i915_gem_execbuffer.c 74.0 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_engine_pool.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
55 56 57
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
58
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
59
#define UPDATE			PIN_OFFSET_FIXED
60 61

#define BATCH_OFFSET_BIAS (256*1024)
62

63
#define __I915_EXEC_ILLEGAL_FLAGS \
64 65 66
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
67

68 69 70 71 72 73 74 75 76
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

228
struct i915_execbuffer {
229 230 231 232
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
233
	struct eb_vma *vma;
234 235

	struct intel_engine_cs *engine; /** engine to queue the request to */
236 237
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
238

239
	struct i915_request *request; /** our request to build */
240
	struct eb_vma *batch; /** identity of the batch obj/vma */
241
	struct i915_vma *trampoline; /** trampoline used for chaining */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
257
	struct reloc_cache {
258 259 260
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
261
		unsigned int gen; /** Cached value of INTEL_GEN */
262
		bool use_64bit_reloc : 1;
263 264 265
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
266

267
		struct i915_request *rq;
268 269
		u32 *rq_cmd;
		unsigned int rq_size;
270
	} reloc_cache;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
286 287
};

288 289
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
290
	return intel_engine_requires_cmd_parser(eb->engine) ||
291 292
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
293 294
}

295
static int eb_create(struct i915_execbuffer *eb)
296
{
297 298
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
299

300 301 302 303 304 305 306 307 308 309 310
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
311
		do {
312
			gfp_t flags;
313 314 315 316 317 318 319

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
320
			flags = GFP_KERNEL;
321 322 323
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

324
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
325
					      flags);
326 327 328 329
			if (eb->buckets)
				break;
		} while (--size);

330 331
		if (unlikely(!size))
			return -ENOMEM;
332

333
		eb->lut_size = size;
334
	} else {
335
		eb->lut_size = -eb->buffer_count;
336
	}
337

338
	return 0;
339 340
}

341 342
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
343 344
		 const struct i915_vma *vma,
		 unsigned int flags)
345 346 347 348 349 350 351
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

352
	if (flags & EXEC_OBJECT_PINNED &&
353 354 355
	    vma->node.start != entry->offset)
		return true;

356
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
357 358 359
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

360
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
361 362 363
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

364 365 366 367
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

368 369 370
	return false;
}

371
static inline bool
372
eb_pin_vma(struct i915_execbuffer *eb,
373
	   const struct drm_i915_gem_exec_object2 *entry,
374
	   struct eb_vma *ev)
375
{
376
	struct i915_vma *vma = ev->vma;
377
	u64 pin_flags;
378

379
	if (vma->node.size)
380
		pin_flags = vma->node.start;
381
	else
382
		pin_flags = entry->offset & PIN_OFFSET_MASK;
383

384
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
385
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
386
		pin_flags |= PIN_GLOBAL;
387

388 389
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
390

391
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
392
		if (unlikely(i915_vma_pin_fence(vma))) {
393
			i915_vma_unpin(vma);
394
			return false;
395 396
		}

397
		if (vma->fence)
398
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
399 400
	}

401 402
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
403 404
}

405
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
406
{
407
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
408

409
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
410
		__i915_vma_unpin_fence(vma);
411

412
	__i915_vma_unpin(vma);
413 414
}

415
static inline void
416
eb_unreserve_vma(struct eb_vma *ev)
417
{
418
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
419
		return;
420

421 422
	__eb_unreserve_vma(ev->vma, ev->flags);
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
423 424
}

425 426 427 428
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
429
{
430 431
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
432

433 434
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
435 436 437 438 439 440 441
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
442
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
443 444 445 446 447 448 449 450
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
451
	}
452 453 454 455 456 457 458
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

459 460 461 462 463 464 465 466 467 468 469 470
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

471
	return 0;
472 473
}

474
static void
475 476 477
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
478
{
479
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480
	struct eb_vma *ev = &eb->vma[i];
481 482 483

	GEM_BUG_ON(i915_vma_is_closed(vma));

484
	ev->vma = i915_vma_get(vma);
485 486 487
	ev->exec = entry;
	ev->flags = entry->flags;

488
	if (eb->lut_size > 0) {
489 490
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
491 492
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
493
	}
494

495
	if (entry->relocation_count)
496
		list_add_tail(&ev->reloc_link, &eb->relocs);
497

498 499 500 501 502 503 504 505 506 507
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
508
		if (entry->relocation_count &&
509 510
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
511
		if (eb->reloc_cache.has_fence)
512
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
513

514
		eb->batch = ev;
515 516
	}

517
	if (eb_pin_vma(eb, entry, ev)) {
518 519 520 521
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
522
	} else {
523 524
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
525 526 527 528 529 530 531 532 533
	}
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

534 535 536 537 538
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
539 540 541 542 543 544 545

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
546
			  struct eb_vma *ev,
547
			  u64 pin_flags)
548
{
549 550 551
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	unsigned int exec_flags = ev->flags;
	struct i915_vma *vma = ev->vma;
552 553
	int err;

554 555
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
556 557 558 559 560

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
561 562
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
563

564 565
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
566

567
	if (exec_flags & EXEC_OBJECT_PINNED)
568
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
569
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
570
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
571

572 573 574 575 576 577 578
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

579 580 581
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
582 583 584 585 586 587 588 589
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

590
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
591
		err = i915_vma_pin_fence(vma);
592 593 594 595 596
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

597
		if (vma->fence)
598
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
599 600
	}

601 602
	ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
603

604 605 606 607 608 609
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
610
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
611
	struct list_head last;
612
	struct eb_vma *ev;
613
	unsigned int i, pass;
614
	int err = 0;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

630 631 632
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

633 634
	pass = 0;
	do {
635 636
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
637 638 639
			if (err)
				break;
		}
640
		if (!(err == -ENOSPC || err == -EAGAIN))
641
			break;
642 643 644 645 646

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
647
			unsigned int flags;
648

649 650
			ev = &eb->vma[i];
			flags = ev->flags;
651 652
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
653 654
				continue;

655
			eb_unreserve_vma(ev);
656

657
			if (flags & EXEC_OBJECT_PINNED)
658
				/* Pinned must have their slot */
659
				list_add(&ev->bind_link, &eb->unbound);
660
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
661
				/* Map require the lowest 256MiB (aperture) */
662
				list_add_tail(&ev->bind_link, &eb->unbound);
663 664
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
665
				list_add(&ev->bind_link, &last);
666
			else
667
				list_add_tail(&ev->bind_link, &last);
668 669 670
		}
		list_splice_tail(&last, &eb->unbound);

671
		if (err == -EAGAIN) {
672
			mutex_unlock(&eb->i915->drm.struct_mutex);
673
			flush_workqueue(eb->i915->mm.userptr_wq);
674
			mutex_lock(&eb->i915->drm.struct_mutex);
675 676 677
			continue;
		}

678 679 680 681 682 683
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
684
			mutex_lock(&eb->context->vm->mutex);
685
			err = i915_gem_evict_vm(eb->context->vm);
686
			mutex_unlock(&eb->context->vm->mutex);
687
			if (err)
688
				goto unlock;
689 690 691
			break;

		default:
692 693
			err = -ENOSPC;
			goto unlock;
694
		}
695 696

		pin_flags = PIN_USER;
697
	} while (1);
698 699 700 701

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
702
}
703

704 705
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
706 707 708 709
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
710 711 712 713 714 715 716
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
717 718
	if (unlikely(!ctx))
		return -ENOENT;
719

720
	eb->gem_context = ctx;
721
	if (rcu_access_pointer(ctx->vm))
722
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
723 724

	eb->context_flags = 0;
725
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
726 727 728 729 730 731
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
732
{
733
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
734
	struct drm_i915_gem_object *obj;
735
	unsigned int i, batch;
736
	int err;
737

738 739 740
	if (unlikely(i915_gem_context_is_closed(eb->gem_context)))
		return -ENOENT;

741 742
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
743

744 745
	batch = eb_batch_index(eb);

746 747
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
748
		struct i915_lut_handle *lut;
749
		struct i915_vma *vma;
750

751 752
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
753
			goto add_vma;
754

755
		obj = i915_gem_object_lookup(eb->file, handle);
756
		if (unlikely(!obj)) {
757
			err = -ENOENT;
758
			goto err_vma;
759 760
		}

761
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
762
		if (IS_ERR(vma)) {
763
			err = PTR_ERR(vma);
764
			goto err_obj;
765 766
		}

767
		lut = i915_lut_handle_alloc();
768 769 770 771 772 773 774
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
775
			i915_lut_handle_free(lut);
776
			goto err_obj;
777
		}
778

779 780
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
781
			i915_vma_reopen(vma);
782
		lut->handle = handle;
783 784 785 786 787
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
788

789
add_vma:
790
		err = eb_validate_vma(eb, &eb->exec[i], vma);
791
		if (unlikely(err))
792
			goto err_vma;
793

794
		eb_add_vma(eb, i, batch, vma);
795 796
	}

797
	return 0;
798

799
err_obj:
800
	i915_gem_object_put(obj);
801
err_vma:
802
	eb->vma[i].vma = NULL;
803
	return err;
804 805
}

806
static struct eb_vma *
807
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
808
{
809 810
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
811
			return NULL;
812
		return &eb->vma[handle];
813 814
	} else {
		struct hlist_head *head;
815
		struct eb_vma *ev;
816

817
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
818 819 820
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
821 822 823
		}
		return NULL;
	}
824 825
}

826
static void eb_release_vmas(const struct i915_execbuffer *eb)
827
{
828 829 830 831
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
832 833
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
834

835
		if (!vma)
836
			break;
837

838
		eb->vma[i].vma = NULL;
839

840 841
		if (ev->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, ev->flags);
842

843
		i915_vma_put(vma);
844
	}
845 846
}

847
static void eb_destroy(const struct i915_execbuffer *eb)
848
{
849 850
	GEM_BUG_ON(eb->reloc_cache.rq);

851
	if (eb->lut_size > 0)
852
		kfree(eb->buckets);
853 854
}

855
static inline u64
856
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
857
		  const struct i915_vma *target)
858
{
859
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
860 861
}

862 863
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
864
{
865
	cache->page = -1;
866
	cache->vaddr = 0;
867
	/* Must be a variable in the struct to allow GCC to unroll. */
868
	cache->gen = INTEL_GEN(i915);
869
	cache->has_llc = HAS_LLC(i915);
870
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
871 872
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
873
	cache->node.flags = 0;
874 875
	cache->rq = NULL;
	cache->rq_size = 0;
876
}
877

878 879 880 881 882 883 884 885
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
886 887
}

888 889
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

890 891 892 893 894 895 896
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

897 898 899 900
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
901 902

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
903
	i915_gem_object_unpin_map(cache->rq->batch->obj);
904

905
	intel_gt_chipset_flush(cache->rq->engine->gt);
906

907
	i915_request_add(cache->rq);
908 909 910
	cache->rq = NULL;
}

911
static void reloc_cache_reset(struct reloc_cache *cache)
912
{
913
	void *vaddr;
914

915 916 917
	if (cache->rq)
		reloc_gpu_flush(cache);

918 919
	if (!cache->vaddr)
		return;
920

921 922 923 924
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
925

926
		kunmap_atomic(vaddr);
927
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
928
	} else {
929 930 931
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
932
		io_mapping_unmap_atomic((void __iomem *)vaddr);
933

934
		if (drm_mm_node_allocated(&cache->node)) {
935 936 937
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
938
			mutex_lock(&ggtt->vm.mutex);
939
			drm_mm_remove_node(&cache->node);
940
			mutex_unlock(&ggtt->vm.mutex);
941 942
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
943
		}
944
	}
945 946 947

	cache->vaddr = 0;
	cache->page = -1;
948 949 950 951
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
952
			unsigned long page)
953
{
954 955 956 957 958 959
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
960
		int err;
961

962
		err = i915_gem_object_prepare_write(obj, &flushes);
963 964
		if (err)
			return ERR_PTR(err);
965 966 967

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
968

969 970 971 972
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
973 974
	}

975 976
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
977
	cache->page = page;
978

979
	return vaddr;
980 981
}

982 983
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
984
			 unsigned long page)
985
{
986
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
987
	unsigned long offset;
988
	void *vaddr;
989

990
	if (cache->vaddr) {
991
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
992
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
993 994
	} else {
		struct i915_vma *vma;
995
		int err;
996

997 998 999
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1000
		if (use_cpu_reloc(cache, obj))
1001
			return NULL;
1002

1003
		i915_gem_object_lock(obj);
1004
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1005
		i915_gem_object_unlock(obj);
1006 1007
		if (err)
			return ERR_PTR(err);
1008

1009
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1010
					       PIN_MAPPABLE |
1011 1012
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1013 1014
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1015
			mutex_lock(&ggtt->vm.mutex);
1016
			err = drm_mm_insert_node_in_range
1017
				(&ggtt->vm.mm, &cache->node,
1018
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1019
				 0, ggtt->mappable_end,
1020
				 DRM_MM_INSERT_LOW);
1021
			mutex_unlock(&ggtt->vm.mutex);
1022
			if (err) /* no inactive aperture space, use cpu reloc */
1023
				return NULL;
1024 1025 1026
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1027
		}
1028
	}
1029

1030
	offset = cache->node.start;
1031
	if (drm_mm_node_allocated(&cache->node)) {
1032 1033 1034
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1035 1036
	} else {
		offset += page << PAGE_SHIFT;
1037 1038
	}

1039
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1040
							 offset);
1041 1042
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1043

1044
	return vaddr;
1045 1046
}

1047 1048
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1049
			 unsigned long page)
1050
{
1051
	void *vaddr;
1052

1053 1054 1055 1056 1057 1058 1059 1060
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1061 1062
	}

1063
	return vaddr;
1064 1065
}

1066
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1067
{
1068 1069 1070 1071 1072
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1073

1074
		*addr = value;
1075

1076 1077
		/*
		 * Writes to the same cacheline are serialised by the CPU
1078 1079 1080 1081 1082 1083 1084 1085 1086
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1109 1110 1111 1112 1113
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1114
	struct intel_engine_pool_node *pool;
1115
	struct i915_request *rq;
1116 1117 1118 1119
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1120
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1121 1122
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1123

1124
	cmd = i915_gem_object_pin_map(pool->obj,
1125 1126 1127
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1128 1129 1130 1131
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1132

1133
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1134 1135 1136 1137 1138 1139 1140 1141 1142
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1143
	rq = i915_request_create(eb->context);
1144 1145 1146 1147 1148
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1149 1150 1151 1152
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1153
	err = reloc_move_to_gpu(rq, vma);
1154 1155 1156 1157 1158 1159 1160
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1161
		goto skip_request;
1162

1163
	i915_vma_lock(batch);
1164 1165 1166
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1167
	i915_vma_unlock(batch);
1168 1169
	if (err)
		goto skip_request;
1170 1171

	rq->batch = batch;
1172
	i915_vma_unpin(batch);
1173 1174 1175 1176 1177 1178

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1179
	goto out_pool;
1180

1181
skip_request:
1182
	i915_request_set_error_once(rq, err);
1183
err_request:
1184
	i915_request_add(rq);
1185 1186 1187
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1188 1189 1190
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1207 1208 1209
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1221 1222
static u64
relocate_entry(struct i915_vma *vma,
1223
	       const struct drm_i915_gem_relocation_entry *reloc,
1224 1225
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1226
{
1227
	u64 offset = reloc->offset;
1228 1229
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1230
	void *vaddr;
1231

1232 1233
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1234
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1235 1236 1237 1238 1239 1240 1241 1242 1243
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1244
		else
1245
			len = 3;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1291
repeat:
1292
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1293 1294 1295 1296 1297
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1298
			eb->reloc_cache.vaddr);
1299 1300 1301 1302 1303 1304

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1305 1306
	}

1307
out:
1308
	return target->node.start | UPDATE;
1309 1310
}

1311 1312
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1313
		  struct eb_vma *ev,
1314
		  const struct drm_i915_gem_relocation_entry *reloc)
1315
{
1316
	struct drm_i915_private *i915 = eb->i915;
1317
	struct eb_vma *target;
1318
	int err;
1319

1320
	/* we've already hold a reference to all valid objects */
1321 1322
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1323
		return -ENOENT;
1324

1325
	/* Validate that the target is in a valid r/w GPU domain */
1326
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1327
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1328
			  "target %d offset %d "
1329
			  "read %08x write %08x",
1330
			  reloc->target_handle,
1331 1332 1333
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1334
		return -EINVAL;
1335
	}
1336 1337
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1338
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1339
			  "target %d offset %d "
1340
			  "read %08x write %08x",
1341
			  reloc->target_handle,
1342 1343 1344
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1345
		return -EINVAL;
1346 1347
	}

1348
	if (reloc->write_domain) {
1349
		target->flags |= EXEC_OBJECT_WRITE;
1350

1351 1352 1353 1354 1355 1356 1357
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1358
		    IS_GEN(eb->i915, 6)) {
1359 1360
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1361
					    PIN_GLOBAL, NULL);
1362 1363 1364 1365
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1366
	}
1367

1368 1369
	/*
	 * If the relocation already has the right value in it, no
1370 1371
	 * more work needs to be done.
	 */
1372
	if (!DBG_FORCE_RELOC &&
1373
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1374
		return 0;
1375 1376

	/* Check that the relocation address is valid... */
1377
	if (unlikely(reloc->offset >
1378
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1379
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1380 1381 1382
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1383
			  (int)ev->vma->size);
1384
		return -EINVAL;
1385
	}
1386
	if (unlikely(reloc->offset & 3)) {
1387
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1388 1389 1390
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1391
		return -EINVAL;
1392 1393
	}

1394 1395 1396 1397 1398 1399
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1400
	 * out of our synchronisation.
1401
	 */
1402
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1403

1404
	/* and update the user's relocation entry */
1405
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1406 1407
}

1408
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1409
{
1410
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1411 1412
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1413
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1414
	unsigned int remain;
1415

1416
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1417
	remain = entry->relocation_count;
1418 1419
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1420

1421 1422 1423 1424 1425
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1426
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1427 1428 1429 1430 1431 1432 1433
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1434

1435 1436
		/*
		 * This is the fast path and we cannot handle a pagefault
1437 1438 1439 1440 1441 1442
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1443
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1444 1445
		if (unlikely(copied)) {
			remain = -EFAULT;
1446 1447
			goto out;
		}
1448

1449
		remain -= count;
1450
		do {
1451
			u64 offset = eb_relocate_entry(eb, ev, r);
1452

1453 1454 1455
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1456
				goto out;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1480 1481 1482 1483
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1484
			}
1485 1486 1487
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1488
out:
1489
	reloc_cache_reset(&eb->reloc_cache);
1490
	return remain;
1491 1492
}

1493
static int eb_relocate(struct i915_execbuffer *eb)
1494
{
1495 1496 1497 1498 1499 1500 1501 1502
	int err;

	mutex_lock(&eb->gem_context->mutex);
	err = eb_lookup_vmas(eb);
	mutex_unlock(&eb->gem_context->mutex);
	if (err)
		return err;

1503 1504 1505 1506 1507
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1508 1509 1510

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1511
		struct eb_vma *ev;
1512

1513
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1514 1515 1516
			err = eb_relocate_vma(eb, ev);
			if (err)
				return err;
1517 1518 1519 1520 1521 1522 1523 1524 1525
		}
	}

	return 0;
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1526
	struct ww_acquire_ctx acquire;
1527
	unsigned int i;
1528 1529 1530
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1531

1532
	for (i = 0; i < count; i++) {
1533 1534
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1535 1536 1537 1538 1539 1540 1541

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1542
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1556 1557 1558
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1559
		struct drm_i915_gem_object *obj = vma->obj;
1560

1561 1562
		assert_vma_held(vma);

1563
		if (flags & EXEC_OBJECT_CAPTURE) {
1564
			struct i915_capture_list *capture;
1565 1566

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1567 1568 1569 1570 1571
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1572 1573
		}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1587
			if (i915_gem_clflush_object(obj, 0))
1588
				flags &= ~EXEC_OBJECT_ASYNC;
1589 1590
		}

1591 1592 1593 1594
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1595

1596 1597
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1598

1599
		i915_vma_unlock(vma);
1600

1601
		__eb_unreserve_vma(vma, flags);
1602
		i915_vma_put(vma);
1603 1604

		ev->vma = NULL;
1605
	}
1606 1607 1608 1609 1610
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1611
	eb->exec = NULL;
1612

1613
	/* Unconditionally flush any chipset caches (for streaming writes). */
1614
	intel_gt_chipset_flush(eb->engine->gt);
1615
	return 0;
1616 1617

err_skip:
1618
	i915_request_set_error_once(eb->request, err);
1619
	return err;
1620 1621
}

T
Tvrtko Ursulin 已提交
1622
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1623
{
1624
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1625
		return -EINVAL;
1626

C
Chris Wilson 已提交
1627
	/* Kernel clipping was a DRI1 misfeature */
1628 1629
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1630
			return -EINVAL;
1631
	}
C
Chris Wilson 已提交
1632 1633 1634 1635 1636 1637

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1638
		return -EINVAL;
C
Chris Wilson 已提交
1639 1640

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1641
		return -EINVAL;
C
Chris Wilson 已提交
1642

T
Tvrtko Ursulin 已提交
1643
	return 0;
1644 1645
}

1646
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1647
{
1648 1649
	u32 *cs;
	int i;
1650

1651
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1652
		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1653 1654
		return -EINVAL;
	}
1655

1656
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1657 1658
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1659

1660
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1661
	for (i = 0; i < 4; i++) {
1662 1663
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1664
	}
1665
	*cs++ = MI_NOOP;
1666
	intel_ring_advance(rq, cs);
1667 1668 1669 1670

	return 0;
}

1671
static struct i915_vma *
1672 1673 1674
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1675
{
1676 1677
	struct i915_vma *vma;
	int err;
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1688 1689
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1722 1723 1724
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1725
	.release = __eb_parse_release,
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
};

static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1739
	err = i915_active_acquire(&eb->batch->vma->active);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1753 1754 1755
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1756
	pw->batch = eb->batch->vma;
1757 1758 1759 1760 1761
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1762 1763 1764
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
		goto err_trampoline;
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
		goto err_batch_unlock;

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
		goto err_batch_unlock;

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

	dma_fence_work_commit(&pw->base);
	return 0;

err_batch_unlock:
	dma_resv_unlock(pw->batch->resv);
1792 1793 1794 1795 1796 1797
err_trampoline:
	if (trampoline)
		i915_active_release(&trampoline->active);
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
1798
	i915_active_release(&eb->batch->vma->active);
1799
err_free:
1800 1801 1802 1803
	kfree(pw);
	return err;
}

1804
static int eb_parse(struct i915_execbuffer *eb)
1805
{
1806
	struct drm_i915_private *i915 = eb->i915;
1807
	struct intel_engine_pool_node *pool;
1808 1809
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1810
	int err;
1811

1812 1813 1814
	if (!eb_use_cmdparser(eb))
		return 0;

1815 1816 1817 1818 1819 1820 1821
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
1822 1823
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
1824 1825 1826 1827 1828 1829 1830
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

	pool = intel_engine_get_pool(eb->engine, len);
1831
	if (IS_ERR(pool))
1832
		return PTR_ERR(pool);
1833

1834 1835 1836
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1837
		goto err;
1838
	}
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
1856

1857
	err = eb_parse_pipeline(eb, shadow, trampoline);
1858 1859
	if (err)
		goto err_trampoline;
1860

1861
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1862
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1863
	eb->batch = &eb->vma[eb->buffer_count++];
1864

1865
	eb->trampoline = trampoline;
1866 1867
	eb->batch_start_offset = 0;

1868
	shadow->private = pool;
1869
	return 0;
1870

1871 1872 1873 1874 1875
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
1876 1877
err:
	intel_engine_pool_put(pool);
1878
	return err;
1879
}
1880

1881
static void
1882
add_to_client(struct i915_request *rq, struct drm_file *file)
1883
{
1884 1885 1886 1887 1888 1889 1890
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
1891 1892
}

1893
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1894
{
1895
	int err;
1896

1897 1898 1899
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1900

1901
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1902 1903 1904
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1905 1906
	}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

1919
	err = eb->engine->emit_bb_start(eb->request,
1920
					batch->node.start +
1921 1922
					eb->batch_start_offset,
					eb->batch_len,
1923 1924 1925
					eb->batch_flags);
	if (err)
		return err;
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

1937
	if (intel_context_nopreempt(eb->context))
1938
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1939

C
Chris Wilson 已提交
1940
	return 0;
1941 1942
}

1943 1944 1945 1946 1947 1948
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

1949
/*
1950
 * Find one BSD ring to dispatch the corresponding BSD command.
1951
 * The engine index is returned.
1952
 */
1953
static unsigned int
1954 1955
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1956 1957 1958
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1959
	/* Check whether the file_priv has already selected one ring. */
1960
	if ((int)file_priv->bsd_engine < 0)
1961 1962
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
1963

1964
	return file_priv->bsd_engine;
1965 1966
}

1967
static const enum intel_engine_id user_ring_map[] = {
1968 1969 1970 1971 1972
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
1973 1974
};

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2015 2016 2017 2018
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2019
	err = intel_gt_terminally_wedged(ce->engine->gt);
2020 2021 2022
	if (err)
		return err;

2023 2024 2025
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2026 2027 2028 2029 2030
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2031
	err = intel_context_pin(ce);
2032 2033
	if (err)
		return err;
2034

2035 2036 2037 2038 2039 2040 2041 2042
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2043 2044 2045
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2046
		goto err_unpin;
2047
	}
2048 2049

	intel_context_enter(ce);
2050 2051 2052 2053 2054
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2055 2056 2057 2058 2059 2060
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2061

2062 2063 2064
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2065
		i915_request_put(rq);
2066 2067 2068 2069 2070

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2071
	}
2072

2073
	eb->engine = ce->engine;
2074 2075
	eb->context = ce;
	return 0;
2076

2077 2078 2079 2080
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2081
err_unpin:
2082
	intel_context_unpin(ce);
2083
	return err;
2084 2085
}

2086
static void eb_unpin_engine(struct i915_execbuffer *eb)
2087
{
2088
	struct intel_context *ce = eb->context;
2089
	struct intel_timeline *tl = ce->timeline;
2090 2091 2092 2093 2094

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2095
	intel_context_unpin(ce);
2096
}
2097

2098 2099 2100 2101
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2102
{
2103
	struct drm_i915_private *i915 = eb->i915;
2104 2105
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2106 2107
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2108 2109 2110
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2111
		return -1;
2112 2113
	}

2114
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2115 2116 2117
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2118
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2119 2120
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2121
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2122 2123
			bsd_idx--;
		} else {
2124 2125 2126
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2127
			return -1;
2128 2129
		}

2130
		return _VCS(bsd_idx);
2131 2132
	}

2133
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2134 2135
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2136
		return -1;
2137 2138
	}

2139 2140 2141 2142
	return user_ring_map[user_ring_id];
}

static int
2143 2144 2145
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2146 2147 2148 2149 2150
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2151 2152 2153 2154
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2155 2156 2157 2158 2159

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2160
	err = __eb_pin_engine(eb, ce);
2161 2162 2163
	intel_context_put(ce);

	return err;
2164 2165
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2178
	const unsigned long nfences = args->num_cliprects;
2179 2180
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2181
	unsigned long n;
2182 2183 2184 2185 2186
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2187 2188 2189 2190 2191
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2192 2193 2194
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2195
	if (!access_ok(user, nfences * sizeof(*user)))
2196 2197
		return ERR_PTR(-EFAULT);

2198
	fences = kvmalloc_array(nfences, sizeof(*fences),
2199
				__GFP_NOWARN | GFP_KERNEL);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2212 2213 2214 2215 2216
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2217 2218 2219 2220 2221 2222 2223
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2224 2225 2226
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2262
		fence = drm_syncobj_fence_get(syncobj);
2263 2264 2265
		if (!fence)
			return -EINVAL;

2266
		err = i915_request_await_dma_fence(eb->request, fence);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2291
		drm_syncobj_replace_fence(syncobj, fence);
2292 2293 2294
	}
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2319
	if (likely(!intel_context_is_closed(eb->context))) {
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		attr = eb->gem_context->sched;

		/*
		 * Boost actual workloads past semaphores!
		 *
		 * With semaphores we spin on one engine waiting for another,
		 * simply to reduce the latency of starting our work when
		 * the signaler completes. However, if there is any other
		 * work that we could be doing on this engine instead, that
		 * is better utilisation and will reduce the overall duration
		 * of the current work. To avoid PI boosting a semaphore
		 * far in the distance past over useful work, we keep a history
		 * of any semaphore use along our dependency chain.
		 */
		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
			attr.priority |= I915_PRIORITY_NOSEMAPHORE;

		/*
		 * Boost priorities to new clients (new request flows).
		 *
		 * Allow interactive/synchronous clients to jump ahead of
		 * the bulk clients. (FQ_CODEL)
		 */
		if (list_empty(&rq->sched.signalers_list))
			attr.priority |= I915_PRIORITY_WAIT;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2347 2348
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	}

	local_bh_disable();
	__i915_request_queue(rq, &attr);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2362
static int
2363
i915_gem_do_execbuffer(struct drm_device *dev,
2364 2365
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2366 2367
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2368
{
2369
	struct drm_i915_private *i915 = to_i915(dev);
2370
	struct i915_execbuffer eb;
2371
	struct dma_fence *in_fence = NULL;
2372
	struct dma_fence *exec_fence = NULL;
2373
	struct sync_file *out_fence = NULL;
2374
	struct i915_vma *batch;
2375
	int out_fence_fd = -1;
2376
	int err;
2377

2378
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2379 2380
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2381

2382
	eb.i915 = i915;
2383 2384
	eb.file = file;
	eb.args = args;
2385
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2386
		args->flags |= __EXEC_HAS_RELOC;
2387

2388
	eb.exec = exec;
2389 2390
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
2391

2392
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2393 2394
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2395
	eb.buffer_count = args->buffer_count;
2396 2397
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2398
	eb.trampoline = NULL;
2399

2400
	eb.batch_flags = 0;
2401
	if (args->flags & I915_EXEC_SECURE) {
2402 2403 2404 2405 2406 2407 2408
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2409
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2410
			return -EPERM;
2411

2412
		eb.batch_flags |= I915_DISPATCH_SECURE;
2413
	}
2414
	if (args->flags & I915_EXEC_IS_PINNED)
2415
		eb.batch_flags |= I915_DISPATCH_PINNED;
2416

2417 2418
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2419 2420
		if (!in_fence)
			return -EINVAL;
2421 2422
	}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2436 2437 2438
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2439
			err = out_fence_fd;
2440
			goto err_exec_fence;
2441 2442 2443
		}
	}

2444 2445 2446 2447 2448
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2449

2450 2451 2452 2453
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2454
	err = eb_pin_engine(&eb, file, args);
2455
	if (unlikely(err))
2456
		goto err_context;
2457

2458
	err = eb_relocate(&eb);
2459
	if (err) {
2460 2461 2462 2463 2464 2465 2466 2467 2468
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2469
	}
2470

2471
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2472 2473
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2474 2475
		err = -EINVAL;
		goto err_vma;
2476
	}
2477 2478 2479 2480

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2481
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2482 2483
		err = -EINVAL;
		goto err_vma;
2484
	}
2485

2486
	if (eb.batch_len == 0)
2487
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2488

2489 2490 2491
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2492

2493 2494
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2495
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2496
	 * hsw should have this fixed, but bdw mucks it up again. */
2497
	batch = eb.batch->vma;
2498
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2499
		struct i915_vma *vma;
2500

2501 2502 2503 2504 2505 2506
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2507
		 *   so we don't really have issues with multiple objects not
2508 2509 2510
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2511
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2512
		if (IS_ERR(vma)) {
2513
			err = PTR_ERR(vma);
2514
			goto err_parse;
C
Chris Wilson 已提交
2515
		}
2516

2517
		batch = vma;
2518
	}
2519

2520 2521 2522
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2523
	/* Allocate a request for this batch buffer nice and early. */
2524
	eb.request = i915_request_create(eb.context);
2525
	if (IS_ERR(eb.request)) {
2526
		err = PTR_ERR(eb.request);
2527
		goto err_batch_unpin;
2528
	}
2529

2530
	if (in_fence) {
2531
		err = i915_request_await_dma_fence(eb.request, in_fence);
2532
		if (err < 0)
2533 2534 2535
			goto err_request;
	}

2536 2537 2538 2539 2540 2541 2542
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2543 2544 2545 2546 2547 2548
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2549
	if (out_fence_fd != -1) {
2550
		out_fence = sync_file_create(&eb.request->fence);
2551
		if (!out_fence) {
2552
			err = -ENOMEM;
2553 2554 2555 2556
			goto err_request;
		}
	}

2557 2558
	/*
	 * Whilst this request exists, batch_obj will be on the
2559 2560 2561 2562 2563
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2564 2565 2566
	eb.request->batch = batch;
	if (batch->private)
		intel_engine_pool_mark_active(batch->private, eb.request);
2567

2568
	trace_i915_request_queue(eb.request, eb.batch_flags);
2569
	err = eb_submit(&eb, batch);
2570
err_request:
2571
	add_to_client(eb.request, file);
2572
	i915_request_get(eb.request);
2573
	eb_request_add(&eb);
2574

2575 2576 2577
	if (fences)
		signal_fence_array(&eb, fences);

2578
	if (out_fence) {
2579
		if (err == 0) {
2580
			fd_install(out_fence_fd, out_fence->file);
2581
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2582 2583 2584 2585 2586 2587
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2588
	i915_request_put(eb.request);
2589

2590
err_batch_unpin:
2591
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2592
		i915_vma_unpin(batch);
2593
err_parse:
2594 2595
	if (batch->private)
		intel_engine_pool_put(batch->private);
2596 2597 2598
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2599 2600
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2601
	eb_unpin_engine(&eb);
2602
err_context:
2603
	i915_gem_context_put(eb.gem_context);
2604
err_destroy:
2605
	eb_destroy(&eb);
2606
err_out_fence:
2607 2608
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2609 2610
err_exec_fence:
	dma_fence_put(exec_fence);
2611
err_in_fence:
2612
	dma_fence_put(in_fence);
2613
	return err;
2614 2615
}

2616 2617
static size_t eb_element_size(void)
{
2618
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2634 2635 2636 2637 2638
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2639 2640
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2641
{
2642
	struct drm_i915_private *i915 = to_i915(dev);
2643 2644 2645 2646
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2647
	const size_t count = args->buffer_count;
2648 2649
	unsigned int i;
	int err;
2650

2651
	if (!check_buffer_count(count)) {
2652
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2653 2654 2655
		return -EINVAL;
	}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2667 2668 2669
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2670

2671
	/* Copy in the exec list from userland */
2672
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2673
				   __GFP_NOWARN | GFP_KERNEL);
2674
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2675
				    __GFP_NOWARN | GFP_KERNEL);
2676
	if (exec_list == NULL || exec2_list == NULL) {
2677 2678 2679
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2680 2681
		kvfree(exec_list);
		kvfree(exec2_list);
2682 2683
		return -ENOMEM;
	}
2684
	err = copy_from_user(exec_list,
2685
			     u64_to_user_ptr(args->buffers_ptr),
2686
			     sizeof(*exec_list) * count);
2687
	if (err) {
2688 2689
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2690 2691
		kvfree(exec_list);
		kvfree(exec2_list);
2692 2693 2694 2695 2696 2697 2698 2699 2700
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2701
		if (INTEL_GEN(to_i915(dev)) < 4)
2702 2703 2704 2705 2706
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2707
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2708
	if (exec2.flags & __EXEC_HAS_RELOC) {
2709
		struct drm_i915_gem_exec_object __user *user_exec_list =
2710
			u64_to_user_ptr(args->buffers_ptr);
2711

2712
		/* Copy the new buffer offsets back to the user's exec list. */
2713
		for (i = 0; i < args->buffer_count; i++) {
2714 2715 2716
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2717
			exec2_list[i].offset =
2718 2719 2720 2721 2722
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2723
				break;
2724 2725 2726
		}
	}

M
Michal Hocko 已提交
2727 2728
	kvfree(exec_list);
	kvfree(exec2_list);
2729
	return err;
2730 2731 2732
}

int
2733 2734
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2735
{
2736
	struct drm_i915_private *i915 = to_i915(dev);
2737
	struct drm_i915_gem_execbuffer2 *args = data;
2738
	struct drm_i915_gem_exec_object2 *exec2_list;
2739
	struct drm_syncobj **fences = NULL;
2740
	const size_t count = args->buffer_count;
2741
	int err;
2742

2743
	if (!check_buffer_count(count)) {
2744
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2745 2746 2747
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2748 2749 2750
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2751 2752

	/* Allocate an extra slot for use by the command parser */
2753
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2754
				    __GFP_NOWARN | GFP_KERNEL);
2755
	if (exec2_list == NULL) {
2756 2757
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2758 2759
		return -ENOMEM;
	}
2760 2761
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2762
			   sizeof(*exec2_list) * count)) {
2763
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2764
		kvfree(exec2_list);
2765 2766 2767
		return -EFAULT;
	}

2768 2769 2770 2771 2772 2773 2774 2775 2776
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2777 2778 2779 2780 2781 2782 2783 2784

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2785
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2786 2787
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2788

2789
		/* Copy the new buffer offsets back to the user's exec list. */
2790 2791 2792 2793 2794 2795 2796 2797
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2798
			goto end;
2799

2800
		for (i = 0; i < args->buffer_count; i++) {
2801 2802 2803
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2804
			exec2_list[i].offset =
2805 2806 2807 2808
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2809
		}
2810 2811
end_user:
		user_access_end();
2812
end:;
2813 2814
	}

2815
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2816
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2817
	kvfree(exec2_list);
2818
	return err;
2819
}