i915_gem_execbuffer.c 75.5 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21 22
#include "gt/intel_gt_pm.h"

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27 28
#include "i915_trace.h"

29 30 31 32 33 34
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
35

36 37 38 39 40 41
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 43 44 45
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
46
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47
#define UPDATE			PIN_OFFSET_FIXED
48 49

#define BATCH_OFFSET_BIAS (256*1024)
50

51
#define __I915_EXEC_ILLEGAL_FLAGS \
52 53 54
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
55

56 57 58 59 60 61 62 63 64
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

216
struct i915_execbuffer {
217 218 219 220
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 222
	struct i915_vma **vma;
	unsigned int *flags;
223 224

	struct intel_engine_cs *engine; /** engine to queue the request to */
225 226
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
227

228
	struct i915_request *request; /** our request to build */
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
245
	struct reloc_cache {
246 247 248
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
249
		unsigned int gen; /** Cached value of INTEL_GEN */
250
		bool use_64bit_reloc : 1;
251 252 253
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
254

255
		struct i915_request *rq;
256 257
		u32 *rq_cmd;
		unsigned int rq_size;
258
	} reloc_cache;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
274 275
};

276
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

297 298
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
299 300
	return intel_engine_requires_cmd_parser(eb->engine) ||
		(intel_engine_using_cmd_parser(eb->engine) && eb->batch_len);
301 302
}

303
static int eb_create(struct i915_execbuffer *eb)
304
{
305 306
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
307

308 309 310 311 312 313 314 315 316 317 318
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
319
		do {
320
			gfp_t flags;
321 322 323 324 325 326 327

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
328
			flags = GFP_KERNEL;
329 330 331
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

332
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
333
					      flags);
334 335 336 337
			if (eb->buckets)
				break;
		} while (--size);

338 339
		if (unlikely(!size))
			return -ENOMEM;
340

341
		eb->lut_size = size;
342
	} else {
343
		eb->lut_size = -eb->buffer_count;
344
	}
345

346
	return 0;
347 348
}

349 350
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
351 352
		 const struct i915_vma *vma,
		 unsigned int flags)
353 354 355 356 357 358 359
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

360
	if (flags & EXEC_OBJECT_PINNED &&
361 362 363
	    vma->node.start != entry->offset)
		return true;

364
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
365 366 367
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

368
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
369 370 371
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

372 373 374 375
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

376 377 378
	return false;
}

379
static inline bool
380
eb_pin_vma(struct i915_execbuffer *eb,
381
	   const struct drm_i915_gem_exec_object2 *entry,
382 383
	   struct i915_vma *vma)
{
384 385
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
386

387
	if (vma->node.size)
388
		pin_flags = vma->node.start;
389
	else
390
		pin_flags = entry->offset & PIN_OFFSET_MASK;
391

392 393 394
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
395

396 397
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
398

399
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
400
		if (unlikely(i915_vma_pin_fence(vma))) {
401
			i915_vma_unpin(vma);
402
			return false;
403 404
		}

405
		if (vma->fence)
406
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
407 408
	}

409 410
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
411 412
}

413
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
414
{
415
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
416

417
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
418
		__i915_vma_unpin_fence(vma);
419

420
	__i915_vma_unpin(vma);
421 422
}

423
static inline void
424
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
425
{
426
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
427
		return;
428

429 430
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
431 432
}

433 434 435 436
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
437
{
438 439
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
440

441 442 443 444 445 446 447 448
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
449
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
450 451 452 453 454 455 456 457
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
458 459
	}

460
	if (unlikely(vma->exec_flags)) {
461 462 463 464 465 466 467 468 469 470 471 472
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

473 474 475 476 477 478 479 480 481 482 483 484
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

485
	return 0;
486 487
}

488
static int
489 490 491
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
492
{
493
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
494 495 496 497 498 499 500 501
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
502 503
	}

504
	if (eb->lut_size > 0) {
505
		vma->exec_handle = entry->handle;
506
		hlist_add_head(&vma->exec_node,
507 508
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
509
	}
510

511 512 513 514 515 516 517 518 519
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
520
	eb->vma[i] = vma;
521
	eb->flags[i] = entry->flags;
522
	vma->exec_flags = &eb->flags[i];
523

524 525 526 527 528 529 530 531 532 533
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
534 535
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
536 537 538 539 540 541 542
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

543
	err = 0;
544
	if (eb_pin_vma(eb, entry, vma)) {
545 546 547 548
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
549 550 551 552 553 554
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
555 556
		if (unlikely(err))
			vma->exec_flags = NULL;
557 558 559 560 561 562 563 564 565 566
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

567 568 569 570 571
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
572 573 574 575 576 577 578 579 580

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
581 582 583
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
584 585
	int err;

586 587 588
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
589 590 591 592 593

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
594 595
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
596

597 598
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
599

600 601 602 603 604
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
605 606
	}

607 608 609
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
610 611 612 613 614 615 616 617
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

618
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
619
		err = i915_vma_pin_fence(vma);
620 621 622 623 624
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

625
		if (vma->fence)
626
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
627 628
	}

629 630
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
672 673
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
674

675 676
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
677 678
				continue;

679
			eb_unreserve_vma(vma, &eb->flags[i]);
680

681
			if (flags & EXEC_OBJECT_PINNED)
682
				/* Pinned must have their slot */
683
				list_add(&vma->exec_link, &eb->unbound);
684
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
685
				/* Map require the lowest 256MiB (aperture) */
686
				list_add_tail(&vma->exec_link, &eb->unbound);
687 688 689
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
690 691 692 693 694 695 696 697 698 699 700
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
701
			err = i915_gem_evict_vm(eb->context->vm);
702 703 704 705 706 707 708 709
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
710
}
711

712 713
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
714 715 716 717
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
718 719 720 721 722 723 724
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
725 726
	if (unlikely(!ctx))
		return -ENOENT;
727

728
	eb->gem_context = ctx;
729
	if (ctx->vm)
730
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
731 732

	eb->context_flags = 0;
733
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
734 735 736 737 738 739
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
740
{
741
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
742
	struct drm_i915_gem_object *obj;
743
	unsigned int i, batch;
744
	int err;
745

746
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
747 748
		return -EIO;

749 750
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
751

752 753
	batch = eb_batch_index(eb);

754 755 756 757 758 759
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

760 761
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
762
		struct i915_lut_handle *lut;
763
		struct i915_vma *vma;
764

765 766
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
767
			goto add_vma;
768

769
		obj = i915_gem_object_lookup(eb->file, handle);
770
		if (unlikely(!obj)) {
771
			err = -ENOENT;
772
			goto err_vma;
773 774
		}

775
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
776
		if (IS_ERR(vma)) {
777
			err = PTR_ERR(vma);
778
			goto err_obj;
779 780
		}

781
		lut = i915_lut_handle_alloc();
782 783 784 785 786 787 788
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
789
			i915_lut_handle_free(lut);
790
			goto err_obj;
791
		}
792

793 794
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
795
			i915_vma_reopen(vma);
796
		lut->handle = handle;
797 798 799 800 801
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
802

803
add_vma:
804
		err = eb_add_vma(eb, i, batch, vma);
805
		if (unlikely(err))
806
			goto err_vma;
807

808 809
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
810 811
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
812 813
	}

814 815
	mutex_unlock(&eb->gem_context->mutex);

816 817 818
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

819
err_obj:
820
	i915_gem_object_put(obj);
821 822
err_vma:
	eb->vma[i] = NULL;
823 824
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
825
	return err;
826 827
}

828
static struct i915_vma *
829
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
830
{
831 832
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
833
			return NULL;
834
		return eb->vma[handle];
835 836
	} else {
		struct hlist_head *head;
837
		struct i915_vma *vma;
838

839
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
840
		hlist_for_each_entry(vma, head, exec_node) {
841 842
			if (vma->exec_handle == handle)
				return vma;
843 844 845
		}
		return NULL;
	}
846 847
}

848
static void eb_release_vmas(const struct i915_execbuffer *eb)
849
{
850 851 852 853
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
854 855
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
856

857
		if (!vma)
858
			break;
859

860 861 862
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
863

864 865
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
866

867
		if (flags & __EXEC_OBJECT_HAS_REF)
868
			i915_vma_put(vma);
869
	}
870 871
}

872
static void eb_reset_vmas(const struct i915_execbuffer *eb)
873
{
874
	eb_release_vmas(eb);
875
	if (eb->lut_size > 0)
876 877
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
878 879
}

880
static void eb_destroy(const struct i915_execbuffer *eb)
881
{
882 883
	GEM_BUG_ON(eb->reloc_cache.rq);

884
	if (eb->lut_size > 0)
885
		kfree(eb->buckets);
886 887
}

888
static inline u64
889
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
890
		  const struct i915_vma *target)
891
{
892
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
893 894
}

895 896
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
897
{
898
	cache->page = -1;
899
	cache->vaddr = 0;
900
	/* Must be a variable in the struct to allow GCC to unroll. */
901
	cache->gen = INTEL_GEN(i915);
902
	cache->has_llc = HAS_LLC(i915);
903
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
904 905
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
906
	cache->node.allocated = false;
907 908
	cache->rq = NULL;
	cache->rq_size = 0;
909
}
910

911 912 913 914 915 916 917 918
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
919 920
}

921 922
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

923 924 925 926 927 928 929
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

930 931 932 933
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
934 935

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
936
	i915_gem_object_unpin_map(cache->rq->batch->obj);
937

938
	intel_gt_chipset_flush(cache->rq->engine->gt);
939

940
	i915_request_add(cache->rq);
941 942 943
	cache->rq = NULL;
}

944
static void reloc_cache_reset(struct reloc_cache *cache)
945
{
946
	void *vaddr;
947

948 949 950
	if (cache->rq)
		reloc_gpu_flush(cache);

951 952
	if (!cache->vaddr)
		return;
953

954 955 956 957
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
958

959
		kunmap_atomic(vaddr);
960
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
961
	} else {
962 963 964
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
965
		io_mapping_unmap_atomic((void __iomem *)vaddr);
966

967
		if (cache->node.allocated) {
968 969 970
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
971 972 973
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
974
		}
975
	}
976 977 978

	cache->vaddr = 0;
	cache->page = -1;
979 980 981 982
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
983
			unsigned long page)
984
{
985 986 987 988 989 990
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
991
		int err;
992

993
		err = i915_gem_object_prepare_write(obj, &flushes);
994 995
		if (err)
			return ERR_PTR(err);
996 997 998

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
999

1000 1001 1002 1003
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1004 1005
	}

1006 1007
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1008
	cache->page = page;
1009

1010
	return vaddr;
1011 1012
}

1013 1014
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1015
			 unsigned long page)
1016
{
1017
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1018
	unsigned long offset;
1019
	void *vaddr;
1020

1021
	if (cache->vaddr) {
1022
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1023
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1024 1025
	} else {
		struct i915_vma *vma;
1026
		int err;
1027

1028 1029 1030
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1031
		if (use_cpu_reloc(cache, obj))
1032
			return NULL;
1033

1034
		i915_gem_object_lock(obj);
1035
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1036
		i915_gem_object_unlock(obj);
1037 1038
		if (err)
			return ERR_PTR(err);
1039

1040
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1041
					       PIN_MAPPABLE |
1042 1043
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1044 1045
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1046
			err = drm_mm_insert_node_in_range
1047
				(&ggtt->vm.mm, &cache->node,
1048
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1049
				 0, ggtt->mappable_end,
1050
				 DRM_MM_INSERT_LOW);
1051
			if (err) /* no inactive aperture space, use cpu reloc */
1052
				return NULL;
1053 1054 1055
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1056
		}
1057
	}
1058

1059 1060
	offset = cache->node.start;
	if (cache->node.allocated) {
1061 1062 1063
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1064 1065
	} else {
		offset += page << PAGE_SHIFT;
1066 1067
	}

1068
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1069
							 offset);
1070 1071
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1072

1073
	return vaddr;
1074 1075
}

1076 1077
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1078
			 unsigned long page)
1079
{
1080
	void *vaddr;
1081

1082 1083 1084 1085 1086 1087 1088 1089
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1090 1091
	}

1092
	return vaddr;
1093 1094
}

1095
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1096
{
1097 1098 1099 1100 1101
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1102

1103
		*addr = value;
1104

1105 1106
		/*
		 * Writes to the same cacheline are serialised by the CPU
1107 1108 1109 1110 1111 1112 1113 1114 1115
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1138 1139 1140 1141 1142
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1143
	struct intel_engine_pool_node *pool;
1144
	struct i915_request *rq;
1145 1146 1147 1148
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1149 1150 1151
	pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1152

1153
	cmd = i915_gem_object_pin_map(pool->obj,
1154 1155 1156
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1157 1158 1159 1160
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1161

1162
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1163 1164 1165 1166 1167 1168 1169 1170 1171
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1172
	rq = i915_request_create(eb->context);
1173 1174 1175 1176 1177
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1178 1179 1180 1181
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1182
	err = reloc_move_to_gpu(rq, vma);
1183 1184 1185 1186 1187 1188 1189
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1190
		goto skip_request;
1191

1192
	i915_vma_lock(batch);
1193 1194 1195
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1196
	i915_vma_unlock(batch);
1197 1198
	if (err)
		goto skip_request;
1199 1200

	rq->batch = batch;
1201
	i915_vma_unpin(batch);
1202 1203 1204 1205 1206 1207

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1208
	goto out_pool;
1209

1210 1211
skip_request:
	i915_request_skip(rq, err);
1212
err_request:
1213
	i915_request_add(rq);
1214 1215 1216
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1217 1218 1219
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1236 1237 1238 1239
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1240 1241 1242
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1254 1255
static u64
relocate_entry(struct i915_vma *vma,
1256
	       const struct drm_i915_gem_relocation_entry *reloc,
1257 1258
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1259
{
1260
	u64 offset = reloc->offset;
1261 1262
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1263
	void *vaddr;
1264

1265 1266
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1267
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1268 1269 1270 1271 1272 1273 1274 1275 1276
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1277
		else
1278
			len = 3;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1324
repeat:
1325
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1326 1327 1328 1329 1330
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1331
			eb->reloc_cache.vaddr);
1332 1333 1334 1335 1336 1337

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1338 1339
	}

1340
out:
1341
	return target->node.start | UPDATE;
1342 1343
}

1344 1345 1346 1347
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1348
{
1349
	struct i915_vma *target;
1350
	int err;
1351

1352
	/* we've already hold a reference to all valid objects */
1353 1354
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1355
		return -ENOENT;
1356

1357
	/* Validate that the target is in a valid r/w GPU domain */
1358
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1359
		DRM_DEBUG("reloc with multiple write domains: "
1360
			  "target %d offset %d "
1361
			  "read %08x write %08x",
1362
			  reloc->target_handle,
1363 1364 1365
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1366
		return -EINVAL;
1367
	}
1368 1369
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1370
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1371
			  "target %d offset %d "
1372
			  "read %08x write %08x",
1373
			  reloc->target_handle,
1374 1375 1376
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1377
		return -EINVAL;
1378 1379
	}

1380
	if (reloc->write_domain) {
1381
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1382

1383 1384 1385 1386 1387 1388 1389
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1390
		    IS_GEN(eb->i915, 6)) {
1391 1392 1393 1394 1395 1396
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1397
	}
1398

1399 1400
	/*
	 * If the relocation already has the right value in it, no
1401 1402
	 * more work needs to be done.
	 */
1403 1404
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1405
		return 0;
1406 1407

	/* Check that the relocation address is valid... */
1408
	if (unlikely(reloc->offset >
1409
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1410
		DRM_DEBUG("Relocation beyond object bounds: "
1411 1412 1413 1414
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1415
		return -EINVAL;
1416
	}
1417
	if (unlikely(reloc->offset & 3)) {
1418
		DRM_DEBUG("Relocation not 4-byte aligned: "
1419 1420 1421
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1422
		return -EINVAL;
1423 1424
	}

1425 1426 1427 1428 1429 1430
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1431
	 * out of our synchronisation.
1432
	 */
1433
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1434

1435
	/* and update the user's relocation entry */
1436
	return relocate_entry(vma, reloc, eb, target);
1437 1438
}

1439
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1440
{
1441
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1442 1443
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1444
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1445
	unsigned int remain;
1446

1447
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1448
	remain = entry->relocation_count;
1449 1450
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1451

1452 1453 1454 1455 1456
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1457
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1458 1459 1460 1461 1462 1463 1464
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1465

1466 1467
		/*
		 * This is the fast path and we cannot handle a pagefault
1468 1469 1470 1471 1472 1473 1474
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1475
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1476
		pagefault_enable();
1477 1478
		if (unlikely(copied)) {
			remain = -EFAULT;
1479 1480
			goto out;
		}
1481

1482
		remain -= count;
1483
		do {
1484
			u64 offset = eb_relocate_entry(eb, vma, r);
1485

1486 1487 1488
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1489
				goto out;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1513 1514 1515 1516
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1517
			}
1518 1519 1520
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1521
out:
1522
	reloc_cache_reset(&eb->reloc_cache);
1523
	return remain;
1524 1525 1526
}

static int
1527
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1528
{
1529
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1530 1531 1532 1533
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1534 1535

	for (i = 0; i < entry->relocation_count; i++) {
1536
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1537

1538 1539 1540 1541
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1542
	}
1543 1544 1545 1546
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1547 1548
}

1549
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1550
{
1551 1552 1553
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1554

1555 1556 1557
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1558

1559 1560
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1561

1562 1563
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1564
	if (!access_ok(addr, size))
1565
		return -EFAULT;
1566

1567 1568 1569 1570 1571
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1572
	}
1573
	return __get_user(c, end - 1);
1574
}
1575

1576
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1577
{
1578
	struct drm_i915_gem_relocation_entry *relocs;
1579 1580 1581
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1582

1583 1584 1585 1586 1587
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1588

1589 1590
		if (nreloc == 0)
			continue;
1591

1592 1593 1594
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1595

1596 1597
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1598

1599
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1600 1601 1602 1603
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1604

1605 1606 1607 1608 1609 1610 1611
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1612
					     (char __user *)urelocs + copied,
1613 1614
					     len))
				goto end;
1615

1616 1617
			copied += len;
		} while (copied < size);
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1629
		if (!user_access_begin(urelocs, size))
1630
			goto end;
1631

1632 1633 1634 1635 1636
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1637

1638 1639
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1640

1641
	return 0;
1642

1643 1644 1645 1646 1647
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1648 1649
err:
	while (i--) {
1650
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1651 1652 1653 1654
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1655 1656
}

1657
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1658
{
1659 1660
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1661

1662
	if (unlikely(i915_modparams.prefault_disable))
1663
		return 0;
1664

1665 1666
	for (i = 0; i < count; i++) {
		int err;
1667

1668 1669 1670 1671
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1672

1673
	return 0;
1674 1675
}

1676
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1677
{
1678
	struct drm_device *dev = &eb->i915->drm;
1679
	bool have_copy = false;
1680
	struct i915_vma *vma;
1681 1682 1683 1684 1685 1686 1687
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1688

1689
	/* We may process another execbuffer during the unlock... */
1690
	eb_reset_vmas(eb);
1691 1692
	mutex_unlock(&dev->struct_mutex);

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1714
	}
1715 1716 1717
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1718 1719
	}

1720 1721 1722
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1723 1724
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1725
		mutex_lock(&dev->struct_mutex);
1726
		goto out;
1727 1728
	}

1729
	/* reacquire the objects */
1730 1731
	err = eb_lookup_vmas(eb);
	if (err)
1732
		goto err;
1733

1734 1735
	GEM_BUG_ON(!eb->batch);

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1748 1749
	}

1750 1751
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1752 1753 1754 1755 1756 1757
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1779
	return err;
1780 1781
}

1782
static int eb_relocate(struct i915_execbuffer *eb)
1783
{
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1806
	struct ww_acquire_ctx acquire;
1807
	unsigned int i;
1808 1809 1810
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1811

1812
	for (i = 0; i < count; i++) {
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1844 1845
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1846
		struct drm_i915_gem_object *obj = vma->obj;
1847

1848 1849
		assert_vma_held(vma);

1850
		if (flags & EXEC_OBJECT_CAPTURE) {
1851
			struct i915_capture_list *capture;
1852 1853

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1854 1855 1856 1857 1858
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1859 1860
		}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1874
			if (i915_gem_clflush_object(obj, 0))
1875
				flags &= ~EXEC_OBJECT_ASYNC;
1876 1877
		}

1878 1879 1880 1881
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1882

1883 1884
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1885

1886
		i915_vma_unlock(vma);
1887

1888 1889 1890 1891
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1892
			i915_vma_put(vma);
1893
	}
1894 1895 1896 1897 1898
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1899
	eb->exec = NULL;
1900

1901
	/* Unconditionally flush any chipset caches (for streaming writes). */
1902
	intel_gt_chipset_flush(eb->engine->gt);
1903
	return 0;
1904 1905 1906 1907

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1908 1909
}

1910
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1911
{
1912
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1913 1914
		return false;

C
Chris Wilson 已提交
1915
	/* Kernel clipping was a DRI1 misfeature */
1916 1917 1918 1919
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1932 1933
}

1934
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1935
{
1936 1937
	u32 *cs;
	int i;
1938

1939
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1940 1941 1942
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1943

1944
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1945 1946
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1947

1948
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1949
	for (i = 0; i < 4; i++) {
1950 1951
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1952
	}
1953
	*cs++ = MI_NOOP;
1954
	intel_ring_advance(rq, cs);
1955 1956 1957 1958

	return 0;
}

1959
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1960
{
1961
	struct intel_engine_pool_node *pool;
1962
	struct i915_vma *vma;
1963
	int err;
1964

1965 1966 1967
	pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
	if (IS_ERR(pool))
		return ERR_CAST(pool);
1968

1969
	err = intel_engine_cmd_parser(eb->engine,
1970
				      eb->batch->obj,
1971
				      pool->obj,
1972
				      eb->batch_start_offset,
1973
				      eb->batch_len);
1974 1975
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1976 1977
			vma = NULL;
		else
1978
			vma = ERR_PTR(err);
1979
		goto err;
C
Chris Wilson 已提交
1980
	}
1981

1982
	vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
1983
	if (IS_ERR(vma))
1984
		goto err;
C
Chris Wilson 已提交
1985

1986 1987 1988 1989 1990
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1991

1992 1993 1994 1995 1996
	vma->private = pool;
	return vma;

err:
	intel_engine_pool_put(pool);
C
Chris Wilson 已提交
1997
	return vma;
1998
}
1999

2000
static void
2001
add_to_client(struct i915_request *rq, struct drm_file *file)
2002
{
2003 2004 2005 2006 2007 2008 2009
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2010 2011
}

2012
static int eb_submit(struct i915_execbuffer *eb)
2013
{
2014
	int err;
2015

2016 2017 2018
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2019

2020
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2021 2022 2023
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2024 2025
	}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2038
	err = eb->engine->emit_bb_start(eb->request,
2039 2040 2041
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2042 2043 2044
					eb->batch_flags);
	if (err)
		return err;
2045

C
Chris Wilson 已提交
2046
	return 0;
2047 2048
}

2049 2050 2051 2052 2053 2054
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2055
/*
2056
 * Find one BSD ring to dispatch the corresponding BSD command.
2057
 * The engine index is returned.
2058
 */
2059
static unsigned int
2060 2061
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2062 2063 2064
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2065
	/* Check whether the file_priv has already selected one ring. */
2066
	if ((int)file_priv->bsd_engine < 0)
2067 2068
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2069

2070
	return file_priv->bsd_engine;
2071 2072
}

2073
static const enum intel_engine_id user_ring_map[] = {
2074 2075 2076 2077 2078
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2079 2080
};

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int
__eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2117
{
2118
	int err;
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	if (likely(atomic_inc_not_zero(&ce->pin_count)))
		return 0;

	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
	if (err)
		return err;

	err = __intel_context_do_pin(ce);
	mutex_unlock(&eb->i915->drm.struct_mutex);

	return err;
}

static void
__eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
{
	if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
		return;

	mutex_lock(&eb->i915->drm.struct_mutex);
	intel_context_unpin(ce);
	mutex_unlock(&eb->i915->drm.struct_mutex);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2150 2151 2152 2153
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2154
	err = intel_gt_terminally_wedged(ce->engine->gt);
2155 2156 2157 2158 2159 2160 2161 2162
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2163
	err = __eb_pin_context(eb, ce);
2164 2165
	if (err)
		return err;
2166

2167 2168 2169 2170 2171 2172 2173 2174
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2175 2176 2177
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2178
		goto err_unpin;
2179
	}
2180 2181

	intel_context_enter(ce);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2197

2198
	eb->engine = ce->engine;
2199 2200
	eb->context = ce;
	return 0;
2201

2202 2203 2204 2205
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2206
err_unpin:
2207
	__eb_unpin_context(eb, ce);
2208
	return err;
2209 2210
}

2211
static void eb_unpin_engine(struct i915_execbuffer *eb)
2212
{
2213
	struct intel_context *ce = eb->context;
2214
	struct intel_timeline *tl = ce->timeline;
2215 2216 2217 2218 2219

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2220
	__eb_unpin_context(eb, ce);
2221
}
2222

2223 2224 2225 2226
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2227
{
2228
	struct drm_i915_private *i915 = eb->i915;
2229 2230
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2231 2232
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2233 2234
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2235
		return -1;
2236 2237
	}

2238
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2239 2240 2241
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2242
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2243 2244
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2245
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2246 2247 2248 2249
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2250
			return -1;
2251 2252
		}

2253
		return _VCS(bsd_idx);
2254 2255
	}

2256 2257 2258
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2259 2260
	}

2261 2262 2263 2264
	return user_ring_map[user_ring_id];
}

static int
2265 2266 2267
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2268 2269 2270 2271 2272
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2273 2274 2275 2276
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2277 2278 2279 2280 2281

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2282
	err = __eb_pin_engine(eb, ce);
2283 2284 2285
	intel_context_put(ce);

	return err;
2286 2287
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2300
	const unsigned long nfences = args->num_cliprects;
2301 2302
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2303
	unsigned long n;
2304 2305 2306 2307 2308
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2309 2310 2311 2312 2313
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2314 2315 2316
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2317
	if (!access_ok(user, nfences * sizeof(*user)))
2318 2319
		return ERR_PTR(-EFAULT);

2320
	fences = kvmalloc_array(nfences, sizeof(*fences),
2321
				__GFP_NOWARN | GFP_KERNEL);
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2334 2335 2336 2337 2338
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2339 2340 2341 2342 2343 2344 2345
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2346 2347 2348
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2384
		fence = drm_syncobj_fence_get(syncobj);
2385 2386 2387
		if (!fence)
			return -EINVAL;

2388
		err = i915_request_await_dma_fence(eb->request, fence);
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2413
		drm_syncobj_replace_fence(syncobj, fence);
2414 2415 2416
	}
}

2417
static int
2418
i915_gem_do_execbuffer(struct drm_device *dev,
2419 2420
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2421 2422
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2423
{
2424
	struct drm_i915_private *i915 = to_i915(dev);
2425
	struct i915_execbuffer eb;
2426
	struct dma_fence *in_fence = NULL;
2427
	struct dma_fence *exec_fence = NULL;
2428 2429
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2430
	int err;
2431

2432
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2433 2434
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2435

2436
	eb.i915 = i915;
2437 2438
	eb.file = file;
	eb.args = args;
2439
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2440
		args->flags |= __EXEC_HAS_RELOC;
2441

2442
	eb.exec = exec;
2443 2444
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2445 2446
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2447
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2448 2449
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2450
	eb.buffer_count = args->buffer_count;
2451 2452 2453
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2454
	eb.batch_flags = 0;
2455
	if (args->flags & I915_EXEC_SECURE) {
2456 2457 2458 2459 2460 2461 2462
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2463
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2464
			return -EPERM;
2465

2466
		eb.batch_flags |= I915_DISPATCH_SECURE;
2467
	}
2468
	if (args->flags & I915_EXEC_IS_PINNED)
2469
		eb.batch_flags |= I915_DISPATCH_PINNED;
2470

2471 2472
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2473 2474
		if (!in_fence)
			return -EINVAL;
2475 2476
	}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2490 2491 2492
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2493
			err = out_fence_fd;
2494
			goto err_exec_fence;
2495 2496 2497
		}
	}

2498 2499 2500 2501 2502
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2503

2504 2505 2506 2507
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2508
	err = eb_pin_engine(&eb, file, args);
2509
	if (unlikely(err))
2510
		goto err_context;
2511

2512 2513
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2514 2515
		goto err_engine;

2516
	err = eb_relocate(&eb);
2517
	if (err) {
2518 2519 2520 2521 2522 2523 2524 2525 2526
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2527
	}
2528

2529
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2530
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2531 2532
		err = -EINVAL;
		goto err_vma;
2533
	}
2534 2535
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2536
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2537 2538
		err = -EINVAL;
		goto err_vma;
2539
	}
2540

2541
	if (eb_use_cmdparser(&eb)) {
2542 2543
		struct i915_vma *vma;

2544
		vma = eb_parse(&eb);
2545
		if (IS_ERR(vma)) {
2546 2547
			err = PTR_ERR(vma);
			goto err_vma;
2548
		}
2549

2550
		if (vma) {
2551 2552 2553 2554 2555 2556 2557 2558 2559
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2560
			eb.batch_flags |= I915_DISPATCH_SECURE;
2561 2562
			eb.batch_start_offset = 0;
			eb.batch = vma;
2563
		}
2564 2565
	}

2566 2567
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2568

2569 2570
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2571
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2572
	 * hsw should have this fixed, but bdw mucks it up again. */
2573
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2574
		struct i915_vma *vma;
2575

2576 2577 2578 2579 2580 2581
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2582
		 *   so we don't really have issues with multiple objects not
2583 2584 2585
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2586
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2587
		if (IS_ERR(vma)) {
2588 2589
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2590
		}
2591

2592
		eb.batch = vma;
2593
	}
2594

2595 2596 2597
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2598
	/* Allocate a request for this batch buffer nice and early. */
2599
	eb.request = i915_request_create(eb.context);
2600
	if (IS_ERR(eb.request)) {
2601
		err = PTR_ERR(eb.request);
2602
		goto err_batch_unpin;
2603
	}
2604

2605
	if (in_fence) {
2606
		err = i915_request_await_dma_fence(eb.request, in_fence);
2607
		if (err < 0)
2608 2609 2610
			goto err_request;
	}

2611 2612 2613 2614 2615 2616 2617
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2618 2619 2620 2621 2622 2623
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2624
	if (out_fence_fd != -1) {
2625
		out_fence = sync_file_create(&eb.request->fence);
2626
		if (!out_fence) {
2627
			err = -ENOMEM;
2628 2629 2630 2631
			goto err_request;
		}
	}

2632 2633
	/*
	 * Whilst this request exists, batch_obj will be on the
2634 2635 2636 2637 2638
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2639
	eb.request->batch = eb.batch;
2640 2641
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2642

2643
	trace_i915_request_queue(eb.request, eb.batch_flags);
2644
	err = eb_submit(&eb);
2645
err_request:
2646
	add_to_client(eb.request, file);
2647
	i915_request_add(eb.request);
2648

2649 2650 2651
	if (fences)
		signal_fence_array(&eb, fences);

2652
	if (out_fence) {
2653
		if (err == 0) {
2654
			fd_install(out_fence_fd, out_fence->file);
2655
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2656 2657 2658 2659 2660 2661
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2662

2663
err_batch_unpin:
2664
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2665
		i915_vma_unpin(eb.batch);
2666 2667
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2668 2669 2670
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2671
	mutex_unlock(&dev->struct_mutex);
2672 2673
err_engine:
	eb_unpin_engine(&eb);
2674
err_context:
2675
	i915_gem_context_put(eb.gem_context);
2676
err_destroy:
2677
	eb_destroy(&eb);
2678
err_out_fence:
2679 2680
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2681 2682
err_exec_fence:
	dma_fence_put(exec_fence);
2683
err_in_fence:
2684
	dma_fence_put(in_fence);
2685
	return err;
2686 2687
}

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2708 2709 2710 2711 2712
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2713 2714
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2715 2716 2717 2718 2719
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2720
	const size_t count = args->buffer_count;
2721 2722
	unsigned int i;
	int err;
2723

2724 2725
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2726 2727 2728
		return -EINVAL;
	}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2743
	/* Copy in the exec list from userland */
2744
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2745
				   __GFP_NOWARN | GFP_KERNEL);
2746
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2747
				    __GFP_NOWARN | GFP_KERNEL);
2748
	if (exec_list == NULL || exec2_list == NULL) {
2749
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2750
			  args->buffer_count);
M
Michal Hocko 已提交
2751 2752
		kvfree(exec_list);
		kvfree(exec2_list);
2753 2754
		return -ENOMEM;
	}
2755
	err = copy_from_user(exec_list,
2756
			     u64_to_user_ptr(args->buffers_ptr),
2757
			     sizeof(*exec_list) * count);
2758
	if (err) {
2759
		DRM_DEBUG("copy %d exec entries failed %d\n",
2760
			  args->buffer_count, err);
M
Michal Hocko 已提交
2761 2762
		kvfree(exec_list);
		kvfree(exec2_list);
2763 2764 2765 2766 2767 2768 2769 2770 2771
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2772
		if (INTEL_GEN(to_i915(dev)) < 4)
2773 2774 2775 2776 2777
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2778
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2779
	if (exec2.flags & __EXEC_HAS_RELOC) {
2780
		struct drm_i915_gem_exec_object __user *user_exec_list =
2781
			u64_to_user_ptr(args->buffers_ptr);
2782

2783
		/* Copy the new buffer offsets back to the user's exec list. */
2784
		for (i = 0; i < args->buffer_count; i++) {
2785 2786 2787
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2788
			exec2_list[i].offset =
2789 2790 2791 2792 2793
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2794
				break;
2795 2796 2797
		}
	}

M
Michal Hocko 已提交
2798 2799
	kvfree(exec_list);
	kvfree(exec2_list);
2800
	return err;
2801 2802 2803
}

int
2804 2805
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2806 2807
{
	struct drm_i915_gem_execbuffer2 *args = data;
2808
	struct drm_i915_gem_exec_object2 *exec2_list;
2809
	struct drm_syncobj **fences = NULL;
2810
	const size_t count = args->buffer_count;
2811
	int err;
2812

2813 2814
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2815 2816 2817
		return -EINVAL;
	}

2818 2819 2820 2821
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2822
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2823
				    __GFP_NOWARN | GFP_KERNEL);
2824
	if (exec2_list == NULL) {
2825 2826
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2827 2828
		return -ENOMEM;
	}
2829 2830
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2831 2832
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2833
		kvfree(exec2_list);
2834 2835 2836
		return -EFAULT;
	}

2837 2838 2839 2840 2841 2842 2843 2844 2845
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2846 2847 2848 2849 2850 2851 2852 2853

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2854
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2855 2856
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2857

2858
		/* Copy the new buffer offsets back to the user's exec list. */
2859 2860 2861 2862 2863 2864 2865 2866
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2867
			goto end;
2868

2869
		for (i = 0; i < args->buffer_count; i++) {
2870 2871 2872
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2873
			exec2_list[i].offset =
2874 2875 2876 2877
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2878
		}
2879 2880
end_user:
		user_access_end();
2881
end:;
2882 2883
	}

2884
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2885
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2886
	kvfree(exec2_list);
2887
	return err;
2888
}