i915_gem_execbuffer.c 73.4 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47
struct eb_vma_array {
	struct kref kref;
	struct eb_vma vma[];
};

48 49 50 51 52
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
53 54

#define __EXEC_HAS_RELOC	BIT(31)
55
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
56
#define UPDATE			PIN_OFFSET_FIXED
57 58

#define BATCH_OFFSET_BIAS (256*1024)
59

60
#define __I915_EXEC_ILLEGAL_FLAGS \
61 62 63
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
64

65 66 67 68 69 70 71 72 73
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

225
struct i915_execbuffer {
226 227 228 229
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
230
	struct eb_vma *vma;
231 232

	struct intel_engine_cs *engine; /** engine to queue the request to */
233 234
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
235

236
	struct i915_request *request; /** our request to build */
237
	struct eb_vma *batch; /** identity of the batch obj/vma */
238
	struct i915_vma *trampoline; /** trampoline used for chaining */
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
254
	struct reloc_cache {
255
		struct drm_mm_node node; /** temporary GTT binding */
256
		unsigned int gen; /** Cached value of INTEL_GEN */
257
		bool use_64bit_reloc : 1;
258 259 260
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
261

262
		struct i915_vma *target;
263
		struct i915_request *rq;
264
		struct i915_vma *rq_vma;
265 266
		u32 *rq_cmd;
		unsigned int rq_size;
267
	} reloc_cache;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
283
	struct eb_vma_array *array;
284 285
};

286 287
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
288
	return intel_engine_requires_cmd_parser(eb->engine) ||
289 290
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static struct eb_vma_array *eb_vma_array_create(unsigned int count)
{
	struct eb_vma_array *arr;

	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
	if (!arr)
		return NULL;

	kref_init(&arr->kref);
	arr->vma[0].vma = NULL;

	return arr;
}

static inline void eb_unreserve_vma(struct eb_vma *ev)
{
	struct i915_vma *vma = ev->vma;

	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
		__i915_vma_unpin(vma);

	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
		       __EXEC_OBJECT_HAS_FENCE);
}

static void eb_vma_array_destroy(struct kref *kref)
{
	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
	struct eb_vma *ev = arr->vma;

	while (ev->vma) {
		eb_unreserve_vma(ev);
		i915_vma_put(ev->vma);
		ev++;
	}

	kvfree(arr);
}

static void eb_vma_array_put(struct eb_vma_array *arr)
{
	kref_put(&arr->kref, eb_vma_array_destroy);
}

340
static int eb_create(struct i915_execbuffer *eb)
341
{
342 343 344 345 346 347 348
	/* Allocate an extra slot for use by the command parser + sentinel */
	eb->array = eb_vma_array_create(eb->buffer_count + 2);
	if (!eb->array)
		return -ENOMEM;

	eb->vma = eb->array->vma;

349 350
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
351

352 353 354 355 356 357 358 359 360 361 362
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
363
		do {
364
			gfp_t flags;
365 366 367 368 369 370 371

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
372
			flags = GFP_KERNEL;
373 374 375
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

376
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
377
					      flags);
378 379 380 381
			if (eb->buckets)
				break;
		} while (--size);

382 383
		if (unlikely(!size)) {
			eb_vma_array_put(eb->array);
384
			return -ENOMEM;
385
		}
386

387
		eb->lut_size = size;
388
	} else {
389
		eb->lut_size = -eb->buffer_count;
390
	}
391

392
	return 0;
393 394
}

395 396
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
397 398
		 const struct i915_vma *vma,
		 unsigned int flags)
399 400 401 402 403 404 405
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

406
	if (flags & EXEC_OBJECT_PINNED &&
407 408 409
	    vma->node.start != entry->offset)
		return true;

410
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
411 412 413
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

414
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
415 416 417
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

418 419 420 421
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

422 423 424
	return false;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

451
static inline bool
452
eb_pin_vma(struct i915_execbuffer *eb,
453
	   const struct drm_i915_gem_exec_object2 *entry,
454
	   struct eb_vma *ev)
455
{
456
	struct i915_vma *vma = ev->vma;
457
	u64 pin_flags;
458

459
	if (vma->node.size)
460
		pin_flags = vma->node.start;
461
	else
462
		pin_flags = entry->offset & PIN_OFFSET_MASK;
463

464
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
465
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
466
		pin_flags |= PIN_GLOBAL;
467

468 469 470 471 472 473 474 475 476 477 478 479 480
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
481

482
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
483
		if (unlikely(i915_vma_pin_fence(vma))) {
484
			i915_vma_unpin(vma);
485
			return false;
486 487
		}

488
		if (vma->fence)
489
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
490 491
	}

492 493
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
494 495 496 497 498 499
}

static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
500
{
501 502
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
503

504 505
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
506 507 508 509 510 511 512
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
513
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
514 515 516 517 518 519 520 521
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
522
	}
523 524 525 526 527 528 529
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

530 531 532 533 534 535 536 537 538 539 540 541
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

542
	return 0;
543 544
}

545
static void
546 547 548
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
549
{
550
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
551
	struct eb_vma *ev = &eb->vma[i];
552 553 554

	GEM_BUG_ON(i915_vma_is_closed(vma));

555
	ev->vma = vma;
556 557 558
	ev->exec = entry;
	ev->flags = entry->flags;

559
	if (eb->lut_size > 0) {
560 561
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
562 563
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
564
	}
565

566
	if (entry->relocation_count)
567
		list_add_tail(&ev->reloc_link, &eb->relocs);
568

569 570 571 572 573 574 575 576 577 578
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
579
		if (entry->relocation_count &&
580 581
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
582
		if (eb->reloc_cache.has_fence)
583
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
584

585
		eb->batch = ev;
586 587
	}

588
	if (eb_pin_vma(eb, entry, ev)) {
589 590 591 592
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
593
	} else {
594 595
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
596 597 598 599
	}
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
600
			  struct eb_vma *ev,
601
			  u64 pin_flags)
602
{
603 604
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
605 606
	int err;

607 608 609 610 611 612 613
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

614 615
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
616
			   eb_pin_flags(entry, ev->flags) | pin_flags);
617 618 619 620 621 622 623 624
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

625
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
626
		err = i915_vma_pin_fence(vma);
627 628 629 630 631
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

632
		if (vma->fence)
633
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
634 635
	}

636
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
637
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
638

639 640 641 642 643 644
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
645
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
646
	struct list_head last;
647
	struct eb_vma *ev;
648
	unsigned int i, pass;
649
	int err = 0;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

665 666 667
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

668 669
	pass = 0;
	do {
670 671
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
672 673 674
			if (err)
				break;
		}
675
		if (!(err == -ENOSPC || err == -EAGAIN))
676
			break;
677 678 679 680 681

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
682
			unsigned int flags;
683

684 685
			ev = &eb->vma[i];
			flags = ev->flags;
686 687
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
688 689
				continue;

690
			eb_unreserve_vma(ev);
691

692
			if (flags & EXEC_OBJECT_PINNED)
693
				/* Pinned must have their slot */
694
				list_add(&ev->bind_link, &eb->unbound);
695
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
696
				/* Map require the lowest 256MiB (aperture) */
697
				list_add_tail(&ev->bind_link, &eb->unbound);
698 699
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
700
				list_add(&ev->bind_link, &last);
701
			else
702
				list_add_tail(&ev->bind_link, &last);
703 704 705
		}
		list_splice_tail(&last, &eb->unbound);

706
		if (err == -EAGAIN) {
707
			mutex_unlock(&eb->i915->drm.struct_mutex);
708
			flush_workqueue(eb->i915->mm.userptr_wq);
709
			mutex_lock(&eb->i915->drm.struct_mutex);
710 711 712
			continue;
		}

713 714 715 716 717 718
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
719
			mutex_lock(&eb->context->vm->mutex);
720
			err = i915_gem_evict_vm(eb->context->vm);
721
			mutex_unlock(&eb->context->vm->mutex);
722
			if (err)
723
				goto unlock;
724 725 726
			break;

		default:
727 728
			err = -ENOSPC;
			goto unlock;
729
		}
730 731

		pin_flags = PIN_USER;
732
	} while (1);
733 734 735 736

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
737
}
738

739 740
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
741 742 743 744
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
745 746 747 748 749 750 751
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
752 753
	if (unlikely(!ctx))
		return -ENOENT;
754

755
	eb->gem_context = ctx;
756
	if (rcu_access_pointer(ctx->vm))
757
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
758 759

	eb->context_flags = 0;
760
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
761 762 763 764 765
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

766 767
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
768
{
769 770
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
771
	int err;
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
	if (!mutex_lock_interruptible(&ctx->mutex)) {
		err = -ENOENT;
		if (likely(!i915_gem_context_is_closed(ctx)))
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

792
			spin_lock(&obj->lut_lock);
793 794 795 796 797 798
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
799
			spin_unlock(&obj->lut_lock);
800 801 802 803 804
		}
		mutex_unlock(&ctx->mutex);
	}
	if (unlikely(err))
		goto err;
805

806
	return 0;
807

808
err:
C
Chris Wilson 已提交
809
	i915_vma_close(vma);
810 811 812 813
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
814

815 816 817 818
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
	do {
		struct drm_i915_gem_object *obj;
819
		struct i915_vma *vma;
820
		int err;
821

822 823
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
824
		if (likely(vma))
825 826 827 828
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
829

830
		obj = i915_gem_object_lookup(eb->file, handle);
831 832
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
833

834
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
835
		if (IS_ERR(vma)) {
836 837
			i915_gem_object_put(obj);
			return vma;
838 839
		}

840 841 842
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
843

844 845 846 847 848
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
849

850 851 852 853 854
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
855

856 857 858 859 860 861 862 863 864 865 866
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
867

868
		err = eb_validate_vma(eb, &eb->exec[i], vma);
869 870 871 872
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
873

874
		eb_add_vma(eb, i, batch, vma);
875 876
	}

877
	eb->vma[i].vma = NULL;
878
	return err;
879 880
}

881
static struct eb_vma *
882
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
883
{
884 885
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
886
			return NULL;
887
		return &eb->vma[handle];
888 889
	} else {
		struct hlist_head *head;
890
		struct eb_vma *ev;
891

892
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
893 894 895
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
896 897 898
		}
		return NULL;
	}
899 900
}

901
static void eb_destroy(const struct i915_execbuffer *eb)
902
{
903 904
	GEM_BUG_ON(eb->reloc_cache.rq);

905 906 907
	if (eb->array)
		eb_vma_array_put(eb->array);

908
	if (eb->lut_size > 0)
909
		kfree(eb->buckets);
910 911
}

912
static inline u64
913
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
914
		  const struct i915_vma *target)
915
{
916
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
917 918
}

919 920
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
921
{
922
	/* Must be a variable in the struct to allow GCC to unroll. */
923
	cache->gen = INTEL_GEN(i915);
924
	cache->has_llc = HAS_LLC(i915);
925
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
926 927
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
928
	cache->node.flags = 0;
929
	cache->rq = NULL;
930
	cache->target = NULL;
931
}
932

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
#define RELOC_TAIL 4

static int reloc_gpu_chain(struct reloc_cache *cache)
{
	struct intel_gt_buffer_pool_node *pool;
	struct i915_request *rq = cache->rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);

	batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto out_pool;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto out_pool;

	GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
	cmd = cache->rq_cmd + cache->rq_size;
	*cmd++ = MI_ARB_CHECK;
960
	if (cache->gen >= 8)
961
		*cmd++ = MI_BATCH_BUFFER_START_GEN8;
962
	else if (cache->gen >= 6)
963
		*cmd++ = MI_BATCH_BUFFER_START;
964 965 966 967
	else
		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cmd++ = lower_32_bits(batch->node.start);
	*cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	i915_gem_object_flush_map(cache->rq_vma->obj);
	i915_gem_object_unpin_map(cache->rq_vma->obj);
	cache->rq_vma = NULL;

	err = intel_gt_buffer_pool_mark_active(pool, rq);
	if (err == 0) {
		i915_vma_lock(batch);
		err = i915_request_await_object(rq, batch->obj, false);
		if (err == 0)
			err = i915_vma_move_to_active(batch, rq, 0);
		i915_vma_unlock(batch);
	}
	i915_vma_unpin(batch);
	if (err)
		goto out_pool;

	cmd = i915_gem_object_pin_map(batch->obj,
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}

	/* Return with batch mapping (cmd) still pinned */
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
	cache->rq_vma = batch;

out_pool:
	intel_gt_buffer_pool_put(pool);
	return err;
}

static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
{
	return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
}

1008
static int reloc_gpu_flush(struct reloc_cache *cache)
1009
{
1010 1011
	struct i915_request *rq;
	int err;
1012

1013 1014
	rq = fetch_and_zero(&cache->rq);
	if (!rq)
1015
		return 0;
1016

1017 1018
	if (cache->rq_vma) {
		struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1019

1020 1021
		GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
		cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		__i915_gem_object_flush_map(obj,
					    0, sizeof(u32) * cache->rq_size);
		i915_gem_object_unpin_map(obj);
	}

	err = 0;
	if (rq->engine->emit_init_breadcrumb)
		err = rq->engine->emit_init_breadcrumb(rq);
	if (!err)
		err = rq->engine->emit_bb_start(rq,
						rq->batch->node.start,
						PAGE_SIZE,
						reloc_bb_flags(cache));
	if (err)
		i915_request_set_error_once(rq, err);

	intel_gt_chipset_flush(rq->engine->gt);
	i915_request_add(rq);
1041 1042

	return err;
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1065
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1066
			     struct intel_engine_cs *engine,
1067 1068 1069
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1070
	struct intel_gt_buffer_pool_node *pool;
1071
	struct i915_request *rq;
1072 1073 1074 1075
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1076
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1077 1078
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1079

1080
	cmd = i915_gem_object_pin_map(pool->obj,
1081 1082 1083
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1084 1085 1086 1087
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1088

1089
	batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1090 1091 1092 1093 1094 1095 1096 1097 1098
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1099 1100 1101 1102 1103 1104 1105
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1106
			err = PTR_ERR(ce);
1107 1108 1109 1110 1111 1112 1113 1114 1115
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1116 1117 1118 1119 1120
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1121
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1122 1123 1124
	if (err)
		goto err_request;

1125
	i915_vma_lock(batch);
1126 1127 1128
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1129
	i915_vma_unlock(batch);
1130 1131
	if (err)
		goto skip_request;
1132 1133

	rq->batch = batch;
1134
	i915_vma_unpin(batch);
1135 1136 1137 1138

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1139
	cache->rq_vma = batch;
1140 1141

	/* Return with batch mapping (cmd) still pinned */
1142
	goto out_pool;
1143

1144
skip_request:
1145
	i915_request_set_error_once(rq, err);
1146
err_request:
1147
	i915_request_add(rq);
1148 1149 1150
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1151 1152
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1153
	intel_gt_buffer_pool_put(pool);
1154 1155 1156
	return err;
}

1157 1158 1159 1160 1161
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1162 1163 1164 1165 1166 1167
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1168
	int err;
1169 1170

	if (unlikely(!cache->rq)) {
1171 1172
		struct intel_engine_cs *engine = eb->engine;

1173
		if (!reloc_can_use_engine(engine)) {
1174
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1175
			if (!engine)
1176 1177
				return ERR_PTR(-ENODEV);
		}
1178

1179
		err = __reloc_gpu_alloc(eb, engine, len);
1180 1181 1182 1183
		if (unlikely(err))
			return ERR_PTR(err);
	}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (vma != cache->target) {
		err = reloc_move_to_gpu(cache->rq, vma);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}

		cache->target = vma;
	}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	if (unlikely(cache->rq_size + len >
		     PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
		err = reloc_gpu_chain(cache);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}
	}

	GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1204 1205 1206 1207 1208 1209
	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1210
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1211
{
1212 1213
	struct page *page;
	unsigned long addr;
1214

1215
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1216

1217 1218 1219
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1220

1221 1222 1223
	return addr + offset_in_page(offset);
}

1224 1225 1226 1227
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     u64 offset,
			     u64 target_addr)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
1243
		return PTR_ERR(batch);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1254 1255

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1256 1257 1258
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1259
		} else {
1260 1261 1262 1263 1264
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1265
		}
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1290 1291
	}

1292
	return 0;
1293 1294 1295
}

static u64
1296 1297
relocate_entry(struct i915_execbuffer *eb,
	       struct i915_vma *vma,
1298 1299 1300 1301
	       const struct drm_i915_gem_relocation_entry *reloc,
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1302 1303 1304 1305 1306
	int err;

	err = __reloc_entry_gpu(eb, vma, reloc->offset, target_addr);
	if (err)
		return err;
1307

1308
	return target->node.start | UPDATE;
1309 1310
}

1311 1312
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1313
		  struct eb_vma *ev,
1314
		  const struct drm_i915_gem_relocation_entry *reloc)
1315
{
1316
	struct drm_i915_private *i915 = eb->i915;
1317
	struct eb_vma *target;
1318
	int err;
1319

1320
	/* we've already hold a reference to all valid objects */
1321 1322
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1323
		return -ENOENT;
1324

1325
	/* Validate that the target is in a valid r/w GPU domain */
1326
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1327
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1328
			  "target %d offset %d "
1329
			  "read %08x write %08x",
1330
			  reloc->target_handle,
1331 1332 1333
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1334
		return -EINVAL;
1335
	}
1336 1337
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1338
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1339
			  "target %d offset %d "
1340
			  "read %08x write %08x",
1341
			  reloc->target_handle,
1342 1343 1344
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1345
		return -EINVAL;
1346 1347
	}

1348
	if (reloc->write_domain) {
1349
		target->flags |= EXEC_OBJECT_WRITE;
1350

1351 1352 1353 1354 1355 1356 1357
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1358
		    IS_GEN(eb->i915, 6)) {
1359 1360
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1361
					    PIN_GLOBAL, NULL);
1362
			if (err)
1363 1364
				return err;
		}
1365
	}
1366

1367 1368
	/*
	 * If the relocation already has the right value in it, no
1369 1370
	 * more work needs to be done.
	 */
1371
	if (gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1372
		return 0;
1373 1374

	/* Check that the relocation address is valid... */
1375
	if (unlikely(reloc->offset >
1376
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1377
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1378 1379 1380
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1381
			  (int)ev->vma->size);
1382
		return -EINVAL;
1383
	}
1384
	if (unlikely(reloc->offset & 3)) {
1385
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1386 1387 1388
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1389
		return -EINVAL;
1390 1391
	}

1392 1393 1394 1395 1396 1397
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1398
	 * out of our synchronisation.
1399
	 */
1400
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1401

1402
	/* and update the user's relocation entry */
1403
	return relocate_entry(eb, ev->vma, reloc, target->vma);
1404 1405
}

1406
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1407
{
1408
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1409
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1410
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1411 1412 1413
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1414

1415
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1416
		return -EINVAL;
1417

1418 1419 1420 1421 1422
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1423
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1424 1425 1426 1427 1428
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1429
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1430
		unsigned int copied;
1431

1432 1433
		/*
		 * This is the fast path and we cannot handle a pagefault
1434 1435 1436 1437 1438 1439
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1440
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1441 1442
		if (unlikely(copied))
			return -EFAULT;
1443

1444
		remain -= count;
1445
		do {
1446
			u64 offset = eb_relocate_entry(eb, ev, r);
1447

1448 1449
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1450
				return (int)offset;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1474 1475
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1476
			}
1477 1478 1479
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1480 1481

	return 0;
1482 1483
}

1484
static int eb_relocate(struct i915_execbuffer *eb)
1485
{
1486 1487 1488 1489 1490 1491
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1492 1493 1494 1495 1496
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1497 1498 1499

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1500
		struct eb_vma *ev;
1501
		int flush;
1502

1503
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1504 1505
			err = eb_relocate_vma(eb, ev);
			if (err)
1506
				break;
1507
		}
1508 1509 1510 1511

		flush = reloc_gpu_flush(&eb->reloc_cache);
		if (!err)
			err = flush;
1512 1513
	}

1514
	return err;
1515 1516 1517 1518 1519
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1520
	struct ww_acquire_ctx acquire;
1521
	unsigned int i;
1522 1523 1524
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1525

1526
	for (i = 0; i < count; i++) {
1527 1528
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1529 1530 1531 1532 1533 1534 1535

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1536
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1550 1551 1552
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1553
		struct drm_i915_gem_object *obj = vma->obj;
1554

1555 1556
		assert_vma_held(vma);

1557
		if (flags & EXEC_OBJECT_CAPTURE) {
1558
			struct i915_capture_list *capture;
1559 1560

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1561 1562 1563 1564 1565
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1566 1567
		}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1581
			if (i915_gem_clflush_object(obj, 0))
1582
				flags &= ~EXEC_OBJECT_ASYNC;
1583 1584
		}

1585 1586 1587 1588
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1589

1590 1591
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1592

1593
		i915_vma_unlock(vma);
1594
		eb_unreserve_vma(ev);
1595
	}
1596 1597
	ww_acquire_fini(&acquire);

1598 1599
	eb_vma_array_put(fetch_and_zero(&eb->array));

1600 1601 1602
	if (unlikely(err))
		goto err_skip;

1603
	/* Unconditionally flush any chipset caches (for streaming writes). */
1604
	intel_gt_chipset_flush(eb->engine->gt);
1605
	return 0;
1606 1607

err_skip:
1608
	i915_request_set_error_once(eb->request, err);
1609
	return err;
1610 1611
}

T
Tvrtko Ursulin 已提交
1612
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1613
{
1614
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1615
		return -EINVAL;
1616

C
Chris Wilson 已提交
1617
	/* Kernel clipping was a DRI1 misfeature */
1618 1619
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1620
			return -EINVAL;
1621
	}
C
Chris Wilson 已提交
1622 1623 1624 1625 1626 1627

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1628
		return -EINVAL;
C
Chris Wilson 已提交
1629 1630

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1631
		return -EINVAL;
C
Chris Wilson 已提交
1632

T
Tvrtko Ursulin 已提交
1633
	return 0;
1634 1635
}

1636
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1637
{
1638 1639
	u32 *cs;
	int i;
1640

1641 1642
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1643 1644
		return -EINVAL;
	}
1645

1646
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1647 1648
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1649

1650
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1651
	for (i = 0; i < 4; i++) {
1652 1653
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1654
	}
1655
	*cs++ = MI_NOOP;
1656
	intel_ring_advance(rq, cs);
1657 1658 1659 1660

	return 0;
}

1661
static struct i915_vma *
1662 1663 1664
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1665
{
1666 1667
	struct i915_vma *vma;
	int err;
1668

1669 1670 1671 1672 1673 1674 1675 1676 1677
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1712 1713 1714
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1715
	.release = __eb_parse_release,
1716 1717
};

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

	return i915_active_ref(&node->active, tl, fence);
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1761
	err = i915_active_acquire(&eb->batch->vma->active);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1775 1776 1777
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1778
	pw->batch = eb->batch->vma;
1779 1780 1781 1782 1783
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1784 1785 1786 1787 1788
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

1789 1790
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
1791
		goto err_commit;
1792 1793 1794

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
1795
		goto err_commit_unlock;
1796 1797 1798 1799 1800 1801

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
1802
		goto err_commit_unlock;
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

1814
	dma_fence_work_commit_imm(&pw->base);
1815 1816
	return 0;

1817
err_commit_unlock:
1818
	dma_resv_unlock(pw->batch->resv);
1819 1820 1821 1822 1823
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

1824 1825 1826
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
1827
	i915_active_release(&eb->batch->vma->active);
1828
err_free:
1829 1830 1831 1832
	kfree(pw);
	return err;
}

1833
static int eb_parse(struct i915_execbuffer *eb)
1834
{
1835
	struct drm_i915_private *i915 = eb->i915;
1836
	struct intel_gt_buffer_pool_node *pool;
1837 1838
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1839
	int err;
1840

1841 1842 1843
	if (!eb_use_cmdparser(eb))
		return 0;

1844 1845 1846 1847 1848 1849 1850
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
1851 1852
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
1853 1854 1855 1856 1857 1858
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

1859
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
1860
	if (IS_ERR(pool))
1861
		return PTR_ERR(pool);
1862

1863 1864 1865
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1866
		goto err;
1867
	}
1868
	i915_gem_object_set_readonly(shadow->obj);
1869
	shadow->private = pool;
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
1883
		shadow->private = pool;
1884 1885 1886

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
1887

1888
	err = eb_parse_pipeline(eb, shadow, trampoline);
1889 1890
	if (err)
		goto err_trampoline;
1891

1892
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1893
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1894
	eb->batch = &eb->vma[eb->buffer_count++];
1895
	eb->vma[eb->buffer_count].vma = NULL;
1896

1897
	eb->trampoline = trampoline;
1898 1899
	eb->batch_start_offset = 0;

1900
	return 0;
1901

1902 1903 1904 1905 1906
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
1907
err:
1908
	intel_gt_buffer_pool_put(pool);
1909
	return err;
1910
}
1911

1912
static void
1913
add_to_client(struct i915_request *rq, struct drm_file *file)
1914
{
1915 1916 1917 1918 1919 1920 1921
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
1922 1923
}

1924
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1925
{
1926
	int err;
1927

1928 1929 1930
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1931

1932
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1933 1934 1935
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1936 1937
	}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

1950
	err = eb->engine->emit_bb_start(eb->request,
1951
					batch->node.start +
1952 1953
					eb->batch_start_offset,
					eb->batch_len,
1954 1955 1956
					eb->batch_flags);
	if (err)
		return err;
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

1968
	if (intel_context_nopreempt(eb->context))
1969
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1970

C
Chris Wilson 已提交
1971
	return 0;
1972 1973
}

1974 1975 1976 1977 1978 1979
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

1980
/*
1981
 * Find one BSD ring to dispatch the corresponding BSD command.
1982
 * The engine index is returned.
1983
 */
1984
static unsigned int
1985 1986
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1987 1988 1989
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1990
	/* Check whether the file_priv has already selected one ring. */
1991
	if ((int)file_priv->bsd_engine < 0)
1992 1993
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
1994

1995
	return file_priv->bsd_engine;
1996 1997
}

1998
static const enum intel_engine_id user_ring_map[] = {
1999 2000 2001 2002 2003
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2004 2005
};

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2046 2047 2048 2049
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2050
	err = intel_gt_terminally_wedged(ce->engine->gt);
2051 2052 2053
	if (err)
		return err;

2054 2055 2056
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2057 2058 2059 2060 2061
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2062
	err = intel_context_pin(ce);
2063 2064
	if (err)
		return err;
2065

2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2074 2075 2076
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2077
		goto err_unpin;
2078
	}
2079 2080

	intel_context_enter(ce);
2081 2082 2083 2084 2085
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2086 2087 2088 2089 2090 2091
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2092

2093 2094 2095
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2096
		i915_request_put(rq);
2097 2098 2099 2100 2101

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2102
	}
2103

2104
	eb->engine = ce->engine;
2105 2106
	eb->context = ce;
	return 0;
2107

2108 2109 2110 2111
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2112
err_unpin:
2113
	intel_context_unpin(ce);
2114
	return err;
2115 2116
}

2117
static void eb_unpin_engine(struct i915_execbuffer *eb)
2118
{
2119
	struct intel_context *ce = eb->context;
2120
	struct intel_timeline *tl = ce->timeline;
2121 2122 2123 2124 2125

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2126
	intel_context_unpin(ce);
2127
}
2128

2129 2130 2131 2132
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2133
{
2134
	struct drm_i915_private *i915 = eb->i915;
2135 2136
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2137 2138
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2139 2140 2141
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2142
		return -1;
2143 2144
	}

2145
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2146 2147 2148
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2149
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2150 2151
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2152
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2153 2154
			bsd_idx--;
		} else {
2155 2156 2157
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2158
			return -1;
2159 2160
		}

2161
		return _VCS(bsd_idx);
2162 2163
	}

2164
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2165 2166
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2167
		return -1;
2168 2169
	}

2170 2171 2172 2173
	return user_ring_map[user_ring_id];
}

static int
2174 2175 2176
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2177 2178 2179 2180 2181
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2182 2183 2184 2185
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2186 2187 2188 2189 2190

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2191
	err = __eb_pin_engine(eb, ce);
2192 2193 2194
	intel_context_put(ce);

	return err;
2195 2196
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2209
	const unsigned long nfences = args->num_cliprects;
2210 2211
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2212
	unsigned long n;
2213 2214 2215 2216 2217
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2218 2219 2220 2221 2222
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2223 2224 2225
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2226
	if (!access_ok(user, nfences * sizeof(*user)))
2227 2228
		return ERR_PTR(-EFAULT);

2229
	fences = kvmalloc_array(nfences, sizeof(*fences),
2230
				__GFP_NOWARN | GFP_KERNEL);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2243 2244 2245 2246 2247
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2248 2249 2250 2251 2252 2253 2254
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2255 2256 2257
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2293
		fence = drm_syncobj_fence_get(syncobj);
2294 2295 2296
		if (!fence)
			return -EINVAL;

2297
		err = i915_request_await_dma_fence(eb->request, fence);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2322
		drm_syncobj_replace_fence(syncobj, fence);
2323 2324 2325
	}
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2350
	if (likely(!intel_context_is_closed(eb->context))) {
2351 2352 2353
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2354 2355
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2367
static int
2368
i915_gem_do_execbuffer(struct drm_device *dev,
2369 2370
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2371 2372
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2373
{
2374
	struct drm_i915_private *i915 = to_i915(dev);
2375
	struct i915_execbuffer eb;
2376 2377
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2378
	struct i915_vma *batch;
2379
	int out_fence_fd = -1;
2380
	int err;
2381

2382
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2383 2384
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2385

2386
	eb.i915 = i915;
2387 2388
	eb.file = file;
	eb.args = args;
2389
	if (!(args->flags & I915_EXEC_NO_RELOC))
2390
		args->flags |= __EXEC_HAS_RELOC;
2391

2392
	eb.exec = exec;
2393

2394
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2395 2396
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2397
	eb.buffer_count = args->buffer_count;
2398 2399
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2400
	eb.trampoline = NULL;
2401

2402
	eb.batch_flags = 0;
2403
	if (args->flags & I915_EXEC_SECURE) {
2404 2405 2406 2407 2408 2409 2410
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2411
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2412
			return -EPERM;
2413

2414
		eb.batch_flags |= I915_DISPATCH_SECURE;
2415
	}
2416
	if (args->flags & I915_EXEC_IS_PINNED)
2417
		eb.batch_flags |= I915_DISPATCH_PINNED;
2418

2419 2420 2421 2422 2423
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

2424
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2425 2426
		if (!in_fence)
			return -EINVAL;
2427
	}
2428
#undef IN_FENCES
2429

2430 2431 2432
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2433
			err = out_fence_fd;
2434
			goto err_in_fence;
2435 2436 2437
		}
	}

2438 2439 2440 2441 2442
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2443

2444 2445 2446 2447
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2448
	err = eb_pin_engine(&eb, file, args);
2449
	if (unlikely(err))
2450
		goto err_context;
2451

2452
	err = eb_relocate(&eb);
2453
	if (err) {
2454 2455 2456 2457 2458 2459 2460 2461 2462
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2463
	}
2464

2465
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2466 2467
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2468 2469
		err = -EINVAL;
		goto err_vma;
2470
	}
2471 2472 2473 2474

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2475
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2476 2477
		err = -EINVAL;
		goto err_vma;
2478
	}
2479

2480
	if (eb.batch_len == 0)
2481
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2482

2483 2484 2485
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2486

2487 2488
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2489
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2490
	 * hsw should have this fixed, but bdw mucks it up again. */
2491
	batch = eb.batch->vma;
2492
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2493
		struct i915_vma *vma;
2494

2495 2496 2497 2498 2499 2500
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2501
		 *   so we don't really have issues with multiple objects not
2502 2503 2504
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2505
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2506
		if (IS_ERR(vma)) {
2507
			err = PTR_ERR(vma);
2508
			goto err_parse;
C
Chris Wilson 已提交
2509
		}
2510

2511
		batch = vma;
2512
	}
2513

2514 2515 2516
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2517
	/* Allocate a request for this batch buffer nice and early. */
2518
	eb.request = i915_request_create(eb.context);
2519
	if (IS_ERR(eb.request)) {
2520
		err = PTR_ERR(eb.request);
2521
		goto err_batch_unpin;
2522
	}
2523

2524
	if (in_fence) {
2525 2526 2527 2528 2529 2530 2531
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
2532 2533 2534 2535
		if (err < 0)
			goto err_request;
	}

2536 2537 2538 2539 2540 2541
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2542
	if (out_fence_fd != -1) {
2543
		out_fence = sync_file_create(&eb.request->fence);
2544
		if (!out_fence) {
2545
			err = -ENOMEM;
2546 2547 2548 2549
			goto err_request;
		}
	}

2550 2551
	/*
	 * Whilst this request exists, batch_obj will be on the
2552 2553 2554 2555 2556
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2557 2558
	eb.request->batch = batch;
	if (batch->private)
2559
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2560

2561
	trace_i915_request_queue(eb.request, eb.batch_flags);
2562
	err = eb_submit(&eb, batch);
2563
err_request:
2564
	add_to_client(eb.request, file);
2565
	i915_request_get(eb.request);
2566
	eb_request_add(&eb);
2567

2568 2569 2570
	if (fences)
		signal_fence_array(&eb, fences);

2571
	if (out_fence) {
2572
		if (err == 0) {
2573
			fd_install(out_fence_fd, out_fence->file);
2574
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2575 2576 2577 2578 2579 2580
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2581
	i915_request_put(eb.request);
2582

2583
err_batch_unpin:
2584
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2585
		i915_vma_unpin(batch);
2586
err_parse:
2587
	if (batch->private)
2588
		intel_gt_buffer_pool_put(batch->private);
2589
err_vma:
2590 2591
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2592
	eb_unpin_engine(&eb);
2593
err_context:
2594
	i915_gem_context_put(eb.gem_context);
2595
err_destroy:
2596
	eb_destroy(&eb);
2597
err_out_fence:
2598 2599
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2600
err_in_fence:
2601
	dma_fence_put(in_fence);
2602
	return err;
2603 2604
}

2605 2606
static size_t eb_element_size(void)
{
2607
	return sizeof(struct drm_i915_gem_exec_object2);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2623 2624 2625 2626 2627
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2628 2629
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2630
{
2631
	struct drm_i915_private *i915 = to_i915(dev);
2632 2633 2634 2635
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2636
	const size_t count = args->buffer_count;
2637 2638
	unsigned int i;
	int err;
2639

2640
	if (!check_buffer_count(count)) {
2641
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2642 2643 2644
		return -EINVAL;
	}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2656 2657 2658
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2659

2660
	/* Copy in the exec list from userland */
2661
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2662
				   __GFP_NOWARN | GFP_KERNEL);
2663
	exec2_list = kvmalloc_array(count, eb_element_size(),
2664
				    __GFP_NOWARN | GFP_KERNEL);
2665
	if (exec_list == NULL || exec2_list == NULL) {
2666 2667 2668
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2669 2670
		kvfree(exec_list);
		kvfree(exec2_list);
2671 2672
		return -ENOMEM;
	}
2673
	err = copy_from_user(exec_list,
2674
			     u64_to_user_ptr(args->buffers_ptr),
2675
			     sizeof(*exec_list) * count);
2676
	if (err) {
2677 2678
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2679 2680
		kvfree(exec_list);
		kvfree(exec2_list);
2681 2682 2683 2684 2685 2686 2687 2688 2689
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2690
		if (INTEL_GEN(to_i915(dev)) < 4)
2691 2692 2693 2694 2695
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2696
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2697
	if (exec2.flags & __EXEC_HAS_RELOC) {
2698
		struct drm_i915_gem_exec_object __user *user_exec_list =
2699
			u64_to_user_ptr(args->buffers_ptr);
2700

2701
		/* Copy the new buffer offsets back to the user's exec list. */
2702
		for (i = 0; i < args->buffer_count; i++) {
2703 2704 2705
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2706
			exec2_list[i].offset =
2707 2708 2709 2710 2711
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2712
				break;
2713 2714 2715
		}
	}

M
Michal Hocko 已提交
2716 2717
	kvfree(exec_list);
	kvfree(exec2_list);
2718
	return err;
2719 2720 2721
}

int
2722 2723
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2724
{
2725
	struct drm_i915_private *i915 = to_i915(dev);
2726
	struct drm_i915_gem_execbuffer2 *args = data;
2727
	struct drm_i915_gem_exec_object2 *exec2_list;
2728
	struct drm_syncobj **fences = NULL;
2729
	const size_t count = args->buffer_count;
2730
	int err;
2731

2732
	if (!check_buffer_count(count)) {
2733
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2734 2735 2736
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2737 2738 2739
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2740

2741
	exec2_list = kvmalloc_array(count, eb_element_size(),
2742
				    __GFP_NOWARN | GFP_KERNEL);
2743
	if (exec2_list == NULL) {
2744 2745
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2746 2747
		return -ENOMEM;
	}
2748 2749
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2750
			   sizeof(*exec2_list) * count)) {
2751
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2752
		kvfree(exec2_list);
2753 2754 2755
		return -EFAULT;
	}

2756 2757 2758 2759 2760 2761 2762 2763 2764
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2765 2766 2767 2768 2769 2770 2771 2772

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2773
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2774 2775
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2776

2777
		/* Copy the new buffer offsets back to the user's exec list. */
2778 2779 2780 2781 2782 2783 2784
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
2785 2786
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
2787
			goto end;
2788

2789
		for (i = 0; i < args->buffer_count; i++) {
2790 2791 2792
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2793
			exec2_list[i].offset =
2794 2795 2796 2797
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2798
		}
2799
end_user:
2800
		user_write_access_end();
2801
end:;
2802 2803
	}

2804
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2805
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2806
	kvfree(exec2_list);
2807
	return err;
2808
}
2809 2810 2811 2812

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif