i915_gem_execbuffer.c 86.9 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48 49 50
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

51 52 53 54 55
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 58

#define __EXEC_HAS_RELOC	BIT(31)
59
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
60
#define UPDATE			PIN_OFFSET_FIXED
61 62

#define BATCH_OFFSET_BIAS (256*1024)
63

64
#define __I915_EXEC_ILLEGAL_FLAGS \
65 66 67
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229 230 231 232 233 234 235
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

236
struct i915_execbuffer {
237 238 239 240
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
241
	struct eb_vma *vma;
242 243

	struct intel_engine_cs *engine; /** engine to queue the request to */
244 245
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
246

247
	struct i915_request *request; /** our request to build */
248
	struct eb_vma *batch; /** identity of the batch obj/vma */
249
	struct i915_vma *trampoline; /** trampoline used for chaining */
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
265
	struct reloc_cache {
266
		struct drm_mm_node node; /** temporary GTT binding */
267 268
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
269
		unsigned int gen; /** Cached value of INTEL_GEN */
270
		bool use_64bit_reloc : 1;
271 272 273
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
274

275
		struct i915_request *rq;
276 277
		u32 *rq_cmd;
		unsigned int rq_size;
278
	} reloc_cache;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
294

295 296
	struct eb_fence *fences;
	unsigned long num_fences;
297 298
};

299 300
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
301
	return intel_engine_requires_cmd_parser(eb->engine) ||
302 303
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
304 305
}

306
static int eb_create(struct i915_execbuffer *eb)
307
{
308 309
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
310

311 312 313 314 315 316 317 318 319 320 321
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
322
		do {
323
			gfp_t flags;
324 325 326 327 328 329 330

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
331
			flags = GFP_KERNEL;
332 333 334
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

335
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
336
					      flags);
337 338 339 340
			if (eb->buckets)
				break;
		} while (--size);

341
		if (unlikely(!size))
342
			return -ENOMEM;
343

344
		eb->lut_size = size;
345
	} else {
346
		eb->lut_size = -eb->buffer_count;
347
	}
348

349
	return 0;
350 351
}

352 353
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
354 355
		 const struct i915_vma *vma,
		 unsigned int flags)
356 357 358 359 360 361 362
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

363
	if (flags & EXEC_OBJECT_PINNED &&
364 365 366
	    vma->node.start != entry->offset)
		return true;

367
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
368 369 370
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

371
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
372 373 374
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

375 376 377 378
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

379 380 381
	return false;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

408
static inline bool
409
eb_pin_vma(struct i915_execbuffer *eb,
410
	   const struct drm_i915_gem_exec_object2 *entry,
411
	   struct eb_vma *ev)
412
{
413
	struct i915_vma *vma = ev->vma;
414
	u64 pin_flags;
415

416
	if (vma->node.size)
417
		pin_flags = vma->node.start;
418
	else
419
		pin_flags = entry->offset & PIN_OFFSET_MASK;
420

421
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
422
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
423
		pin_flags |= PIN_GLOBAL;
424

425 426 427 428 429 430 431 432 433 434 435 436 437
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
438

439
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
440
		if (unlikely(i915_vma_pin_fence(vma))) {
441
			i915_vma_unpin(vma);
442
			return false;
443 444
		}

445
		if (vma->fence)
446
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
447 448
	}

449 450
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
451 452
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
{
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));

	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	__i915_vma_unpin(vma);
}

static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

	__eb_unreserve_vma(ev->vma, ev->flags);
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

473 474 475 476
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
477
{
478 479
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
480

481 482
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
483 484 485 486 487 488 489
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
490
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
491 492 493 494 495 496 497 498
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
499
	}
500 501 502 503 504 505 506
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

507 508 509 510 511 512 513 514 515 516 517 518
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

519
	return 0;
520 521
}

522
static void
523 524 525
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
526
{
527
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
528
	struct eb_vma *ev = &eb->vma[i];
529 530 531

	GEM_BUG_ON(i915_vma_is_closed(vma));

532
	ev->vma = vma;
533 534 535
	ev->exec = entry;
	ev->flags = entry->flags;

536
	if (eb->lut_size > 0) {
537 538
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
539 540
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
541
	}
542

543
	if (entry->relocation_count)
544
		list_add_tail(&ev->reloc_link, &eb->relocs);
545

546 547 548 549 550 551 552 553 554 555
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
556
		if (entry->relocation_count &&
557 558
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
559
		if (eb->reloc_cache.has_fence)
560
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
561

562
		eb->batch = ev;
563 564
	}

565
	if (eb_pin_vma(eb, entry, ev)) {
566 567 568 569
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
570
	} else {
571 572
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
573 574 575
	}
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

593
static int eb_reserve_vma(const struct i915_execbuffer *eb,
594
			  struct eb_vma *ev,
595
			  u64 pin_flags)
596
{
597 598
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
599 600
	int err;

601 602 603 604 605 606 607
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

608 609
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
610
			   eb_pin_flags(entry, ev->flags) | pin_flags);
611 612 613 614 615 616 617 618
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

619
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
620
		err = i915_vma_pin_fence(vma);
621 622 623 624 625
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

626
		if (vma->fence)
627
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
628 629
	}

630
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
631
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
632

633 634 635 636 637 638
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
639
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
640
	struct list_head last;
641
	struct eb_vma *ev;
642
	unsigned int i, pass;
643
	int err = 0;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

659 660 661
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

662 663
	pass = 0;
	do {
664 665
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
666 667 668
			if (err)
				break;
		}
669
		if (err != -ENOSPC)
670
			break;
671 672 673 674 675

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
676
			unsigned int flags;
677

678 679
			ev = &eb->vma[i];
			flags = ev->flags;
680 681
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
682 683
				continue;

684
			eb_unreserve_vma(ev);
685

686
			if (flags & EXEC_OBJECT_PINNED)
687
				/* Pinned must have their slot */
688
				list_add(&ev->bind_link, &eb->unbound);
689
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
690
				/* Map require the lowest 256MiB (aperture) */
691
				list_add_tail(&ev->bind_link, &eb->unbound);
692 693
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
694
				list_add(&ev->bind_link, &last);
695
			else
696
				list_add_tail(&ev->bind_link, &last);
697 698 699 700 701 702 703 704 705
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
706
			mutex_lock(&eb->context->vm->mutex);
707
			err = i915_gem_evict_vm(eb->context->vm);
708
			mutex_unlock(&eb->context->vm->mutex);
709
			if (err)
710
				goto unlock;
711 712 713
			break;

		default:
714 715
			err = -ENOSPC;
			goto unlock;
716
		}
717 718

		pin_flags = PIN_USER;
719
	} while (1);
720 721 722 723

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
724
}
725

726 727
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
728 729 730 731
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
732 733 734 735 736 737 738
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
739 740
	if (unlikely(!ctx))
		return -ENOENT;
741

742
	eb->gem_context = ctx;
743
	if (rcu_access_pointer(ctx->vm))
744
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
745 746

	eb->context_flags = 0;
747
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
748 749 750 751 752
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

753 754
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
755
{
756 757
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
758
	int err;
759

760 761 762 763 764 765 766 767 768 769 770 771
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
772 773 774 775 776 777
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
778
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
779 780
		else
			err = -ENOENT;
781 782 783
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

784
			spin_lock(&obj->lut_lock);
785 786 787 788 789 790
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
791
			spin_unlock(&obj->lut_lock);
792
		}
793
		mutex_unlock(&ctx->lut_mutex);
794 795 796
	}
	if (unlikely(err))
		goto err;
797

798
	return 0;
799

800
err:
C
Chris Wilson 已提交
801
	i915_vma_close(vma);
802 803 804 805
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
806

807 808
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
809 810
	struct i915_address_space *vm = eb->context->vm;

811 812
	do {
		struct drm_i915_gem_object *obj;
813
		struct i915_vma *vma;
814
		int err;
815

816 817
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
818
		if (likely(vma && vma->vm == vm))
819 820 821 822
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
823

824
		obj = i915_gem_object_lookup(eb->file, handle);
825 826
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
827

828
		vma = i915_vma_instance(obj, vm, NULL);
829
		if (IS_ERR(vma)) {
830 831
			i915_gem_object_put(obj);
			return vma;
832 833
		}

834 835 836
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
837

838 839 840 841 842
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
843

844 845 846 847 848
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
849

850 851 852 853 854 855 856 857 858 859 860
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
861

862
		err = eb_validate_vma(eb, &eb->exec[i], vma);
863 864 865 866
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
867

868
		eb_add_vma(eb, i, batch, vma);
869 870
	}

871
	eb->vma[i].vma = NULL;
872
	return err;
873 874
}

875
static struct eb_vma *
876
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
877
{
878 879
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
880
			return NULL;
881
		return &eb->vma[handle];
882 883
	} else {
		struct hlist_head *head;
884
		struct eb_vma *ev;
885

886
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
887 888 889
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
890 891 892
		}
		return NULL;
	}
893 894
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
static void eb_release_vmas(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

		eb->vma[i].vma = NULL;

		if (ev->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, ev->flags);

		i915_vma_put(vma);
	}
}

916
static void eb_destroy(const struct i915_execbuffer *eb)
917
{
918 919
	GEM_BUG_ON(eb->reloc_cache.rq);

920
	if (eb->lut_size > 0)
921
		kfree(eb->buckets);
922 923
}

924
static inline u64
925
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
926
		  const struct i915_vma *target)
927
{
928
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
929 930
}

931 932
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
933
{
934 935
	cache->page = -1;
	cache->vaddr = 0;
936
	/* Must be a variable in the struct to allow GCC to unroll. */
937
	cache->gen = INTEL_GEN(i915);
938
	cache->has_llc = HAS_LLC(i915);
939
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
940 941
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
942
	cache->node.flags = 0;
943
	cache->rq = NULL;
944
	cache->rq_size = 0;
945
}
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

966
static void reloc_gpu_flush(struct reloc_cache *cache)
967
{
968
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
969

970 971
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
972

973 974
	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
	i915_gem_object_unpin_map(obj);
975

976
	intel_gt_chipset_flush(cache->rq->engine->gt);
977

978 979
	i915_request_add(cache->rq);
	cache->rq = NULL;
980 981
}

982 983 984 985
static void reloc_cache_reset(struct reloc_cache *cache)
{
	void *vaddr;

986 987 988
	if (cache->rq)
		reloc_gpu_flush(cache);

989 990 991 992 993
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
994 995
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
996 997 998 999
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1000 1001
		i915_gem_object_finish_access(obj);
		i915_gem_object_unlock(obj);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
			unsigned long pageno)
{
	void *vaddr;
	struct page *page;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

1037
		err = i915_gem_object_lock_interruptible(obj, NULL);
1038 1039 1040
		if (err)
			return ERR_PTR(err);

1041 1042 1043 1044 1045 1046
		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err) {
			i915_gem_object_unlock(obj);
			return ERR_PTR(err);
		}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
	cache->page = pageno;

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

1088
		i915_gem_object_lock(obj, NULL);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		i915_gem_object_unlock(obj);
		if (err)
			return ERR_PTR(err);

		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE |
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1194
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1195
			     struct intel_engine_cs *engine,
1196
			     struct i915_vma *vma,
1197 1198 1199
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1200
	struct intel_gt_buffer_pool_node *pool;
1201
	struct i915_request *rq;
1202 1203 1204 1205
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1206
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1207 1208
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1209

1210
	cmd = i915_gem_object_pin_map(pool->obj,
1211 1212 1213
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1214 1215 1216 1217
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1218

1219
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1229 1230 1231 1232 1233 1234 1235
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1236
			err = PTR_ERR(ce);
1237 1238 1239 1240 1241 1242 1243 1244 1245
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1246 1247 1248 1249 1250
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1251
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1252 1253 1254
	if (err)
		goto err_request;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1265
	i915_vma_lock(batch);
1266 1267 1268
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1269
	i915_vma_unlock(batch);
1270 1271
	if (err)
		goto skip_request;
1272 1273

	rq->batch = batch;
1274
	i915_vma_unpin(batch);
1275 1276 1277 1278 1279 1280

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1281
	goto out_pool;
1282

1283
skip_request:
1284
	i915_request_set_error_once(rq, err);
1285
err_request:
1286
	i915_request_add(rq);
1287 1288 1289
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1290 1291
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1292
	intel_gt_buffer_pool_put(pool);
1293 1294 1295
	return err;
}

1296 1297 1298 1299 1300
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1301 1302 1303 1304 1305 1306
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1307 1308 1309

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);
1310 1311

	if (unlikely(!cache->rq)) {
1312
		int err;
1313 1314
		struct intel_engine_cs *engine = eb->engine;

1315
		if (!reloc_can_use_engine(engine)) {
1316
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1317
			if (!engine)
1318 1319
				return ERR_PTR(-ENODEV);
		}
1320

1321
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1343
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1344
{
1345 1346
	struct page *page;
	unsigned long addr;
1347

1348
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1349

1350 1351 1352
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1353

1354 1355 1356
	return addr + offset_in_page(offset);
}

1357 1358 1359 1360
static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
1376
		return false;
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1387 1388

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1389 1390 1391
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1392
		} else {
1393 1394 1395 1396 1397
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1398
		}
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1423 1424
	}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	return true;
}

static bool reloc_entry_gpu(struct i915_execbuffer *eb,
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1440 1441 1442
}

static u64
1443
relocate_entry(struct i915_vma *vma,
1444
	       const struct drm_i915_gem_relocation_entry *reloc,
1445
	       struct i915_execbuffer *eb,
1446 1447 1448
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	u64 offset = reloc->offset;

	if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
		vaddr = reloc_vaddr(vma->obj,
				    &eb->reloc_cache,
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1474

1475
	return target->node.start | UPDATE;
1476 1477
}

1478 1479
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1480
		  struct eb_vma *ev,
1481
		  const struct drm_i915_gem_relocation_entry *reloc)
1482
{
1483
	struct drm_i915_private *i915 = eb->i915;
1484
	struct eb_vma *target;
1485
	int err;
1486

1487
	/* we've already hold a reference to all valid objects */
1488 1489
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1490
		return -ENOENT;
1491

1492
	/* Validate that the target is in a valid r/w GPU domain */
1493
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1494
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1495
			  "target %d offset %d "
1496
			  "read %08x write %08x",
1497
			  reloc->target_handle,
1498 1499 1500
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1501
		return -EINVAL;
1502
	}
1503 1504
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1505
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1506
			  "target %d offset %d "
1507
			  "read %08x write %08x",
1508
			  reloc->target_handle,
1509 1510 1511
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1512
		return -EINVAL;
1513 1514
	}

1515
	if (reloc->write_domain) {
1516
		target->flags |= EXEC_OBJECT_WRITE;
1517

1518 1519 1520 1521 1522 1523 1524
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1525
		    IS_GEN(eb->i915, 6)) {
1526 1527
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1528
					    PIN_GLOBAL, NULL);
1529
			if (err)
1530 1531
				return err;
		}
1532
	}
1533

1534 1535
	/*
	 * If the relocation already has the right value in it, no
1536 1537
	 * more work needs to be done.
	 */
1538 1539
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1540
		return 0;
1541 1542

	/* Check that the relocation address is valid... */
1543
	if (unlikely(reloc->offset >
1544
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1545
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1546 1547 1548
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1549
			  (int)ev->vma->size);
1550
		return -EINVAL;
1551
	}
1552
	if (unlikely(reloc->offset & 3)) {
1553
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1554 1555 1556
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1557
		return -EINVAL;
1558 1559
	}

1560 1561 1562 1563 1564 1565
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1566
	 * out of our synchronisation.
1567
	 */
1568
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1569

1570
	/* and update the user's relocation entry */
1571
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1572 1573
}

1574
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1575
{
1576
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1577
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1578
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1579 1580 1581
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1582

1583
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1584
		return -EINVAL;
1585

1586 1587 1588 1589 1590
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1591
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1592 1593 1594 1595 1596
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1597
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1598
		unsigned int copied;
1599

1600 1601
		/*
		 * This is the fast path and we cannot handle a pagefault
1602 1603 1604 1605 1606 1607
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1608 1609 1610
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1611 1612 1613 1614
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1615

1616
		remain -= count;
1617
		do {
1618
			u64 offset = eb_relocate_entry(eb, ev, r);
1619

1620 1621
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1622 1623
				remain = (int)offset;
				goto out;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1647 1648
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1649
			}
1650 1651 1652
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1653 1654 1655
out:
	reloc_cache_reset(&eb->reloc_cache);
	return remain;
1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
{
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;

	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);

		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
	}
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
}

static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;

	size = entry->relocation_count;
	if (size == 0)
		return 0;

	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;

	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
}

static int eb_copy_relocations(const struct i915_execbuffer *eb)
{
	struct drm_i915_gem_relocation_entry *relocs;
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;

	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;

		if (nreloc == 0)
			continue;

		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;

		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);

		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}

	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

	flush_workqueue(eb->i915->mm.userptr_wq);

	if (err)
		goto out;

	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
	if (err)
		goto out;

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, ev);
			pagefault_enable();
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

	mutex_unlock(&eb->i915->drm.struct_mutex);
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

	return err;
}

1902
static int eb_relocate(struct i915_execbuffer *eb)
1903
{
1904 1905 1906 1907 1908 1909
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1910 1911 1912 1913 1914
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1915 1916 1917

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1918
		struct eb_vma *ev;
1919

1920
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1921 1922
			err = eb_relocate_vma(eb, ev);
			if (err)
1923
				break;
1924
		}
1925 1926 1927

		if (err)
			return eb_relocate_slow(eb);
1928 1929
	}

1930
	return 0;
1931 1932 1933 1934 1935
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1936
	struct ww_acquire_ctx acquire;
1937
	unsigned int i;
1938 1939 1940
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1941

1942
	for (i = 0; i < count; i++) {
1943 1944
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1945 1946 1947 1948 1949 1950 1951

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1952
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1966 1967 1968
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1969
		struct drm_i915_gem_object *obj = vma->obj;
1970

1971 1972
		assert_vma_held(vma);

1973
		if (flags & EXEC_OBJECT_CAPTURE) {
1974
			struct i915_capture_list *capture;
1975 1976

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1977 1978 1979 1980 1981
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1982 1983
		}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1997
			if (i915_gem_clflush_object(obj, 0))
1998
				flags &= ~EXEC_OBJECT_ASYNC;
1999 2000
		}

2001 2002 2003 2004
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
2005

2006 2007
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
2008

2009
		i915_vma_unlock(vma);
2010
	}
2011 2012 2013 2014 2015
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

2016
	/* Unconditionally flush any chipset caches (for streaming writes). */
2017
	intel_gt_chipset_flush(eb->engine->gt);
2018
	return 0;
2019 2020

err_skip:
2021
	i915_request_set_error_once(eb->request, err);
2022
	return err;
2023 2024
}

T
Tvrtko Ursulin 已提交
2025
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2026
{
2027
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2028
		return -EINVAL;
2029

C
Chris Wilson 已提交
2030
	/* Kernel clipping was a DRI1 misfeature */
2031 2032
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2033
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2034
			return -EINVAL;
2035
	}
C
Chris Wilson 已提交
2036 2037 2038 2039 2040 2041

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2042
		return -EINVAL;
C
Chris Wilson 已提交
2043 2044

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2045
		return -EINVAL;
C
Chris Wilson 已提交
2046

T
Tvrtko Ursulin 已提交
2047
	return 0;
2048 2049
}

2050
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2051
{
2052 2053
	u32 *cs;
	int i;
2054

2055 2056
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2057 2058
		return -EINVAL;
	}
2059

2060
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2061 2062
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2063

2064
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2065
	for (i = 0; i < 4; i++) {
2066 2067
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2068
	}
2069
	*cs++ = MI_NOOP;
2070
	intel_ring_advance(rq, cs);
2071 2072 2073 2074

	return 0;
}

2075
static struct i915_vma *
2076 2077 2078
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
2079
{
2080 2081
	struct i915_vma *vma;
	int err;
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

2126 2127 2128
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
2129
	.release = __eb_parse_release,
2130 2131
};

2132 2133 2134 2135 2136 2137 2138
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

2139
	return i915_active_ref(&node->active, tl->fence_context, fence);
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2175
	err = i915_active_acquire(&eb->batch->vma->active);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2189 2190 2191
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2192
	pw->batch = eb->batch->vma;
2193 2194 2195 2196 2197
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2198 2199 2200 2201 2202
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

2203 2204
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
2205
		goto err_commit;
2206 2207 2208

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
2209
		goto err_commit_unlock;
2210 2211 2212 2213 2214 2215

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
2216
		goto err_commit_unlock;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

2228
	dma_fence_work_commit_imm(&pw->base);
2229 2230
	return 0;

2231
err_commit_unlock:
2232
	dma_resv_unlock(pw->batch->resv);
2233 2234 2235 2236 2237
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2238 2239 2240
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2241
	i915_active_release(&eb->batch->vma->active);
2242
err_free:
2243 2244 2245 2246
	kfree(pw);
	return err;
}

2247
static int eb_parse(struct i915_execbuffer *eb)
2248
{
2249
	struct drm_i915_private *i915 = eb->i915;
2250
	struct intel_gt_buffer_pool_node *pool;
2251 2252
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2253
	int err;
2254

2255 2256 2257
	if (!eb_use_cmdparser(eb))
		return 0;

2258 2259 2260 2261 2262 2263 2264
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2265 2266
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2267 2268 2269 2270 2271 2272
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

2273
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2274
	if (IS_ERR(pool))
2275
		return PTR_ERR(pool);
2276

2277 2278 2279
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2280
		goto err;
2281
	}
2282
	i915_gem_object_set_readonly(shadow->obj);
2283
	shadow->private = pool;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2297
		shadow->private = pool;
2298 2299 2300

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2301

2302
	err = eb_parse_pipeline(eb, shadow, trampoline);
2303 2304
	if (err)
		goto err_trampoline;
2305

2306
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2307
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2308
	eb->batch = &eb->vma[eb->buffer_count++];
2309

2310
	eb->trampoline = trampoline;
2311 2312
	eb->batch_start_offset = 0;

2313
	return 0;
2314

2315 2316 2317 2318 2319
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2320
err:
2321
	intel_gt_buffer_pool_put(pool);
2322
	return err;
2323
}
2324

2325
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2326
{
2327
	int err;
2328

2329 2330 2331
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2332

2333
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2334 2335 2336
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2337 2338
	}

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2351
	err = eb->engine->emit_bb_start(eb->request,
2352
					batch->node.start +
2353 2354
					eb->batch_start_offset,
					eb->batch_len,
2355 2356 2357
					eb->batch_flags);
	if (err)
		return err;
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2369
	if (intel_context_nopreempt(eb->context))
2370
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2371

C
Chris Wilson 已提交
2372
	return 0;
2373 2374
}

2375 2376
static int num_vcs_engines(const struct drm_i915_private *i915)
{
2377
	return hweight64(VDBOX_MASK(&i915->gt));
2378 2379
}

2380
/*
2381
 * Find one BSD ring to dispatch the corresponding BSD command.
2382
 * The engine index is returned.
2383
 */
2384
static unsigned int
2385 2386
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2387 2388 2389
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2390
	/* Check whether the file_priv has already selected one ring. */
2391
	if ((int)file_priv->bsd_engine < 0)
2392 2393
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2394

2395
	return file_priv->bsd_engine;
2396 2397
}

2398
static const enum intel_engine_id user_ring_map[] = {
2399 2400 2401 2402 2403
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2404 2405
};

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2446 2447 2448 2449
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2450
	err = intel_gt_terminally_wedged(ce->engine->gt);
2451 2452 2453
	if (err)
		return err;

2454 2455 2456
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2457 2458 2459 2460 2461
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2462
	err = intel_context_pin(ce);
2463 2464
	if (err)
		return err;
2465

2466 2467 2468 2469 2470 2471 2472 2473
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2474 2475 2476
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2477
		goto err_unpin;
2478
	}
2479 2480

	intel_context_enter(ce);
2481 2482 2483 2484 2485
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2486 2487 2488 2489 2490 2491
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2492

2493 2494 2495
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2496
		i915_request_put(rq);
2497 2498 2499 2500 2501

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2502
	}
2503

2504
	eb->engine = ce->engine;
2505 2506
	eb->context = ce;
	return 0;
2507

2508 2509 2510 2511
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2512
err_unpin:
2513
	intel_context_unpin(ce);
2514
	return err;
2515 2516
}

2517
static void eb_unpin_engine(struct i915_execbuffer *eb)
2518
{
2519
	struct intel_context *ce = eb->context;
2520
	struct intel_timeline *tl = ce->timeline;
2521 2522 2523 2524 2525

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2526
	intel_context_unpin(ce);
2527
}
2528

2529 2530 2531 2532
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2533
{
2534
	struct drm_i915_private *i915 = eb->i915;
2535 2536
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2537 2538
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2539 2540 2541
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2542
		return -1;
2543 2544
	}

2545
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2546 2547 2548
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2549
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2550 2551
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2552
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2553 2554
			bsd_idx--;
		} else {
2555 2556 2557
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2558
			return -1;
2559 2560
		}

2561
		return _VCS(bsd_idx);
2562 2563
	}

2564
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2565 2566
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2567
		return -1;
2568 2569
	}

2570 2571 2572 2573
	return user_ring_map[user_ring_id];
}

static int
2574 2575 2576
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2577 2578 2579 2580 2581
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2582 2583 2584 2585
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2586 2587 2588 2589 2590

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2591
	err = __eb_pin_engine(eb, ce);
2592 2593 2594
	intel_context_put(ce);

	return err;
2595 2596
}

2597
static void
2598
__free_fence_array(struct eb_fence *fences, unsigned int n)
2599
{
2600
	while (n--) {
2601
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2602 2603 2604
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2605 2606 2607
	kvfree(fences);
}

2608
static int
2609 2610
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2611
{
2612 2613 2614 2615 2616
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2617

2618 2619
	nfences = timeline_fences->fence_count;
	if (!nfences)
2620
		return 0;
2621

2622 2623 2624
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2625 2626
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2627
		return -EINVAL;
2628

2629 2630 2631 2632 2633 2634
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2635
		return -EFAULT;
2636

2637 2638 2639 2640
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2641
		return -ENOMEM;
2642

2643 2644 2645 2646 2647 2648 2649 2650
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2651
		struct drm_syncobj *syncobj;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2673

2674 2675 2676 2677 2678
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2679 2680
		}

2681 2682 2683 2684 2685
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2686
			dma_fence_put(fence);
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2727 2728
		}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2783 2784
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2795 2796
		}

2797 2798 2799
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2800 2801 2802 2803 2804 2805
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2806 2807
	}

2808
	return 0;
2809
}
2810

2811 2812 2813 2814
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2815 2816 2817
}

static int
2818
await_fence_array(struct i915_execbuffer *eb)
2819 2820 2821 2822
{
	unsigned int n;
	int err;

2823
	for (n = 0; n < eb->num_fences; n++) {
2824 2825 2826
		struct drm_syncobj *syncobj;
		unsigned int flags;

2827
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2828

2829 2830
		if (!eb->fences[n].dma_fence)
			continue;
2831

2832 2833
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
2834 2835 2836 2837 2838 2839 2840
		if (err < 0)
			return err;
	}

	return 0;
}

2841
static void signal_fence_array(const struct i915_execbuffer *eb)
2842 2843 2844 2845
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

2846
	for (n = 0; n < eb->num_fences; n++) {
2847 2848 2849
		struct drm_syncobj *syncobj;
		unsigned int flags;

2850
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2851 2852 2853
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2867 2868 2869
	}
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2906
	if (likely(!intel_context_is_closed(eb->context))) {
2907 2908 2909
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2910 2911
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2923
static const i915_user_extension_fn execbuf_extensions[] = {
2924
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

2949
static int
2950
i915_gem_do_execbuffer(struct drm_device *dev,
2951 2952
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2953
		       struct drm_i915_gem_exec_object2 *exec)
2954
{
2955
	struct drm_i915_private *i915 = to_i915(dev);
2956
	struct i915_execbuffer eb;
2957 2958
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2959
	struct i915_vma *batch;
2960
	int out_fence_fd = -1;
2961
	int err;
2962

2963
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2964 2965
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2966

2967
	eb.i915 = i915;
2968 2969
	eb.file = file;
	eb.args = args;
2970
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2971
		args->flags |= __EXEC_HAS_RELOC;
2972

2973
	eb.exec = exec;
2974 2975
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
2976

2977
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2978 2979
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2980
	eb.buffer_count = args->buffer_count;
2981 2982
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2983
	eb.trampoline = NULL;
2984

2985
	eb.fences = NULL;
2986
	eb.num_fences = 0;
2987

2988
	eb.batch_flags = 0;
2989
	if (args->flags & I915_EXEC_SECURE) {
2990 2991 2992 2993 2994 2995 2996
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2997
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2998
			return -EPERM;
2999

3000
		eb.batch_flags |= I915_DISPATCH_SECURE;
3001
	}
3002
	if (args->flags & I915_EXEC_IS_PINNED)
3003
		eb.batch_flags |= I915_DISPATCH_PINNED;
3004

3005 3006 3007 3008 3009 3010 3011 3012
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3013 3014 3015 3016 3017
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3018
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3019 3020 3021 3022
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3023
	}
3024
#undef IN_FENCES
3025

3026 3027 3028
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3029
			err = out_fence_fd;
3030
			goto err_in_fence;
3031 3032 3033
		}
	}

3034 3035
	err = eb_create(&eb);
	if (err)
3036
		goto err_out_fence;
3037

3038
	GEM_BUG_ON(!eb.lut_size);
3039

3040 3041 3042 3043
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3044
	err = eb_pin_engine(&eb, file, args);
3045
	if (unlikely(err))
3046
		goto err_context;
3047

3048
	err = eb_relocate(&eb);
3049
	if (err) {
3050 3051 3052 3053 3054 3055 3056 3057 3058
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3059
	}
3060

3061
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
3062 3063
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
3064 3065
		err = -EINVAL;
		goto err_vma;
3066
	}
3067 3068 3069 3070

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
3071
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
3072 3073
		err = -EINVAL;
		goto err_vma;
3074
	}
3075

3076
	if (eb.batch_len == 0)
3077
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
3078

3079 3080 3081
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
3082

3083 3084
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
3085
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
3086
	 * hsw should have this fixed, but bdw mucks it up again. */
3087
	batch = eb.batch->vma;
3088
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
3089
		struct i915_vma *vma;
3090

3091 3092 3093 3094 3095 3096
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
3097
		 *   so we don't really have issues with multiple objects not
3098 3099 3100
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
3101
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
3102
		if (IS_ERR(vma)) {
3103
			err = PTR_ERR(vma);
3104
			goto err_parse;
C
Chris Wilson 已提交
3105
		}
3106

3107
		batch = vma;
3108
	}
3109

3110 3111 3112
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

3113
	/* Allocate a request for this batch buffer nice and early. */
3114
	eb.request = i915_request_create(eb.context);
3115
	if (IS_ERR(eb.request)) {
3116
		err = PTR_ERR(eb.request);
3117
		goto err_batch_unpin;
3118
	}
3119

3120
	if (in_fence) {
3121 3122 3123 3124 3125 3126 3127
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
3128 3129 3130 3131
		if (err < 0)
			goto err_request;
	}

3132
	if (eb.fences) {
3133
		err = await_fence_array(&eb);
3134 3135 3136 3137
		if (err)
			goto err_request;
	}

3138
	if (out_fence_fd != -1) {
3139
		out_fence = sync_file_create(&eb.request->fence);
3140
		if (!out_fence) {
3141
			err = -ENOMEM;
3142 3143 3144 3145
			goto err_request;
		}
	}

3146 3147
	/*
	 * Whilst this request exists, batch_obj will be on the
3148 3149 3150 3151 3152
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
3153 3154
	eb.request->batch = batch;
	if (batch->private)
3155
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
3156

3157
	trace_i915_request_queue(eb.request, eb.batch_flags);
3158
	err = eb_submit(&eb, batch);
3159
err_request:
3160
	i915_request_get(eb.request);
3161
	eb_request_add(&eb);
3162

3163
	if (eb.fences)
3164
		signal_fence_array(&eb);
3165

3166
	if (out_fence) {
3167
		if (err == 0) {
3168
			fd_install(out_fence_fd, out_fence->file);
3169
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3170 3171 3172 3173 3174 3175
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3176
	i915_request_put(eb.request);
3177

3178
err_batch_unpin:
3179
	if (eb.batch_flags & I915_DISPATCH_SECURE)
3180
		i915_vma_unpin(batch);
3181
err_parse:
3182
	if (batch->private)
3183
		intel_gt_buffer_pool_put(batch->private);
3184
err_vma:
3185 3186
	if (eb.exec)
		eb_release_vmas(&eb);
3187 3188
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3189
	eb_unpin_engine(&eb);
3190
err_context:
3191
	i915_gem_context_put(eb.gem_context);
3192
err_destroy:
3193
	eb_destroy(&eb);
3194
err_out_fence:
3195 3196
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3197
err_in_fence:
3198
	dma_fence_put(in_fence);
3199 3200
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3201
	return err;
3202 3203
}

3204 3205
static size_t eb_element_size(void)
{
3206
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3222 3223 3224 3225 3226
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
3227 3228
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
3229
{
3230
	struct drm_i915_private *i915 = to_i915(dev);
3231 3232 3233 3234
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3235
	const size_t count = args->buffer_count;
3236 3237
	unsigned int i;
	int err;
3238

3239
	if (!check_buffer_count(count)) {
3240
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3241 3242 3243
		return -EINVAL;
	}

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
3255 3256 3257
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
3258

3259
	/* Copy in the exec list from userland */
3260
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3261
				   __GFP_NOWARN | GFP_KERNEL);
3262
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
3263
				    __GFP_NOWARN | GFP_KERNEL);
3264
	if (exec_list == NULL || exec2_list == NULL) {
3265 3266 3267
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
3268 3269
		kvfree(exec_list);
		kvfree(exec2_list);
3270 3271
		return -ENOMEM;
	}
3272
	err = copy_from_user(exec_list,
3273
			     u64_to_user_ptr(args->buffers_ptr),
3274
			     sizeof(*exec_list) * count);
3275
	if (err) {
3276 3277
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
3278 3279
		kvfree(exec_list);
		kvfree(exec2_list);
3280 3281 3282 3283 3284 3285 3286 3287 3288
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3289
		if (INTEL_GEN(to_i915(dev)) < 4)
3290 3291 3292 3293 3294
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

3295
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3296
	if (exec2.flags & __EXEC_HAS_RELOC) {
3297
		struct drm_i915_gem_exec_object __user *user_exec_list =
3298
			u64_to_user_ptr(args->buffers_ptr);
3299

3300
		/* Copy the new buffer offsets back to the user's exec list. */
3301
		for (i = 0; i < args->buffer_count; i++) {
3302 3303 3304
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3305
			exec2_list[i].offset =
3306 3307 3308 3309 3310
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
3311
				break;
3312 3313 3314
		}
	}

M
Michal Hocko 已提交
3315 3316
	kvfree(exec_list);
	kvfree(exec2_list);
3317
	return err;
3318 3319 3320
}

int
3321 3322
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3323
{
3324
	struct drm_i915_private *i915 = to_i915(dev);
3325
	struct drm_i915_gem_execbuffer2 *args = data;
3326
	struct drm_i915_gem_exec_object2 *exec2_list;
3327
	const size_t count = args->buffer_count;
3328
	int err;
3329

3330
	if (!check_buffer_count(count)) {
3331
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3332 3333 3334
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3335 3336 3337
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3338

3339 3340
	/* Allocate an extra slot for use by the command parser */
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
3341
				    __GFP_NOWARN | GFP_KERNEL);
3342
	if (exec2_list == NULL) {
3343 3344
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3345 3346
		return -ENOMEM;
	}
3347 3348
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3349
			   sizeof(*exec2_list) * count)) {
3350
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3351
		kvfree(exec2_list);
3352 3353 3354
		return -EFAULT;
	}

3355
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3356 3357 3358 3359 3360 3361 3362 3363

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3364
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3365 3366
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3367

3368
		/* Copy the new buffer offsets back to the user's exec list. */
3369 3370 3371 3372 3373 3374 3375
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3376 3377
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3378
			goto end;
3379

3380
		for (i = 0; i < args->buffer_count; i++) {
3381 3382 3383
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3384
			exec2_list[i].offset =
3385 3386 3387 3388
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3389
		}
3390
end_user:
3391
		user_write_access_end();
3392
end:;
3393 3394
	}

3395
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3396
	kvfree(exec2_list);
3397
	return err;
3398
}
3399 3400 3401 3402

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif