312 313
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
314
	return intel_engine_requires_cmd_parser(eb->engine) ||
315 316
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
317 318
}

319
static int eb_create(struct i915_execbuffer *eb)
320
{
321 322
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
323

324 325 326 327 328 329 330 331 332 333 334
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
335
		do {
336
			gfp_t flags;
337 338 339 340 341 342 343

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
344
			flags = GFP_KERNEL;
345 346 347
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

348
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
349
					      flags);
350 351 352 353
			if (eb->buckets)
				break;
		} while (--size);

354
		if (unlikely(!size))
355
			return -ENOMEM;
356

357
		eb->lut_size = size;
358
	} else {
359
		eb->lut_size = -eb->buffer_count;
360
	}
361

362
	return 0;
363 364
}

365 366
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
367 368
		 const struct i915_vma *vma,
		 unsigned int flags)
369 370 371 372 373 374 375
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

376
	if (flags & EXEC_OBJECT_PINNED &&
377 378 379
	    vma->node.start != entry->offset)
		return true;

380
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
381 382 383
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

384
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
385 386 387
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

388 389 390 391
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

392 393 394
	return false;
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

421
static inline bool
422
eb_pin_vma(struct i915_execbuffer *eb,
423
	   const struct drm_i915_gem_exec_object2 *entry,
424
	   struct eb_vma *ev)
425
{
426
	struct i915_vma *vma = ev->vma;
427
	u64 pin_flags;
428

429
	if (vma->node.size)
430
		pin_flags = vma->node.start;
431
	else
432
		pin_flags = entry->offset & PIN_OFFSET_MASK;
433

434
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
435
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
436
		pin_flags |= PIN_GLOBAL;
437

438 439 440 441 442 443 444 445 446 447 448 449 450
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
451

452
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
453
		if (unlikely(i915_vma_pin_fence(vma))) {
454
			i915_vma_unpin(vma);
455
			return false;
456 457
		}

458
		if (vma->fence)
459
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
460 461
	}

462 463
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
464 465
}

466 467 468 469 470 471
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

472 473 474 475
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
476 477 478
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

479 480 481 482
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
483
{
484 485
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
486

487 488
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
489 490 491 492 493 494 495
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
496
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
497 498 499 500 501 502 503 504
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
505
	}
506 507 508 509 510 511 512
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

513 514 515 516 517 518 519 520 521 522 523 524
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

525
	return 0;
526 527
}

528
static void
529 530 531
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
532
{
533
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
534
	struct eb_vma *ev = &eb->vma[i];
535 536 537

	GEM_BUG_ON(i915_vma_is_closed(vma));

538
	ev->vma = vma;
539 540 541
	ev->exec = entry;
	ev->flags = entry->flags;

542
	if (eb->lut_size > 0) {
543 544
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
545 546
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
547
	}
548

549
	if (entry->relocation_count)
550
		list_add_tail(&ev->reloc_link, &eb->relocs);
551

552 553 554 555 556 557 558 559 560 561
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
562
		if (entry->relocation_count &&
563 564
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
565
		if (eb->reloc_cache.has_fence)
566
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
567

568
		eb->batch = ev;
569
	}
570 571
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

589
static int eb_reserve_vma(const struct i915_execbuffer *eb,
590
			  struct eb_vma *ev,
591
			  u64 pin_flags)
592
{
593 594
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
595 596
	int err;

597 598 599 600 601 602 603
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

604 605
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
606
			   eb_pin_flags(entry, ev->flags) | pin_flags);
607 608 609 610 611 612 613 614
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

615
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
616
		err = i915_vma_pin_fence(vma);
617 618 619 620 621
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

622
		if (vma->fence)
623
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
624 625
	}

626
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
627
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
628

629 630 631 632 633 634
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
635
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
636
	struct list_head last;
637
	struct eb_vma *ev;
638
	unsigned int i, pass;
639
	int err = 0;
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
656 657
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
658 659 660
			if (err)
				break;
		}
661
		if (err != -ENOSPC)
662
			return err;
663 664 665 666 667

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
668
			unsigned int flags;
669

670 671
			ev = &eb->vma[i];
			flags = ev->flags;
672 673
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
674 675
				continue;

676
			eb_unreserve_vma(ev);
677

678
			if (flags & EXEC_OBJECT_PINNED)
679
				/* Pinned must have their slot */
680
				list_add(&ev->bind_link, &eb->unbound);
681
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
682
				/* Map require the lowest 256MiB (aperture) */
683
				list_add_tail(&ev->bind_link, &eb->unbound);
684 685
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
686
				list_add(&ev->bind_link, &last);
687
			else
688
				list_add_tail(&ev->bind_link, &last);
689 690 691 692 693 694 695 696 697
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
698
			mutex_lock(&eb->context->vm->mutex);
699
			err = i915_gem_evict_vm(eb->context->vm);
700
			mutex_unlock(&eb->context->vm->mutex);
701
			if (err)
702
				return err;
703 704 705
			break;

		default:
706
			return -ENOSPC;
707
		}
708 709

		pin_flags = PIN_USER;
710
	} while (1);
711
}
712

713 714
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
715 716 717 718
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
719 720 721 722 723 724 725
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
726 727
	if (unlikely(!ctx))
		return -ENOENT;
728

729
	eb->gem_context = ctx;
730
	if (rcu_access_pointer(ctx->vm))
731
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
732 733

	eb->context_flags = 0;
734
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 736 737 738 739
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

740 741
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
742
{
743 744
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
745
	int err;
746

747 748 749 750 751 752 753 754 755 756 757 758
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
759 760 761 762 763 764
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
765
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
766 767
		else
			err = -ENOENT;
768 769 770
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

771
			spin_lock(&obj->lut_lock);
772 773 774 775 776 777
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
778
			spin_unlock(&obj->lut_lock);
779
		}
780
		mutex_unlock(&ctx->lut_mutex);
781 782 783
	}
	if (unlikely(err))
		goto err;
784

785
	return 0;
786

787
err:
C
Chris Wilson 已提交
788
	i915_vma_close(vma);
789 790 791 792
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
793

794 795
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
796 797
	struct i915_address_space *vm = eb->context->vm;

798 799
	do {
		struct drm_i915_gem_object *obj;
800
		struct i915_vma *vma;
801
		int err;
802

803 804
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
805
		if (likely(vma && vma->vm == vm))
806 807 808 809
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
810

811
		obj = i915_gem_object_lookup(eb->file, handle);
812 813
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
814

815
		vma = i915_vma_instance(obj, vm, NULL);
816
		if (IS_ERR(vma)) {
817 818
			i915_gem_object_put(obj);
			return vma;
819 820
		}

821 822 823
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
824

825 826 827 828 829
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
830

831 832
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
833
	struct drm_i915_private *i915 = eb->i915;
834 835 836
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
837

838 839 840 841 842 843 844 845
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
846
			goto err;
847
		}
848

849
		err = eb_validate_vma(eb, &eb->exec[i], vma);
850 851
		if (unlikely(err)) {
			i915_vma_put(vma);
852
			goto err;
853
		}
854

855
		eb_add_vma(eb, i, batch, vma);
856 857
	}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
		return -EINVAL;
	}

	if (range_overflows_t(u64,
			      eb->batch_start_offset, eb->batch_len,
			      eb->batch->vma->size)) {
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
		return -EINVAL;
	}

	if (eb->batch_len == 0)
		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;

	return 0;

err:
877
	eb->vma[i].vma = NULL;
878
	return err;
879 880
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;

		if (eb_pin_vma(eb, entry, ev)) {
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

923
static struct eb_vma *
924
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
925
{
926 927
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
928
			return NULL;
929
		return &eb->vma[handle];
930 931
	} else {
		struct hlist_head *head;
932
		struct eb_vma *ev;
933

934
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
935 936 937
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
938 939 940
		}
		return NULL;
	}
941 942
}

943
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
944 945 946 947 948 949 950 951 952 953 954
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

955
		eb_unreserve_vma(ev);
956

957 958
		if (final)
			i915_vma_put(vma);
959
	}
960 961

	eb_unpin_engine(eb);
962 963
}

964
static void eb_destroy(const struct i915_execbuffer *eb)
965
{
966 967
	GEM_BUG_ON(eb->reloc_cache.rq);

968
	if (eb->lut_size > 0)
969
		kfree(eb->buckets);
970 971
}

972
static inline u64
973
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
974
		  const struct i915_vma *target)
975
{
976
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
977 978
}

979 980 981 982 983 984 985 986
static void reloc_cache_clear(struct reloc_cache *cache)
{
	cache->rq = NULL;
	cache->rq_cmd = NULL;
	cache->pool = NULL;
	cache->rq_size = 0;
}

987 988
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
989
{
990 991
	cache->page = -1;
	cache->vaddr = 0;
992
	/* Must be a variable in the struct to allow GCC to unroll. */
993
	cache->gen = INTEL_GEN(i915);
994
	cache->has_llc = HAS_LLC(i915);
995
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
996 997
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
998
	cache->node.flags = 0;
999
	reloc_cache_clear(cache);
1000
}
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
{
	if (!cache->pool)
		return;

	/*
	 * This is a bit nasty, normally we keep objects locked until the end
	 * of execbuffer, but we already submit this, and have to unlock before
	 * dropping the reference. Fortunately we can only hold 1 pool node at
	 * a time, so this should be harmless.
	 */
	i915_gem_ww_unlock_single(cache->pool->obj);
	intel_gt_buffer_pool_put(cache->pool);
	cache->pool = NULL;
}

static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1038
{
1039
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1040

1041 1042
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1043

1044 1045
	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
	i915_gem_object_unpin_map(obj);
1046

1047
	intel_gt_chipset_flush(cache->rq->engine->gt);
1048

1049
	i915_request_add(cache->rq);
1050 1051 1052 1053
	reloc_cache_put_pool(eb, cache);
	reloc_cache_clear(cache);

	eb->reloc_pool = NULL;
1054 1055
}

1056
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1057 1058 1059
{
	void *vaddr;

1060
	if (cache->rq)
1061
		reloc_gpu_flush(eb, cache);
1062

1063 1064 1065 1066 1067
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1068 1069
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1070 1071 1072 1073
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1074
		i915_gem_object_finish_access(obj);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
			unsigned long pageno)
{
	void *vaddr;
	struct page *page;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

1110
		err = i915_gem_object_prepare_write(obj, &flushes);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
	cache->page = pageno;

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE |
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1239 1240 1241 1242 1243
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

1244
	assert_vma_held(vma);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	return err;
}

1257
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1258
			     struct intel_engine_cs *engine,
1259
			     struct i915_vma *vma,
1260 1261 1262
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1263
	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1264
	struct i915_request *rq;
1265 1266 1267 1268
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if (!pool) {
		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
		if (IS_ERR(pool))
			return PTR_ERR(pool);
	}
	eb->reloc_pool = NULL;

	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err_pool;
1279

1280
	cmd = i915_gem_object_pin_map(pool->obj,
1281 1282 1283
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1284 1285
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
1286
		goto err_pool;
1287
	}
1288

1289
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1299 1300 1301
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
1302
		struct intel_context *ce = eb->reloc_context;
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		if (!ce) {
			ce = intel_context_create(engine);
			if (IS_ERR(ce)) {
				err = PTR_ERR(ce);
				goto err_unpin;
			}

			i915_vm_put(ce->vm);
			ce->vm = i915_vm_get(eb->context->vm);
			eb->reloc_context = ce;
1314 1315
		}

1316 1317 1318
		err = intel_context_pin(ce);
		if (err)
			goto err_unpin;
1319

1320 1321
		rq = i915_request_create(ce);
		intel_context_unpin(ce);
1322
	}
1323 1324 1325 1326 1327
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1328
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1329 1330 1331
	if (err)
		goto err_request;

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1342
	assert_vma_held(batch);
1343 1344 1345
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1346 1347
	if (err)
		goto skip_request;
1348 1349

	rq->batch = batch;
1350
	i915_vma_unpin(batch);
1351 1352 1353 1354

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1355
	cache->pool = pool;
1356 1357

	/* Return with batch mapping (cmd) still pinned */
1358
	return 0;
1359

1360
skip_request:
1361
	i915_request_set_error_once(rq, err);
1362
err_request:
1363
	i915_request_add(rq);
1364 1365 1366
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1367
	i915_gem_object_unpin_map(pool->obj);
1368 1369
err_pool:
	eb->reloc_pool = pool;
1370 1371 1372
	return err;
}

1373 1374 1375 1376 1377
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1378 1379 1380 1381 1382 1383
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1384 1385

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1386
		reloc_gpu_flush(eb, cache);
1387 1388

	if (unlikely(!cache->rq)) {
1389
		int err;
1390 1391
		struct intel_engine_cs *engine = eb->engine;

1392
		if (!reloc_can_use_engine(engine)) {
1393
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1394
			if (!engine)
1395 1396
				return ERR_PTR(-ENODEV);
		}
1397

1398
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1420
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1421
{
1422 1423
	struct page *page;
	unsigned long addr;
1424

1425
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1426

1427 1428 1429
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1430

1431 1432 1433
	return addr + offset_in_page(offset);
}

1434
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1435 1436 1437
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
1452 1453 1454
	if (batch == ERR_PTR(-EDEADLK))
		return (s64)-EDEADLK;
	else if (IS_ERR(batch))
1455
		return false;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1466 1467

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1468 1469 1470
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1471
		} else {
1472 1473 1474 1475 1476
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1477
		}
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1502 1503
	}

1504 1505 1506
	return true;
}

1507
static int reloc_entry_gpu(struct i915_execbuffer *eb,
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1519 1520 1521
}

static u64
1522
relocate_entry(struct i915_vma *vma,
1523
	       const struct drm_i915_gem_relocation_entry *reloc,
1524
	       struct i915_execbuffer *eb,
1525 1526 1527
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1528
	u64 offset = reloc->offset;
1529 1530 1531 1532
	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);

	if (reloc_gpu < 0)
		return reloc_gpu;
1533

1534
	if (!reloc_gpu) {
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
		vaddr = reloc_vaddr(vma->obj,
				    &eb->reloc_cache,
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1557

1558
	return target->node.start | UPDATE;
1559 1560
}

1561 1562
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1563
		  struct eb_vma *ev,
1564
		  const struct drm_i915_gem_relocation_entry *reloc)
1565
{
1566
	struct drm_i915_private *i915 = eb->i915;
1567
	struct eb_vma *target;
1568
	int err;
1569

1570
	/* we've already hold a reference to all valid objects */
1571 1572
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1573
		return -ENOENT;
1574

1575
	/* Validate that the target is in a valid r/w GPU domain */
1576
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1577
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1578
			  "target %d offset %d "
1579
			  "read %08x write %08x",
1580
			  reloc->target_handle,
1581 1582 1583
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1584
		return -EINVAL;
1585
	}
1586 1587
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1588
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1589
			  "target %d offset %d "
1590
			  "read %08x write %08x",
1591
			  reloc->target_handle,
1592 1593 1594
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1595
		return -EINVAL;
1596 1597
	}

1598
	if (reloc->write_domain) {
1599
		target->flags |= EXEC_OBJECT_WRITE;
1600

1601 1602 1603 1604 1605 1606 1607
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1608
		    IS_GEN(eb->i915, 6)) {
1609 1610
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1611
					    PIN_GLOBAL, NULL);
1612
			if (err)
1613 1614
				return err;
		}
1615
	}
1616

1617 1618
	/*
	 * If the relocation already has the right value in it, no
1619 1620
	 * more work needs to be done.
	 */
1621 1622
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1623
		return 0;
1624 1625

	/* Check that the relocation address is valid... */
1626
	if (unlikely(reloc->offset >
1627
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1628
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1629 1630 1631
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1632
			  (int)ev->vma->size);
1633
		return -EINVAL;
1634
	}
1635
	if (unlikely(reloc->offset & 3)) {
1636
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1637 1638 1639
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1640
		return -EINVAL;
1641 1642
	}

1643 1644 1645 1646 1647 1648
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1649
	 * out of our synchronisation.
1650
	 */
1651
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1652

1653
	/* and update the user's relocation entry */
1654
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1655 1656
}

1657
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1658
{
1659
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1660
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1661
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1662 1663 1664
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1665

1666
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1667
		return -EINVAL;
1668

1669 1670 1671 1672 1673
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1674
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1675 1676 1677 1678 1679
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1680
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1681
		unsigned int copied;
1682

1683 1684
		/*
		 * This is the fast path and we cannot handle a pagefault
1685 1686 1687 1688 1689 1690
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1691 1692 1693
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1694 1695 1696 1697
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1698

1699
		remain -= count;
1700
		do {
1701
			u64 offset = eb_relocate_entry(eb, ev, r);
1702

1703 1704
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1705 1706
				remain = (int)offset;
				goto out;
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1730 1731
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1732
			}
1733 1734 1735
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1736
out:
1737
	reloc_cache_reset(&eb->reloc_cache, eb);
1738
	return remain;
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
{
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;

	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);

		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
	}
	err = 0;
err:
1760
	reloc_cache_reset(&eb->reloc_cache, eb);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	return err;
}

static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;

	size = entry->relocation_count;
	if (size == 0)
		return 0;

	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;

	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
}

static int eb_copy_relocations(const struct i915_execbuffer *eb)
{
	struct drm_i915_gem_relocation_entry *relocs;
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;

	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;

		if (nreloc == 0)
			continue;

		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;

		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);

		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1888 1889
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
					   struct i915_request *rq)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}

1901 1902 1903 1904
	/* We may process another execbuffer during the unlock... */
	eb_release_vmas(eb, false);
	i915_gem_ww_ctx_fini(&eb->ww);

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	if (rq) {
		/* nonblocking is always false */
		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			rq = NULL;

			err = -EINTR;
			goto err_relock;
		}

		i915_request_put(rq);
		rq = NULL;
	}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1943 1944
	if (!err)
		flush_workqueue(eb->i915->mm.userptr_wq);
1945

1946
err_relock:
1947
	i915_gem_ww_ctx_init(&eb->ww, true);
1948 1949 1950
	if (err)
		goto out;

1951 1952
	/* reacquire the objects */
repeat_validate:
1953 1954 1955 1956 1957 1958 1959 1960 1961
	rq = eb_pin_engine(eb, false);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err;
	}

	/* We didn't throttle, should be NULL */
	GEM_WARN_ON(rq);

1962
	err = eb_validate_vmas(eb);
1963
	if (err)
1964 1965 1966
		goto err;

	GEM_BUG_ON(!eb->batch);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, ev);
			pagefault_enable();
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1982 1983 1984
	if (err == -EDEADLK)
		goto err;

1985 1986 1987 1988 1989 1990
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1991 1992 1993 1994 1995
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
2004 2005 2006 2007 2008 2009 2010
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

2032 2033 2034
	if (rq)
		i915_request_put(rq);

2035 2036 2037
	return err;
}

2038
static int eb_relocate_parse(struct i915_execbuffer *eb)
2039
{
2040
	int err;
2041 2042
	struct i915_request *rq = NULL;
	bool throttle = true;
2043

2044
retry:
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	rq = eb_pin_engine(eb, throttle);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		rq = NULL;
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;

		/* Need to drop all locks now for throttling, take slowpath */
		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
		if (err == -ETIME) {
			if (nonblock) {
				err = -EWOULDBLOCK;
				i915_request_put(rq);
				goto err;
			}
			goto slow;
		}
		i915_request_put(rq);
		rq = NULL;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

2075 2076 2077 2078 2079
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
2080 2081 2082

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
2083
		struct eb_vma *ev;
2084

2085
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2086 2087
			err = eb_relocate_vma(eb, ev);
			if (err)
2088
				break;
2089
		}
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
2106 2107
	}

2108 2109 2110
	return err;

slow:
2111
	err = eb_relocate_parse_slow(eb, rq);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
2123 2124 2125 2126 2127
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
2128
	unsigned int i = count;
2129 2130 2131
	int err = 0;

	while (i--) {
2132 2133 2134
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
2135
		struct drm_i915_gem_object *obj = vma->obj;
2136

2137 2138
		assert_vma_held(vma);

2139
		if (flags & EXEC_OBJECT_CAPTURE) {
2140
			struct i915_capture_list *capture;
2141 2142

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2143 2144 2145 2146 2147
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
2148 2149
		}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2163
			if (i915_gem_clflush_object(obj, 0))
2164
				flags &= ~EXEC_OBJECT_ASYNC;
2165 2166
		}

2167 2168 2169 2170
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
2171

2172 2173
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
2174
	}
2175 2176 2177 2178

	if (unlikely(err))
		goto err_skip;

2179
	/* Unconditionally flush any chipset caches (for streaming writes). */
2180
	intel_gt_chipset_flush(eb->engine->gt);
2181
	return 0;
2182 2183

err_skip:
2184
	i915_request_set_error_once(eb->request, err);
2185
	return err;
2186 2187
}

T
Tvrtko Ursulin 已提交
2188
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2189
{
2190
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2191
		return -EINVAL;
2192

C
Chris Wilson 已提交
2193
	/* Kernel clipping was a DRI1 misfeature */
2194 2195
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2196
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2197
			return -EINVAL;
2198
	}
C
Chris Wilson 已提交
2199 2200 2201 2202 2203 2204

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2205
		return -EINVAL;
C
Chris Wilson 已提交
2206 2207

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2208
		return -EINVAL;
C
Chris Wilson 已提交
2209

T
Tvrtko Ursulin 已提交
2210
	return 0;
2211 2212
}

2213
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2214
{
2215 2216
	u32 *cs;
	int i;
2217

2218 2219
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2220 2221
		return -EINVAL;
	}
2222

2223
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2224 2225
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2226

2227
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2228
	for (i = 0; i < 4; i++) {
2229 2230
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2231
	}
2232
	*cs++ = MI_NOOP;
2233
	intel_ring_advance(rq, cs);
2234 2235 2236 2237

	return 0;
}

2238
static struct i915_vma *
2239 2240 2241
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
2242
{
2243 2244
	struct i915_vma *vma;
	int err;
2245

2246 2247 2248 2249 2250 2251 2252 2253 2254
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

2289 2290 2291
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
2292
	.release = __eb_parse_release,
2293 2294
};

2295 2296 2297 2298 2299 2300 2301
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

2302
	return i915_active_ref(&node->active, tl->fence_context, fence);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2338
	err = i915_active_acquire(&eb->batch->vma->active);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2352 2353 2354
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2355
	pw->batch = eb->batch->vma;
2356 2357 2358 2359 2360
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2361 2362 2363 2364 2365
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

2366 2367
	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
2368
		goto err_commit;
2369 2370 2371 2372 2373 2374

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
2375
		goto err_commit;
2376 2377 2378 2379 2380 2381 2382

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	/* Force execution to wait for completion of the parser */
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);

2383
	dma_fence_work_commit_imm(&pw->base);
2384 2385
	return 0;

2386 2387 2388 2389 2390
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2391 2392 2393
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2394
	i915_active_release(&eb->batch->vma->active);
2395
err_free:
2396 2397 2398 2399
	kfree(pw);
	return err;
}

2400
static int eb_parse(struct i915_execbuffer *eb)
2401
{
2402
	struct drm_i915_private *i915 = eb->i915;
2403
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2404 2405
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2406
	int err;
2407

2408 2409 2410
	if (!eb_use_cmdparser(eb))
		return 0;

2411 2412 2413 2414 2415 2416 2417
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2418 2419
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2420 2421 2422 2423 2424 2425
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (!pool) {
		pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}

	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2436

2437 2438 2439
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2440
		goto err;
2441
	}
2442
	i915_gem_object_set_readonly(shadow->obj);
2443
	shadow->private = pool;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2457
		shadow->private = pool;
2458 2459 2460

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2461

2462
	err = eb_parse_pipeline(eb, shadow, trampoline);
2463 2464
	if (err)
		goto err_trampoline;
2465

2466
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2467
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2468
	eb->batch = &eb->vma[eb->buffer_count++];
2469

2470
	eb->trampoline = trampoline;
2471 2472
	eb->batch_start_offset = 0;

2473
	return 0;
2474

2475 2476 2477 2478 2479
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2480
err:
2481
	return err;
2482
}
2483

2484
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2485
{
2486
	int err;
2487

2488 2489 2490
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2491

2492
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2493 2494 2495
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2496 2497
	}

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2510
	err = eb->engine->emit_bb_start(eb->request,
2511
					batch->node.start +
2512 2513
					eb->batch_start_offset,
					eb->batch_len,
2514 2515 2516
					eb->batch_flags);
	if (err)
		return err;
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2528
	if (intel_context_nopreempt(eb->context))
2529
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2530

C
Chris Wilson 已提交
2531
	return 0;
2532 2533
}

2534 2535
static int num_vcs_engines(const struct drm_i915_private *i915)
{
2536
	return hweight64(VDBOX_MASK(&i915->gt));
2537 2538
}

2539
/*
2540
 * Find one BSD ring to dispatch the corresponding BSD command.
2541
 * The engine index is returned.
2542
 */
2543
static unsigned int
2544 2545
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2546 2547 2548
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2549
	/* Check whether the file_priv has already selected one ring. */
2550
	if ((int)file_priv->bsd_engine < 0)
2551 2552
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2553

2554
	return file_priv->bsd_engine;
2555 2556
}

2557
static const enum intel_engine_id user_ring_map[] = {
2558 2559 2560 2561 2562
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2563 2564
};

2565
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

2599
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2600
{
2601
	struct intel_context *ce = eb->context;
2602
	struct intel_timeline *tl;
2603
	struct i915_request *rq = NULL;
2604 2605
	int err;

2606
	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2607

2608
	if (unlikely(intel_context_is_banned(ce)))
2609
		return ERR_PTR(-EIO);
2610

2611 2612 2613 2614 2615
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2616
	err = intel_context_pin(ce);
2617
	if (err)
2618
		return ERR_PTR(err);
2619

2620 2621 2622 2623 2624 2625 2626 2627
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2628 2629
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
2630 2631
		intel_context_unpin(ce);
		return ERR_CAST(tl);
2632
	}
2633 2634

	intel_context_enter(ce);
2635 2636
	if (throttle)
		rq = eb_throttle(eb, ce);
2637 2638
	intel_context_timeline_unlock(tl);

2639 2640
	eb->args->flags |= __EXEC_ENGINE_PINNED;
	return rq;
2641 2642
}

2643
static void eb_unpin_engine(struct i915_execbuffer *eb)
2644
{
2645
	struct intel_context *ce = eb->context;
2646
	struct intel_timeline *tl = ce->timeline;
2647

2648 2649 2650 2651 2652
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

2653 2654 2655 2656
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2657
	intel_context_unpin(ce);
2658
}
2659

2660
static unsigned int
2661
eb_select_legacy_ring(struct i915_execbuffer *eb)
2662
{
2663
	struct drm_i915_private *i915 = eb->i915;
2664
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2665 2666
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2667 2668
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2669 2670 2671
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2672
		return -1;
2673 2674
	}

2675
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2676 2677 2678
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2679
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2680 2681
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2682
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2683 2684
			bsd_idx--;
		} else {
2685 2686 2687
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2688
			return -1;
2689 2690
		}

2691
		return _VCS(bsd_idx);
2692 2693
	}

2694
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2695 2696
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2697
		return -1;
2698 2699
	}

2700 2701 2702 2703
	return user_ring_map[user_ring_id];
}

static int
2704
eb_select_engine(struct i915_execbuffer *eb)
2705 2706 2707 2708 2709
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2710
	if (i915_gem_context_user_engines(eb->gem_context))
2711
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2712
	else
2713
		idx = eb_select_legacy_ring(eb);
2714 2715 2716 2717 2718

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2719
	intel_gt_pm_get(ce->engine->gt);
2720

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
	eb->engine = ce->engine;

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
	intel_context_put(ce);
2748
	return err;
2749 2750
}

2751 2752 2753 2754 2755 2756 2757
static void
eb_put_engine(struct i915_execbuffer *eb)
{
	intel_gt_pm_put(eb->engine->gt);
	intel_context_put(eb->context);
}

2758
static void
2759
__free_fence_array(struct eb_fence *fences, unsigned int n)
2760
{
2761
	while (n--) {
2762
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2763 2764 2765
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2766 2767 2768
	kvfree(fences);
}

2769
static int
2770 2771
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2772
{
2773 2774 2775 2776 2777
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2778

2779 2780
	nfences = timeline_fences->fence_count;
	if (!nfences)
2781
		return 0;
2782

2783 2784 2785
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2786 2787
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2788
		return -EINVAL;
2789

2790 2791 2792 2793 2794 2795
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2796
		return -EFAULT;
2797

2798 2799 2800 2801
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2802
		return -ENOMEM;
2803

2804 2805 2806 2807 2808 2809 2810 2811
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2812
		struct drm_syncobj *syncobj;
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2834

2835 2836 2837 2838 2839
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2840 2841
		}

2842 2843 2844 2845 2846
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2847
			dma_fence_put(fence);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2888 2889
		}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2944 2945
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2956 2957
		}

2958 2959 2960
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2961 2962 2963 2964 2965 2966
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2967 2968
	}

2969
	return 0;
2970
}
2971

2972 2973 2974 2975
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2976 2977 2978
}

static int
2979
await_fence_array(struct i915_execbuffer *eb)
2980 2981 2982 2983
{
	unsigned int n;
	int err;

2984
	for (n = 0; n < eb->num_fences; n++) {
2985 2986 2987
		struct drm_syncobj *syncobj;
		unsigned int flags;

2988
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2989

2990 2991
		if (!eb->fences[n].dma_fence)
			continue;
2992

2993 2994
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
2995 2996 2997 2998 2999 3000 3001
		if (err < 0)
			return err;
	}

	return 0;
}

3002
static void signal_fence_array(const struct i915_execbuffer *eb)
3003 3004 3005 3006
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

3007
	for (n = 0; n < eb->num_fences; n++) {
3008 3009 3010
		struct drm_syncobj *syncobj;
		unsigned int flags;

3011
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3012 3013 3014
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
3028 3029 3030
	}
}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
3067
	if (likely(!intel_context_is_closed(eb->context))) {
3068 3069 3070
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
3071 3072
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

3084
static const i915_user_extension_fn execbuf_extensions[] = {
3085
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

3110
static int
3111
i915_gem_do_execbuffer(struct drm_device *dev,
3112 3113
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3114
		       struct drm_i915_gem_exec_object2 *exec)
3115
{
3116
	struct drm_i915_private *i915 = to_i915(dev);
3117
	struct i915_execbuffer eb;
3118 3119
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
3120
	struct i915_vma *batch;
3121
	int out_fence_fd = -1;
3122
	int err;
3123

3124
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3125 3126
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3127

3128
	eb.i915 = i915;
3129 3130
	eb.file = file;
	eb.args = args;
3131
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3132
		args->flags |= __EXEC_HAS_RELOC;
3133

3134
	eb.exec = exec;
3135 3136
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
3137
	eb.reloc_pool = eb.batch_pool = NULL;
3138
	eb.reloc_context = NULL;
3139

3140
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3141 3142
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3143
	eb.buffer_count = args->buffer_count;
3144 3145
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
3146
	eb.trampoline = NULL;
3147

3148
	eb.fences = NULL;
3149
	eb.num_fences = 0;
3150

3151
	eb.batch_flags = 0;
3152
	if (args->flags & I915_EXEC_SECURE) {
3153 3154 3155 3156 3157 3158 3159
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3160
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3161
			return -EPERM;
3162

3163
		eb.batch_flags |= I915_DISPATCH_SECURE;
3164
	}
3165
	if (args->flags & I915_EXEC_IS_PINNED)
3166
		eb.batch_flags |= I915_DISPATCH_PINNED;
3167

3168 3169 3170 3171 3172 3173 3174 3175
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3176 3177 3178 3179 3180
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3181
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3182 3183 3184 3185
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3186
	}
3187
#undef IN_FENCES
3188

3189 3190 3191
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3192
			err = out_fence_fd;
3193
			goto err_in_fence;
3194 3195 3196
		}
	}

3197 3198
	err = eb_create(&eb);
	if (err)
3199
		goto err_out_fence;
3200

3201
	GEM_BUG_ON(!eb.lut_size);
3202

3203 3204 3205 3206
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3207
	err = eb_select_engine(&eb);
3208
	if (unlikely(err))
3209
		goto err_context;
3210

3211 3212 3213 3214 3215 3216 3217 3218
	err = eb_lookup_vmas(&eb);
	if (err) {
		eb_release_vmas(&eb, true);
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3219
	err = eb_relocate_parse(&eb);
3220
	if (err) {
3221 3222 3223 3224 3225 3226 3227 3228 3229
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3230
	}
3231

3232 3233
	ww_acquire_done(&eb.ww.ctx);

3234 3235
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
3236
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
3237
	 * hsw should have this fixed, but bdw mucks it up again. */
3238
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
3239
		struct i915_vma *vma;
3240

3241 3242 3243 3244 3245 3246
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
3247
		 *   so we don't really have issues with multiple objects not
3248 3249 3250
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
3251
		vma = i915_gem_object_ggtt_pin(eb.batch->vma->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
3252
		if (IS_ERR(vma)) {
3253
			err = PTR_ERR(vma);
3254
			goto err_vma;
C
Chris Wilson 已提交
3255
		}
3256

3257
		batch = vma;
3258 3259
	} else {
		batch = eb.batch->vma;
3260
	}
3261

3262 3263 3264
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

3265
	/* Allocate a request for this batch buffer nice and early. */
3266
	eb.request = i915_request_create(eb.context);
3267
	if (IS_ERR(eb.request)) {
3268
		err = PTR_ERR(eb.request);
3269
		goto err_batch_unpin;
3270
	}
3271

3272
	if (in_fence) {
3273 3274 3275 3276 3277 3278 3279
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
3280 3281 3282 3283
		if (err < 0)
			goto err_request;
	}

3284
	if (eb.fences) {
3285
		err = await_fence_array(&eb);
3286 3287 3288 3289
		if (err)
			goto err_request;
	}

3290
	if (out_fence_fd != -1) {
3291
		out_fence = sync_file_create(&eb.request->fence);
3292
		if (!out_fence) {
3293
			err = -ENOMEM;
3294 3295 3296 3297
			goto err_request;
		}
	}

3298 3299
	/*
	 * Whilst this request exists, batch_obj will be on the
3300 3301 3302 3303 3304
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
3305
	eb.request->batch = batch;
3306 3307
	if (eb.batch_pool)
		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3308

3309
	trace_i915_request_queue(eb.request, eb.batch_flags);
3310
	err = eb_submit(&eb, batch);
3311
err_request:
3312
	i915_request_get(eb.request);
3313
	eb_request_add(&eb);
3314

3315
	if (eb.fences)
3316
		signal_fence_array(&eb);
3317

3318
	if (out_fence) {
3319
		if (err == 0) {
3320
			fd_install(out_fence_fd, out_fence->file);
3321
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3322 3323 3324 3325 3326 3327
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3328
	i915_request_put(eb.request);
3329

3330
err_batch_unpin:
3331
	if (eb.batch_flags & I915_DISPATCH_SECURE)
3332
		i915_vma_unpin(batch);
3333
err_vma:
3334
	eb_release_vmas(&eb, true);
3335 3336
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3337 3338 3339 3340 3341 3342 3343
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
	if (eb.reloc_pool)
		intel_gt_buffer_pool_put(eb.reloc_pool);
3344 3345
	if (eb.reloc_context)
		intel_context_put(eb.reloc_context);
3346
err_engine:
3347
	eb_put_engine(&eb);
3348
err_context:
3349
	i915_gem_context_put(eb.gem_context);
3350
err_destroy:
3351
	eb_destroy(&eb);
3352
err_out_fence:
3353 3354
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3355
err_in_fence:
3356
	dma_fence_put(in_fence);
3357 3358
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3359
	return err;
3360 3361
}

3362 3363
static size_t eb_element_size(void)
{
3364
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3380 3381 3382 3383 3384
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
3385 3386
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
3387
{
3388
	struct drm_i915_private *i915 = to_i915(dev);
3389 3390 3391 3392
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3393
	const size_t count = args->buffer_count;
3394 3395
	unsigned int i;
	int err;
3396

3397
	if (!check_buffer_count(count)) {
3398
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3399 3400 3401
		return -EINVAL;
	}

3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
3413 3414 3415
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
3416

3417
	/* Copy in the exec list from userland */
3418
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3419
				   __GFP_NOWARN | GFP_KERNEL);
3420
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
3421
				    __GFP_NOWARN | GFP_KERNEL);
3422
	if (exec_list == NULL || exec2_list == NULL) {
3423 3424 3425
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
3426 3427
		kvfree(exec_list);
		kvfree(exec2_list);
3428 3429
		return -ENOMEM;
	}
3430
	err = copy_from_user(exec_list,
3431
			     u64_to_user_ptr(args->buffers_ptr),
3432
			     sizeof(*exec_list) * count);
3433
	if (err) {
3434 3435
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
3436 3437
		kvfree(exec_list);
		kvfree(exec2_list);
3438 3439 3440 3441 3442 3443 3444 3445 3446
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3447
		if (INTEL_GEN(to_i915(dev)) < 4)
3448 3449 3450 3451 3452
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

3453
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3454
	if (exec2.flags & __EXEC_HAS_RELOC) {
3455
		struct drm_i915_gem_exec_object __user *user_exec_list =
3456
			u64_to_user_ptr(args->buffers_ptr);
3457

3458
		/* Copy the new buffer offsets back to the user's exec list. */
3459
		for (i = 0; i < args->buffer_count; i++) {
3460 3461 3462
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3463
			exec2_list[i].offset =
3464 3465 3466 3467 3468
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
3469
				break;
3470 3471 3472
		}
	}

M
Michal Hocko 已提交
3473 3474
	kvfree(exec_list);
	kvfree(exec2_list);
3475
	return err;
3476 3477 3478
}

int
3479 3480
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3481
{
3482
	struct drm_i915_private *i915 = to_i915(dev);
3483
	struct drm_i915_gem_execbuffer2 *args = data;
3484
	struct drm_i915_gem_exec_object2 *exec2_list;
3485
	const size_t count = args->buffer_count;
3486
	int err;
3487

3488
	if (!check_buffer_count(count)) {
3489
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3490 3491 3492
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3493 3494 3495
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3496

3497 3498
	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
3499
				    __GFP_NOWARN | GFP_KERNEL);
3500
	if (exec2_list == NULL) {
3501 3502
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3503 3504
		return -ENOMEM;
	}
3505 3506
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3507
			   sizeof(*exec2_list) * count)) {
3508
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3509
		kvfree(exec2_list);
3510 3511 3512
		return -EFAULT;
	}

3513
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3514 3515 3516 3517 3518 3519 3520 3521

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3522
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3523 3524
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3525

3526
		/* Copy the new buffer offsets back to the user's exec list. */
3527 3528 3529 3530 3531 3532 3533
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3534 3535
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3536
			goto end;
3537

3538
		for (i = 0; i < args->buffer_count; i++) {
3539 3540 3541
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3542
			exec2_list[i].offset =
3543 3544 3545 3546
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3547
		}
3548
end_user:
3549
		user_write_access_end();
3550
end:;
3551 3552
	}

3553
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3554
	kvfree(exec2_list);
3555
	return err;
3556
}
3557 3558 3559 3560

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif