i915_gem_execbuffer.c 81.9 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48
struct eb_vma_array {
	struct kref kref;
	struct eb_vma vma[];
};

49 50 51 52 53 54 55
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

56 57 58 59 60
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
61 62

#define __EXEC_HAS_RELOC	BIT(31)
63
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
64
#define UPDATE			PIN_OFFSET_FIXED
65 66

#define BATCH_OFFSET_BIAS (256*1024)
67

68
#define __I915_EXEC_ILLEGAL_FLAGS \
69 70 71
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
72

73 74 75 76 77 78 79 80 81
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

233 234 235 236 237 238 239
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

240
struct i915_execbuffer {
241 242 243 244
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
245
	struct eb_vma *vma;
246 247

	struct intel_engine_cs *engine; /** engine to queue the request to */
248 249
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
250

251
	struct i915_request *request; /** our request to build */
252
	struct eb_vma *batch; /** identity of the batch obj/vma */
253
	struct i915_vma *trampoline; /** trampoline used for chaining */
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
269
	struct reloc_cache {
270
		struct drm_mm_node node; /** temporary GTT binding */
271 272
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
273
		unsigned int gen; /** Cached value of INTEL_GEN */
274
		bool use_64bit_reloc : 1;
275 276 277
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
278

279
		struct i915_request *rq;
280 281
		u32 *rq_cmd;
		unsigned int rq_size;
282
	} reloc_cache;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
298
	struct eb_vma_array *array;
299

300 301
	struct eb_fence *fences;
	unsigned long num_fences;
302 303
};

304 305
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
306
	return intel_engine_requires_cmd_parser(eb->engine) ||
307 308
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
309 310
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static struct eb_vma_array *eb_vma_array_create(unsigned int count)
{
	struct eb_vma_array *arr;

	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
	if (!arr)
		return NULL;

	kref_init(&arr->kref);
	arr->vma[0].vma = NULL;

	return arr;
}

static inline void eb_unreserve_vma(struct eb_vma *ev)
{
	struct i915_vma *vma = ev->vma;

	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
		__i915_vma_unpin(vma);

	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
		       __EXEC_OBJECT_HAS_FENCE);
}

static void eb_vma_array_destroy(struct kref *kref)
{
	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
	struct eb_vma *ev = arr->vma;

	while (ev->vma) {
		eb_unreserve_vma(ev);
		i915_vma_put(ev->vma);
		ev++;
	}

	kvfree(arr);
}

static void eb_vma_array_put(struct eb_vma_array *arr)
{
	kref_put(&arr->kref, eb_vma_array_destroy);
}

358
static int eb_create(struct i915_execbuffer *eb)
359
{
360 361 362 363 364 365 366
	/* Allocate an extra slot for use by the command parser + sentinel */
	eb->array = eb_vma_array_create(eb->buffer_count + 2);
	if (!eb->array)
		return -ENOMEM;

	eb->vma = eb->array->vma;

367 368
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
369

370 371 372 373 374 375 376 377 378 379 380
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
381
		do {
382
			gfp_t flags;
383 384 385 386 387 388 389

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
390
			flags = GFP_KERNEL;
391 392 393
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

394
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
395
					      flags);
396 397 398 399
			if (eb->buckets)
				break;
		} while (--size);

400 401
		if (unlikely(!size)) {
			eb_vma_array_put(eb->array);
402
			return -ENOMEM;
403
		}
404

405
		eb->lut_size = size;
406
	} else {
407
		eb->lut_size = -eb->buffer_count;
408
	}
409

410
	return 0;
411 412
}

413 414
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
415 416
		 const struct i915_vma *vma,
		 unsigned int flags)
417 418 419 420 421 422 423
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

424
	if (flags & EXEC_OBJECT_PINNED &&
425 426 427
	    vma->node.start != entry->offset)
		return true;

428
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
429 430 431
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

432
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
433 434 435
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

436 437 438 439
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

440 441 442
	return false;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

469
static inline bool
470
eb_pin_vma(struct i915_execbuffer *eb,
471
	   const struct drm_i915_gem_exec_object2 *entry,
472
	   struct eb_vma *ev)
473
{
474
	struct i915_vma *vma = ev->vma;
475
	u64 pin_flags;
476

477
	if (vma->node.size)
478
		pin_flags = vma->node.start;
479
	else
480
		pin_flags = entry->offset & PIN_OFFSET_MASK;
481

482
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
483
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
484
		pin_flags |= PIN_GLOBAL;
485

486 487 488 489 490 491 492 493 494 495 496 497 498
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
499

500
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
501
		if (unlikely(i915_vma_pin_fence(vma))) {
502
			i915_vma_unpin(vma);
503
			return false;
504 505
		}

506
		if (vma->fence)
507
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
508 509
	}

510 511
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
512 513 514 515 516 517
}

static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
518
{
519 520
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
521

522 523
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
524 525 526 527 528 529 530
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
531
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
532 533 534 535 536 537 538 539
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
540
	}
541 542 543 544 545 546 547
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

548 549 550 551 552 553 554 555 556 557 558 559
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

560
	return 0;
561 562
}

563
static void
564 565 566
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
567
{
568
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
569
	struct eb_vma *ev = &eb->vma[i];
570 571 572

	GEM_BUG_ON(i915_vma_is_closed(vma));

573
	ev->vma = vma;
574 575 576
	ev->exec = entry;
	ev->flags = entry->flags;

577
	if (eb->lut_size > 0) {
578 579
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
580 581
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
582
	}
583

584
	if (entry->relocation_count)
585
		list_add_tail(&ev->reloc_link, &eb->relocs);
586

587 588 589 590 591 592 593 594 595 596
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
597
		if (entry->relocation_count &&
598 599
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
600
		if (eb->reloc_cache.has_fence)
601
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
602

603
		eb->batch = ev;
604 605
	}

606
	if (eb_pin_vma(eb, entry, ev)) {
607 608 609 610
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
611
	} else {
612 613
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
614 615 616
	}
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

634
static int eb_reserve_vma(const struct i915_execbuffer *eb,
635
			  struct eb_vma *ev,
636
			  u64 pin_flags)
637
{
638 639
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
640 641
	int err;

642 643 644 645 646 647 648
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

649 650
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
651
			   eb_pin_flags(entry, ev->flags) | pin_flags);
652 653 654 655 656 657 658 659
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

660
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
661
		err = i915_vma_pin_fence(vma);
662 663 664 665 666
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

667
		if (vma->fence)
668
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
669 670
	}

671
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
672
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
673

674 675 676 677 678 679
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
680
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
681
	struct list_head last;
682
	struct eb_vma *ev;
683
	unsigned int i, pass;
684
	int err = 0;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

700 701 702
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

703 704
	pass = 0;
	do {
705 706
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
707 708 709
			if (err)
				break;
		}
710
		if (!(err == -ENOSPC || err == -EAGAIN))
711
			break;
712 713 714 715 716

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
717
			unsigned int flags;
718

719 720
			ev = &eb->vma[i];
			flags = ev->flags;
721 722
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
723 724
				continue;

725
			eb_unreserve_vma(ev);
726

727
			if (flags & EXEC_OBJECT_PINNED)
728
				/* Pinned must have their slot */
729
				list_add(&ev->bind_link, &eb->unbound);
730
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
731
				/* Map require the lowest 256MiB (aperture) */
732
				list_add_tail(&ev->bind_link, &eb->unbound);
733 734
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
735
				list_add(&ev->bind_link, &last);
736
			else
737
				list_add_tail(&ev->bind_link, &last);
738 739 740
		}
		list_splice_tail(&last, &eb->unbound);

741
		if (err == -EAGAIN) {
742
			mutex_unlock(&eb->i915->drm.struct_mutex);
743
			flush_workqueue(eb->i915->mm.userptr_wq);
744
			mutex_lock(&eb->i915->drm.struct_mutex);
745 746 747
			continue;
		}

748 749 750 751 752 753
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
754
			mutex_lock(&eb->context->vm->mutex);
755
			err = i915_gem_evict_vm(eb->context->vm);
756
			mutex_unlock(&eb->context->vm->mutex);
757
			if (err)
758
				goto unlock;
759 760 761
			break;

		default:
762 763
			err = -ENOSPC;
			goto unlock;
764
		}
765 766

		pin_flags = PIN_USER;
767
	} while (1);
768 769 770 771

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
772
}
773

774 775
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
776 777 778 779
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
780 781 782 783 784 785 786
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
787 788
	if (unlikely(!ctx))
		return -ENOENT;
789

790
	eb->gem_context = ctx;
791
	if (rcu_access_pointer(ctx->vm))
792
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
793 794

	eb->context_flags = 0;
795
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
796 797 798 799 800
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

801 802
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
803
{
804 805
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
806
	int err;
807

808 809 810 811 812 813 814 815 816 817 818 819
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
820 821 822 823 824 825
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
826
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
827 828
		else
			err = -ENOENT;
829 830 831
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

832
			spin_lock(&obj->lut_lock);
833 834 835 836 837 838
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
839
			spin_unlock(&obj->lut_lock);
840
		}
841
		mutex_unlock(&ctx->lut_mutex);
842 843 844
	}
	if (unlikely(err))
		goto err;
845

846
	return 0;
847

848
err:
C
Chris Wilson 已提交
849
	i915_vma_close(vma);
850 851 852 853
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
854

855 856
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
857 858
	struct i915_address_space *vm = eb->context->vm;

859 860
	do {
		struct drm_i915_gem_object *obj;
861
		struct i915_vma *vma;
862
		int err;
863

864 865
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
866
		if (likely(vma && vma->vm == vm))
867 868 869 870
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
871

872
		obj = i915_gem_object_lookup(eb->file, handle);
873 874
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
875

876
		vma = i915_vma_instance(obj, vm, NULL);
877
		if (IS_ERR(vma)) {
878 879
			i915_gem_object_put(obj);
			return vma;
880 881
		}

882 883 884
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
885

886 887 888 889 890
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
891

892 893 894 895 896
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
897

898 899 900 901 902 903 904 905 906 907 908
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
909

910
		err = eb_validate_vma(eb, &eb->exec[i], vma);
911 912 913 914
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
915

916
		eb_add_vma(eb, i, batch, vma);
917 918
	}

919
	eb->vma[i].vma = NULL;
920
	return err;
921 922
}

923
static struct eb_vma *
924
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
925
{
926 927
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
928
			return NULL;
929
		return &eb->vma[handle];
930 931
	} else {
		struct hlist_head *head;
932
		struct eb_vma *ev;
933

934
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
935 936 937
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
938 939 940
		}
		return NULL;
	}
941 942
}

943
static void eb_destroy(const struct i915_execbuffer *eb)
944
{
945 946
	GEM_BUG_ON(eb->reloc_cache.rq);

947 948 949
	if (eb->array)
		eb_vma_array_put(eb->array);

950
	if (eb->lut_size > 0)
951
		kfree(eb->buckets);
952 953
}

954
static inline u64
955
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
956
		  const struct i915_vma *target)
957
{
958
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
959 960
}

961 962
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
963
{
964 965
	cache->page = -1;
	cache->vaddr = 0;
966
	/* Must be a variable in the struct to allow GCC to unroll. */
967
	cache->gen = INTEL_GEN(i915);
968
	cache->has_llc = HAS_LLC(i915);
969
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
970 971
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
972
	cache->node.flags = 0;
973
	cache->rq = NULL;
974
	cache->rq_size = 0;
975
}
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

996
static void reloc_gpu_flush(struct reloc_cache *cache)
997
{
998
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
999

1000 1001
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1002

1003 1004
	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
	i915_gem_object_unpin_map(obj);
1005

1006
	intel_gt_chipset_flush(cache->rq->engine->gt);
1007

1008 1009
	i915_request_add(cache->rq);
	cache->rq = NULL;
1010 1011
}

1012 1013 1014 1015
static void reloc_cache_reset(struct reloc_cache *cache)
{
	void *vaddr;

1016 1017 1018
	if (cache->rq)
		reloc_gpu_flush(cache);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
			unsigned long pageno)
{
	void *vaddr;
	struct page *page;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
	cache->page = pageno;

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		i915_gem_object_lock(obj);
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		i915_gem_object_unlock(obj);
		if (err)
			return ERR_PTR(err);

		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
					       PIN_MAPPABLE |
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
			 unsigned long page)
{
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1215
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1216
			     struct intel_engine_cs *engine,
1217
			     struct i915_vma *vma,
1218 1219 1220
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1221
	struct intel_gt_buffer_pool_node *pool;
1222
	struct i915_request *rq;
1223 1224 1225 1226
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1227
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1228 1229
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1230

1231
	cmd = i915_gem_object_pin_map(pool->obj,
1232 1233 1234
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1235 1236 1237 1238
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1239

1240
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1250 1251 1252 1253 1254 1255 1256
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1257
			err = PTR_ERR(ce);
1258 1259 1260 1261 1262 1263 1264 1265 1266
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1267 1268 1269 1270 1271
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1272
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1273 1274 1275
	if (err)
		goto err_request;

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1286
	i915_vma_lock(batch);
1287 1288 1289
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1290
	i915_vma_unlock(batch);
1291 1292
	if (err)
		goto skip_request;
1293 1294

	rq->batch = batch;
1295
	i915_vma_unpin(batch);
1296 1297 1298 1299 1300 1301

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1302
	goto out_pool;
1303

1304
skip_request:
1305
	i915_request_set_error_once(rq, err);
1306
err_request:
1307
	i915_request_add(rq);
1308 1309 1310
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1311 1312
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1313
	intel_gt_buffer_pool_put(pool);
1314 1315 1316
	return err;
}

1317 1318 1319 1320 1321
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1322 1323 1324 1325 1326 1327
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1328 1329 1330

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);
1331 1332

	if (unlikely(!cache->rq)) {
1333
		int err;
1334 1335
		struct intel_engine_cs *engine = eb->engine;

1336
		if (!reloc_can_use_engine(engine)) {
1337
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1338
			if (!engine)
1339 1340
				return ERR_PTR(-ENODEV);
		}
1341

1342
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1364
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1365
{
1366 1367
	struct page *page;
	unsigned long addr;
1368

1369
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1370

1371 1372 1373
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1374

1375 1376 1377
	return addr + offset_in_page(offset);
}

1378 1379 1380 1381
static bool __reloc_entry_gpu(struct i915_execbuffer *eb,
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
1397
		return false;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1408 1409

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1410 1411 1412
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1413
		} else {
1414 1415 1416 1417 1418
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1419
		}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1444 1445
	}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	return true;
}

static bool reloc_entry_gpu(struct i915_execbuffer *eb,
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1461 1462 1463
}

static u64
1464
relocate_entry(struct i915_vma *vma,
1465
	       const struct drm_i915_gem_relocation_entry *reloc,
1466
	       struct i915_execbuffer *eb,
1467 1468 1469
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	u64 offset = reloc->offset;

	if (!reloc_entry_gpu(eb, vma, offset, target_addr)) {
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
		vaddr = reloc_vaddr(vma->obj,
				    &eb->reloc_cache,
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1495

1496
	return target->node.start | UPDATE;
1497 1498
}

1499 1500
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1501
		  struct eb_vma *ev,
1502
		  const struct drm_i915_gem_relocation_entry *reloc)
1503
{
1504
	struct drm_i915_private *i915 = eb->i915;
1505
	struct eb_vma *target;
1506
	int err;
1507

1508
	/* we've already hold a reference to all valid objects */
1509 1510
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1511
		return -ENOENT;
1512

1513
	/* Validate that the target is in a valid r/w GPU domain */
1514
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1515
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1516
			  "target %d offset %d "
1517
			  "read %08x write %08x",
1518
			  reloc->target_handle,
1519 1520 1521
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1522
		return -EINVAL;
1523
	}
1524 1525
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1526
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1527
			  "target %d offset %d "
1528
			  "read %08x write %08x",
1529
			  reloc->target_handle,
1530 1531 1532
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1533
		return -EINVAL;
1534 1535
	}

1536
	if (reloc->write_domain) {
1537
		target->flags |= EXEC_OBJECT_WRITE;
1538

1539 1540 1541 1542 1543 1544 1545
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1546
		    IS_GEN(eb->i915, 6)) {
1547 1548
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1549
					    PIN_GLOBAL, NULL);
1550
			if (err)
1551 1552
				return err;
		}
1553
	}
1554

1555 1556
	/*
	 * If the relocation already has the right value in it, no
1557 1558
	 * more work needs to be done.
	 */
1559 1560
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1561
		return 0;
1562 1563

	/* Check that the relocation address is valid... */
1564
	if (unlikely(reloc->offset >
1565
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1566
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1567 1568 1569
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1570
			  (int)ev->vma->size);
1571
		return -EINVAL;
1572
	}
1573
	if (unlikely(reloc->offset & 3)) {
1574
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1575 1576 1577
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1578
		return -EINVAL;
1579 1580
	}

1581 1582 1583 1584 1585 1586
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1587
	 * out of our synchronisation.
1588
	 */
1589
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1590

1591
	/* and update the user's relocation entry */
1592
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1593 1594
}

1595
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1596
{
1597
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1598
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1599
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1600 1601 1602
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1603

1604
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1605
		return -EINVAL;
1606

1607 1608 1609 1610 1611
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1612
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1613 1614 1615 1616 1617
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1618
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1619
		unsigned int copied;
1620

1621 1622
		/*
		 * This is the fast path and we cannot handle a pagefault
1623 1624 1625 1626 1627 1628
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1629
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1630 1631 1632 1633
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1634

1635
		remain -= count;
1636
		do {
1637
			u64 offset = eb_relocate_entry(eb, ev, r);
1638

1639 1640
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1641 1642
				remain = (int)offset;
				goto out;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1666 1667
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1668
			}
1669 1670 1671
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1672 1673 1674
out:
	reloc_cache_reset(&eb->reloc_cache);
	return remain;
1675 1676
}

1677
static int eb_relocate(struct i915_execbuffer *eb)
1678
{
1679 1680 1681 1682 1683 1684
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1685 1686 1687 1688 1689
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1690 1691 1692

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1693
		struct eb_vma *ev;
1694

1695
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1696 1697
			err = eb_relocate_vma(eb, ev);
			if (err)
1698
				return err;
1699 1700 1701
		}
	}

1702
	return 0;
1703 1704 1705 1706 1707
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1708
	struct ww_acquire_ctx acquire;
1709
	unsigned int i;
1710 1711 1712
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1713

1714
	for (i = 0; i < count; i++) {
1715 1716
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1717 1718 1719 1720 1721 1722 1723

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1724
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1738 1739 1740
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1741
		struct drm_i915_gem_object *obj = vma->obj;
1742

1743 1744
		assert_vma_held(vma);

1745
		if (flags & EXEC_OBJECT_CAPTURE) {
1746
			struct i915_capture_list *capture;
1747 1748

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1749 1750 1751 1752 1753
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1754 1755
		}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1769
			if (i915_gem_clflush_object(obj, 0))
1770
				flags &= ~EXEC_OBJECT_ASYNC;
1771 1772
		}

1773 1774 1775 1776
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1777

1778 1779
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1780

1781
		i915_vma_unlock(vma);
1782
		eb_unreserve_vma(ev);
1783
	}
1784 1785
	ww_acquire_fini(&acquire);

1786 1787
	eb_vma_array_put(fetch_and_zero(&eb->array));

1788 1789 1790
	if (unlikely(err))
		goto err_skip;

1791
	/* Unconditionally flush any chipset caches (for streaming writes). */
1792
	intel_gt_chipset_flush(eb->engine->gt);
1793
	return 0;
1794 1795

err_skip:
1796
	i915_request_set_error_once(eb->request, err);
1797
	return err;
1798 1799
}

T
Tvrtko Ursulin 已提交
1800
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1801
{
1802
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1803
		return -EINVAL;
1804

C
Chris Wilson 已提交
1805
	/* Kernel clipping was a DRI1 misfeature */
1806 1807
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
1808
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1809
			return -EINVAL;
1810
	}
C
Chris Wilson 已提交
1811 1812 1813 1814 1815 1816

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1817
		return -EINVAL;
C
Chris Wilson 已提交
1818 1819

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1820
		return -EINVAL;
C
Chris Wilson 已提交
1821

T
Tvrtko Ursulin 已提交
1822
	return 0;
1823 1824
}

1825
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1826
{
1827 1828
	u32 *cs;
	int i;
1829

1830 1831
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1832 1833
		return -EINVAL;
	}
1834

1835
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1836 1837
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1838

1839
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1840
	for (i = 0; i < 4; i++) {
1841 1842
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1843
	}
1844
	*cs++ = MI_NOOP;
1845
	intel_ring_advance(rq, cs);
1846 1847 1848 1849

	return 0;
}

1850
static struct i915_vma *
1851 1852 1853
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1854
{
1855 1856
	struct i915_vma *vma;
	int err;
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1867 1868
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1901 1902 1903
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1904
	.release = __eb_parse_release,
1905 1906
};

1907 1908 1909 1910 1911 1912 1913
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

1914
	return i915_active_ref(&node->active, tl->fence_context, fence);
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1950
	err = i915_active_acquire(&eb->batch->vma->active);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1964 1965 1966
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1967
	pw->batch = eb->batch->vma;
1968 1969 1970 1971 1972
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1973 1974 1975 1976 1977
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

1978 1979
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
1980
		goto err_commit;
1981 1982 1983

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
1984
		goto err_commit_unlock;
1985 1986 1987 1988 1989 1990

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
1991
		goto err_commit_unlock;
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

2003
	dma_fence_work_commit_imm(&pw->base);
2004 2005
	return 0;

2006
err_commit_unlock:
2007
	dma_resv_unlock(pw->batch->resv);
2008 2009 2010 2011 2012
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2013 2014 2015
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2016
	i915_active_release(&eb->batch->vma->active);
2017
err_free:
2018 2019 2020 2021
	kfree(pw);
	return err;
}

2022
static int eb_parse(struct i915_execbuffer *eb)
2023
{
2024
	struct drm_i915_private *i915 = eb->i915;
2025
	struct intel_gt_buffer_pool_node *pool;
2026 2027
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2028
	int err;
2029

2030 2031 2032
	if (!eb_use_cmdparser(eb))
		return 0;

2033 2034 2035 2036 2037 2038 2039
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2040 2041
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2042 2043 2044 2045 2046 2047
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

2048
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2049
	if (IS_ERR(pool))
2050
		return PTR_ERR(pool);
2051

2052 2053 2054
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2055
		goto err;
2056
	}
2057
	i915_gem_object_set_readonly(shadow->obj);
2058
	shadow->private = pool;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2072
		shadow->private = pool;
2073 2074 2075

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2076

2077
	err = eb_parse_pipeline(eb, shadow, trampoline);
2078 2079
	if (err)
		goto err_trampoline;
2080

2081
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2082
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2083
	eb->batch = &eb->vma[eb->buffer_count++];
2084
	eb->vma[eb->buffer_count].vma = NULL;
2085

2086
	eb->trampoline = trampoline;
2087 2088
	eb->batch_start_offset = 0;

2089
	return 0;
2090

2091 2092 2093 2094 2095
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2096
err:
2097
	intel_gt_buffer_pool_put(pool);
2098
	return err;
2099
}
2100

2101
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2102
{
2103
	int err;
2104

2105 2106 2107
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2108

2109
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2110 2111 2112
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2113 2114
	}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2127
	err = eb->engine->emit_bb_start(eb->request,
2128
					batch->node.start +
2129 2130
					eb->batch_start_offset,
					eb->batch_len,
2131 2132 2133
					eb->batch_flags);
	if (err)
		return err;
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2145
	if (intel_context_nopreempt(eb->context))
2146
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2147

C
Chris Wilson 已提交
2148
	return 0;
2149 2150
}

2151 2152
static int num_vcs_engines(const struct drm_i915_private *i915)
{
2153
	return hweight64(VDBOX_MASK(&i915->gt));
2154 2155
}

2156
/*
2157
 * Find one BSD ring to dispatch the corresponding BSD command.
2158
 * The engine index is returned.
2159
 */
2160
static unsigned int
2161 2162
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2163 2164 2165
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2166
	/* Check whether the file_priv has already selected one ring. */
2167
	if ((int)file_priv->bsd_engine < 0)
2168 2169
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2170

2171
	return file_priv->bsd_engine;
2172 2173
}

2174
static const enum intel_engine_id user_ring_map[] = {
2175 2176 2177 2178 2179
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2180 2181
};

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2222 2223 2224 2225
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2226
	err = intel_gt_terminally_wedged(ce->engine->gt);
2227 2228 2229
	if (err)
		return err;

2230 2231 2232
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2233 2234 2235 2236 2237
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2238
	err = intel_context_pin(ce);
2239 2240
	if (err)
		return err;
2241

2242 2243 2244 2245 2246 2247 2248 2249
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2250 2251 2252
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2253
		goto err_unpin;
2254
	}
2255 2256

	intel_context_enter(ce);
2257 2258 2259 2260 2261
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2262 2263 2264 2265 2266 2267
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2268

2269 2270 2271
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2272
		i915_request_put(rq);
2273 2274 2275 2276 2277

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2278
	}
2279

2280
	eb->engine = ce->engine;
2281 2282
	eb->context = ce;
	return 0;
2283

2284 2285 2286 2287
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2288
err_unpin:
2289
	intel_context_unpin(ce);
2290
	return err;
2291 2292
}

2293
static void eb_unpin_engine(struct i915_execbuffer *eb)
2294
{
2295
	struct intel_context *ce = eb->context;
2296
	struct intel_timeline *tl = ce->timeline;
2297 2298 2299 2300 2301

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2302
	intel_context_unpin(ce);
2303
}
2304

2305 2306 2307 2308
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2309
{
2310
	struct drm_i915_private *i915 = eb->i915;
2311 2312
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2313 2314
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2315 2316 2317
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2318
		return -1;
2319 2320
	}

2321
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2322 2323 2324
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2325
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2326 2327
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2328
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2329 2330
			bsd_idx--;
		} else {
2331 2332 2333
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2334
			return -1;
2335 2336
		}

2337
		return _VCS(bsd_idx);
2338 2339
	}

2340
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2341 2342
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2343
		return -1;
2344 2345
	}

2346 2347 2348 2349
	return user_ring_map[user_ring_id];
}

static int
2350 2351 2352
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2353 2354 2355 2356 2357
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2358 2359 2360 2361
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2362 2363 2364 2365 2366

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2367
	err = __eb_pin_engine(eb, ce);
2368 2369 2370
	intel_context_put(ce);

	return err;
2371 2372
}

2373
static void
2374
__free_fence_array(struct eb_fence *fences, unsigned int n)
2375
{
2376
	while (n--) {
2377
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2378 2379 2380
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2381 2382 2383
	kvfree(fences);
}

2384
static int
2385 2386
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2387
{
2388 2389 2390 2391 2392
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2393

2394 2395
	nfences = timeline_fences->fence_count;
	if (!nfences)
2396
		return 0;
2397

2398 2399 2400
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2401 2402
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2403
		return -EINVAL;
2404

2405 2406 2407 2408 2409 2410
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2411
		return -EFAULT;
2412

2413 2414 2415 2416
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2417
		return -ENOMEM;
2418

2419 2420 2421 2422 2423 2424 2425 2426
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2427
		struct drm_syncobj *syncobj;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2449

2450 2451 2452 2453 2454
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2455 2456
		}

2457 2458 2459 2460 2461
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2462
			dma_fence_put(fence);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2503 2504
		}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2559 2560
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2571 2572
		}

2573 2574 2575
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2576 2577 2578 2579 2580 2581
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2582 2583
	}

2584
	return 0;
2585
}
2586

2587 2588 2589 2590
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2591 2592 2593
}

static int
2594
await_fence_array(struct i915_execbuffer *eb)
2595 2596 2597 2598
{
	unsigned int n;
	int err;

2599
	for (n = 0; n < eb->num_fences; n++) {
2600 2601 2602
		struct drm_syncobj *syncobj;
		unsigned int flags;

2603
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2604

2605 2606
		if (!eb->fences[n].dma_fence)
			continue;
2607

2608 2609
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
2610 2611 2612 2613 2614 2615 2616
		if (err < 0)
			return err;
	}

	return 0;
}

2617
static void signal_fence_array(const struct i915_execbuffer *eb)
2618 2619 2620 2621
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

2622
	for (n = 0; n < eb->num_fences; n++) {
2623 2624 2625
		struct drm_syncobj *syncobj;
		unsigned int flags;

2626
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2627 2628 2629
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2643 2644 2645
	}
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2682
	if (likely(!intel_context_is_closed(eb->context))) {
2683 2684 2685
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2686 2687
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2699
static const i915_user_extension_fn execbuf_extensions[] = {
2700
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

2725
static int
2726
i915_gem_do_execbuffer(struct drm_device *dev,
2727 2728
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2729
		       struct drm_i915_gem_exec_object2 *exec)
2730
{
2731
	struct drm_i915_private *i915 = to_i915(dev);
2732
	struct i915_execbuffer eb;
2733 2734
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2735
	struct i915_vma *batch;
2736
	int out_fence_fd = -1;
2737
	int err;
2738

2739
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2740 2741
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2742

2743
	eb.i915 = i915;
2744 2745
	eb.file = file;
	eb.args = args;
2746
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2747
		args->flags |= __EXEC_HAS_RELOC;
2748

2749
	eb.exec = exec;
2750

2751
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2752 2753
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2754
	eb.buffer_count = args->buffer_count;
2755 2756
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2757
	eb.trampoline = NULL;
2758

2759
	eb.fences = NULL;
2760
	eb.num_fences = 0;
2761

2762
	eb.batch_flags = 0;
2763
	if (args->flags & I915_EXEC_SECURE) {
2764 2765 2766 2767 2768 2769 2770
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2771
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2772
			return -EPERM;
2773

2774
		eb.batch_flags |= I915_DISPATCH_SECURE;
2775
	}
2776
	if (args->flags & I915_EXEC_IS_PINNED)
2777
		eb.batch_flags |= I915_DISPATCH_PINNED;
2778

2779 2780 2781 2782 2783 2784 2785 2786
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

2787 2788 2789 2790 2791
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

2792
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2793 2794 2795 2796
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
2797
	}
2798
#undef IN_FENCES
2799

2800 2801 2802
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2803
			err = out_fence_fd;
2804
			goto err_in_fence;
2805 2806 2807
		}
	}

2808 2809
	err = eb_create(&eb);
	if (err)
2810
		goto err_out_fence;
2811

2812
	GEM_BUG_ON(!eb.lut_size);
2813

2814 2815 2816 2817
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2818
	err = eb_pin_engine(&eb, file, args);
2819
	if (unlikely(err))
2820
		goto err_context;
2821

2822
	err = eb_relocate(&eb);
2823
	if (err) {
2824 2825 2826 2827 2828 2829 2830 2831 2832
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2833
	}
2834

2835
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2836 2837
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2838 2839
		err = -EINVAL;
		goto err_vma;
2840
	}
2841 2842 2843 2844

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2845
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2846 2847
		err = -EINVAL;
		goto err_vma;
2848
	}
2849

2850
	if (eb.batch_len == 0)
2851
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2852

2853 2854 2855
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2856

2857 2858
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2859
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2860
	 * hsw should have this fixed, but bdw mucks it up again. */
2861
	batch = eb.batch->vma;
2862
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2863
		struct i915_vma *vma;
2864

2865 2866 2867 2868 2869 2870
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2871
		 *   so we don't really have issues with multiple objects not
2872 2873 2874
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2875
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2876
		if (IS_ERR(vma)) {
2877
			err = PTR_ERR(vma);
2878
			goto err_parse;
C
Chris Wilson 已提交
2879
		}
2880

2881
		batch = vma;
2882
	}
2883

2884 2885 2886
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2887
	/* Allocate a request for this batch buffer nice and early. */
2888
	eb.request = i915_request_create(eb.context);
2889
	if (IS_ERR(eb.request)) {
2890
		err = PTR_ERR(eb.request);
2891
		goto err_batch_unpin;
2892
	}
2893

2894
	if (in_fence) {
2895 2896 2897 2898 2899 2900 2901
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
2902 2903 2904 2905
		if (err < 0)
			goto err_request;
	}

2906
	if (eb.fences) {
2907
		err = await_fence_array(&eb);
2908 2909 2910 2911
		if (err)
			goto err_request;
	}

2912
	if (out_fence_fd != -1) {
2913
		out_fence = sync_file_create(&eb.request->fence);
2914
		if (!out_fence) {
2915
			err = -ENOMEM;
2916 2917 2918 2919
			goto err_request;
		}
	}

2920 2921
	/*
	 * Whilst this request exists, batch_obj will be on the
2922 2923 2924 2925 2926
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2927 2928
	eb.request->batch = batch;
	if (batch->private)
2929
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2930

2931
	trace_i915_request_queue(eb.request, eb.batch_flags);
2932
	err = eb_submit(&eb, batch);
2933
err_request:
2934
	i915_request_get(eb.request);
2935
	eb_request_add(&eb);
2936

2937
	if (eb.fences)
2938
		signal_fence_array(&eb);
2939

2940
	if (out_fence) {
2941
		if (err == 0) {
2942
			fd_install(out_fence_fd, out_fence->file);
2943
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2944 2945 2946 2947 2948 2949
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2950
	i915_request_put(eb.request);
2951

2952
err_batch_unpin:
2953
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2954
		i915_vma_unpin(batch);
2955
err_parse:
2956
	if (batch->private)
2957
		intel_gt_buffer_pool_put(batch->private);
2958
err_vma:
2959 2960
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2961
	eb_unpin_engine(&eb);
2962
err_context:
2963
	i915_gem_context_put(eb.gem_context);
2964
err_destroy:
2965
	eb_destroy(&eb);
2966
err_out_fence:
2967 2968
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2969
err_in_fence:
2970
	dma_fence_put(in_fence);
2971 2972
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
2973
	return err;
2974 2975
}

2976 2977
static size_t eb_element_size(void)
{
2978
	return sizeof(struct drm_i915_gem_exec_object2);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2994 2995 2996 2997 2998
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2999 3000
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
3001
{
3002
	struct drm_i915_private *i915 = to_i915(dev);
3003 3004 3005 3006
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3007
	const size_t count = args->buffer_count;
3008 3009
	unsigned int i;
	int err;
3010

3011
	if (!check_buffer_count(count)) {
3012
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3013 3014 3015
		return -EINVAL;
	}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
3027 3028 3029
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
3030

3031
	/* Copy in the exec list from userland */
3032
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3033
				   __GFP_NOWARN | GFP_KERNEL);
3034
	exec2_list = kvmalloc_array(count, eb_element_size(),
3035
				    __GFP_NOWARN | GFP_KERNEL);
3036
	if (exec_list == NULL || exec2_list == NULL) {
3037 3038 3039
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
3040 3041
		kvfree(exec_list);
		kvfree(exec2_list);
3042 3043
		return -ENOMEM;
	}
3044
	err = copy_from_user(exec_list,
3045
			     u64_to_user_ptr(args->buffers_ptr),
3046
			     sizeof(*exec_list) * count);
3047
	if (err) {
3048 3049
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
3050 3051
		kvfree(exec_list);
		kvfree(exec2_list);
3052 3053 3054 3055 3056 3057 3058 3059 3060
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3061
		if (INTEL_GEN(to_i915(dev)) < 4)
3062 3063 3064 3065 3066
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

3067
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3068
	if (exec2.flags & __EXEC_HAS_RELOC) {
3069
		struct drm_i915_gem_exec_object __user *user_exec_list =
3070
			u64_to_user_ptr(args->buffers_ptr);
3071

3072
		/* Copy the new buffer offsets back to the user's exec list. */
3073
		for (i = 0; i < args->buffer_count; i++) {
3074 3075 3076
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3077
			exec2_list[i].offset =
3078 3079 3080 3081 3082
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
3083
				break;
3084 3085 3086
		}
	}

M
Michal Hocko 已提交
3087 3088
	kvfree(exec_list);
	kvfree(exec2_list);
3089
	return err;
3090 3091 3092
}

int
3093 3094
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3095
{
3096
	struct drm_i915_private *i915 = to_i915(dev);
3097
	struct drm_i915_gem_execbuffer2 *args = data;
3098
	struct drm_i915_gem_exec_object2 *exec2_list;
3099
	const size_t count = args->buffer_count;
3100
	int err;
3101

3102
	if (!check_buffer_count(count)) {
3103
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3104 3105 3106
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3107 3108 3109
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3110

3111
	exec2_list = kvmalloc_array(count, eb_element_size(),
3112
				    __GFP_NOWARN | GFP_KERNEL);
3113
	if (exec2_list == NULL) {
3114 3115
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3116 3117
		return -ENOMEM;
	}
3118 3119
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3120
			   sizeof(*exec2_list) * count)) {
3121
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3122
		kvfree(exec2_list);
3123 3124 3125
		return -EFAULT;
	}

3126
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3127 3128 3129 3130 3131 3132 3133 3134

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3135
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3136 3137
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3138

3139
		/* Copy the new buffer offsets back to the user's exec list. */
3140 3141 3142 3143 3144 3145 3146
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3147 3148
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3149
			goto end;
3150

3151
		for (i = 0; i < args->buffer_count; i++) {
3152 3153 3154
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3155
			exec2_list[i].offset =
3156 3157 3158 3159
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3160
		}
3161
end_user:
3162
		user_write_access_end();
3163
end:;
3164 3165
	}

3166
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3167
	kvfree(exec2_list);
3168
	return err;
3169
}
3170 3171 3172 3173

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif