i915_gem_execbuffer.c 77.5 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21
#include "gt/intel_gt_pm.h"
22
#include "gt/intel_ring.h"
23

24
#include "i915_drv.h"
25
#include "i915_gem_clflush.h"
26
#include "i915_gem_context.h"
27
#include "i915_gem_ioctls.h"
28
#include "i915_sw_fence_work.h"
29 30
#include "i915_trace.h"

31 32 33 34 35 36
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
37

38 39 40 41 42 43
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
44 45 46 47
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
48
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
49
#define UPDATE			PIN_OFFSET_FIXED
50 51

#define BATCH_OFFSET_BIAS (256*1024)
52

53
#define __I915_EXEC_ILLEGAL_FLAGS \
54 55 56
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
57

58 59 60 61 62 63 64 65 66
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

218
struct i915_execbuffer {
219 220 221 222
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
223 224
	struct i915_vma **vma;
	unsigned int *flags;
225 226

	struct intel_engine_cs *engine; /** engine to queue the request to */
227 228
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
229

230
	struct i915_request *request; /** our request to build */
231
	struct i915_vma *batch; /** identity of the batch obj/vma */
232
	struct i915_vma *trampoline; /** trampoline used for chaining */
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
248
	struct reloc_cache {
249 250 251
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
252
		unsigned int gen; /** Cached value of INTEL_GEN */
253
		bool use_64bit_reloc : 1;
254 255 256
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
257

258
		struct i915_request *rq;
259 260
		u32 *rq_cmd;
		unsigned int rq_size;
261
	} reloc_cache;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
277 278
};

279
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
280

281 282
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
283
	return intel_engine_requires_cmd_parser(eb->engine) ||
284 285
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
286 287
}

288
static int eb_create(struct i915_execbuffer *eb)
289
{
290 291
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
292

293 294 295 296 297 298 299 300 301 302 303
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
304
		do {
305
			gfp_t flags;
306 307 308 309 310 311 312

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
313
			flags = GFP_KERNEL;
314 315 316
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

317
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
318
					      flags);
319 320 321 322
			if (eb->buckets)
				break;
		} while (--size);

323 324
		if (unlikely(!size))
			return -ENOMEM;
325

326
		eb->lut_size = size;
327
	} else {
328
		eb->lut_size = -eb->buffer_count;
329
	}
330

331
	return 0;
332 333
}

334 335
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
336 337
		 const struct i915_vma *vma,
		 unsigned int flags)
338 339 340 341 342 343 344
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

345
	if (flags & EXEC_OBJECT_PINNED &&
346 347 348
	    vma->node.start != entry->offset)
		return true;

349
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
350 351 352
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

353
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
354 355 356
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

357 358 359 360
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

361 362 363
	return false;
}

364
static inline bool
365
eb_pin_vma(struct i915_execbuffer *eb,
366
	   const struct drm_i915_gem_exec_object2 *entry,
367 368
	   struct i915_vma *vma)
{
369 370
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
371

372
	if (vma->node.size)
373
		pin_flags = vma->node.start;
374
	else
375
		pin_flags = entry->offset & PIN_OFFSET_MASK;
376

377 378 379
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
380

381 382
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
383

384
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
385
		if (unlikely(i915_vma_pin_fence(vma))) {
386
			i915_vma_unpin(vma);
387
			return false;
388 389
		}

390
		if (vma->fence)
391
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
392 393
	}

394 395
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
396 397
}

398
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
399
{
400
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
401

402
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
403
		__i915_vma_unpin_fence(vma);
404

405
	__i915_vma_unpin(vma);
406 407
}

408
static inline void
409
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
410
{
411
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
412
		return;
413

414 415
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
416 417
}

418 419 420 421
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
422
{
423 424
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
425

426 427 428 429 430 431 432 433
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
434
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
435 436 437 438 439 440 441 442
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
443 444
	}

445
	if (unlikely(vma->exec_flags)) {
446 447 448 449 450 451 452 453 454 455 456 457
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

458 459 460 461 462 463 464 465 466 467 468 469
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

470
	return 0;
471 472
}

473
static int
474 475 476
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
477
{
478
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
479 480 481 482 483 484 485 486
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
487 488
	}

489
	if (eb->lut_size > 0) {
490
		vma->exec_handle = entry->handle;
491
		hlist_add_head(&vma->exec_node,
492 493
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
494
	}
495

496 497 498 499 500 501 502 503 504
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
505
	eb->vma[i] = vma;
506
	eb->flags[i] = entry->flags;
507
	vma->exec_flags = &eb->flags[i];
508

509 510 511 512 513 514 515 516 517 518
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
519 520
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
521 522 523 524 525 526 527
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

528
	err = 0;
529
	if (eb_pin_vma(eb, entry, vma)) {
530 531 532 533
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
534 535 536 537 538 539
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
540 541
		if (unlikely(err))
			vma->exec_flags = NULL;
542 543 544 545 546 547 548 549 550 551
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

552 553 554 555 556
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
557 558 559 560 561 562 563 564 565

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
566 567 568
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
569 570
	int err;

571 572 573
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
574 575 576 577 578

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
579 580
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
581

582 583
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
584

585 586 587 588 589
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
590 591
	}

592 593 594
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
595 596 597 598 599 600 601 602
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

603
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
604
		err = i915_vma_pin_fence(vma);
605 606 607 608 609
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

610
		if (vma->fence)
611
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
612 613
	}

614 615
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
657 658
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
659

660 661
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
662 663
				continue;

664
			eb_unreserve_vma(vma, &eb->flags[i]);
665

666
			if (flags & EXEC_OBJECT_PINNED)
667
				/* Pinned must have their slot */
668
				list_add(&vma->exec_link, &eb->unbound);
669
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
670
				/* Map require the lowest 256MiB (aperture) */
671
				list_add_tail(&vma->exec_link, &eb->unbound);
672 673 674
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
675 676 677 678 679 680 681 682 683 684 685
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
686
			mutex_lock(&eb->context->vm->mutex);
687
			err = i915_gem_evict_vm(eb->context->vm);
688
			mutex_unlock(&eb->context->vm->mutex);
689 690 691 692 693 694 695 696
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
697
}
698

699 700
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
701 702 703 704
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
705 706 707 708 709 710 711
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
712 713
	if (unlikely(!ctx))
		return -ENOENT;
714

715
	eb->gem_context = ctx;
716
	if (rcu_access_pointer(ctx->vm))
717
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
718 719

	eb->context_flags = 0;
720
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
721 722 723 724 725 726
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
727
{
728
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
729
	struct drm_i915_gem_object *obj;
730
	unsigned int i, batch;
731
	int err;
732

733 734
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
735

736 737
	batch = eb_batch_index(eb);

738 739 740 741 742 743
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

744 745
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
746
		struct i915_lut_handle *lut;
747
		struct i915_vma *vma;
748

749 750
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
751
			goto add_vma;
752

753
		obj = i915_gem_object_lookup(eb->file, handle);
754
		if (unlikely(!obj)) {
755
			err = -ENOENT;
756
			goto err_vma;
757 758
		}

759
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
760
		if (IS_ERR(vma)) {
761
			err = PTR_ERR(vma);
762
			goto err_obj;
763 764
		}

765
		lut = i915_lut_handle_alloc();
766 767 768 769 770 771 772
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
773
			i915_lut_handle_free(lut);
774
			goto err_obj;
775
		}
776

777 778
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
779
			i915_vma_reopen(vma);
780
		lut->handle = handle;
781 782 783 784 785
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
786

787
add_vma:
788
		err = eb_add_vma(eb, i, batch, vma);
789
		if (unlikely(err))
790
			goto err_vma;
791

792 793
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
794 795
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
796 797
	}

798 799
	mutex_unlock(&eb->gem_context->mutex);

800 801 802
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

803
err_obj:
804
	i915_gem_object_put(obj);
805 806
err_vma:
	eb->vma[i] = NULL;
807 808
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
809
	return err;
810 811
}

812
static struct i915_vma *
813
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
814
{
815 816
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
817
			return NULL;
818
		return eb->vma[handle];
819 820
	} else {
		struct hlist_head *head;
821
		struct i915_vma *vma;
822

823
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
824
		hlist_for_each_entry(vma, head, exec_node) {
825 826
			if (vma->exec_handle == handle)
				return vma;
827 828 829
		}
		return NULL;
	}
830 831
}

832
static void eb_release_vmas(const struct i915_execbuffer *eb)
833
{
834 835 836 837
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
838 839
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
840

841
		if (!vma)
842
			break;
843

844 845 846
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
847

848 849
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
850

851
		if (flags & __EXEC_OBJECT_HAS_REF)
852
			i915_vma_put(vma);
853
	}
854 855
}

856
static void eb_reset_vmas(const struct i915_execbuffer *eb)
857
{
858
	eb_release_vmas(eb);
859
	if (eb->lut_size > 0)
860 861
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
862 863
}

864
static void eb_destroy(const struct i915_execbuffer *eb)
865
{
866 867
	GEM_BUG_ON(eb->reloc_cache.rq);

868
	if (eb->lut_size > 0)
869
		kfree(eb->buckets);
870 871
}

872
static inline u64
873
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
874
		  const struct i915_vma *target)
875
{
876
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
877 878
}

879 880
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
881
{
882
	cache->page = -1;
883
	cache->vaddr = 0;
884
	/* Must be a variable in the struct to allow GCC to unroll. */
885
	cache->gen = INTEL_GEN(i915);
886
	cache->has_llc = HAS_LLC(i915);
887
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
888 889
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
890
	cache->node.flags = 0;
891 892
	cache->rq = NULL;
	cache->rq_size = 0;
893
}
894

895 896 897 898 899 900 901 902
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
903 904
}

905 906
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

907 908 909 910 911 912 913
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

914 915 916 917
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
918 919

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
920
	i915_gem_object_unpin_map(cache->rq->batch->obj);
921

922
	intel_gt_chipset_flush(cache->rq->engine->gt);
923

924
	i915_request_add(cache->rq);
925 926 927
	cache->rq = NULL;
}

928
static void reloc_cache_reset(struct reloc_cache *cache)
929
{
930
	void *vaddr;
931

932 933 934
	if (cache->rq)
		reloc_gpu_flush(cache);

935 936
	if (!cache->vaddr)
		return;
937

938 939 940 941
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
942

943
		kunmap_atomic(vaddr);
944
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
945
	} else {
946 947 948
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
949
		io_mapping_unmap_atomic((void __iomem *)vaddr);
950

951
		if (drm_mm_node_allocated(&cache->node)) {
952 953 954
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
955
			mutex_lock(&ggtt->vm.mutex);
956
			drm_mm_remove_node(&cache->node);
957
			mutex_unlock(&ggtt->vm.mutex);
958 959
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
960
		}
961
	}
962 963 964

	cache->vaddr = 0;
	cache->page = -1;
965 966 967 968
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
969
			unsigned long page)
970
{
971 972 973 974 975 976
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
977
		int err;
978

979
		err = i915_gem_object_prepare_write(obj, &flushes);
980 981
		if (err)
			return ERR_PTR(err);
982 983 984

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
985

986 987 988 989
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
990 991
	}

992 993
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
994
	cache->page = page;
995

996
	return vaddr;
997 998
}

999 1000
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1001
			 unsigned long page)
1002
{
1003
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1004
	unsigned long offset;
1005
	void *vaddr;
1006

1007
	if (cache->vaddr) {
1008
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1009
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1010 1011
	} else {
		struct i915_vma *vma;
1012
		int err;
1013

1014 1015 1016
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1017
		if (use_cpu_reloc(cache, obj))
1018
			return NULL;
1019

1020
		i915_gem_object_lock(obj);
1021
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1022
		i915_gem_object_unlock(obj);
1023 1024
		if (err)
			return ERR_PTR(err);
1025

1026
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1027
					       PIN_MAPPABLE |
1028 1029
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1030 1031
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1032
			mutex_lock(&ggtt->vm.mutex);
1033
			err = drm_mm_insert_node_in_range
1034
				(&ggtt->vm.mm, &cache->node,
1035
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036
				 0, ggtt->mappable_end,
1037
				 DRM_MM_INSERT_LOW);
1038
			mutex_unlock(&ggtt->vm.mutex);
1039
			if (err) /* no inactive aperture space, use cpu reloc */
1040
				return NULL;
1041 1042 1043
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1044
		}
1045
	}
1046

1047
	offset = cache->node.start;
1048
	if (drm_mm_node_allocated(&cache->node)) {
1049 1050 1051
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1052 1053
	} else {
		offset += page << PAGE_SHIFT;
1054 1055
	}

1056
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1057
							 offset);
1058 1059
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1060

1061
	return vaddr;
1062 1063
}

1064 1065
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1066
			 unsigned long page)
1067
{
1068
	void *vaddr;
1069

1070 1071 1072 1073 1074 1075 1076 1077
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1078 1079
	}

1080
	return vaddr;
1081 1082
}

1083
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1084
{
1085 1086 1087 1088 1089
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1090

1091
		*addr = value;
1092

1093 1094
		/*
		 * Writes to the same cacheline are serialised by the CPU
1095 1096 1097 1098 1099 1100 1101 1102 1103
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1126 1127 1128 1129 1130
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1131
	struct intel_engine_pool_node *pool;
1132
	struct i915_request *rq;
1133 1134 1135 1136
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1137
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1138 1139
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1140

1141
	cmd = i915_gem_object_pin_map(pool->obj,
1142 1143 1144
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1145 1146 1147 1148
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1149

1150
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1151 1152 1153 1154 1155 1156 1157 1158 1159
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1160
	rq = i915_request_create(eb->context);
1161 1162 1163 1164 1165
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1166 1167 1168 1169
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1170
	err = reloc_move_to_gpu(rq, vma);
1171 1172 1173 1174 1175 1176 1177
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1178
		goto skip_request;
1179

1180
	i915_vma_lock(batch);
1181 1182 1183
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1184
	i915_vma_unlock(batch);
1185 1186
	if (err)
		goto skip_request;
1187 1188

	rq->batch = batch;
1189
	i915_vma_unpin(batch);
1190 1191 1192 1193 1194 1195

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1196
	goto out_pool;
1197

1198 1199
skip_request:
	i915_request_skip(rq, err);
1200
err_request:
1201
	i915_request_add(rq);
1202 1203 1204
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1205 1206 1207
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1224 1225 1226
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1238 1239
static u64
relocate_entry(struct i915_vma *vma,
1240
	       const struct drm_i915_gem_relocation_entry *reloc,
1241 1242
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1243
{
1244
	u64 offset = reloc->offset;
1245 1246
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1247
	void *vaddr;
1248

1249 1250
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1251
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1252 1253 1254 1255 1256 1257 1258 1259 1260
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1261
		else
1262
			len = 3;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1308
repeat:
1309
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1310 1311 1312 1313 1314
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1315
			eb->reloc_cache.vaddr);
1316 1317 1318 1319 1320 1321

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1322 1323
	}

1324
out:
1325
	return target->node.start | UPDATE;
1326 1327
}

1328 1329 1330 1331
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1332
{
1333
	struct i915_vma *target;
1334
	int err;
1335

1336
	/* we've already hold a reference to all valid objects */
1337 1338
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1339
		return -ENOENT;
1340

1341
	/* Validate that the target is in a valid r/w GPU domain */
1342
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1343
		DRM_DEBUG("reloc with multiple write domains: "
1344
			  "target %d offset %d "
1345
			  "read %08x write %08x",
1346
			  reloc->target_handle,
1347 1348 1349
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1350
		return -EINVAL;
1351
	}
1352 1353
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1354
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1355
			  "target %d offset %d "
1356
			  "read %08x write %08x",
1357
			  reloc->target_handle,
1358 1359 1360
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1361
		return -EINVAL;
1362 1363
	}

1364
	if (reloc->write_domain) {
1365
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1366

1367 1368 1369 1370 1371 1372 1373
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1374
		    IS_GEN(eb->i915, 6)) {
1375
			err = i915_vma_bind(target, target->obj->cache_level,
1376
					    PIN_GLOBAL, NULL);
1377 1378 1379 1380
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1381
	}
1382

1383 1384
	/*
	 * If the relocation already has the right value in it, no
1385 1386
	 * more work needs to be done.
	 */
1387 1388
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1389
		return 0;
1390 1391

	/* Check that the relocation address is valid... */
1392
	if (unlikely(reloc->offset >
1393
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1394
		DRM_DEBUG("Relocation beyond object bounds: "
1395 1396 1397 1398
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1399
		return -EINVAL;
1400
	}
1401
	if (unlikely(reloc->offset & 3)) {
1402
		DRM_DEBUG("Relocation not 4-byte aligned: "
1403 1404 1405
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1406
		return -EINVAL;
1407 1408
	}

1409 1410 1411 1412 1413 1414
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1415
	 * out of our synchronisation.
1416
	 */
1417
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1418

1419
	/* and update the user's relocation entry */
1420
	return relocate_entry(vma, reloc, eb, target);
1421 1422
}

1423
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1424
{
1425
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1426 1427
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1428
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1429
	unsigned int remain;
1430

1431
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1432
	remain = entry->relocation_count;
1433 1434
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1435

1436 1437 1438 1439 1440
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1441
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1442 1443 1444 1445 1446 1447 1448
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1449

1450 1451
		/*
		 * This is the fast path and we cannot handle a pagefault
1452 1453 1454 1455 1456 1457 1458
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1459
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1460
		pagefault_enable();
1461 1462
		if (unlikely(copied)) {
			remain = -EFAULT;
1463 1464
			goto out;
		}
1465

1466
		remain -= count;
1467
		do {
1468
			u64 offset = eb_relocate_entry(eb, vma, r);
1469

1470 1471 1472
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1473
				goto out;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1497 1498 1499 1500
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1501
			}
1502 1503 1504
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1505
out:
1506
	reloc_cache_reset(&eb->reloc_cache);
1507
	return remain;
1508 1509 1510
}

static int
1511
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1512
{
1513
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1514 1515 1516 1517
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1518 1519

	for (i = 0; i < entry->relocation_count; i++) {
1520
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1521

1522 1523 1524 1525
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1526
	}
1527 1528 1529 1530
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1531 1532
}

1533
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1534
{
1535 1536 1537
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1538

1539 1540 1541
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1542

1543 1544
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1545

1546 1547
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1548
	if (!access_ok(addr, size))
1549
		return -EFAULT;
1550

1551 1552 1553 1554 1555
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1556
	}
1557
	return __get_user(c, end - 1);
1558
}
1559

1560
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1561
{
1562
	struct drm_i915_gem_relocation_entry *relocs;
1563 1564 1565
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1566

1567 1568 1569 1570 1571
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1572

1573 1574
		if (nreloc == 0)
			continue;
1575

1576 1577 1578
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1579

1580 1581
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1582

1583
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1584 1585 1586 1587
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1588

1589 1590 1591 1592 1593 1594 1595
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1596
					     (char __user *)urelocs + copied,
1597 1598
					     len))
				goto end;
1599

1600 1601
			copied += len;
		} while (copied < size);
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1613
		if (!user_access_begin(urelocs, size))
1614
			goto end;
1615

1616 1617 1618 1619 1620
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1621

1622 1623
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1624

1625
	return 0;
1626

1627 1628 1629 1630 1631
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1632 1633
err:
	while (i--) {
1634
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1635 1636 1637 1638
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1639 1640
}

1641
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1642
{
1643 1644
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1645

1646
	if (unlikely(i915_modparams.prefault_disable))
1647
		return 0;
1648

1649 1650
	for (i = 0; i < count; i++) {
		int err;
1651

1652 1653 1654 1655
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1656

1657
	return 0;
1658 1659
}

1660
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1661
{
1662
	struct drm_device *dev = &eb->i915->drm;
1663
	bool have_copy = false;
1664
	struct i915_vma *vma;
1665 1666 1667 1668 1669 1670 1671
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1672

1673
	/* We may process another execbuffer during the unlock... */
1674
	eb_reset_vmas(eb);
1675 1676
	mutex_unlock(&dev->struct_mutex);

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1698
	}
1699 1700 1701
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1702 1703
	}

1704 1705 1706
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1707 1708
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1709
		mutex_lock(&dev->struct_mutex);
1710
		goto out;
1711 1712
	}

1713
	/* reacquire the objects */
1714 1715
	err = eb_lookup_vmas(eb);
	if (err)
1716
		goto err;
1717

1718 1719
	GEM_BUG_ON(!eb->batch);

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1732 1733
	}

1734 1735
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1736 1737 1738 1739 1740 1741
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1763
	return err;
1764 1765
}

1766
static int eb_relocate(struct i915_execbuffer *eb)
1767
{
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1790
	struct ww_acquire_ctx acquire;
1791
	unsigned int i;
1792 1793 1794
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1795

1796
	for (i = 0; i < count; i++) {
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1828 1829
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1830
		struct drm_i915_gem_object *obj = vma->obj;
1831

1832 1833
		assert_vma_held(vma);

1834
		if (flags & EXEC_OBJECT_CAPTURE) {
1835
			struct i915_capture_list *capture;
1836 1837

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1838 1839 1840 1841 1842
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1843 1844
		}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1858
			if (i915_gem_clflush_object(obj, 0))
1859
				flags &= ~EXEC_OBJECT_ASYNC;
1860 1861
		}

1862 1863 1864 1865
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1866

1867 1868
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1869

1870
		i915_vma_unlock(vma);
1871

1872 1873 1874 1875
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1876
			i915_vma_put(vma);
1877
	}
1878 1879 1880 1881 1882
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1883
	eb->exec = NULL;
1884

1885
	/* Unconditionally flush any chipset caches (for streaming writes). */
1886
	intel_gt_chipset_flush(eb->engine->gt);
1887
	return 0;
1888 1889 1890 1891

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1892 1893
}

T
Tvrtko Ursulin 已提交
1894
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1895
{
1896
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1897
		return -EINVAL;
1898

C
Chris Wilson 已提交
1899
	/* Kernel clipping was a DRI1 misfeature */
1900 1901
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1902
			return -EINVAL;
1903
	}
C
Chris Wilson 已提交
1904 1905 1906 1907 1908 1909

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1910
		return -EINVAL;
C
Chris Wilson 已提交
1911 1912

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1913
		return -EINVAL;
C
Chris Wilson 已提交
1914

T
Tvrtko Ursulin 已提交
1915
	return 0;
1916 1917
}

1918
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1919
{
1920 1921
	u32 *cs;
	int i;
1922

1923
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1924 1925 1926
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1927

1928
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1929 1930
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1931

1932
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1933
	for (i = 0; i < 4; i++) {
1934 1935
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1936
	}
1937
	*cs++ = MI_NOOP;
1938
	intel_ring_advance(rq, cs);
1939 1940 1941 1942

	return 0;
}

1943
static struct i915_vma *
1944 1945 1946
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1947
{
1948 1949
	struct i915_vma *vma;
	int err;
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1960 1961
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
};

static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
	pw->batch = eb->batch;
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

	dma_resv_lock(pw->batch->resv, NULL);

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
		goto err_batch_unlock;

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
		goto err_batch_unlock;

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

	dma_fence_work_commit(&pw->base);
	return 0;

err_batch_unlock:
	dma_resv_unlock(pw->batch->resv);
	kfree(pw);
	return err;
}

2041
static int eb_parse(struct i915_execbuffer *eb)
2042
{
2043
	struct intel_engine_pool_node *pool;
2044 2045
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2046
	int err;
2047

2048 2049 2050
	if (!eb_use_cmdparser(eb))
		return 0;

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
			DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

	pool = intel_engine_get_pool(eb->engine, len);
2066
	if (IS_ERR(pool))
2067
		return PTR_ERR(pool);
2068

2069 2070 2071
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2072
		goto err;
2073
	}
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2091

2092
	err = eb_parse_pipeline(eb, shadow, trampoline);
2093 2094
	if (err)
		goto err_trampoline;
2095

2096
	eb->vma[eb->buffer_count] = i915_vma_get(shadow);
2097 2098
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2099
	shadow->exec_flags = &eb->flags[eb->buffer_count];
2100
	eb->buffer_count++;
2101

2102
	eb->trampoline = trampoline;
2103
	eb->batch_start_offset = 0;
2104
	eb->batch = shadow;
2105

2106
	shadow->private = pool;
2107
	return 0;
2108

2109 2110 2111 2112 2113
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2114 2115
err:
	intel_engine_pool_put(pool);
2116
	return err;
2117
}
2118

2119
static void
2120
add_to_client(struct i915_request *rq, struct drm_file *file)
2121
{
2122 2123 2124 2125 2126 2127 2128
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2129 2130
}

2131
static int eb_submit(struct i915_execbuffer *eb)
2132
{
2133
	int err;
2134

2135 2136 2137
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2138

2139
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2140 2141 2142
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2143 2144
	}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2157
	err = eb->engine->emit_bb_start(eb->request,
2158 2159 2160
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2161 2162 2163
					eb->batch_flags);
	if (err)
		return err;
2164

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2175
	if (intel_context_nopreempt(eb->context))
2176
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2177

C
Chris Wilson 已提交
2178
	return 0;
2179 2180
}

2181 2182 2183 2184 2185 2186
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2187
/*
2188
 * Find one BSD ring to dispatch the corresponding BSD command.
2189
 * The engine index is returned.
2190
 */
2191
static unsigned int
2192 2193
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2194 2195 2196
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2197
	/* Check whether the file_priv has already selected one ring. */
2198
	if ((int)file_priv->bsd_engine < 0)
2199 2200
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2201

2202
	return file_priv->bsd_engine;
2203 2204
}

2205
static const enum intel_engine_id user_ring_map[] = {
2206 2207 2208 2209 2210
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2211 2212
};

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2253 2254 2255 2256
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2257
	err = intel_gt_terminally_wedged(ce->engine->gt);
2258 2259 2260
	if (err)
		return err;

2261 2262 2263
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2264 2265 2266 2267 2268
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2269
	err = intel_context_pin(ce);
2270 2271
	if (err)
		return err;
2272

2273 2274 2275 2276 2277 2278 2279 2280
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2281 2282 2283
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2284
		goto err_unpin;
2285
	}
2286 2287

	intel_context_enter(ce);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2303

2304
	eb->engine = ce->engine;
2305 2306
	eb->context = ce;
	return 0;
2307

2308 2309 2310 2311
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2312
err_unpin:
2313
	intel_context_unpin(ce);
2314
	return err;
2315 2316
}

2317
static void eb_unpin_engine(struct i915_execbuffer *eb)
2318
{
2319
	struct intel_context *ce = eb->context;
2320
	struct intel_timeline *tl = ce->timeline;
2321 2322 2323 2324 2325

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2326
	intel_context_unpin(ce);
2327
}
2328

2329 2330 2331 2332
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2333
{
2334
	struct drm_i915_private *i915 = eb->i915;
2335 2336
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2337 2338
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2339 2340
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2341
		return -1;
2342 2343
	}

2344
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2345 2346 2347
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2348
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2349 2350
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2351
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2352 2353 2354 2355
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2356
			return -1;
2357 2358
		}

2359
		return _VCS(bsd_idx);
2360 2361
	}

2362 2363 2364
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2365 2366
	}

2367 2368 2369 2370
	return user_ring_map[user_ring_id];
}

static int
2371 2372 2373
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2374 2375 2376 2377 2378
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2379 2380 2381 2382
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2383 2384 2385 2386 2387

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2388
	err = __eb_pin_engine(eb, ce);
2389 2390 2391
	intel_context_put(ce);

	return err;
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2406
	const unsigned long nfences = args->num_cliprects;
2407 2408
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2409
	unsigned long n;
2410 2411 2412 2413 2414
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2415 2416 2417 2418 2419
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2420 2421 2422
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2423
	if (!access_ok(user, nfences * sizeof(*user)))
2424 2425
		return ERR_PTR(-EFAULT);

2426
	fences = kvmalloc_array(nfences, sizeof(*fences),
2427
				__GFP_NOWARN | GFP_KERNEL);
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2440 2441 2442 2443 2444
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2445 2446 2447 2448 2449 2450 2451
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2452 2453 2454
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2490
		fence = drm_syncobj_fence_get(syncobj);
2491 2492 2493
		if (!fence)
			return -EINVAL;

2494
		err = i915_request_await_dma_fence(eb->request, fence);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2519
		drm_syncobj_replace_fence(syncobj, fence);
2520 2521 2522
	}
}

2523
static int
2524
i915_gem_do_execbuffer(struct drm_device *dev,
2525 2526
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2527 2528
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2529
{
2530
	struct drm_i915_private *i915 = to_i915(dev);
2531
	struct i915_execbuffer eb;
2532
	struct dma_fence *in_fence = NULL;
2533
	struct dma_fence *exec_fence = NULL;
2534 2535
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2536
	int err;
2537

2538
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2539 2540
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2541

2542
	eb.i915 = i915;
2543 2544
	eb.file = file;
	eb.args = args;
2545
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2546
		args->flags |= __EXEC_HAS_RELOC;
2547

2548
	eb.exec = exec;
2549 2550
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2551 2552
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2553
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2554 2555
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2556
	eb.buffer_count = args->buffer_count;
2557 2558
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2559
	eb.trampoline = NULL;
2560

2561
	eb.batch_flags = 0;
2562
	if (args->flags & I915_EXEC_SECURE) {
2563 2564 2565 2566 2567 2568 2569
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2570
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2571
			return -EPERM;
2572

2573
		eb.batch_flags |= I915_DISPATCH_SECURE;
2574
	}
2575
	if (args->flags & I915_EXEC_IS_PINNED)
2576
		eb.batch_flags |= I915_DISPATCH_PINNED;
2577

2578 2579
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2580 2581
		if (!in_fence)
			return -EINVAL;
2582 2583
	}

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2597 2598 2599
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2600
			err = out_fence_fd;
2601
			goto err_exec_fence;
2602 2603 2604
		}
	}

2605 2606 2607 2608 2609
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2610

2611 2612 2613 2614
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2615
	err = eb_pin_engine(&eb, file, args);
2616
	if (unlikely(err))
2617
		goto err_context;
2618

2619 2620
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2621 2622
		goto err_engine;

2623
	err = eb_relocate(&eb);
2624
	if (err) {
2625 2626 2627 2628 2629 2630 2631 2632 2633
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2634
	}
2635

2636
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2637
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2638 2639
		err = -EINVAL;
		goto err_vma;
2640
	}
2641 2642
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2643
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2644 2645
		err = -EINVAL;
		goto err_vma;
2646
	}
2647

2648 2649 2650
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;

2651 2652 2653
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2654

2655 2656
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2657
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2658
	 * hsw should have this fixed, but bdw mucks it up again. */
2659
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2660
		struct i915_vma *vma;
2661

2662 2663 2664 2665 2666 2667
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2668
		 *   so we don't really have issues with multiple objects not
2669 2670 2671
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2672
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2673
		if (IS_ERR(vma)) {
2674 2675
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2676
		}
2677

2678
		eb.batch = vma;
2679
	}
2680

2681 2682 2683
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2684
	/* Allocate a request for this batch buffer nice and early. */
2685
	eb.request = i915_request_create(eb.context);
2686
	if (IS_ERR(eb.request)) {
2687
		err = PTR_ERR(eb.request);
2688
		goto err_batch_unpin;
2689
	}
2690

2691
	if (in_fence) {
2692
		err = i915_request_await_dma_fence(eb.request, in_fence);
2693
		if (err < 0)
2694 2695 2696
			goto err_request;
	}

2697 2698 2699 2700 2701 2702 2703
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2704 2705 2706 2707 2708 2709
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2710
	if (out_fence_fd != -1) {
2711
		out_fence = sync_file_create(&eb.request->fence);
2712
		if (!out_fence) {
2713
			err = -ENOMEM;
2714 2715 2716 2717
			goto err_request;
		}
	}

2718 2719
	/*
	 * Whilst this request exists, batch_obj will be on the
2720 2721 2722 2723 2724
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2725
	eb.request->batch = eb.batch;
2726 2727
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2728

2729
	trace_i915_request_queue(eb.request, eb.batch_flags);
2730
	err = eb_submit(&eb);
2731
err_request:
2732
	add_to_client(eb.request, file);
2733
	i915_request_get(eb.request);
2734
	i915_request_add(eb.request);
2735

2736 2737 2738
	if (fences)
		signal_fence_array(&eb, fences);

2739
	if (out_fence) {
2740
		if (err == 0) {
2741
			fd_install(out_fence_fd, out_fence->file);
2742
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2743 2744 2745 2746 2747 2748
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2749
	i915_request_put(eb.request);
2750

2751
err_batch_unpin:
2752
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2753
		i915_vma_unpin(eb.batch);
2754 2755
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2756 2757 2758
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2759 2760
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2761
	mutex_unlock(&dev->struct_mutex);
2762 2763
err_engine:
	eb_unpin_engine(&eb);
2764
err_context:
2765
	i915_gem_context_put(eb.gem_context);
2766
err_destroy:
2767
	eb_destroy(&eb);
2768
err_out_fence:
2769 2770
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2771 2772
err_exec_fence:
	dma_fence_put(exec_fence);
2773
err_in_fence:
2774
	dma_fence_put(in_fence);
2775
	return err;
2776 2777
}

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2798 2799 2800 2801 2802
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2803 2804
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2805 2806 2807 2808 2809
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2810
	const size_t count = args->buffer_count;
2811 2812
	unsigned int i;
	int err;
2813

2814 2815
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2816 2817 2818
		return -EINVAL;
	}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2830 2831 2832
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2833

2834
	/* Copy in the exec list from userland */
2835
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2836
				   __GFP_NOWARN | GFP_KERNEL);
2837
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2838
				    __GFP_NOWARN | GFP_KERNEL);
2839
	if (exec_list == NULL || exec2_list == NULL) {
2840
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2841
			  args->buffer_count);
M
Michal Hocko 已提交
2842 2843
		kvfree(exec_list);
		kvfree(exec2_list);
2844 2845
		return -ENOMEM;
	}
2846
	err = copy_from_user(exec_list,
2847
			     u64_to_user_ptr(args->buffers_ptr),
2848
			     sizeof(*exec_list) * count);
2849
	if (err) {
2850
		DRM_DEBUG("copy %d exec entries failed %d\n",
2851
			  args->buffer_count, err);
M
Michal Hocko 已提交
2852 2853
		kvfree(exec_list);
		kvfree(exec2_list);
2854 2855 2856 2857 2858 2859 2860 2861 2862
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2863
		if (INTEL_GEN(to_i915(dev)) < 4)
2864 2865 2866 2867 2868
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2869
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2870
	if (exec2.flags & __EXEC_HAS_RELOC) {
2871
		struct drm_i915_gem_exec_object __user *user_exec_list =
2872
			u64_to_user_ptr(args->buffers_ptr);
2873

2874
		/* Copy the new buffer offsets back to the user's exec list. */
2875
		for (i = 0; i < args->buffer_count; i++) {
2876 2877 2878
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2879
			exec2_list[i].offset =
2880 2881 2882 2883 2884
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2885
				break;
2886 2887 2888
		}
	}

M
Michal Hocko 已提交
2889 2890
	kvfree(exec_list);
	kvfree(exec2_list);
2891
	return err;
2892 2893 2894
}

int
2895 2896
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2897 2898
{
	struct drm_i915_gem_execbuffer2 *args = data;
2899
	struct drm_i915_gem_exec_object2 *exec2_list;
2900
	struct drm_syncobj **fences = NULL;
2901
	const size_t count = args->buffer_count;
2902
	int err;
2903

2904 2905
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2906 2907 2908
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2909 2910 2911
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2912 2913

	/* Allocate an extra slot for use by the command parser */
2914
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2915
				    __GFP_NOWARN | GFP_KERNEL);
2916
	if (exec2_list == NULL) {
2917 2918
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2919 2920
		return -ENOMEM;
	}
2921 2922
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2923 2924
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2925
		kvfree(exec2_list);
2926 2927 2928
		return -EFAULT;
	}

2929 2930 2931 2932 2933 2934 2935 2936 2937
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2938 2939 2940 2941 2942 2943 2944 2945

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2946
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2947 2948
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2949

2950
		/* Copy the new buffer offsets back to the user's exec list. */
2951 2952 2953 2954 2955 2956 2957 2958
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2959
			goto end;
2960

2961
		for (i = 0; i < args->buffer_count; i++) {
2962 2963 2964
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2965
			exec2_list[i].offset =
2966 2967 2968 2969
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2970
		}
2971 2972
end_user:
		user_access_end();
2973
end:;
2974 2975
	}

2976
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2977
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2978
	kvfree(exec2_list);
2979
	return err;
2980
}