i915_gem_execbuffer.c 75.8 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24
#include "i915_drv.h"
25
#include "i915_gem_clflush.h"
26
#include "i915_gem_context.h"
27
#include "i915_gem_ioctls.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
36

37 38 39 40 41 42
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
43 44 45 46
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
47
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
48
#define UPDATE			PIN_OFFSET_FIXED
49 50

#define BATCH_OFFSET_BIAS (256*1024)
51

52
#define __I915_EXEC_ILLEGAL_FLAGS \
53 54 55
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
56

57 58 59 60 61 62 63 64 65
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

217
struct i915_execbuffer {
218 219 220 221
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
222 223
	struct i915_vma **vma;
	unsigned int *flags;
224 225

	struct intel_engine_cs *engine; /** engine to queue the request to */
226 227
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
228

229
	struct i915_request *request; /** our request to build */
230
	struct i915_vma *batch; /** identity of the batch obj/vma */
231
	struct i915_vma *trampoline; /** trampoline used for chaining */
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
247
	struct reloc_cache {
248 249 250
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
251
		unsigned int gen; /** Cached value of INTEL_GEN */
252
		bool use_64bit_reloc : 1;
253 254 255
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
256

257
		struct i915_request *rq;
258 259
		u32 *rq_cmd;
		unsigned int rq_size;
260
	} reloc_cache;
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
276 277
};

278
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
279

280 281
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
282
	return intel_engine_requires_cmd_parser(eb->engine) ||
283 284
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
285 286
}

287
static int eb_create(struct i915_execbuffer *eb)
288
{
289 290
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
291

292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
303
		do {
304
			gfp_t flags;
305 306 307 308 309 310 311

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
312
			flags = GFP_KERNEL;
313 314 315
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

316
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
317
					      flags);
318 319 320 321
			if (eb->buckets)
				break;
		} while (--size);

322 323
		if (unlikely(!size))
			return -ENOMEM;
324

325
		eb->lut_size = size;
326
	} else {
327
		eb->lut_size = -eb->buffer_count;
328
	}
329

330
	return 0;
331 332
}

333 334
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
335 336
		 const struct i915_vma *vma,
		 unsigned int flags)
337 338 339 340 341 342 343
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

344
	if (flags & EXEC_OBJECT_PINNED &&
345 346 347
	    vma->node.start != entry->offset)
		return true;

348
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
349 350 351
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

352
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
353 354 355
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

356 357 358 359
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

360 361 362
	return false;
}

363
static inline bool
364
eb_pin_vma(struct i915_execbuffer *eb,
365
	   const struct drm_i915_gem_exec_object2 *entry,
366 367
	   struct i915_vma *vma)
{
368 369
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
370

371
	if (vma->node.size)
372
		pin_flags = vma->node.start;
373
	else
374
		pin_flags = entry->offset & PIN_OFFSET_MASK;
375

376 377 378
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
379

380 381
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
382

383
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
384
		if (unlikely(i915_vma_pin_fence(vma))) {
385
			i915_vma_unpin(vma);
386
			return false;
387 388
		}

389
		if (vma->fence)
390
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
391 392
	}

393 394
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
395 396
}

397
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
398
{
399
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
400

401
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
402
		__i915_vma_unpin_fence(vma);
403

404
	__i915_vma_unpin(vma);
405 406
}

407
static inline void
408
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
409
{
410
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
411
		return;
412

413 414
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
415 416
}

417 418 419 420
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
421
{
422 423
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
424

425 426 427 428 429 430 431 432
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
433
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
434 435 436 437 438 439 440 441
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
442 443
	}

444
	if (unlikely(vma->exec_flags)) {
445 446 447 448 449 450 451 452 453 454 455 456
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

457 458 459 460 461 462 463 464 465 466 467 468
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

469
	return 0;
470 471
}

472
static int
473 474 475
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
476
{
477
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
478 479 480 481 482 483 484 485
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
486 487
	}

488
	if (eb->lut_size > 0) {
489
		vma->exec_handle = entry->handle;
490
		hlist_add_head(&vma->exec_node,
491 492
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
493
	}
494

495 496 497 498 499 500 501 502 503
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
504
	eb->vma[i] = vma;
505
	eb->flags[i] = entry->flags;
506
	vma->exec_flags = &eb->flags[i];
507

508 509 510 511 512 513 514 515 516 517
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
518 519
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
520 521 522 523 524 525 526
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

527
	err = 0;
528
	if (eb_pin_vma(eb, entry, vma)) {
529 530 531 532
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
533 534 535 536 537 538
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
539 540
		if (unlikely(err))
			vma->exec_flags = NULL;
541 542 543 544 545 546 547 548 549 550
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

551 552 553 554 555
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
556 557 558 559 560 561 562 563 564

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
565 566 567
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
568 569
	int err;

570 571 572
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
573 574 575 576 577

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
578 579
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
580

581 582
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
583

584 585 586 587 588
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
589 590
	}

591 592 593
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
594 595 596 597 598 599 600 601
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

602
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
603
		err = i915_vma_pin_fence(vma);
604 605 606 607 608
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

609
		if (vma->fence)
610
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
611 612
	}

613 614
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
656 657
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
658

659 660
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
661 662
				continue;

663
			eb_unreserve_vma(vma, &eb->flags[i]);
664

665
			if (flags & EXEC_OBJECT_PINNED)
666
				/* Pinned must have their slot */
667
				list_add(&vma->exec_link, &eb->unbound);
668
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
669
				/* Map require the lowest 256MiB (aperture) */
670
				list_add_tail(&vma->exec_link, &eb->unbound);
671 672 673
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
674 675 676 677 678 679 680 681 682 683 684
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
685
			mutex_lock(&eb->context->vm->mutex);
686
			err = i915_gem_evict_vm(eb->context->vm);
687
			mutex_unlock(&eb->context->vm->mutex);
688 689 690 691 692 693 694 695
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
696
}
697

698 699
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
700 701 702 703
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
704 705 706 707 708 709 710
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
711 712
	if (unlikely(!ctx))
		return -ENOENT;
713

714
	eb->gem_context = ctx;
715
	if (rcu_access_pointer(ctx->vm))
716
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
717 718

	eb->context_flags = 0;
719
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
720 721 722 723 724 725
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
726
{
727
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
728
	struct drm_i915_gem_object *obj;
729
	unsigned int i, batch;
730
	int err;
731

732
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
733 734
		return -EIO;

735 736
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
737

738 739
	batch = eb_batch_index(eb);

740 741 742 743 744 745
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

746 747
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
748
		struct i915_lut_handle *lut;
749
		struct i915_vma *vma;
750

751 752
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
753
			goto add_vma;
754

755
		obj = i915_gem_object_lookup(eb->file, handle);
756
		if (unlikely(!obj)) {
757
			err = -ENOENT;
758
			goto err_vma;
759 760
		}

761
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
762
		if (IS_ERR(vma)) {
763
			err = PTR_ERR(vma);
764
			goto err_obj;
765 766
		}

767
		lut = i915_lut_handle_alloc();
768 769 770 771 772 773 774
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
775
			i915_lut_handle_free(lut);
776
			goto err_obj;
777
		}
778

779 780
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
781
			i915_vma_reopen(vma);
782
		lut->handle = handle;
783 784 785 786 787
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
788

789
add_vma:
790
		err = eb_add_vma(eb, i, batch, vma);
791
		if (unlikely(err))
792
			goto err_vma;
793

794 795
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
796 797
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
798 799
	}

800 801
	mutex_unlock(&eb->gem_context->mutex);

802 803 804
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

805
err_obj:
806
	i915_gem_object_put(obj);
807 808
err_vma:
	eb->vma[i] = NULL;
809 810
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
811
	return err;
812 813
}

814
static struct i915_vma *
815
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
816
{
817 818
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
819
			return NULL;
820
		return eb->vma[handle];
821 822
	} else {
		struct hlist_head *head;
823
		struct i915_vma *vma;
824

825
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
826
		hlist_for_each_entry(vma, head, exec_node) {
827 828
			if (vma->exec_handle == handle)
				return vma;
829 830 831
		}
		return NULL;
	}
832 833
}

834
static void eb_release_vmas(const struct i915_execbuffer *eb)
835
{
836 837 838 839
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
840 841
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
842

843
		if (!vma)
844
			break;
845

846 847 848
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
849

850 851
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
852

853
		if (flags & __EXEC_OBJECT_HAS_REF)
854
			i915_vma_put(vma);
855
	}
856 857
}

858
static void eb_reset_vmas(const struct i915_execbuffer *eb)
859
{
860
	eb_release_vmas(eb);
861
	if (eb->lut_size > 0)
862 863
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
864 865
}

866
static void eb_destroy(const struct i915_execbuffer *eb)
867
{
868 869
	GEM_BUG_ON(eb->reloc_cache.rq);

870
	if (eb->lut_size > 0)
871
		kfree(eb->buckets);
872 873
}

874
static inline u64
875
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
876
		  const struct i915_vma *target)
877
{
878
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
879 880
}

881 882
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
883
{
884
	cache->page = -1;
885
	cache->vaddr = 0;
886
	/* Must be a variable in the struct to allow GCC to unroll. */
887
	cache->gen = INTEL_GEN(i915);
888
	cache->has_llc = HAS_LLC(i915);
889
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
890 891
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
892
	cache->node.flags = 0;
893 894
	cache->rq = NULL;
	cache->rq_size = 0;
895
}
896

897 898 899 900 901 902 903 904
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
905 906
}

907 908
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

909 910 911 912 913 914 915
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

916 917 918 919
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
920 921

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
922
	i915_gem_object_unpin_map(cache->rq->batch->obj);
923

924
	intel_gt_chipset_flush(cache->rq->engine->gt);
925

926
	i915_request_add(cache->rq);
927 928 929
	cache->rq = NULL;
}

930
static void reloc_cache_reset(struct reloc_cache *cache)
931
{
932
	void *vaddr;
933

934 935 936
	if (cache->rq)
		reloc_gpu_flush(cache);

937 938
	if (!cache->vaddr)
		return;
939

940 941 942 943
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
944

945
		kunmap_atomic(vaddr);
946
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
947
	} else {
948 949 950
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
951
		io_mapping_unmap_atomic((void __iomem *)vaddr);
952

953
		if (drm_mm_node_allocated(&cache->node)) {
954 955 956
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
957
			mutex_lock(&ggtt->vm.mutex);
958
			drm_mm_remove_node(&cache->node);
959
			mutex_unlock(&ggtt->vm.mutex);
960 961
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
962
		}
963
	}
964 965 966

	cache->vaddr = 0;
	cache->page = -1;
967 968 969 970
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
971
			unsigned long page)
972
{
973 974 975 976 977 978
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
979
		int err;
980

981
		err = i915_gem_object_prepare_write(obj, &flushes);
982 983
		if (err)
			return ERR_PTR(err);
984 985 986

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
987

988 989 990 991
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
992 993
	}

994 995
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
996
	cache->page = page;
997

998
	return vaddr;
999 1000
}

1001 1002
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1003
			 unsigned long page)
1004
{
1005
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1006
	unsigned long offset;
1007
	void *vaddr;
1008

1009
	if (cache->vaddr) {
1010
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1011
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1012 1013
	} else {
		struct i915_vma *vma;
1014
		int err;
1015

1016 1017 1018
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1019
		if (use_cpu_reloc(cache, obj))
1020
			return NULL;
1021

1022
		i915_gem_object_lock(obj);
1023
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1024
		i915_gem_object_unlock(obj);
1025 1026
		if (err)
			return ERR_PTR(err);
1027

1028
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1029
					       PIN_MAPPABLE |
1030 1031
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1032 1033
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1034
			mutex_lock(&ggtt->vm.mutex);
1035
			err = drm_mm_insert_node_in_range
1036
				(&ggtt->vm.mm, &cache->node,
1037
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1038
				 0, ggtt->mappable_end,
1039
				 DRM_MM_INSERT_LOW);
1040
			mutex_unlock(&ggtt->vm.mutex);
1041
			if (err) /* no inactive aperture space, use cpu reloc */
1042
				return NULL;
1043 1044 1045
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1046
		}
1047
	}
1048

1049
	offset = cache->node.start;
1050
	if (drm_mm_node_allocated(&cache->node)) {
1051 1052 1053
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1054 1055
	} else {
		offset += page << PAGE_SHIFT;
1056 1057
	}

1058
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1059
							 offset);
1060 1061
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1062

1063
	return vaddr;
1064 1065
}

1066 1067
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1068
			 unsigned long page)
1069
{
1070
	void *vaddr;
1071

1072 1073 1074 1075 1076 1077 1078 1079
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1080 1081
	}

1082
	return vaddr;
1083 1084
}

1085
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1086
{
1087 1088 1089 1090 1091
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1092

1093
		*addr = value;
1094

1095 1096
		/*
		 * Writes to the same cacheline are serialised by the CPU
1097 1098 1099 1100 1101 1102 1103 1104 1105
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1106 1107
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1128 1129 1130 1131 1132
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1133
	struct intel_engine_pool_node *pool;
1134
	struct i915_request *rq;
1135 1136 1137 1138
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1139
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1140 1141
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1142

1143
	cmd = i915_gem_object_pin_map(pool->obj,
1144 1145 1146
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1147 1148 1149 1150
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1151

1152
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1162
	rq = i915_request_create(eb->context);
1163 1164 1165 1166 1167
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1168 1169 1170 1171
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1172
	err = reloc_move_to_gpu(rq, vma);
1173 1174 1175 1176 1177 1178 1179
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1180
		goto skip_request;
1181

1182
	i915_vma_lock(batch);
1183 1184 1185
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1186
	i915_vma_unlock(batch);
1187 1188
	if (err)
		goto skip_request;
1189 1190

	rq->batch = batch;
1191
	i915_vma_unpin(batch);
1192 1193 1194 1195 1196 1197

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1198
	goto out_pool;
1199

1200 1201
skip_request:
	i915_request_skip(rq, err);
1202
err_request:
1203
	i915_request_add(rq);
1204 1205 1206
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1207 1208 1209
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1226 1227 1228 1229
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1230 1231 1232
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1244 1245
static u64
relocate_entry(struct i915_vma *vma,
1246
	       const struct drm_i915_gem_relocation_entry *reloc,
1247 1248
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1249
{
1250
	u64 offset = reloc->offset;
1251 1252
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1253
	void *vaddr;
1254

1255 1256
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1257
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1258 1259 1260 1261 1262 1263 1264 1265 1266
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1267
		else
1268
			len = 3;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1314
repeat:
1315
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1316 1317 1318 1319 1320
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1321
			eb->reloc_cache.vaddr);
1322 1323 1324 1325 1326 1327

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1328 1329
	}

1330
out:
1331
	return target->node.start | UPDATE;
1332 1333
}

1334 1335 1336 1337
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1338
{
1339
	struct i915_vma *target;
1340
	int err;
1341

1342
	/* we've already hold a reference to all valid objects */
1343 1344
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1345
		return -ENOENT;
1346

1347
	/* Validate that the target is in a valid r/w GPU domain */
1348
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1349
		DRM_DEBUG("reloc with multiple write domains: "
1350
			  "target %d offset %d "
1351
			  "read %08x write %08x",
1352
			  reloc->target_handle,
1353 1354 1355
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1356
		return -EINVAL;
1357
	}
1358 1359
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1360
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1361
			  "target %d offset %d "
1362
			  "read %08x write %08x",
1363
			  reloc->target_handle,
1364 1365 1366
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1367
		return -EINVAL;
1368 1369
	}

1370
	if (reloc->write_domain) {
1371
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1372

1373 1374 1375 1376 1377 1378 1379
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1380
		    IS_GEN(eb->i915, 6)) {
1381
			err = i915_vma_bind(target, target->obj->cache_level,
1382
					    PIN_GLOBAL, NULL);
1383 1384 1385 1386
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1387
	}
1388

1389 1390
	/*
	 * If the relocation already has the right value in it, no
1391 1392
	 * more work needs to be done.
	 */
1393 1394
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1395
		return 0;
1396 1397

	/* Check that the relocation address is valid... */
1398
	if (unlikely(reloc->offset >
1399
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1400
		DRM_DEBUG("Relocation beyond object bounds: "
1401 1402 1403 1404
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1405
		return -EINVAL;
1406
	}
1407
	if (unlikely(reloc->offset & 3)) {
1408
		DRM_DEBUG("Relocation not 4-byte aligned: "
1409 1410 1411
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1412
		return -EINVAL;
1413 1414
	}

1415 1416 1417 1418 1419 1420
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1421
	 * out of our synchronisation.
1422
	 */
1423
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1424

1425
	/* and update the user's relocation entry */
1426
	return relocate_entry(vma, reloc, eb, target);
1427 1428
}

1429
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1430
{
1431
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1432 1433
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1434
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1435
	unsigned int remain;
1436

1437
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1438
	remain = entry->relocation_count;
1439 1440
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1441

1442 1443 1444 1445 1446
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1447
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1448 1449 1450 1451 1452 1453 1454
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1455

1456 1457
		/*
		 * This is the fast path and we cannot handle a pagefault
1458 1459 1460 1461 1462 1463 1464
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1465
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1466
		pagefault_enable();
1467 1468
		if (unlikely(copied)) {
			remain = -EFAULT;
1469 1470
			goto out;
		}
1471

1472
		remain -= count;
1473
		do {
1474
			u64 offset = eb_relocate_entry(eb, vma, r);
1475

1476 1477 1478
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1479
				goto out;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1503 1504 1505 1506
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1507
			}
1508 1509 1510
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1511
out:
1512
	reloc_cache_reset(&eb->reloc_cache);
1513
	return remain;
1514 1515 1516
}

static int
1517
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1518
{
1519
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1520 1521 1522 1523
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1524 1525

	for (i = 0; i < entry->relocation_count; i++) {
1526
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1527

1528 1529 1530 1531
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1532
	}
1533 1534 1535 1536
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1537 1538
}

1539
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1540
{
1541 1542 1543
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1544

1545 1546 1547
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1548

1549 1550
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1551

1552 1553
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1554
	if (!access_ok(addr, size))
1555
		return -EFAULT;
1556

1557 1558 1559 1560 1561
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1562
	}
1563
	return __get_user(c, end - 1);
1564
}
1565

1566
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1567
{
1568
	struct drm_i915_gem_relocation_entry *relocs;
1569 1570 1571
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1572

1573 1574 1575 1576 1577
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1578

1579 1580
		if (nreloc == 0)
			continue;
1581

1582 1583 1584
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1585

1586 1587
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1588

1589
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1590 1591 1592 1593
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1594

1595 1596 1597 1598 1599 1600 1601
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1602
					     (char __user *)urelocs + copied,
1603 1604
					     len))
				goto end;
1605

1606 1607
			copied += len;
		} while (copied < size);
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1619
		if (!user_access_begin(urelocs, size))
1620
			goto end;
1621

1622 1623 1624 1625 1626
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1627

1628 1629
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1630

1631
	return 0;
1632

1633 1634 1635 1636 1637
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1638 1639
err:
	while (i--) {
1640
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1641 1642 1643 1644
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1645 1646
}

1647
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1648
{
1649 1650
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1651

1652
	if (unlikely(i915_modparams.prefault_disable))
1653
		return 0;
1654

1655 1656
	for (i = 0; i < count; i++) {
		int err;
1657

1658 1659 1660 1661
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1662

1663
	return 0;
1664 1665
}

1666
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1667
{
1668
	struct drm_device *dev = &eb->i915->drm;
1669
	bool have_copy = false;
1670
	struct i915_vma *vma;
1671 1672 1673 1674 1675 1676 1677
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1678

1679
	/* We may process another execbuffer during the unlock... */
1680
	eb_reset_vmas(eb);
1681 1682
	mutex_unlock(&dev->struct_mutex);

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1704
	}
1705 1706 1707
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1708 1709
	}

1710 1711 1712
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1713 1714
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1715
		mutex_lock(&dev->struct_mutex);
1716
		goto out;
1717 1718
	}

1719
	/* reacquire the objects */
1720 1721
	err = eb_lookup_vmas(eb);
	if (err)
1722
		goto err;
1723

1724 1725
	GEM_BUG_ON(!eb->batch);

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1738 1739
	}

1740 1741
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1742 1743 1744 1745 1746 1747
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1769
	return err;
1770 1771
}

1772
static int eb_relocate(struct i915_execbuffer *eb)
1773
{
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1796
	struct ww_acquire_ctx acquire;
1797
	unsigned int i;
1798 1799 1800
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1801

1802
	for (i = 0; i < count; i++) {
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1834 1835
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1836
		struct drm_i915_gem_object *obj = vma->obj;
1837

1838 1839
		assert_vma_held(vma);

1840
		if (flags & EXEC_OBJECT_CAPTURE) {
1841
			struct i915_capture_list *capture;
1842 1843

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1844 1845 1846 1847 1848
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1849 1850
		}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1864
			if (i915_gem_clflush_object(obj, 0))
1865
				flags &= ~EXEC_OBJECT_ASYNC;
1866 1867
		}

1868 1869 1870 1871
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1872

1873 1874
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1875

1876
		i915_vma_unlock(vma);
1877

1878 1879 1880 1881
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1882
			i915_vma_put(vma);
1883
	}
1884 1885 1886 1887 1888
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1889
	eb->exec = NULL;
1890

1891
	/* Unconditionally flush any chipset caches (for streaming writes). */
1892
	intel_gt_chipset_flush(eb->engine->gt);
1893
	return 0;
1894 1895 1896 1897

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1898 1899
}

T
Tvrtko Ursulin 已提交
1900
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1901
{
1902
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1903
		return -EINVAL;
1904

C
Chris Wilson 已提交
1905
	/* Kernel clipping was a DRI1 misfeature */
1906 1907
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1908
			return -EINVAL;
1909
	}
C
Chris Wilson 已提交
1910 1911 1912 1913 1914 1915

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1916
		return -EINVAL;
C
Chris Wilson 已提交
1917 1918

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1919
		return -EINVAL;
C
Chris Wilson 已提交
1920

T
Tvrtko Ursulin 已提交
1921
	return 0;
1922 1923
}

1924
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1925
{
1926 1927
	u32 *cs;
	int i;
1928

1929
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1930 1931 1932
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1933

1934
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1935 1936
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1937

1938
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1939
	for (i = 0; i < 4; i++) {
1940 1941
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1942
	}
1943
	*cs++ = MI_NOOP;
1944
	intel_ring_advance(rq, cs);
1945 1946 1947 1948

	return 0;
}

1949
static struct i915_vma *
1950 1951 1952
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1953
{
1954 1955
	struct i915_vma *vma;
	int err;
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1966 1967
}

1968
static int eb_parse(struct i915_execbuffer *eb)
1969
{
1970
	struct intel_engine_pool_node *pool;
1971 1972
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1973
	int err;
1974

1975 1976 1977
	if (!eb_use_cmdparser(eb))
		return 0;

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
			DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

	pool = intel_engine_get_pool(eb->engine, len);
1993
	if (IS_ERR(pool))
1994
		return PTR_ERR(pool);
1995

1996 1997 1998
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1999
		goto err;
2000
	}
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2018

2019
	err = intel_engine_cmd_parser(eb->engine,
2020
				      eb->batch,
2021 2022
				      eb->batch_start_offset,
				      eb->batch_len,
2023 2024 2025
				      shadow, trampoline);
	if (err)
		goto err_trampoline;
2026

2027
	eb->vma[eb->buffer_count] = i915_vma_get(shadow);
2028 2029
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2030
	shadow->exec_flags = &eb->flags[eb->buffer_count];
2031
	eb->buffer_count++;
2032

2033
	eb->trampoline = trampoline;
2034
	eb->batch_start_offset = 0;
2035
	eb->batch = shadow;
2036

2037
	shadow->private = pool;
2038
	return 0;
2039

2040 2041 2042 2043 2044
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2045 2046
err:
	intel_engine_pool_put(pool);
2047
	return err;
2048
}
2049

2050
static void
2051
add_to_client(struct i915_request *rq, struct drm_file *file)
2052
{
2053 2054 2055 2056 2057 2058 2059
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2060 2061
}

2062
static int eb_submit(struct i915_execbuffer *eb)
2063
{
2064
	int err;
2065

2066 2067 2068
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2069

2070
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2071 2072 2073
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2074 2075
	}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2088
	err = eb->engine->emit_bb_start(eb->request,
2089 2090 2091
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2092 2093 2094
					eb->batch_flags);
	if (err)
		return err;
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2106 2107 2108
	if (i915_gem_context_nopreempt(eb->gem_context))
		eb->request->flags |= I915_REQUEST_NOPREEMPT;

C
Chris Wilson 已提交
2109
	return 0;
2110 2111
}

2112 2113 2114 2115 2116 2117
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2118
/*
2119
 * Find one BSD ring to dispatch the corresponding BSD command.
2120
 * The engine index is returned.
2121
 */
2122
static unsigned int
2123 2124
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2125 2126 2127
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2128
	/* Check whether the file_priv has already selected one ring. */
2129
	if ((int)file_priv->bsd_engine < 0)
2130 2131
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2132

2133
	return file_priv->bsd_engine;
2134 2135
}

2136
static const enum intel_engine_id user_ring_map[] = {
2137 2138 2139 2140 2141
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2142 2143
};

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2184 2185 2186 2187
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2188
	err = intel_gt_terminally_wedged(ce->engine->gt);
2189 2190 2191 2192 2193 2194 2195 2196
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2197
	err = intel_context_pin(ce);
2198 2199
	if (err)
		return err;
2200

2201 2202 2203 2204 2205 2206 2207 2208
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2209 2210 2211
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2212
		goto err_unpin;
2213
	}
2214 2215

	intel_context_enter(ce);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2231

2232
	eb->engine = ce->engine;
2233 2234
	eb->context = ce;
	return 0;
2235

2236 2237 2238 2239
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2240
err_unpin:
2241
	intel_context_unpin(ce);
2242
	return err;
2243 2244
}

2245
static void eb_unpin_engine(struct i915_execbuffer *eb)
2246
{
2247
	struct intel_context *ce = eb->context;
2248
	struct intel_timeline *tl = ce->timeline;
2249 2250 2251 2252 2253

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2254
	intel_context_unpin(ce);
2255
}
2256

2257 2258 2259 2260
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2261
{
2262
	struct drm_i915_private *i915 = eb->i915;
2263 2264
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2265 2266
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2267 2268
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2269
		return -1;
2270 2271
	}

2272
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2273 2274 2275
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2276
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2277 2278
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2279
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2280 2281 2282 2283
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2284
			return -1;
2285 2286
		}

2287
		return _VCS(bsd_idx);
2288 2289
	}

2290 2291 2292
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2293 2294
	}

2295 2296 2297 2298
	return user_ring_map[user_ring_id];
}

static int
2299 2300 2301
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2302 2303 2304 2305 2306
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2307 2308 2309 2310
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2311 2312 2313 2314 2315

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2316
	err = __eb_pin_engine(eb, ce);
2317 2318 2319
	intel_context_put(ce);

	return err;
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2334
	const unsigned long nfences = args->num_cliprects;
2335 2336
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2337
	unsigned long n;
2338 2339 2340 2341 2342
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2343 2344 2345 2346 2347
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2348 2349 2350
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2351
	if (!access_ok(user, nfences * sizeof(*user)))
2352 2353
		return ERR_PTR(-EFAULT);

2354
	fences = kvmalloc_array(nfences, sizeof(*fences),
2355
				__GFP_NOWARN | GFP_KERNEL);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2368 2369 2370 2371 2372
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2373 2374 2375 2376 2377 2378 2379
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2380 2381 2382
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2418
		fence = drm_syncobj_fence_get(syncobj);
2419 2420 2421
		if (!fence)
			return -EINVAL;

2422
		err = i915_request_await_dma_fence(eb->request, fence);
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2447
		drm_syncobj_replace_fence(syncobj, fence);
2448 2449 2450
	}
}

2451
static int
2452
i915_gem_do_execbuffer(struct drm_device *dev,
2453 2454
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2455 2456
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2457
{
2458
	struct drm_i915_private *i915 = to_i915(dev);
2459
	struct i915_execbuffer eb;
2460
	struct dma_fence *in_fence = NULL;
2461
	struct dma_fence *exec_fence = NULL;
2462 2463
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2464
	int err;
2465

2466
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2467 2468
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2469

2470
	eb.i915 = i915;
2471 2472
	eb.file = file;
	eb.args = args;
2473
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2474
		args->flags |= __EXEC_HAS_RELOC;
2475

2476
	eb.exec = exec;
2477 2478
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2479 2480
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2481
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2482 2483
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2484
	eb.buffer_count = args->buffer_count;
2485 2486
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2487
	eb.trampoline = NULL;
2488

2489
	eb.batch_flags = 0;
2490
	if (args->flags & I915_EXEC_SECURE) {
2491 2492 2493 2494 2495 2496 2497
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2498
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2499
			return -EPERM;
2500

2501
		eb.batch_flags |= I915_DISPATCH_SECURE;
2502
	}
2503
	if (args->flags & I915_EXEC_IS_PINNED)
2504
		eb.batch_flags |= I915_DISPATCH_PINNED;
2505

2506 2507
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2508 2509
		if (!in_fence)
			return -EINVAL;
2510 2511
	}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2525 2526 2527
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2528
			err = out_fence_fd;
2529
			goto err_exec_fence;
2530 2531 2532
		}
	}

2533 2534 2535 2536 2537
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2538

2539 2540 2541 2542
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2543
	err = eb_pin_engine(&eb, file, args);
2544
	if (unlikely(err))
2545
		goto err_context;
2546

2547 2548
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2549 2550
		goto err_engine;

2551
	err = eb_relocate(&eb);
2552
	if (err) {
2553 2554 2555 2556 2557 2558 2559 2560 2561
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2562
	}
2563

2564
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2565
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2566 2567
		err = -EINVAL;
		goto err_vma;
2568
	}
2569 2570
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2571
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2572 2573
		err = -EINVAL;
		goto err_vma;
2574
	}
2575

2576 2577 2578
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;

2579 2580 2581
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2582

2583 2584
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2585
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2586
	 * hsw should have this fixed, but bdw mucks it up again. */
2587
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2588
		struct i915_vma *vma;
2589

2590 2591 2592 2593 2594 2595
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2596
		 *   so we don't really have issues with multiple objects not
2597 2598 2599
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2600
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2601
		if (IS_ERR(vma)) {
2602 2603
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2604
		}
2605

2606
		eb.batch = vma;
2607
	}
2608

2609 2610 2611
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2612
	/* Allocate a request for this batch buffer nice and early. */
2613
	eb.request = i915_request_create(eb.context);
2614
	if (IS_ERR(eb.request)) {
2615
		err = PTR_ERR(eb.request);
2616
		goto err_batch_unpin;
2617
	}
2618

2619
	if (in_fence) {
2620
		err = i915_request_await_dma_fence(eb.request, in_fence);
2621
		if (err < 0)
2622 2623 2624
			goto err_request;
	}

2625 2626 2627 2628 2629 2630 2631
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2632 2633 2634 2635 2636 2637
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2638
	if (out_fence_fd != -1) {
2639
		out_fence = sync_file_create(&eb.request->fence);
2640
		if (!out_fence) {
2641
			err = -ENOMEM;
2642 2643 2644 2645
			goto err_request;
		}
	}

2646 2647
	/*
	 * Whilst this request exists, batch_obj will be on the
2648 2649 2650 2651 2652
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2653
	eb.request->batch = eb.batch;
2654 2655
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2656

2657
	trace_i915_request_queue(eb.request, eb.batch_flags);
2658
	err = eb_submit(&eb);
2659
err_request:
2660
	add_to_client(eb.request, file);
2661
	i915_request_add(eb.request);
2662

2663 2664 2665
	if (fences)
		signal_fence_array(&eb, fences);

2666
	if (out_fence) {
2667
		if (err == 0) {
2668
			fd_install(out_fence_fd, out_fence->file);
2669
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2670 2671 2672 2673 2674 2675
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2676

2677
err_batch_unpin:
2678
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2679
		i915_vma_unpin(eb.batch);
2680 2681
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2682 2683 2684
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2685 2686
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2687
	mutex_unlock(&dev->struct_mutex);
2688 2689
err_engine:
	eb_unpin_engine(&eb);
2690
err_context:
2691
	i915_gem_context_put(eb.gem_context);
2692
err_destroy:
2693
	eb_destroy(&eb);
2694
err_out_fence:
2695 2696
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2697 2698
err_exec_fence:
	dma_fence_put(exec_fence);
2699
err_in_fence:
2700
	dma_fence_put(in_fence);
2701
	return err;
2702 2703
}

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2724 2725 2726 2727 2728
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2729 2730
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2731 2732 2733 2734 2735
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2736
	const size_t count = args->buffer_count;
2737 2738
	unsigned int i;
	int err;
2739

2740 2741
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2742 2743 2744
		return -EINVAL;
	}

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2756 2757 2758
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2759

2760
	/* Copy in the exec list from userland */
2761
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2762
				   __GFP_NOWARN | GFP_KERNEL);
2763
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2764
				    __GFP_NOWARN | GFP_KERNEL);
2765
	if (exec_list == NULL || exec2_list == NULL) {
2766
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2767
			  args->buffer_count);
M
Michal Hocko 已提交
2768 2769
		kvfree(exec_list);
		kvfree(exec2_list);
2770 2771
		return -ENOMEM;
	}
2772
	err = copy_from_user(exec_list,
2773
			     u64_to_user_ptr(args->buffers_ptr),
2774
			     sizeof(*exec_list) * count);
2775
	if (err) {
2776
		DRM_DEBUG("copy %d exec entries failed %d\n",
2777
			  args->buffer_count, err);
M
Michal Hocko 已提交
2778 2779
		kvfree(exec_list);
		kvfree(exec2_list);
2780 2781 2782 2783 2784 2785 2786 2787 2788
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2789
		if (INTEL_GEN(to_i915(dev)) < 4)
2790 2791 2792 2793 2794
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2795
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2796
	if (exec2.flags & __EXEC_HAS_RELOC) {
2797
		struct drm_i915_gem_exec_object __user *user_exec_list =
2798
			u64_to_user_ptr(args->buffers_ptr);
2799

2800
		/* Copy the new buffer offsets back to the user's exec list. */
2801
		for (i = 0; i < args->buffer_count; i++) {
2802 2803 2804
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2805
			exec2_list[i].offset =
2806 2807 2808 2809 2810
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2811
				break;
2812 2813 2814
		}
	}

M
Michal Hocko 已提交
2815 2816
	kvfree(exec_list);
	kvfree(exec2_list);
2817
	return err;
2818 2819 2820
}

int
2821 2822
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2823 2824
{
	struct drm_i915_gem_execbuffer2 *args = data;
2825
	struct drm_i915_gem_exec_object2 *exec2_list;
2826
	struct drm_syncobj **fences = NULL;
2827
	const size_t count = args->buffer_count;
2828
	int err;
2829

2830 2831
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2832 2833 2834
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2835 2836 2837
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2838 2839

	/* Allocate an extra slot for use by the command parser */
2840
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2841
				    __GFP_NOWARN | GFP_KERNEL);
2842
	if (exec2_list == NULL) {
2843 2844
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2845 2846
		return -ENOMEM;
	}
2847 2848
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2849 2850
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2851
		kvfree(exec2_list);
2852 2853 2854
		return -EFAULT;
	}

2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2864 2865 2866 2867 2868 2869 2870 2871

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2872
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2873 2874
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2875

2876
		/* Copy the new buffer offsets back to the user's exec list. */
2877 2878 2879 2880 2881 2882 2883 2884
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2885
			goto end;
2886

2887
		for (i = 0; i < args->buffer_count; i++) {
2888 2889 2890
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2891
			exec2_list[i].offset =
2892 2893 2894 2895
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2896
		}
2897 2898
end_user:
		user_access_end();
2899
end:;
2900 2901
	}

2902
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2903
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2904
	kvfree(exec2_list);
2905
	return err;
2906
}