i915_gem_execbuffer.c 74.7 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_engine_pool.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
55 56 57
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
58
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
59
#define UPDATE			PIN_OFFSET_FIXED
60 61

#define BATCH_OFFSET_BIAS (256*1024)
62

63
#define __I915_EXEC_ILLEGAL_FLAGS \
64 65 66
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
67

68 69 70 71 72 73 74 75 76
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

228
struct i915_execbuffer {
229 230 231 232
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
233
	struct eb_vma *vma;
234 235

	struct intel_engine_cs *engine; /** engine to queue the request to */
236 237
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
238

239
	struct i915_request *request; /** our request to build */
240
	struct eb_vma *batch; /** identity of the batch obj/vma */
241
	struct i915_vma *trampoline; /** trampoline used for chaining */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
257
	struct reloc_cache {
258 259 260
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
261
		unsigned int gen; /** Cached value of INTEL_GEN */
262
		bool use_64bit_reloc : 1;
263 264 265
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
266

267
		struct i915_request *rq;
268 269
		u32 *rq_cmd;
		unsigned int rq_size;
270
	} reloc_cache;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
286 287
};

288 289
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
290
	return intel_engine_requires_cmd_parser(eb->engine) ||
291 292
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
293 294
}

295
static int eb_create(struct i915_execbuffer *eb)
296
{
297 298
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
299

300 301 302 303 304 305 306 307 308 309 310
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
311
		do {
312
			gfp_t flags;
313 314 315 316 317 318 319

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
320
			flags = GFP_KERNEL;
321 322 323
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

324
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
325
					      flags);
326 327 328 329
			if (eb->buckets)
				break;
		} while (--size);

330 331
		if (unlikely(!size))
			return -ENOMEM;
332

333
		eb->lut_size = size;
334
	} else {
335
		eb->lut_size = -eb->buffer_count;
336
	}
337

338
	return 0;
339 340
}

341 342
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
343 344
		 const struct i915_vma *vma,
		 unsigned int flags)
345 346 347 348 349 350 351
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

352
	if (flags & EXEC_OBJECT_PINNED &&
353 354 355
	    vma->node.start != entry->offset)
		return true;

356
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
357 358 359
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

360
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
361 362 363
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

364 365 366 367
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

368 369 370
	return false;
}

371
static inline bool
372
eb_pin_vma(struct i915_execbuffer *eb,
373
	   const struct drm_i915_gem_exec_object2 *entry,
374
	   struct eb_vma *ev)
375
{
376
	struct i915_vma *vma = ev->vma;
377
	u64 pin_flags;
378

379
	if (vma->node.size)
380
		pin_flags = vma->node.start;
381
	else
382
		pin_flags = entry->offset & PIN_OFFSET_MASK;
383

384
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
385
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
386
		pin_flags |= PIN_GLOBAL;
387

388 389
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
390

391
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
392
		if (unlikely(i915_vma_pin_fence(vma))) {
393
			i915_vma_unpin(vma);
394
			return false;
395 396
		}

397
		if (vma->fence)
398
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
399 400
	}

401 402
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
403 404
}

405
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
406
{
407
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
408

409
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
410
		__i915_vma_unpin_fence(vma);
411

412
	__i915_vma_unpin(vma);
413 414
}

415
static inline void
416
eb_unreserve_vma(struct eb_vma *ev)
417
{
418
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
419
		return;
420

421 422
	__eb_unreserve_vma(ev->vma, ev->flags);
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
423 424
}

425 426 427 428
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
429
{
430 431
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
432

433 434
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
435 436 437 438 439 440 441
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
442
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
443 444 445 446 447 448 449 450
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
451
	}
452 453 454 455 456 457 458
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

459 460 461 462 463 464 465 466 467 468 469 470
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

471
	return 0;
472 473
}

474
static void
475 476 477
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
478
{
479
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480
	struct eb_vma *ev = &eb->vma[i];
481 482 483

	GEM_BUG_ON(i915_vma_is_closed(vma));

484
	ev->vma = vma;
485 486 487
	ev->exec = entry;
	ev->flags = entry->flags;

488
	if (eb->lut_size > 0) {
489 490
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
491 492
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
493
	}
494

495
	if (entry->relocation_count)
496
		list_add_tail(&ev->reloc_link, &eb->relocs);
497

498 499 500 501 502 503 504 505 506 507
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
508
		if (entry->relocation_count &&
509 510
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
511
		if (eb->reloc_cache.has_fence)
512
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
513

514
		eb->batch = ev;
515 516
	}

517
	if (eb_pin_vma(eb, entry, ev)) {
518 519 520 521
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
522
	} else {
523 524
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
525 526 527 528 529 530 531 532 533
	}
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

534 535 536 537 538
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
539 540 541 542 543 544 545

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
546
			  struct eb_vma *ev,
547
			  u64 pin_flags)
548
{
549 550 551
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	unsigned int exec_flags = ev->flags;
	struct i915_vma *vma = ev->vma;
552 553
	int err;

554 555
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
556 557 558 559 560

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
561 562
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
563

564 565
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
566

567
	if (exec_flags & EXEC_OBJECT_PINNED)
568
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
569
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
570
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
571

572 573 574 575 576 577 578
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

579 580 581
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
582 583 584 585 586 587 588 589
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

590
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
591
		err = i915_vma_pin_fence(vma);
592 593 594 595 596
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

597
		if (vma->fence)
598
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
599 600
	}

601 602
	ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
603

604 605 606 607 608 609
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
610
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
611
	struct list_head last;
612
	struct eb_vma *ev;
613
	unsigned int i, pass;
614
	int err = 0;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

630 631 632
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

633 634
	pass = 0;
	do {
635 636
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
637 638 639
			if (err)
				break;
		}
640
		if (!(err == -ENOSPC || err == -EAGAIN))
641
			break;
642 643 644 645 646

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
647
			unsigned int flags;
648

649 650
			ev = &eb->vma[i];
			flags = ev->flags;
651 652
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
653 654
				continue;

655
			eb_unreserve_vma(ev);
656

657
			if (flags & EXEC_OBJECT_PINNED)
658
				/* Pinned must have their slot */
659
				list_add(&ev->bind_link, &eb->unbound);
660
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
661
				/* Map require the lowest 256MiB (aperture) */
662
				list_add_tail(&ev->bind_link, &eb->unbound);
663 664
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
665
				list_add(&ev->bind_link, &last);
666
			else
667
				list_add_tail(&ev->bind_link, &last);
668 669 670
		}
		list_splice_tail(&last, &eb->unbound);

671
		if (err == -EAGAIN) {
672
			mutex_unlock(&eb->i915->drm.struct_mutex);
673
			flush_workqueue(eb->i915->mm.userptr_wq);
674
			mutex_lock(&eb->i915->drm.struct_mutex);
675 676 677
			continue;
		}

678 679 680 681 682 683
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
684
			mutex_lock(&eb->context->vm->mutex);
685
			err = i915_gem_evict_vm(eb->context->vm);
686
			mutex_unlock(&eb->context->vm->mutex);
687
			if (err)
688
				goto unlock;
689 690 691
			break;

		default:
692 693
			err = -ENOSPC;
			goto unlock;
694
		}
695 696

		pin_flags = PIN_USER;
697
	} while (1);
698 699 700 701

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
702
}
703

704 705
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
706 707 708 709
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
710 711 712 713 714 715 716
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
717 718
	if (unlikely(!ctx))
		return -ENOENT;
719

720
	eb->gem_context = ctx;
721
	if (rcu_access_pointer(ctx->vm))
722
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
723 724

	eb->context_flags = 0;
725
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
726 727 728 729 730
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

731 732
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
733
{
734 735
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
736
	int err;
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
	if (!mutex_lock_interruptible(&ctx->mutex)) {
		err = -ENOENT;
		if (likely(!i915_gem_context_is_closed(ctx)))
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

			i915_gem_object_lock(obj);
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
			i915_gem_object_unlock(obj);
		}
		mutex_unlock(&ctx->mutex);
	}
	if (unlikely(err))
		goto err;
770

771
	return 0;
772

773 774 775 776 777 778
err:
	atomic_dec(&vma->open_count);
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
779

780 781 782 783
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
	do {
		struct drm_i915_gem_object *obj;
784
		struct i915_vma *vma;
785
		int err;
786

787 788
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
789
		if (likely(vma))
790 791 792 793
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
794

795
		obj = i915_gem_object_lookup(eb->file, handle);
796 797
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
798

799
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
800
		if (IS_ERR(vma)) {
801 802
			i915_gem_object_put(obj);
			return vma;
803 804
		}

805 806 807
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
808

809 810 811 812 813
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
814

815 816 817 818 819
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
820

821 822 823 824 825 826 827 828 829 830 831
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
832

833
		err = eb_validate_vma(eb, &eb->exec[i], vma);
834 835 836 837
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
838

839
		eb_add_vma(eb, i, batch, vma);
840 841
	}

842
	eb->vma[i].vma = NULL;
843
	return err;
844 845
}

846
static struct eb_vma *
847
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
848
{
849 850
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
851
			return NULL;
852
		return &eb->vma[handle];
853 854
	} else {
		struct hlist_head *head;
855
		struct eb_vma *ev;
856

857
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
858 859 860
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
861 862 863
		}
		return NULL;
	}
864 865
}

866
static void eb_release_vmas(const struct i915_execbuffer *eb)
867
{
868 869 870 871
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
872 873
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
874

875
		if (!vma)
876
			break;
877

878
		eb->vma[i].vma = NULL;
879

880 881
		if (ev->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, ev->flags);
882

883
		i915_vma_put(vma);
884
	}
885 886
}

887
static void eb_destroy(const struct i915_execbuffer *eb)
888
{
889 890
	GEM_BUG_ON(eb->reloc_cache.rq);

891
	if (eb->lut_size > 0)
892
		kfree(eb->buckets);
893 894
}

895
static inline u64
896
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
897
		  const struct i915_vma *target)
898
{
899
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
900 901
}

902 903
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
904
{
905
	cache->page = -1;
906
	cache->vaddr = 0;
907
	/* Must be a variable in the struct to allow GCC to unroll. */
908
	cache->gen = INTEL_GEN(i915);
909
	cache->has_llc = HAS_LLC(i915);
910
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
911 912
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
913
	cache->node.flags = 0;
914 915
	cache->rq = NULL;
	cache->rq_size = 0;
916
}
917

918 919 920 921 922 923 924 925
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
926 927
}

928 929
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

930 931 932 933 934 935 936
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

937 938 939 940
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
941 942

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
943
	i915_gem_object_unpin_map(cache->rq->batch->obj);
944

945
	intel_gt_chipset_flush(cache->rq->engine->gt);
946

947
	i915_request_add(cache->rq);
948 949 950
	cache->rq = NULL;
}

951
static void reloc_cache_reset(struct reloc_cache *cache)
952
{
953
	void *vaddr;
954

955 956 957
	if (cache->rq)
		reloc_gpu_flush(cache);

958 959
	if (!cache->vaddr)
		return;
960

961 962 963 964
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
965

966
		kunmap_atomic(vaddr);
967
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
968
	} else {
969 970 971
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
972
		io_mapping_unmap_atomic((void __iomem *)vaddr);
973

974
		if (drm_mm_node_allocated(&cache->node)) {
975 976 977
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
978
			mutex_lock(&ggtt->vm.mutex);
979
			drm_mm_remove_node(&cache->node);
980
			mutex_unlock(&ggtt->vm.mutex);
981 982
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
983
		}
984
	}
985 986 987

	cache->vaddr = 0;
	cache->page = -1;
988 989 990 991
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
992
			unsigned long page)
993
{
994 995 996 997 998 999
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1000
		int err;
1001

1002
		err = i915_gem_object_prepare_write(obj, &flushes);
1003 1004
		if (err)
			return ERR_PTR(err);
1005 1006 1007

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1008

1009 1010 1011 1012
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1013 1014
	}

1015 1016
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1017
	cache->page = page;
1018

1019
	return vaddr;
1020 1021
}

1022 1023
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1024
			 unsigned long page)
1025
{
1026
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1027
	unsigned long offset;
1028
	void *vaddr;
1029

1030
	if (cache->vaddr) {
1031
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1032
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1033 1034
	} else {
		struct i915_vma *vma;
1035
		int err;
1036

1037 1038 1039
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1040
		if (use_cpu_reloc(cache, obj))
1041
			return NULL;
1042

1043
		i915_gem_object_lock(obj);
1044
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1045
		i915_gem_object_unlock(obj);
1046 1047
		if (err)
			return ERR_PTR(err);
1048

1049
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050
					       PIN_MAPPABLE |
1051 1052
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1053 1054
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1055
			mutex_lock(&ggtt->vm.mutex);
1056
			err = drm_mm_insert_node_in_range
1057
				(&ggtt->vm.mm, &cache->node,
1058
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1059
				 0, ggtt->mappable_end,
1060
				 DRM_MM_INSERT_LOW);
1061
			mutex_unlock(&ggtt->vm.mutex);
1062
			if (err) /* no inactive aperture space, use cpu reloc */
1063
				return NULL;
1064 1065 1066
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1067
		}
1068
	}
1069

1070
	offset = cache->node.start;
1071
	if (drm_mm_node_allocated(&cache->node)) {
1072 1073 1074
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1075 1076
	} else {
		offset += page << PAGE_SHIFT;
1077 1078
	}

1079
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1080
							 offset);
1081 1082
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1083

1084
	return vaddr;
1085 1086
}

1087 1088
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1089
			 unsigned long page)
1090
{
1091
	void *vaddr;
1092

1093 1094 1095 1096 1097 1098 1099 1100
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1101 1102
	}

1103
	return vaddr;
1104 1105
}

1106
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1107
{
1108 1109 1110 1111 1112
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1113

1114
		*addr = value;
1115

1116 1117
		/*
		 * Writes to the same cacheline are serialised by the CPU
1118 1119 1120 1121 1122 1123 1124 1125 1126
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1149 1150 1151 1152 1153
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1154
	struct intel_engine_pool_node *pool;
1155
	struct i915_request *rq;
1156 1157 1158 1159
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1160
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1161 1162
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1163

1164
	cmd = i915_gem_object_pin_map(pool->obj,
1165 1166 1167
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1168 1169 1170 1171
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1172

1173
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1183
	rq = i915_request_create(eb->context);
1184 1185 1186 1187 1188
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1189 1190 1191 1192
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1193
	err = reloc_move_to_gpu(rq, vma);
1194 1195 1196 1197 1198 1199 1200
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1201
		goto skip_request;
1202

1203
	i915_vma_lock(batch);
1204 1205 1206
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1207
	i915_vma_unlock(batch);
1208 1209
	if (err)
		goto skip_request;
1210 1211

	rq->batch = batch;
1212
	i915_vma_unpin(batch);
1213 1214 1215 1216 1217 1218

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1219
	goto out_pool;
1220

1221
skip_request:
1222
	i915_request_set_error_once(rq, err);
1223
err_request:
1224
	i915_request_add(rq);
1225 1226 1227
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1228 1229 1230
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1247 1248 1249
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1261 1262
static u64
relocate_entry(struct i915_vma *vma,
1263
	       const struct drm_i915_gem_relocation_entry *reloc,
1264 1265
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1266
{
1267
	u64 offset = reloc->offset;
1268 1269
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1270
	void *vaddr;
1271

1272 1273
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1274
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1275 1276 1277 1278 1279 1280 1281 1282 1283
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1284
		else
1285
			len = 3;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1331
repeat:
1332
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1333 1334 1335 1336 1337
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1338
			eb->reloc_cache.vaddr);
1339 1340 1341 1342 1343 1344

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1345 1346
	}

1347
out:
1348
	return target->node.start | UPDATE;
1349 1350
}

1351 1352
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1353
		  struct eb_vma *ev,
1354
		  const struct drm_i915_gem_relocation_entry *reloc)
1355
{
1356
	struct drm_i915_private *i915 = eb->i915;
1357
	struct eb_vma *target;
1358
	int err;
1359

1360
	/* we've already hold a reference to all valid objects */
1361 1362
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1363
		return -ENOENT;
1364

1365
	/* Validate that the target is in a valid r/w GPU domain */
1366
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1367
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1368
			  "target %d offset %d "
1369
			  "read %08x write %08x",
1370
			  reloc->target_handle,
1371 1372 1373
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1374
		return -EINVAL;
1375
	}
1376 1377
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1378
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1379
			  "target %d offset %d "
1380
			  "read %08x write %08x",
1381
			  reloc->target_handle,
1382 1383 1384
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1385
		return -EINVAL;
1386 1387
	}

1388
	if (reloc->write_domain) {
1389
		target->flags |= EXEC_OBJECT_WRITE;
1390

1391 1392 1393 1394 1395 1396 1397
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1398
		    IS_GEN(eb->i915, 6)) {
1399 1400
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1401
					    PIN_GLOBAL, NULL);
1402 1403 1404 1405
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1406
	}
1407

1408 1409
	/*
	 * If the relocation already has the right value in it, no
1410 1411
	 * more work needs to be done.
	 */
1412
	if (!DBG_FORCE_RELOC &&
1413
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1414
		return 0;
1415 1416

	/* Check that the relocation address is valid... */
1417
	if (unlikely(reloc->offset >
1418
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1419
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1420 1421 1422
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1423
			  (int)ev->vma->size);
1424
		return -EINVAL;
1425
	}
1426
	if (unlikely(reloc->offset & 3)) {
1427
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1428 1429 1430
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1431
		return -EINVAL;
1432 1433
	}

1434 1435 1436 1437 1438 1439
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1440
	 * out of our synchronisation.
1441
	 */
1442
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1443

1444
	/* and update the user's relocation entry */
1445
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1446 1447
}

1448
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1449
{
1450
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1451 1452
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1453
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1454
	unsigned int remain;
1455

1456
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1457
	remain = entry->relocation_count;
1458 1459
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1460

1461 1462 1463 1464 1465
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1466
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1467 1468 1469 1470 1471 1472 1473
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1474

1475 1476
		/*
		 * This is the fast path and we cannot handle a pagefault
1477 1478 1479 1480 1481 1482
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1483
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1484 1485
		if (unlikely(copied)) {
			remain = -EFAULT;
1486 1487
			goto out;
		}
1488

1489
		remain -= count;
1490
		do {
1491
			u64 offset = eb_relocate_entry(eb, ev, r);
1492

1493 1494 1495
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1496
				goto out;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1520 1521 1522 1523
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1524
			}
1525 1526 1527
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1528
out:
1529
	reloc_cache_reset(&eb->reloc_cache);
1530
	return remain;
1531 1532
}

1533
static int eb_relocate(struct i915_execbuffer *eb)
1534
{
1535 1536 1537 1538 1539 1540
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1541 1542 1543 1544 1545
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1546 1547 1548

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1549
		struct eb_vma *ev;
1550

1551
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1552 1553 1554
			err = eb_relocate_vma(eb, ev);
			if (err)
				return err;
1555 1556 1557 1558 1559 1560 1561 1562 1563
		}
	}

	return 0;
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1564
	struct ww_acquire_ctx acquire;
1565
	unsigned int i;
1566 1567 1568
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1569

1570
	for (i = 0; i < count; i++) {
1571 1572
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1573 1574 1575 1576 1577 1578 1579

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1580
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1594 1595 1596
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1597
		struct drm_i915_gem_object *obj = vma->obj;
1598

1599 1600
		assert_vma_held(vma);

1601
		if (flags & EXEC_OBJECT_CAPTURE) {
1602
			struct i915_capture_list *capture;
1603 1604

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1605 1606 1607 1608 1609
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1610 1611
		}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1625
			if (i915_gem_clflush_object(obj, 0))
1626
				flags &= ~EXEC_OBJECT_ASYNC;
1627 1628
		}

1629 1630 1631 1632
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1633

1634 1635
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1636

1637
		i915_vma_unlock(vma);
1638

1639
		__eb_unreserve_vma(vma, flags);
1640
		i915_vma_put(vma);
1641 1642

		ev->vma = NULL;
1643
	}
1644 1645 1646 1647 1648
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1649
	eb->exec = NULL;
1650

1651
	/* Unconditionally flush any chipset caches (for streaming writes). */
1652
	intel_gt_chipset_flush(eb->engine->gt);
1653
	return 0;
1654 1655

err_skip:
1656
	i915_request_set_error_once(eb->request, err);
1657
	return err;
1658 1659
}

T
Tvrtko Ursulin 已提交
1660
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1661
{
1662
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1663
		return -EINVAL;
1664

C
Chris Wilson 已提交
1665
	/* Kernel clipping was a DRI1 misfeature */
1666 1667
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1668
			return -EINVAL;
1669
	}
C
Chris Wilson 已提交
1670 1671 1672 1673 1674 1675

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1676
		return -EINVAL;
C
Chris Wilson 已提交
1677 1678

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1679
		return -EINVAL;
C
Chris Wilson 已提交
1680

T
Tvrtko Ursulin 已提交
1681
	return 0;
1682 1683
}

1684
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1685
{
1686 1687
	u32 *cs;
	int i;
1688

1689
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1690
		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1691 1692
		return -EINVAL;
	}
1693

1694
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1695 1696
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1697

1698
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1699
	for (i = 0; i < 4; i++) {
1700 1701
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1702
	}
1703
	*cs++ = MI_NOOP;
1704
	intel_ring_advance(rq, cs);
1705 1706 1707 1708

	return 0;
}

1709
static struct i915_vma *
1710 1711 1712
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1713
{
1714 1715
	struct i915_vma *vma;
	int err;
1716

1717 1718 1719 1720 1721 1722 1723 1724 1725
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1760 1761 1762
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1763
	.release = __eb_parse_release,
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
};

static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1777
	err = i915_active_acquire(&eb->batch->vma->active);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1791 1792 1793
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1794
	pw->batch = eb->batch->vma;
1795 1796 1797 1798 1799
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1800 1801 1802
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
		goto err_trampoline;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
		goto err_batch_unlock;

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
		goto err_batch_unlock;

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

	dma_fence_work_commit(&pw->base);
	return 0;

err_batch_unlock:
	dma_resv_unlock(pw->batch->resv);
1830 1831 1832 1833 1834 1835
err_trampoline:
	if (trampoline)
		i915_active_release(&trampoline->active);
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
1836
	i915_active_release(&eb->batch->vma->active);
1837
err_free:
1838 1839 1840 1841
	kfree(pw);
	return err;
}

1842
static int eb_parse(struct i915_execbuffer *eb)
1843
{
1844
	struct drm_i915_private *i915 = eb->i915;
1845
	struct intel_engine_pool_node *pool;
1846 1847
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1848
	int err;
1849

1850 1851 1852
	if (!eb_use_cmdparser(eb))
		return 0;

1853 1854 1855 1856 1857 1858 1859
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
1860 1861
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
1862 1863 1864 1865 1866 1867 1868
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

	pool = intel_engine_get_pool(eb->engine, len);
1869
	if (IS_ERR(pool))
1870
		return PTR_ERR(pool);
1871

1872 1873 1874
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1875
		goto err;
1876
	}
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
1894

1895
	err = eb_parse_pipeline(eb, shadow, trampoline);
1896 1897
	if (err)
		goto err_trampoline;
1898

1899
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1900
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1901
	eb->batch = &eb->vma[eb->buffer_count++];
1902

1903
	eb->trampoline = trampoline;
1904 1905
	eb->batch_start_offset = 0;

1906
	shadow->private = pool;
1907
	return 0;
1908

1909 1910 1911 1912 1913
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
1914 1915
err:
	intel_engine_pool_put(pool);
1916
	return err;
1917
}
1918

1919
static void
1920
add_to_client(struct i915_request *rq, struct drm_file *file)
1921
{
1922 1923 1924 1925 1926 1927 1928
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
1929 1930
}

1931
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1932
{
1933
	int err;
1934

1935 1936 1937
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1938

1939
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1940 1941 1942
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1943 1944
	}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

1957
	err = eb->engine->emit_bb_start(eb->request,
1958
					batch->node.start +
1959 1960
					eb->batch_start_offset,
					eb->batch_len,
1961 1962 1963
					eb->batch_flags);
	if (err)
		return err;
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

1975
	if (intel_context_nopreempt(eb->context))
1976
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1977

C
Chris Wilson 已提交
1978
	return 0;
1979 1980
}

1981 1982 1983 1984 1985 1986
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

1987
/*
1988
 * Find one BSD ring to dispatch the corresponding BSD command.
1989
 * The engine index is returned.
1990
 */
1991
static unsigned int
1992 1993
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1994 1995 1996
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1997
	/* Check whether the file_priv has already selected one ring. */
1998
	if ((int)file_priv->bsd_engine < 0)
1999 2000
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2001

2002
	return file_priv->bsd_engine;
2003 2004
}

2005
static const enum intel_engine_id user_ring_map[] = {
2006 2007 2008 2009 2010
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2011 2012
};

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2053 2054 2055 2056
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2057
	err = intel_gt_terminally_wedged(ce->engine->gt);
2058 2059 2060
	if (err)
		return err;

2061 2062 2063
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2064 2065 2066 2067 2068
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2069
	err = intel_context_pin(ce);
2070 2071
	if (err)
		return err;
2072

2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2081 2082 2083
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2084
		goto err_unpin;
2085
	}
2086 2087

	intel_context_enter(ce);
2088 2089 2090 2091 2092
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2093 2094 2095 2096 2097 2098
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2099

2100 2101 2102
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2103
		i915_request_put(rq);
2104 2105 2106 2107 2108

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2109
	}
2110

2111
	eb->engine = ce->engine;
2112 2113
	eb->context = ce;
	return 0;
2114

2115 2116 2117 2118
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2119
err_unpin:
2120
	intel_context_unpin(ce);
2121
	return err;
2122 2123
}

2124
static void eb_unpin_engine(struct i915_execbuffer *eb)
2125
{
2126
	struct intel_context *ce = eb->context;
2127
	struct intel_timeline *tl = ce->timeline;
2128 2129 2130 2131 2132

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2133
	intel_context_unpin(ce);
2134
}
2135

2136 2137 2138 2139
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2140
{
2141
	struct drm_i915_private *i915 = eb->i915;
2142 2143
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2144 2145
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2146 2147 2148
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2149
		return -1;
2150 2151
	}

2152
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2153 2154 2155
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2156
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2157 2158
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2159
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2160 2161
			bsd_idx--;
		} else {
2162 2163 2164
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2165
			return -1;
2166 2167
		}

2168
		return _VCS(bsd_idx);
2169 2170
	}

2171
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2172 2173
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2174
		return -1;
2175 2176
	}

2177 2178 2179 2180
	return user_ring_map[user_ring_id];
}

static int
2181 2182 2183
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2184 2185 2186 2187 2188
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2189 2190 2191 2192
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2193 2194 2195 2196 2197

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2198
	err = __eb_pin_engine(eb, ce);
2199 2200 2201
	intel_context_put(ce);

	return err;
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2216
	const unsigned long nfences = args->num_cliprects;
2217 2218
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2219
	unsigned long n;
2220 2221 2222 2223 2224
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2225 2226 2227 2228 2229
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2230 2231 2232
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2233
	if (!access_ok(user, nfences * sizeof(*user)))
2234 2235
		return ERR_PTR(-EFAULT);

2236
	fences = kvmalloc_array(nfences, sizeof(*fences),
2237
				__GFP_NOWARN | GFP_KERNEL);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2250 2251 2252 2253 2254
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2255 2256 2257 2258 2259 2260 2261
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2262 2263 2264
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2300
		fence = drm_syncobj_fence_get(syncobj);
2301 2302 2303
		if (!fence)
			return -EINVAL;

2304
		err = i915_request_await_dma_fence(eb->request, fence);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2329
		drm_syncobj_replace_fence(syncobj, fence);
2330 2331 2332
	}
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2357
	if (likely(!intel_context_is_closed(eb->context))) {
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		attr = eb->gem_context->sched;

		/*
		 * Boost actual workloads past semaphores!
		 *
		 * With semaphores we spin on one engine waiting for another,
		 * simply to reduce the latency of starting our work when
		 * the signaler completes. However, if there is any other
		 * work that we could be doing on this engine instead, that
		 * is better utilisation and will reduce the overall duration
		 * of the current work. To avoid PI boosting a semaphore
		 * far in the distance past over useful work, we keep a history
		 * of any semaphore use along our dependency chain.
		 */
		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
			attr.priority |= I915_PRIORITY_NOSEMAPHORE;

		/*
		 * Boost priorities to new clients (new request flows).
		 *
		 * Allow interactive/synchronous clients to jump ahead of
		 * the bulk clients. (FQ_CODEL)
		 */
		if (list_empty(&rq->sched.signalers_list))
			attr.priority |= I915_PRIORITY_WAIT;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2385 2386
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2398
static int
2399
i915_gem_do_execbuffer(struct drm_device *dev,
2400 2401
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2402 2403
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2404
{
2405
	struct drm_i915_private *i915 = to_i915(dev);
2406
	struct i915_execbuffer eb;
2407
	struct dma_fence *in_fence = NULL;
2408
	struct dma_fence *exec_fence = NULL;
2409
	struct sync_file *out_fence = NULL;
2410
	struct i915_vma *batch;
2411
	int out_fence_fd = -1;
2412
	int err;
2413

2414
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2415 2416
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2417

2418
	eb.i915 = i915;
2419 2420
	eb.file = file;
	eb.args = args;
2421
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2422
		args->flags |= __EXEC_HAS_RELOC;
2423

2424
	eb.exec = exec;
2425 2426
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
2427

2428
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2429 2430
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2431
	eb.buffer_count = args->buffer_count;
2432 2433
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2434
	eb.trampoline = NULL;
2435

2436
	eb.batch_flags = 0;
2437
	if (args->flags & I915_EXEC_SECURE) {
2438 2439 2440 2441 2442 2443 2444
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2445
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2446
			return -EPERM;
2447

2448
		eb.batch_flags |= I915_DISPATCH_SECURE;
2449
	}
2450
	if (args->flags & I915_EXEC_IS_PINNED)
2451
		eb.batch_flags |= I915_DISPATCH_PINNED;
2452

2453 2454
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2455 2456
		if (!in_fence)
			return -EINVAL;
2457 2458
	}

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2472 2473 2474
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2475
			err = out_fence_fd;
2476
			goto err_exec_fence;
2477 2478 2479
		}
	}

2480 2481 2482 2483 2484
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2485

2486 2487 2488 2489
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2490
	err = eb_pin_engine(&eb, file, args);
2491
	if (unlikely(err))
2492
		goto err_context;
2493

2494
	err = eb_relocate(&eb);
2495
	if (err) {
2496 2497 2498 2499 2500 2501 2502 2503 2504
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2505
	}
2506

2507
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2508 2509
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2510 2511
		err = -EINVAL;
		goto err_vma;
2512
	}
2513 2514 2515 2516

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2517
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2518 2519
		err = -EINVAL;
		goto err_vma;
2520
	}
2521

2522
	if (eb.batch_len == 0)
2523
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2524

2525 2526 2527
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2528

2529 2530
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2531
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2532
	 * hsw should have this fixed, but bdw mucks it up again. */
2533
	batch = eb.batch->vma;
2534
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2535
		struct i915_vma *vma;
2536

2537 2538 2539 2540 2541 2542
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2543
		 *   so we don't really have issues with multiple objects not
2544 2545 2546
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2547
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2548
		if (IS_ERR(vma)) {
2549
			err = PTR_ERR(vma);
2550
			goto err_parse;
C
Chris Wilson 已提交
2551
		}
2552

2553
		batch = vma;
2554
	}
2555

2556 2557 2558
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2559
	/* Allocate a request for this batch buffer nice and early. */
2560
	eb.request = i915_request_create(eb.context);
2561
	if (IS_ERR(eb.request)) {
2562
		err = PTR_ERR(eb.request);
2563
		goto err_batch_unpin;
2564
	}
2565

2566
	if (in_fence) {
2567
		err = i915_request_await_dma_fence(eb.request, in_fence);
2568
		if (err < 0)
2569 2570 2571
			goto err_request;
	}

2572 2573 2574 2575 2576 2577 2578
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2579 2580 2581 2582 2583 2584
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2585
	if (out_fence_fd != -1) {
2586
		out_fence = sync_file_create(&eb.request->fence);
2587
		if (!out_fence) {
2588
			err = -ENOMEM;
2589 2590 2591 2592
			goto err_request;
		}
	}

2593 2594
	/*
	 * Whilst this request exists, batch_obj will be on the
2595 2596 2597 2598 2599
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2600 2601 2602
	eb.request->batch = batch;
	if (batch->private)
		intel_engine_pool_mark_active(batch->private, eb.request);
2603

2604
	trace_i915_request_queue(eb.request, eb.batch_flags);
2605
	err = eb_submit(&eb, batch);
2606
err_request:
2607
	add_to_client(eb.request, file);
2608
	i915_request_get(eb.request);
2609
	eb_request_add(&eb);
2610

2611 2612 2613
	if (fences)
		signal_fence_array(&eb, fences);

2614
	if (out_fence) {
2615
		if (err == 0) {
2616
			fd_install(out_fence_fd, out_fence->file);
2617
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2618 2619 2620 2621 2622 2623
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2624
	i915_request_put(eb.request);
2625

2626
err_batch_unpin:
2627
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2628
		i915_vma_unpin(batch);
2629
err_parse:
2630 2631
	if (batch->private)
		intel_engine_pool_put(batch->private);
2632 2633 2634
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2635 2636
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2637
	eb_unpin_engine(&eb);
2638
err_context:
2639
	i915_gem_context_put(eb.gem_context);
2640
err_destroy:
2641
	eb_destroy(&eb);
2642
err_out_fence:
2643 2644
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2645 2646
err_exec_fence:
	dma_fence_put(exec_fence);
2647
err_in_fence:
2648
	dma_fence_put(in_fence);
2649
	return err;
2650 2651
}

2652 2653
static size_t eb_element_size(void)
{
2654
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2670 2671 2672 2673 2674
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2675 2676
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2677
{
2678
	struct drm_i915_private *i915 = to_i915(dev);
2679 2680 2681 2682
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2683
	const size_t count = args->buffer_count;
2684 2685
	unsigned int i;
	int err;
2686

2687
	if (!check_buffer_count(count)) {
2688
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2689 2690 2691
		return -EINVAL;
	}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2703 2704 2705
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2706

2707
	/* Copy in the exec list from userland */
2708
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2709
				   __GFP_NOWARN | GFP_KERNEL);
2710
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2711
				    __GFP_NOWARN | GFP_KERNEL);
2712
	if (exec_list == NULL || exec2_list == NULL) {
2713 2714 2715
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2716 2717
		kvfree(exec_list);
		kvfree(exec2_list);
2718 2719
		return -ENOMEM;
	}
2720
	err = copy_from_user(exec_list,
2721
			     u64_to_user_ptr(args->buffers_ptr),
2722
			     sizeof(*exec_list) * count);
2723
	if (err) {
2724 2725
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2726 2727
		kvfree(exec_list);
		kvfree(exec2_list);
2728 2729 2730 2731 2732 2733 2734 2735 2736
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2737
		if (INTEL_GEN(to_i915(dev)) < 4)
2738 2739 2740 2741 2742
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2743
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2744
	if (exec2.flags & __EXEC_HAS_RELOC) {
2745
		struct drm_i915_gem_exec_object __user *user_exec_list =
2746
			u64_to_user_ptr(args->buffers_ptr);
2747

2748
		/* Copy the new buffer offsets back to the user's exec list. */
2749
		for (i = 0; i < args->buffer_count; i++) {
2750 2751 2752
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2753
			exec2_list[i].offset =
2754 2755 2756 2757 2758
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2759
				break;
2760 2761 2762
		}
	}

M
Michal Hocko 已提交
2763 2764
	kvfree(exec_list);
	kvfree(exec2_list);
2765
	return err;
2766 2767 2768
}

int
2769 2770
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2771
{
2772
	struct drm_i915_private *i915 = to_i915(dev);
2773
	struct drm_i915_gem_execbuffer2 *args = data;
2774
	struct drm_i915_gem_exec_object2 *exec2_list;
2775
	struct drm_syncobj **fences = NULL;
2776
	const size_t count = args->buffer_count;
2777
	int err;
2778

2779
	if (!check_buffer_count(count)) {
2780
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2781 2782 2783
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2784 2785 2786
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2787 2788

	/* Allocate an extra slot for use by the command parser */
2789
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2790
				    __GFP_NOWARN | GFP_KERNEL);
2791
	if (exec2_list == NULL) {
2792 2793
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2794 2795
		return -ENOMEM;
	}
2796 2797
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2798
			   sizeof(*exec2_list) * count)) {
2799
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2800
		kvfree(exec2_list);
2801 2802 2803
		return -EFAULT;
	}

2804 2805 2806 2807 2808 2809 2810 2811 2812
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2813 2814 2815 2816 2817 2818 2819 2820

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2821
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2822 2823
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2824

2825
		/* Copy the new buffer offsets back to the user's exec list. */
2826 2827 2828 2829 2830 2831 2832 2833
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2834
			goto end;
2835

2836
		for (i = 0; i < args->buffer_count; i++) {
2837 2838 2839
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2840
			exec2_list[i].offset =
2841 2842 2843 2844
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2845
		}
2846 2847
end_user:
		user_access_end();
2848
end:;
2849 2850
	}

2851
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2852
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2853
	kvfree(exec2_list);
2854
	return err;
2855
}