i915_gem_execbuffer.c 74.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/reservation.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19 20
#include "gt/intel_gt_pm.h"

21
#include "i915_gem_ioctls.h"
22
#include "i915_gem_clflush.h"
23
#include "i915_gem_context.h"
24 25 26
#include "i915_trace.h"
#include "intel_drv.h"

27 28 29 30 31 32
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
33

34 35 36 37 38 39
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
40 41 42 43
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
44
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
45
#define UPDATE			PIN_OFFSET_FIXED
46 47

#define BATCH_OFFSET_BIAS (256*1024)
48

49
#define __I915_EXEC_ILLEGAL_FLAGS \
50 51 52
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
53

54 55 56 57 58 59 60 61 62
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

214
struct i915_execbuffer {
215 216 217 218
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
219 220
	struct i915_vma **vma;
	unsigned int *flags;
221 222

	struct intel_engine_cs *engine; /** engine to queue the request to */
223 224
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
225 226
	struct i915_address_space *vm; /** GTT and vma for the request */

227
	struct i915_request *request; /** our request to build */
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
244
	struct reloc_cache {
245 246 247
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
248
		unsigned int gen; /** Cached value of INTEL_GEN */
249
		bool use_64bit_reloc : 1;
250 251 252
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
253

254
		struct i915_request *rq;
255 256
		u32 *rq_cmd;
		unsigned int rq_size;
257
	} reloc_cache;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
273 274
};

275
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
276

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

296 297
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
298
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
299 300
}

301
static int eb_create(struct i915_execbuffer *eb)
302
{
303 304
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
305

306 307 308 309 310 311 312 313 314 315 316
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
317
		do {
318
			gfp_t flags;
319 320 321 322 323 324 325

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
326
			flags = GFP_KERNEL;
327 328 329
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

330
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
331
					      flags);
332 333 334 335
			if (eb->buckets)
				break;
		} while (--size);

336 337
		if (unlikely(!size))
			return -ENOMEM;
338

339
		eb->lut_size = size;
340
	} else {
341
		eb->lut_size = -eb->buffer_count;
342
	}
343

344
	return 0;
345 346
}

347 348
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
349 350
		 const struct i915_vma *vma,
		 unsigned int flags)
351 352 353 354 355 356 357
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

358
	if (flags & EXEC_OBJECT_PINNED &&
359 360 361
	    vma->node.start != entry->offset)
		return true;

362
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
363 364 365
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

366
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
367 368 369
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

370 371 372 373
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

374 375 376
	return false;
}

377
static inline bool
378
eb_pin_vma(struct i915_execbuffer *eb,
379
	   const struct drm_i915_gem_exec_object2 *entry,
380 381
	   struct i915_vma *vma)
{
382 383
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
384

385
	if (vma->node.size)
386
		pin_flags = vma->node.start;
387
	else
388
		pin_flags = entry->offset & PIN_OFFSET_MASK;
389

390 391 392
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
393

394 395
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
396

397
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
398
		if (unlikely(i915_vma_pin_fence(vma))) {
399
			i915_vma_unpin(vma);
400
			return false;
401 402
		}

403
		if (vma->fence)
404
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
405 406
	}

407 408
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
409 410
}

411
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
412
{
413
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
414

415
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
416
		__i915_vma_unpin_fence(vma);
417

418
	__i915_vma_unpin(vma);
419 420
}

421
static inline void
422
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
423
{
424
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
425
		return;
426

427 428
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
429 430
}

431 432 433 434
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
435
{
436 437
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
438

439 440 441 442 443 444 445 446
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
447
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
448 449 450 451 452 453 454 455
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
456 457
	}

458
	if (unlikely(vma->exec_flags)) {
459 460 461 462 463 464 465 466 467 468 469 470
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

471 472 473 474 475 476 477 478 479 480 481 482
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

483
	return 0;
484 485
}

486
static int
487 488 489
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
490
{
491
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
492 493 494 495 496 497 498 499
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
500 501
	}

502
	if (eb->lut_size > 0) {
503
		vma->exec_handle = entry->handle;
504
		hlist_add_head(&vma->exec_node,
505 506
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
507
	}
508

509 510 511 512 513 514 515 516 517
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
518
	eb->vma[i] = vma;
519
	eb->flags[i] = entry->flags;
520
	vma->exec_flags = &eb->flags[i];
521

522 523 524 525 526 527 528 529 530 531
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
532 533
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
534 535 536 537 538 539 540
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

541
	err = 0;
542
	if (eb_pin_vma(eb, entry, vma)) {
543 544 545 546
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
547 548 549 550 551 552
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
553 554
		if (unlikely(err))
			vma->exec_flags = NULL;
555 556 557 558 559 560 561 562 563 564
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

565 566 567 568 569
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
570 571 572 573 574 575 576 577 578

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
579 580 581
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
582 583
	int err;

584 585 586
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
587 588 589 590 591

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
592 593
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
594

595 596
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
597

598 599 600 601 602
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
603 604
	}

605 606 607
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
608 609 610 611 612 613 614 615
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

616
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
617
		err = i915_vma_pin_fence(vma);
618 619 620 621 622
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

623
		if (vma->fence)
624
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
625 626
	}

627 628
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
670 671
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
672

673 674
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
675 676
				continue;

677
			eb_unreserve_vma(vma, &eb->flags[i]);
678

679
			if (flags & EXEC_OBJECT_PINNED)
680
				/* Pinned must have their slot */
681
				list_add(&vma->exec_link, &eb->unbound);
682
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
683
				/* Map require the lowest 256MiB (aperture) */
684
				list_add_tail(&vma->exec_link, &eb->unbound);
685 686 687
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
708
}
709

710 711
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
712 713 714 715
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
716 717 718 719 720 721 722
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
723 724
	if (unlikely(!ctx))
		return -ENOENT;
725

726
	eb->gem_context = ctx;
727 728
	if (ctx->vm) {
		eb->vm = ctx->vm;
729 730 731 732
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
	} else {
		eb->vm = &eb->i915->ggtt.vm;
	}
733 734

	eb->context_flags = 0;
735
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736 737 738 739 740
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
{
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &ring->request_list, ring_link) {
		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->ring_link == &ring->request_list)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int eb_wait_for_ring(const struct i915_execbuffer *eb)
{
	struct i915_request *rq;
	int ret = 0;

	/*
	 * Apply a light amount of backpressure to prevent excessive hogs
	 * from blocking waiting for space whilst holding struct_mutex and
	 * keeping all of their resources pinned.
	 */

781
	rq = __eb_wait_for_ring(eb->context->ring);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	if (rq) {
		mutex_unlock(&eb->i915->drm.struct_mutex);

		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0)
			ret = -EINTR;

		i915_request_put(rq);

		mutex_lock(&eb->i915->drm.struct_mutex);
	}

	return ret;
}

798
static int eb_lookup_vmas(struct i915_execbuffer *eb)
799
{
800
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
801
	struct drm_i915_gem_object *obj;
802
	unsigned int i, batch;
803
	int err;
804

805
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
806 807
		return -EIO;

808 809
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
810

811 812
	batch = eb_batch_index(eb);

813 814 815 816 817 818
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

819 820
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
821
		struct i915_lut_handle *lut;
822
		struct i915_vma *vma;
823

824 825
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
826
			goto add_vma;
827

828
		obj = i915_gem_object_lookup(eb->file, handle);
829
		if (unlikely(!obj)) {
830
			err = -ENOENT;
831
			goto err_vma;
832 833
		}

834
		vma = i915_vma_instance(obj, eb->vm, NULL);
835
		if (IS_ERR(vma)) {
836
			err = PTR_ERR(vma);
837
			goto err_obj;
838 839
		}

840
		lut = i915_lut_handle_alloc();
841 842 843 844 845 846 847
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
848
			i915_lut_handle_free(lut);
849
			goto err_obj;
850
		}
851

852 853
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
854
			i915_vma_reopen(vma);
855
		lut->handle = handle;
856 857 858 859 860
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
861

862
add_vma:
863
		err = eb_add_vma(eb, i, batch, vma);
864
		if (unlikely(err))
865
			goto err_vma;
866

867 868
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
869 870
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
871 872
	}

873 874
	mutex_unlock(&eb->gem_context->mutex);

875 876 877
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

878
err_obj:
879
	i915_gem_object_put(obj);
880 881
err_vma:
	eb->vma[i] = NULL;
882 883
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
884
	return err;
885 886
}

887
static struct i915_vma *
888
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
889
{
890 891
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
892
			return NULL;
893
		return eb->vma[handle];
894 895
	} else {
		struct hlist_head *head;
896
		struct i915_vma *vma;
897

898
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
899
		hlist_for_each_entry(vma, head, exec_node) {
900 901
			if (vma->exec_handle == handle)
				return vma;
902 903 904
		}
		return NULL;
	}
905 906
}

907
static void eb_release_vmas(const struct i915_execbuffer *eb)
908
{
909 910 911 912
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
913 914
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
915

916
		if (!vma)
917
			break;
918

919 920 921
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
922

923 924
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
925

926
		if (flags & __EXEC_OBJECT_HAS_REF)
927
			i915_vma_put(vma);
928
	}
929 930
}

931
static void eb_reset_vmas(const struct i915_execbuffer *eb)
932
{
933
	eb_release_vmas(eb);
934
	if (eb->lut_size > 0)
935 936
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
937 938
}

939
static void eb_destroy(const struct i915_execbuffer *eb)
940
{
941 942
	GEM_BUG_ON(eb->reloc_cache.rq);

943
	if (eb->lut_size > 0)
944
		kfree(eb->buckets);
945 946
}

947
static inline u64
948
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
949
		  const struct i915_vma *target)
950
{
951
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
952 953
}

954 955
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
956
{
957
	cache->page = -1;
958
	cache->vaddr = 0;
959
	/* Must be a variable in the struct to allow GCC to unroll. */
960
	cache->gen = INTEL_GEN(i915);
961
	cache->has_llc = HAS_LLC(i915);
962
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
963 964
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
965
	cache->node.allocated = false;
966 967
	cache->rq = NULL;
	cache->rq_size = 0;
968
}
969

970 971 972 973 974 975 976 977
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
978 979
}

980 981
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

982 983 984 985 986 987 988
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

989 990 991 992
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
993 994

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
995
	i915_gem_object_unpin_map(cache->rq->batch->obj);
996

997 998
	i915_gem_chipset_flush(cache->rq->i915);

999
	i915_request_add(cache->rq);
1000 1001 1002
	cache->rq = NULL;
}

1003
static void reloc_cache_reset(struct reloc_cache *cache)
1004
{
1005
	void *vaddr;
1006

1007 1008 1009
	if (cache->rq)
		reloc_gpu_flush(cache);

1010 1011
	if (!cache->vaddr)
		return;
1012

1013 1014 1015 1016
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
1017

1018
		kunmap_atomic(vaddr);
1019
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1020
	} else {
1021
		wmb();
1022
		io_mapping_unmap_atomic((void __iomem *)vaddr);
1023
		if (cache->node.allocated) {
1024
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1025

1026 1027 1028
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1029 1030 1031
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1032
		}
1033
	}
1034 1035 1036

	cache->vaddr = 0;
	cache->page = -1;
1037 1038 1039 1040
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1041
			unsigned long page)
1042
{
1043 1044 1045 1046 1047 1048
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1049
		int err;
1050

1051
		err = i915_gem_object_prepare_write(obj, &flushes);
1052 1053
		if (err)
			return ERR_PTR(err);
1054 1055 1056

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1057

1058 1059 1060 1061
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1062 1063
	}

1064 1065
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1066
	cache->page = page;
1067

1068
	return vaddr;
1069 1070
}

1071 1072
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1073
			 unsigned long page)
1074
{
1075
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1076
	unsigned long offset;
1077
	void *vaddr;
1078

1079
	if (cache->vaddr) {
1080
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1081 1082
	} else {
		struct i915_vma *vma;
1083
		int err;
1084

1085
		if (use_cpu_reloc(cache, obj))
1086
			return NULL;
1087

1088
		i915_gem_object_lock(obj);
1089
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1090
		i915_gem_object_unlock(obj);
1091 1092
		if (err)
			return ERR_PTR(err);
1093

1094
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1095 1096 1097
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1098 1099
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1100
			err = drm_mm_insert_node_in_range
1101
				(&ggtt->vm.mm, &cache->node,
1102
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1103
				 0, ggtt->mappable_end,
1104
				 DRM_MM_INSERT_LOW);
1105
			if (err) /* no inactive aperture space, use cpu reloc */
1106
				return NULL;
1107
		} else {
1108 1109
			err = i915_vma_put_fence(vma);
			if (err) {
1110
				i915_vma_unpin(vma);
1111
				return ERR_PTR(err);
1112
			}
1113

1114 1115
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1116
		}
1117
	}
1118

1119 1120
	offset = cache->node.start;
	if (cache->node.allocated) {
1121
		wmb();
1122 1123 1124
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1125 1126
	} else {
		offset += page << PAGE_SHIFT;
1127 1128
	}

1129
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1130
							 offset);
1131 1132
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1133

1134
	return vaddr;
1135 1136
}

1137 1138
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1139
			 unsigned long page)
1140
{
1141
	void *vaddr;
1142

1143 1144 1145 1146 1147 1148 1149 1150
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1151 1152
	}

1153
	return vaddr;
1154 1155
}

1156
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1157
{
1158 1159 1160 1161 1162
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1163

1164
		*addr = value;
1165

1166 1167
		/*
		 * Writes to the same cacheline are serialised by the CPU
1168 1169 1170 1171 1172 1173 1174 1175 1176
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1199 1200 1201 1202 1203 1204
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1205
	struct i915_request *rq;
1206 1207 1208 1209 1210 1211 1212 1213 1214
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1215 1216 1217
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1232
	rq = i915_request_create(eb->context);
1233 1234 1235 1236 1237
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1238
	err = reloc_move_to_gpu(rq, vma);
1239 1240 1241 1242 1243 1244 1245
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1246
		goto skip_request;
1247

1248
	i915_vma_lock(batch);
1249
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1250
	err = i915_vma_move_to_active(batch, rq, 0);
1251
	i915_vma_unlock(batch);
1252 1253
	if (err)
		goto skip_request;
1254 1255

	rq->batch = batch;
1256
	i915_vma_unpin(batch);
1257 1258 1259 1260 1261 1262 1263 1264

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1265 1266
skip_request:
	i915_request_skip(rq, err);
1267
err_request:
1268
	i915_request_add(rq);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1289 1290 1291 1292
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1293 1294 1295
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1307 1308
static u64
relocate_entry(struct i915_vma *vma,
1309
	       const struct drm_i915_gem_relocation_entry *reloc,
1310 1311
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1312
{
1313
	u64 offset = reloc->offset;
1314 1315
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1316
	void *vaddr;
1317

1318 1319
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1320
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1321 1322 1323 1324 1325 1326 1327 1328 1329
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1330
		else
1331
			len = 3;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1377
repeat:
1378
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1379 1380 1381 1382 1383
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1384
			eb->reloc_cache.vaddr);
1385 1386 1387 1388 1389 1390

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1391 1392
	}

1393
out:
1394
	return target->node.start | UPDATE;
1395 1396
}

1397 1398 1399 1400
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1401
{
1402
	struct i915_vma *target;
1403
	int err;
1404

1405
	/* we've already hold a reference to all valid objects */
1406 1407
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1408
		return -ENOENT;
1409

1410
	/* Validate that the target is in a valid r/w GPU domain */
1411
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1412
		DRM_DEBUG("reloc with multiple write domains: "
1413
			  "target %d offset %d "
1414
			  "read %08x write %08x",
1415
			  reloc->target_handle,
1416 1417 1418
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1419
		return -EINVAL;
1420
	}
1421 1422
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1423
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1424
			  "target %d offset %d "
1425
			  "read %08x write %08x",
1426
			  reloc->target_handle,
1427 1428 1429
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1430
		return -EINVAL;
1431 1432
	}

1433
	if (reloc->write_domain) {
1434
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1435

1436 1437 1438 1439 1440 1441 1442
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1443
		    IS_GEN(eb->i915, 6)) {
1444 1445 1446 1447 1448 1449
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1450
	}
1451

1452 1453
	/*
	 * If the relocation already has the right value in it, no
1454 1455
	 * more work needs to be done.
	 */
1456 1457
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1458
		return 0;
1459 1460

	/* Check that the relocation address is valid... */
1461
	if (unlikely(reloc->offset >
1462
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1463
		DRM_DEBUG("Relocation beyond object bounds: "
1464 1465 1466 1467
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1468
		return -EINVAL;
1469
	}
1470
	if (unlikely(reloc->offset & 3)) {
1471
		DRM_DEBUG("Relocation not 4-byte aligned: "
1472 1473 1474
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1475
		return -EINVAL;
1476 1477
	}

1478 1479 1480 1481 1482 1483
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1484
	 * out of our synchronisation.
1485
	 */
1486
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1487

1488
	/* and update the user's relocation entry */
1489
	return relocate_entry(vma, reloc, eb, target);
1490 1491
}

1492
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1493
{
1494
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1495 1496
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1497
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1498
	unsigned int remain;
1499

1500
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1501
	remain = entry->relocation_count;
1502 1503
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1504

1505 1506 1507 1508 1509
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1510
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1511 1512 1513 1514 1515 1516 1517
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1518

1519 1520
		/*
		 * This is the fast path and we cannot handle a pagefault
1521 1522 1523 1524 1525 1526 1527
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1528
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1529
		pagefault_enable();
1530 1531
		if (unlikely(copied)) {
			remain = -EFAULT;
1532 1533
			goto out;
		}
1534

1535
		remain -= count;
1536
		do {
1537
			u64 offset = eb_relocate_entry(eb, vma, r);
1538

1539 1540 1541
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1542
				goto out;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1566 1567 1568 1569
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1570
			}
1571 1572 1573
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1574
out:
1575
	reloc_cache_reset(&eb->reloc_cache);
1576
	return remain;
1577 1578 1579
}

static int
1580
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1581
{
1582
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1583 1584 1585 1586
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1587 1588

	for (i = 0; i < entry->relocation_count; i++) {
1589
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1590

1591 1592 1593 1594
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1595
	}
1596 1597 1598 1599
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1600 1601
}

1602
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1603
{
1604 1605 1606
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1607

1608 1609 1610
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1611

1612 1613
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1614

1615 1616
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1617
	if (!access_ok(addr, size))
1618
		return -EFAULT;
1619

1620 1621 1622 1623 1624
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1625
	}
1626
	return __get_user(c, end - 1);
1627
}
1628

1629
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1630
{
1631 1632 1633
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1634

1635 1636 1637 1638 1639 1640
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1641

1642 1643
		if (nreloc == 0)
			continue;
1644

1645 1646 1647
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1648

1649 1650
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1651

1652
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1653 1654 1655 1656
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1657

1658 1659 1660 1661 1662 1663 1664
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1665
					     (char __user *)urelocs + copied,
1666
					     len)) {
1667
end_user:
1668
				user_access_end();
1669
end:
1670 1671 1672 1673
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1674

1675 1676
			copied += len;
		} while (copied < size);
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1688
		if (!user_access_begin(urelocs, size))
1689
			goto end;
1690

1691 1692 1693 1694 1695
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1696

1697 1698
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1699

1700
	return 0;
1701

1702 1703 1704 1705 1706 1707 1708 1709
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1710 1711
}

1712
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1713
{
1714 1715
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1716

1717
	if (unlikely(i915_modparams.prefault_disable))
1718
		return 0;
1719

1720 1721
	for (i = 0; i < count; i++) {
		int err;
1722

1723 1724 1725 1726
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1727

1728
	return 0;
1729 1730
}

1731
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1732
{
1733
	struct drm_device *dev = &eb->i915->drm;
1734
	bool have_copy = false;
1735
	struct i915_vma *vma;
1736 1737 1738 1739 1740 1741 1742
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1743

1744
	/* We may process another execbuffer during the unlock... */
1745
	eb_reset_vmas(eb);
1746 1747
	mutex_unlock(&dev->struct_mutex);

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1769
	}
1770 1771 1772
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1773 1774
	}

1775 1776 1777
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1778 1779
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1780
		mutex_lock(&dev->struct_mutex);
1781
		goto out;
1782 1783
	}

1784
	/* reacquire the objects */
1785 1786
	err = eb_lookup_vmas(eb);
	if (err)
1787
		goto err;
1788

1789 1790
	GEM_BUG_ON(!eb->batch);

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1803 1804
	}

1805 1806
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1807 1808 1809 1810 1811 1812
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1834
	return err;
1835 1836
}

1837
static int eb_relocate(struct i915_execbuffer *eb)
1838
{
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1861
	struct ww_acquire_ctx acquire;
1862
	unsigned int i;
1863 1864 1865
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1866

1867
	for (i = 0; i < count; i++) {
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1899 1900
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1901
		struct drm_i915_gem_object *obj = vma->obj;
1902

1903 1904
		assert_vma_held(vma);

1905
		if (flags & EXEC_OBJECT_CAPTURE) {
1906
			struct i915_capture_list *capture;
1907 1908

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1909 1910 1911 1912 1913
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1914 1915
		}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1929
			if (i915_gem_clflush_object(obj, 0))
1930
				flags &= ~EXEC_OBJECT_ASYNC;
1931 1932
		}

1933 1934 1935 1936
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1937

1938 1939
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1940

1941
		i915_vma_unlock(vma);
1942

1943 1944 1945 1946
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1947
			i915_vma_put(vma);
1948
	}
1949 1950 1951 1952 1953
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1954
	eb->exec = NULL;
1955

1956
	/* Unconditionally flush any chipset caches (for streaming writes). */
1957
	i915_gem_chipset_flush(eb->i915);
1958
	return 0;
1959 1960 1961 1962

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1963 1964
}

1965
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1966
{
1967
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1968 1969
		return false;

C
Chris Wilson 已提交
1970
	/* Kernel clipping was a DRI1 misfeature */
1971 1972 1973 1974
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1987 1988
}

1989
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1990
{
1991 1992
	u32 *cs;
	int i;
1993

1994
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1995 1996 1997
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1998

1999
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2000 2001
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2002

2003
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2004
	for (i = 0; i < 4; i++) {
2005 2006
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2007
	}
2008
	*cs++ = MI_NOOP;
2009
	intel_ring_advance(rq, cs);
2010 2011 2012 2013

	return 0;
}

2014
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
2015 2016
{
	struct drm_i915_gem_object *shadow_batch_obj;
2017
	struct i915_vma *vma;
2018
	int err;
2019

2020 2021
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
2022
	if (IS_ERR(shadow_batch_obj))
2023
		return ERR_CAST(shadow_batch_obj);
2024

2025
	err = intel_engine_cmd_parser(eb->engine,
2026
				      eb->batch->obj,
2027
				      shadow_batch_obj,
2028 2029
				      eb->batch_start_offset,
				      eb->batch_len,
2030
				      is_master);
2031 2032
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2033 2034
			vma = NULL;
		else
2035
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
2036 2037
		goto out;
	}
2038

C
Chris Wilson 已提交
2039 2040 2041
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
2042

2043 2044 2045 2046 2047
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2048

C
Chris Wilson 已提交
2049
out:
C
Chris Wilson 已提交
2050
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2051
	return vma;
2052
}
2053

2054
static void
2055
add_to_client(struct i915_request *rq, struct drm_file *file)
2056
{
2057 2058
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
2059 2060
}

2061
static int eb_submit(struct i915_execbuffer *eb)
2062
{
2063
	int err;
2064

2065 2066 2067
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2068

2069
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2070 2071 2072
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2073 2074
	}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2087
	err = eb->engine->emit_bb_start(eb->request,
2088 2089 2090
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2091 2092 2093
					eb->batch_flags);
	if (err)
		return err;
2094

C
Chris Wilson 已提交
2095
	return 0;
2096 2097
}

2098
/*
2099
 * Find one BSD ring to dispatch the corresponding BSD command.
2100
 * The engine index is returned.
2101
 */
2102
static unsigned int
2103 2104
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2105 2106 2107
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2108
	/* Check whether the file_priv has already selected one ring. */
2109 2110 2111
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2112

2113
	return file_priv->bsd_engine;
2114 2115
}

2116
static const enum intel_engine_id user_ring_map[] = {
2117 2118 2119 2120 2121
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2122 2123
};

2124
static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2125
{
2126
	int err;
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = i915_terminally_wedged(eb->i915);
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2141 2142 2143
	err = intel_context_pin(ce);
	if (err)
		return err;
2144

2145
	eb->engine = ce->engine;
2146 2147 2148 2149 2150 2151 2152 2153
	eb->context = ce;
	return 0;
}

static void eb_unpin_context(struct i915_execbuffer *eb)
{
	intel_context_unpin(eb->context);
}
2154

2155 2156 2157 2158
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2159
{
2160
	struct drm_i915_private *i915 = eb->i915;
2161 2162
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2163 2164
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2165 2166
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2167
		return -1;
2168 2169
	}

2170
	if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
2171 2172 2173
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2174
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2175 2176
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2177
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2178 2179 2180 2181
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2182
			return -1;
2183 2184
		}

2185
		return _VCS(bsd_idx);
2186 2187
	}

2188 2189 2190
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2191 2192
	}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	return user_ring_map[user_ring_id];
}

static int
eb_select_engine(struct i915_execbuffer *eb,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2205 2206 2207 2208
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2209 2210 2211 2212 2213 2214 2215 2216 2217

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	err = eb_pin_context(eb, ce);
	intel_context_put(ce);

	return err;
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2232
	const unsigned long nfences = args->num_cliprects;
2233 2234
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2235
	unsigned long n;
2236 2237 2238 2239 2240
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2241 2242 2243 2244 2245
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2246 2247 2248
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2249
	if (!access_ok(user, nfences * sizeof(*user)))
2250 2251
		return ERR_PTR(-EFAULT);

2252
	fences = kvmalloc_array(nfences, sizeof(*fences),
2253
				__GFP_NOWARN | GFP_KERNEL);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2266 2267 2268 2269 2270
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2271 2272 2273 2274 2275 2276 2277
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2278 2279 2280
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2316
		fence = drm_syncobj_fence_get(syncobj);
2317 2318 2319
		if (!fence)
			return -EINVAL;

2320
		err = i915_request_await_dma_fence(eb->request, fence);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2345
		drm_syncobj_replace_fence(syncobj, fence);
2346 2347 2348
	}
}

2349
static int
2350
i915_gem_do_execbuffer(struct drm_device *dev,
2351 2352
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2353 2354
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2355
{
2356
	struct i915_execbuffer eb;
2357
	struct dma_fence *in_fence = NULL;
2358
	struct dma_fence *exec_fence = NULL;
2359 2360
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2361
	int err;
2362

2363
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2364 2365
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2366

2367 2368 2369
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2370
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2371
		args->flags |= __EXEC_HAS_RELOC;
2372

2373
	eb.exec = exec;
2374 2375
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2376 2377
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2378
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2379 2380
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2381
	eb.buffer_count = args->buffer_count;
2382 2383 2384
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2385
	eb.batch_flags = 0;
2386
	if (args->flags & I915_EXEC_SECURE) {
2387
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2388 2389
		    return -EPERM;

2390
		eb.batch_flags |= I915_DISPATCH_SECURE;
2391
	}
2392
	if (args->flags & I915_EXEC_IS_PINNED)
2393
		eb.batch_flags |= I915_DISPATCH_PINNED;
2394

2395 2396
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2397 2398
		if (!in_fence)
			return -EINVAL;
2399 2400
	}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2414 2415 2416
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2417
			err = out_fence_fd;
2418
			goto err_exec_fence;
2419 2420 2421
		}
	}

2422 2423 2424 2425 2426
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2427

2428 2429 2430 2431
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2432 2433
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2434 2435 2436 2437 2438
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2439
	intel_gt_pm_get(eb.i915);
2440

2441 2442 2443
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2444

2445
	err = eb_select_engine(&eb, file, args);
2446 2447 2448
	if (unlikely(err))
		goto err_unlock;

2449 2450 2451 2452
	err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
	if (unlikely(err))
		goto err_engine;

2453
	err = eb_relocate(&eb);
2454
	if (err) {
2455 2456 2457 2458 2459 2460 2461 2462 2463
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2464
	}
2465

2466
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2467
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2468 2469
		err = -EINVAL;
		goto err_vma;
2470
	}
2471 2472
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2473
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2474 2475
		err = -EINVAL;
		goto err_vma;
2476
	}
2477

2478
	if (eb_use_cmdparser(&eb)) {
2479 2480
		struct i915_vma *vma;

2481
		vma = eb_parse(&eb, drm_is_current_master(file));
2482
		if (IS_ERR(vma)) {
2483 2484
			err = PTR_ERR(vma);
			goto err_vma;
2485
		}
2486

2487
		if (vma) {
2488 2489 2490 2491 2492 2493 2494 2495 2496
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2497
			eb.batch_flags |= I915_DISPATCH_SECURE;
2498 2499
			eb.batch_start_offset = 0;
			eb.batch = vma;
2500
		}
2501 2502
	}

2503 2504
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2505

2506 2507
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2508
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2509
	 * hsw should have this fixed, but bdw mucks it up again. */
2510
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2511
		struct i915_vma *vma;
2512

2513 2514 2515 2516 2517 2518
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2519
		 *   so we don't really have issues with multiple objects not
2520 2521 2522
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2523
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2524
		if (IS_ERR(vma)) {
2525 2526
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2527
		}
2528

2529
		eb.batch = vma;
2530
	}
2531

2532 2533 2534
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2535
	/* Allocate a request for this batch buffer nice and early. */
2536
	eb.request = i915_request_create(eb.context);
2537
	if (IS_ERR(eb.request)) {
2538
		err = PTR_ERR(eb.request);
2539
		goto err_batch_unpin;
2540
	}
2541

2542
	if (in_fence) {
2543
		err = i915_request_await_dma_fence(eb.request, in_fence);
2544
		if (err < 0)
2545 2546 2547
			goto err_request;
	}

2548 2549 2550 2551 2552 2553 2554
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2555 2556 2557 2558 2559 2560
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2561
	if (out_fence_fd != -1) {
2562
		out_fence = sync_file_create(&eb.request->fence);
2563
		if (!out_fence) {
2564
			err = -ENOMEM;
2565 2566 2567 2568
			goto err_request;
		}
	}

2569 2570
	/*
	 * Whilst this request exists, batch_obj will be on the
2571 2572 2573 2574 2575
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2576
	eb.request->batch = eb.batch;
2577

2578
	trace_i915_request_queue(eb.request, eb.batch_flags);
2579
	err = eb_submit(&eb);
2580
err_request:
2581
	add_to_client(eb.request, file);
2582
	i915_request_add(eb.request);
2583

2584 2585 2586
	if (fences)
		signal_fence_array(&eb, fences);

2587
	if (out_fence) {
2588
		if (err == 0) {
2589
			fd_install(out_fence_fd, out_fence->file);
2590
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2591 2592 2593 2594 2595 2596
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2597

2598
err_batch_unpin:
2599
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2600
		i915_vma_unpin(eb.batch);
2601 2602 2603
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2604 2605
err_engine:
	eb_unpin_context(&eb);
2606
err_unlock:
2607
	mutex_unlock(&dev->struct_mutex);
2608
err_rpm:
2609 2610
	intel_gt_pm_put(eb.i915);
	i915_gem_context_put(eb.gem_context);
2611
err_destroy:
2612
	eb_destroy(&eb);
2613
err_out_fence:
2614 2615
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2616 2617
err_exec_fence:
	dma_fence_put(exec_fence);
2618
err_in_fence:
2619
	dma_fence_put(in_fence);
2620
	return err;
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2643 2644 2645 2646 2647
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2648 2649
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2650 2651 2652 2653 2654
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2655
	const size_t count = args->buffer_count;
2656 2657
	unsigned int i;
	int err;
2658

2659 2660
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2661 2662 2663
		return -EINVAL;
	}

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2678
	/* Copy in the exec list from userland */
2679
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2680
				   __GFP_NOWARN | GFP_KERNEL);
2681
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2682
				    __GFP_NOWARN | GFP_KERNEL);
2683
	if (exec_list == NULL || exec2_list == NULL) {
2684
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2685
			  args->buffer_count);
M
Michal Hocko 已提交
2686 2687
		kvfree(exec_list);
		kvfree(exec2_list);
2688 2689
		return -ENOMEM;
	}
2690
	err = copy_from_user(exec_list,
2691
			     u64_to_user_ptr(args->buffers_ptr),
2692
			     sizeof(*exec_list) * count);
2693
	if (err) {
2694
		DRM_DEBUG("copy %d exec entries failed %d\n",
2695
			  args->buffer_count, err);
M
Michal Hocko 已提交
2696 2697
		kvfree(exec_list);
		kvfree(exec2_list);
2698 2699 2700 2701 2702 2703 2704 2705 2706
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2707
		if (INTEL_GEN(to_i915(dev)) < 4)
2708 2709 2710 2711 2712
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2713
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2714
	if (exec2.flags & __EXEC_HAS_RELOC) {
2715
		struct drm_i915_gem_exec_object __user *user_exec_list =
2716
			u64_to_user_ptr(args->buffers_ptr);
2717

2718
		/* Copy the new buffer offsets back to the user's exec list. */
2719
		for (i = 0; i < args->buffer_count; i++) {
2720 2721 2722
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2723
			exec2_list[i].offset =
2724 2725 2726 2727 2728
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2729
				break;
2730 2731 2732
		}
	}

M
Michal Hocko 已提交
2733 2734
	kvfree(exec_list);
	kvfree(exec2_list);
2735
	return err;
2736 2737 2738
}

int
2739 2740
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2741 2742
{
	struct drm_i915_gem_execbuffer2 *args = data;
2743
	struct drm_i915_gem_exec_object2 *exec2_list;
2744
	struct drm_syncobj **fences = NULL;
2745
	const size_t count = args->buffer_count;
2746
	int err;
2747

2748 2749
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2750 2751 2752
		return -EINVAL;
	}

2753 2754 2755 2756
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2757
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2758
				    __GFP_NOWARN | GFP_KERNEL);
2759
	if (exec2_list == NULL) {
2760 2761
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2762 2763
		return -ENOMEM;
	}
2764 2765
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2766 2767
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2768
		kvfree(exec2_list);
2769 2770 2771
		return -EFAULT;
	}

2772 2773 2774 2775 2776 2777 2778 2779 2780
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2781 2782 2783 2784 2785 2786 2787 2788

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2789
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2790 2791
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2792

2793
		/* Copy the new buffer offsets back to the user's exec list. */
2794 2795 2796 2797 2798 2799 2800 2801
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2802
			goto end;
2803

2804
		for (i = 0; i < args->buffer_count; i++) {
2805 2806 2807
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2808
			exec2_list[i].offset =
2809 2810 2811 2812
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2813
		}
2814 2815
end_user:
		user_access_end();
2816
end:;
2817 2818
	}

2819
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2820
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2821
	kvfree(exec2_list);
2822
	return err;
2823
}