i915_gem_execbuffer.c 79.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_engine_pool.h"
19
#include "gt/intel_gt.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28 29
#include "i915_trace.h"

30 31 32 33 34 35 36 37 38 39 40 41 42
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

43 44 45 46 47 48
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
49

50 51 52 53 54
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
55 56 57
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
58
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
59
#define UPDATE			PIN_OFFSET_FIXED
60 61

#define BATCH_OFFSET_BIAS (256*1024)
62

63
#define __I915_EXEC_ILLEGAL_FLAGS \
64 65 66
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
67

68 69 70 71 72 73 74 75 76
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

228
struct i915_execbuffer {
229 230 231 232
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
233
	struct eb_vma *vma;
234 235

	struct intel_engine_cs *engine; /** engine to queue the request to */
236 237
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
238

239
	struct i915_request *request; /** our request to build */
240
	struct eb_vma *batch; /** identity of the batch obj/vma */
241
	struct i915_vma *trampoline; /** trampoline used for chaining */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
257
	struct reloc_cache {
258 259 260
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
261
		unsigned int gen; /** Cached value of INTEL_GEN */
262
		bool use_64bit_reloc : 1;
263 264 265
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
266

267
		struct i915_request *rq;
268 269
		u32 *rq_cmd;
		unsigned int rq_size;
270
	} reloc_cache;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
286 287
};

288 289
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
290
	return intel_engine_requires_cmd_parser(eb->engine) ||
291 292
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
293 294
}

295
static int eb_create(struct i915_execbuffer *eb)
296
{
297 298
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
299

300 301 302 303 304 305 306 307 308 309 310
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
311
		do {
312
			gfp_t flags;
313 314 315 316 317 318 319

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
320
			flags = GFP_KERNEL;
321 322 323
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

324
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
325
					      flags);
326 327 328 329
			if (eb->buckets)
				break;
		} while (--size);

330 331
		if (unlikely(!size))
			return -ENOMEM;
332

333
		eb->lut_size = size;
334
	} else {
335
		eb->lut_size = -eb->buffer_count;
336
	}
337

338
	return 0;
339 340
}

341 342
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
343 344
		 const struct i915_vma *vma,
		 unsigned int flags)
345 346 347 348 349 350 351
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

352
	if (flags & EXEC_OBJECT_PINNED &&
353 354 355
	    vma->node.start != entry->offset)
		return true;

356
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
357 358 359
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

360
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
361 362 363
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

364 365 366 367
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

368 369 370
	return false;
}

371
static inline bool
372
eb_pin_vma(struct i915_execbuffer *eb,
373
	   const struct drm_i915_gem_exec_object2 *entry,
374
	   struct eb_vma *ev)
375
{
376
	struct i915_vma *vma = ev->vma;
377
	u64 pin_flags;
378

379
	if (vma->node.size)
380
		pin_flags = vma->node.start;
381
	else
382
		pin_flags = entry->offset & PIN_OFFSET_MASK;
383

384
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
385
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
386
		pin_flags |= PIN_GLOBAL;
387

388 389
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
390

391
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
392
		if (unlikely(i915_vma_pin_fence(vma))) {
393
			i915_vma_unpin(vma);
394
			return false;
395 396
		}

397
		if (vma->fence)
398
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
399 400
	}

401 402
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
403 404
}

405
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
406
{
407
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
408

409
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
410
		__i915_vma_unpin_fence(vma);
411

412
	__i915_vma_unpin(vma);
413 414
}

415
static inline void
416
eb_unreserve_vma(struct eb_vma *ev)
417
{
418
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
419
		return;
420

421 422
	__eb_unreserve_vma(ev->vma, ev->flags);
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
423 424
}

425 426 427 428
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
429
{
430 431
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
432

433 434
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
435 436 437 438 439 440 441
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
442
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
443 444 445 446 447 448 449 450
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
451
	}
452 453 454 455 456 457 458
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

459 460 461 462 463 464 465 466 467 468 469 470
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

471
	return 0;
472 473
}

474
static void
475 476 477
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
478
{
479
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480
	struct eb_vma *ev = &eb->vma[i];
481 482 483

	GEM_BUG_ON(i915_vma_is_closed(vma));

484
	ev->vma = i915_vma_get(vma);
485 486 487
	ev->exec = entry;
	ev->flags = entry->flags;

488
	if (eb->lut_size > 0) {
489 490
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
491 492
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
493
	}
494

495
	if (entry->relocation_count)
496
		list_add_tail(&ev->reloc_link, &eb->relocs);
497

498 499 500 501 502 503 504 505 506 507
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
508
		if (entry->relocation_count &&
509 510
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
511
		if (eb->reloc_cache.has_fence)
512
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
513

514
		eb->batch = ev;
515 516
	}

517
	if (eb_pin_vma(eb, entry, ev)) {
518 519 520 521
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
522
	} else {
523 524
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
525 526 527 528 529 530 531 532 533
	}
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

534 535 536 537 538
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
539 540 541 542 543 544 545

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
546
			  struct eb_vma *ev,
547
			  u64 pin_flags)
548
{
549 550 551
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	unsigned int exec_flags = ev->flags;
	struct i915_vma *vma = ev->vma;
552 553
	int err;

554 555
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
556 557 558 559 560

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
561 562
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
563

564 565
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
566

567
	if (exec_flags & EXEC_OBJECT_PINNED)
568
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
569
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
570
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
571

572 573 574 575 576 577 578
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

579 580 581
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
582 583 584 585 586 587 588 589
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

590
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
591
		err = i915_vma_pin_fence(vma);
592 593 594 595 596
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

597
		if (vma->fence)
598
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
599 600
	}

601 602
	ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
603

604 605 606 607 608 609
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
610
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
611
	struct list_head last;
612
	struct eb_vma *ev;
613
	unsigned int i, pass;
614
	int err = 0;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

630 631 632
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

633 634
	pass = 0;
	do {
635 636
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
637 638 639
			if (err)
				break;
		}
640
		if (!(err == -ENOSPC || err == -EAGAIN))
641
			break;
642 643 644 645 646

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
647
			unsigned int flags;
648

649 650
			ev = &eb->vma[i];
			flags = ev->flags;
651 652
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
653 654
				continue;

655
			eb_unreserve_vma(ev);
656

657
			if (flags & EXEC_OBJECT_PINNED)
658
				/* Pinned must have their slot */
659
				list_add(&ev->bind_link, &eb->unbound);
660
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
661
				/* Map require the lowest 256MiB (aperture) */
662
				list_add_tail(&ev->bind_link, &eb->unbound);
663 664
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
665
				list_add(&ev->bind_link, &last);
666
			else
667
				list_add_tail(&ev->bind_link, &last);
668 669 670
		}
		list_splice_tail(&last, &eb->unbound);

671
		if (err == -EAGAIN) {
672
			mutex_unlock(&eb->i915->drm.struct_mutex);
673
			flush_workqueue(eb->i915->mm.userptr_wq);
674
			mutex_lock(&eb->i915->drm.struct_mutex);
675 676 677
			continue;
		}

678 679 680 681 682 683
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
684
			mutex_lock(&eb->context->vm->mutex);
685
			err = i915_gem_evict_vm(eb->context->vm);
686
			mutex_unlock(&eb->context->vm->mutex);
687
			if (err)
688
				goto unlock;
689 690 691
			break;

		default:
692 693
			err = -ENOSPC;
			goto unlock;
694
		}
695 696

		pin_flags = PIN_USER;
697
	} while (1);
698 699 700 701

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
702
}
703

704 705
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
706 707 708 709
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
710 711 712 713 714 715 716
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
717 718
	if (unlikely(!ctx))
		return -ENOENT;
719

720
	eb->gem_context = ctx;
721
	if (rcu_access_pointer(ctx->vm))
722
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
723 724

	eb->context_flags = 0;
725
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
726 727 728 729 730 731
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
732
{
733
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
734
	struct drm_i915_gem_object *obj;
735
	unsigned int i, batch;
736
	int err;
737

738 739 740
	if (unlikely(i915_gem_context_is_closed(eb->gem_context)))
		return -ENOENT;

741 742
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
743

744 745
	batch = eb_batch_index(eb);

746 747
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
748
		struct i915_lut_handle *lut;
749
		struct i915_vma *vma;
750

751 752
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
753
			goto add_vma;
754

755
		obj = i915_gem_object_lookup(eb->file, handle);
756
		if (unlikely(!obj)) {
757
			err = -ENOENT;
758
			goto err_vma;
759 760
		}

761
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
762
		if (IS_ERR(vma)) {
763
			err = PTR_ERR(vma);
764
			goto err_obj;
765 766
		}

767
		lut = i915_lut_handle_alloc();
768 769 770 771 772 773 774
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
775
			i915_lut_handle_free(lut);
776
			goto err_obj;
777
		}
778

779 780
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
781
			i915_vma_reopen(vma);
782
		lut->handle = handle;
783 784 785 786 787
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
788

789
add_vma:
790
		err = eb_validate_vma(eb, &eb->exec[i], vma);
791
		if (unlikely(err))
792
			goto err_vma;
793

794
		eb_add_vma(eb, i, batch, vma);
795 796
	}

797
	return 0;
798

799
err_obj:
800
	i915_gem_object_put(obj);
801
err_vma:
802
	eb->vma[i].vma = NULL;
803
	return err;
804 805
}

806
static struct eb_vma *
807
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
808
{
809 810
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
811
			return NULL;
812
		return &eb->vma[handle];
813 814
	} else {
		struct hlist_head *head;
815
		struct eb_vma *ev;
816

817
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
818 819 820
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
821 822 823
		}
		return NULL;
	}
824 825
}

826
static void eb_release_vmas(const struct i915_execbuffer *eb)
827
{
828 829 830 831
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
832 833
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
834

835
		if (!vma)
836
			break;
837

838
		eb->vma[i].vma = NULL;
839

840 841
		if (ev->flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, ev->flags);
842

843
		i915_vma_put(vma);
844
	}
845 846
}

847
static void eb_destroy(const struct i915_execbuffer *eb)
848
{
849 850
	GEM_BUG_ON(eb->reloc_cache.rq);

851
	if (eb->lut_size > 0)
852
		kfree(eb->buckets);
853 854
}

855
static inline u64
856
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
857
		  const struct i915_vma *target)
858
{
859
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
860 861
}

862 863
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
864
{
865
	cache->page = -1;
866
	cache->vaddr = 0;
867
	/* Must be a variable in the struct to allow GCC to unroll. */
868
	cache->gen = INTEL_GEN(i915);
869
	cache->has_llc = HAS_LLC(i915);
870
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
871 872
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
873
	cache->node.flags = 0;
874 875
	cache->rq = NULL;
	cache->rq_size = 0;
876
}
877

878 879 880 881 882 883 884 885
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
886 887
}

888 889
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

890 891 892 893 894 895 896
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

897 898 899 900
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
901 902

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
903
	i915_gem_object_unpin_map(cache->rq->batch->obj);
904

905
	intel_gt_chipset_flush(cache->rq->engine->gt);
906

907
	i915_request_add(cache->rq);
908 909 910
	cache->rq = NULL;
}

911
static void reloc_cache_reset(struct reloc_cache *cache)
912
{
913
	void *vaddr;
914

915 916 917
	if (cache->rq)
		reloc_gpu_flush(cache);

918 919
	if (!cache->vaddr)
		return;
920

921 922 923 924
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
925

926
		kunmap_atomic(vaddr);
927
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
928
	} else {
929 930 931
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
932
		io_mapping_unmap_atomic((void __iomem *)vaddr);
933

934
		if (drm_mm_node_allocated(&cache->node)) {
935 936 937
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
938
			mutex_lock(&ggtt->vm.mutex);
939
			drm_mm_remove_node(&cache->node);
940
			mutex_unlock(&ggtt->vm.mutex);
941 942
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
943
		}
944
	}
945 946 947

	cache->vaddr = 0;
	cache->page = -1;
948 949 950 951
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
952
			unsigned long page)
953
{
954 955 956 957 958 959
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
960
		int err;
961

962
		err = i915_gem_object_prepare_write(obj, &flushes);
963 964
		if (err)
			return ERR_PTR(err);
965 966 967

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
968

969 970 971 972
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
973 974
	}

975 976
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
977
	cache->page = page;
978

979
	return vaddr;
980 981
}

982 983
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
984
			 unsigned long page)
985
{
986
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
987
	unsigned long offset;
988
	void *vaddr;
989

990
	if (cache->vaddr) {
991
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
992
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
993 994
	} else {
		struct i915_vma *vma;
995
		int err;
996

997 998 999
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1000
		if (use_cpu_reloc(cache, obj))
1001
			return NULL;
1002

1003
		i915_gem_object_lock(obj);
1004
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1005
		i915_gem_object_unlock(obj);
1006 1007
		if (err)
			return ERR_PTR(err);
1008

1009
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1010
					       PIN_MAPPABLE |
1011 1012
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1013 1014
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1015
			mutex_lock(&ggtt->vm.mutex);
1016
			err = drm_mm_insert_node_in_range
1017
				(&ggtt->vm.mm, &cache->node,
1018
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1019
				 0, ggtt->mappable_end,
1020
				 DRM_MM_INSERT_LOW);
1021
			mutex_unlock(&ggtt->vm.mutex);
1022
			if (err) /* no inactive aperture space, use cpu reloc */
1023
				return NULL;
1024 1025 1026
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1027
		}
1028
	}
1029

1030
	offset = cache->node.start;
1031
	if (drm_mm_node_allocated(&cache->node)) {
1032 1033 1034
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1035 1036
	} else {
		offset += page << PAGE_SHIFT;
1037 1038
	}

1039
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1040
							 offset);
1041 1042
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1043

1044
	return vaddr;
1045 1046
}

1047 1048
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1049
			 unsigned long page)
1050
{
1051
	void *vaddr;
1052

1053 1054 1055 1056 1057 1058 1059 1060
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1061 1062
	}

1063
	return vaddr;
1064 1065
}

1066
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1067
{
1068 1069 1070 1071 1072
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1073

1074
		*addr = value;
1075

1076 1077
		/*
		 * Writes to the same cacheline are serialised by the CPU
1078 1079 1080 1081 1082 1083 1084 1085 1086
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1087 1088
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1109 1110 1111 1112 1113
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1114
	struct intel_engine_pool_node *pool;
1115
	struct i915_request *rq;
1116 1117 1118 1119
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1120
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1121 1122
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1123

1124
	cmd = i915_gem_object_pin_map(pool->obj,
1125 1126 1127
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1128 1129 1130 1131
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1132

1133
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1134 1135 1136 1137 1138 1139 1140 1141 1142
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1143
	rq = i915_request_create(eb->context);
1144 1145 1146 1147 1148
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1149 1150 1151 1152
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1153
	err = reloc_move_to_gpu(rq, vma);
1154 1155 1156 1157 1158 1159 1160
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1161
		goto skip_request;
1162

1163
	i915_vma_lock(batch);
1164 1165 1166
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1167
	i915_vma_unlock(batch);
1168 1169
	if (err)
		goto skip_request;
1170 1171

	rq->batch = batch;
1172
	i915_vma_unpin(batch);
1173 1174 1175 1176 1177 1178

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1179
	goto out_pool;
1180

1181
skip_request:
1182
	i915_request_set_error_once(rq, err);
1183
err_request:
1184
	i915_request_add(rq);
1185 1186 1187
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1188 1189 1190
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1207 1208 1209
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1221 1222
static u64
relocate_entry(struct i915_vma *vma,
1223
	       const struct drm_i915_gem_relocation_entry *reloc,
1224 1225
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1226
{
1227
	u64 offset = reloc->offset;
1228 1229
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1230
	void *vaddr;
1231

1232 1233
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1234
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1235 1236 1237 1238 1239 1240 1241 1242 1243
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1244
		else
1245
			len = 3;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1291
repeat:
1292
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1293 1294 1295 1296 1297
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1298
			eb->reloc_cache.vaddr);
1299 1300 1301 1302 1303 1304

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1305 1306
	}

1307
out:
1308
	return target->node.start | UPDATE;
1309 1310
}

1311 1312
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1313
		  struct eb_vma *ev,
1314
		  const struct drm_i915_gem_relocation_entry *reloc)
1315
{
1316
	struct drm_i915_private *i915 = eb->i915;
1317
	struct eb_vma *target;
1318
	int err;
1319

1320
	/* we've already hold a reference to all valid objects */
1321 1322
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1323
		return -ENOENT;
1324

1325
	/* Validate that the target is in a valid r/w GPU domain */
1326
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1327
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1328
			  "target %d offset %d "
1329
			  "read %08x write %08x",
1330
			  reloc->target_handle,
1331 1332 1333
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1334
		return -EINVAL;
1335
	}
1336 1337
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1338
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1339
			  "target %d offset %d "
1340
			  "read %08x write %08x",
1341
			  reloc->target_handle,
1342 1343 1344
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1345
		return -EINVAL;
1346 1347
	}

1348
	if (reloc->write_domain) {
1349
		target->flags |= EXEC_OBJECT_WRITE;
1350

1351 1352 1353 1354 1355 1356 1357
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1358
		    IS_GEN(eb->i915, 6)) {
1359 1360
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1361
					    PIN_GLOBAL, NULL);
1362 1363 1364 1365
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1366
	}
1367

1368 1369
	/*
	 * If the relocation already has the right value in it, no
1370 1371
	 * more work needs to be done.
	 */
1372
	if (!DBG_FORCE_RELOC &&
1373
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1374
		return 0;
1375 1376

	/* Check that the relocation address is valid... */
1377
	if (unlikely(reloc->offset >
1378
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1379
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1380 1381 1382
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1383
			  (int)ev->vma->size);
1384
		return -EINVAL;
1385
	}
1386
	if (unlikely(reloc->offset & 3)) {
1387
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1388 1389 1390
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1391
		return -EINVAL;
1392 1393
	}

1394 1395 1396 1397 1398 1399
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1400
	 * out of our synchronisation.
1401
	 */
1402
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1403

1404
	/* and update the user's relocation entry */
1405
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1406 1407
}

1408
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1409
{
1410
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1411 1412
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1413
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1414
	unsigned int remain;
1415

1416
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1417
	remain = entry->relocation_count;
1418 1419
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1420

1421 1422 1423 1424 1425
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1426
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1427 1428 1429 1430 1431 1432 1433
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1434

1435 1436
		/*
		 * This is the fast path and we cannot handle a pagefault
1437 1438 1439 1440 1441 1442 1443
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1444
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1445
		pagefault_enable();
1446 1447
		if (unlikely(copied)) {
			remain = -EFAULT;
1448 1449
			goto out;
		}
1450

1451
		remain -= count;
1452
		do {
1453
			u64 offset = eb_relocate_entry(eb, ev, r);
1454

1455 1456 1457
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1458
				goto out;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1482 1483 1484 1485
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1486
			}
1487 1488 1489
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1490
out:
1491
	reloc_cache_reset(&eb->reloc_cache);
1492
	return remain;
1493 1494 1495
}

static int
1496
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1497
{
1498
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1499 1500 1501 1502
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1503 1504

	for (i = 0; i < entry->relocation_count; i++) {
1505
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1506

1507 1508 1509 1510
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1511
	}
1512 1513 1514 1515
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1516 1517
}

1518
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1519
{
1520 1521 1522
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1523

1524 1525 1526
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1527

1528 1529
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1530

1531 1532
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1533
	if (!access_ok(addr, size))
1534
		return -EFAULT;
1535

1536 1537 1538 1539 1540
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1541
	}
1542
	return __get_user(c, end - 1);
1543
}
1544

1545
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1546
{
1547
	struct drm_i915_gem_relocation_entry *relocs;
1548 1549 1550
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1551

1552 1553 1554 1555 1556
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1557

1558 1559
		if (nreloc == 0)
			continue;
1560

1561 1562 1563
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1564

1565 1566
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1567

1568
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1569 1570 1571 1572
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1573

1574 1575 1576 1577 1578 1579 1580
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1581
					     (char __user *)urelocs + copied,
1582 1583
					     len))
				goto end;
1584

1585 1586
			copied += len;
		} while (copied < size);
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1598
		if (!user_access_begin(urelocs, size))
1599
			goto end;
1600

1601 1602 1603 1604 1605
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1606

1607 1608
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1609

1610
	return 0;
1611

1612 1613 1614 1615 1616
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1617 1618
err:
	while (i--) {
1619
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1620 1621 1622 1623
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1624 1625
}

1626
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1627
{
1628 1629
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1630

1631 1632
	for (i = 0; i < count; i++) {
		int err;
1633

1634 1635 1636 1637
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1638

1639
	return 0;
1640 1641
}

1642
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1643
{
1644
	bool have_copy = false;
1645
	struct eb_vma *ev;
1646 1647 1648 1649 1650 1651 1652
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1675
	}
1676
	if (err)
1677
		goto out;
1678

1679
	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1680 1681
		if (!have_copy) {
			pagefault_disable();
1682
			err = eb_relocate_vma(eb, ev);
1683 1684 1685 1686
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
1687
			err = eb_relocate_vma_slow(eb, ev);
1688 1689 1690
			if (err)
				goto err;
		}
1691 1692
	}

1693 1694
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1695 1696 1697 1698 1699 1700
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1722
	return err;
1723 1724
}

1725
static int eb_relocate(struct i915_execbuffer *eb)
1726
{
1727 1728 1729 1730 1731 1732 1733 1734
	int err;

	mutex_lock(&eb->gem_context->mutex);
	err = eb_lookup_vmas(eb);
	mutex_unlock(&eb->gem_context->mutex);
	if (err)
		return err;

1735 1736 1737 1738 1739
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1740 1741 1742

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1743
		struct eb_vma *ev;
1744

1745 1746
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, ev))
1747
				return eb_relocate_slow(eb);
1748 1749 1750 1751 1752 1753 1754 1755 1756
		}
	}

	return 0;
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1757
	struct ww_acquire_ctx acquire;
1758
	unsigned int i;
1759 1760 1761
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1762

1763
	for (i = 0; i < count; i++) {
1764 1765
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1766 1767 1768 1769 1770 1771 1772

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1773
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1787 1788 1789
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1790
		struct drm_i915_gem_object *obj = vma->obj;
1791

1792 1793
		assert_vma_held(vma);

1794
		if (flags & EXEC_OBJECT_CAPTURE) {
1795
			struct i915_capture_list *capture;
1796 1797

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1798 1799 1800 1801 1802
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1803 1804
		}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1818
			if (i915_gem_clflush_object(obj, 0))
1819
				flags &= ~EXEC_OBJECT_ASYNC;
1820 1821
		}

1822 1823 1824 1825
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1826

1827 1828
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1829

1830
		i915_vma_unlock(vma);
1831

1832
		__eb_unreserve_vma(vma, flags);
1833
		i915_vma_put(vma);
1834 1835

		ev->vma = NULL;
1836
	}
1837 1838 1839 1840 1841
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1842
	eb->exec = NULL;
1843

1844
	/* Unconditionally flush any chipset caches (for streaming writes). */
1845
	intel_gt_chipset_flush(eb->engine->gt);
1846
	return 0;
1847 1848

err_skip:
1849
	i915_request_set_error_once(eb->request, err);
1850
	return err;
1851 1852
}

T
Tvrtko Ursulin 已提交
1853
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1854
{
1855
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1856
		return -EINVAL;
1857

C
Chris Wilson 已提交
1858
	/* Kernel clipping was a DRI1 misfeature */
1859 1860
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1861
			return -EINVAL;
1862
	}
C
Chris Wilson 已提交
1863 1864 1865 1866 1867 1868

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1869
		return -EINVAL;
C
Chris Wilson 已提交
1870 1871

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1872
		return -EINVAL;
C
Chris Wilson 已提交
1873

T
Tvrtko Ursulin 已提交
1874
	return 0;
1875 1876
}

1877
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1878
{
1879 1880
	u32 *cs;
	int i;
1881

1882
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1883
		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1884 1885
		return -EINVAL;
	}
1886

1887
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1888 1889
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1890

1891
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1892
	for (i = 0; i < 4; i++) {
1893 1894
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1895
	}
1896
	*cs++ = MI_NOOP;
1897
	intel_ring_advance(rq, cs);
1898 1899 1900 1901

	return 0;
}

1902
static struct i915_vma *
1903 1904 1905
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1906
{
1907 1908
	struct i915_vma *vma;
	int err;
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1919 1920
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1953 1954 1955
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1956
	.release = __eb_parse_release,
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
};

static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1970
	err = i915_active_acquire(&eb->batch->vma->active);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1984 1985 1986
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1987
	pw->batch = eb->batch->vma;
1988 1989 1990 1991 1992
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1993 1994 1995
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
		goto err_trampoline;
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
		goto err_batch_unlock;

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
		goto err_batch_unlock;

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

	dma_fence_work_commit(&pw->base);
	return 0;

err_batch_unlock:
	dma_resv_unlock(pw->batch->resv);
2023 2024 2025 2026 2027 2028
err_trampoline:
	if (trampoline)
		i915_active_release(&trampoline->active);
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2029
	i915_active_release(&eb->batch->vma->active);
2030
err_free:
2031 2032 2033 2034
	kfree(pw);
	return err;
}

2035
static int eb_parse(struct i915_execbuffer *eb)
2036
{
2037
	struct drm_i915_private *i915 = eb->i915;
2038
	struct intel_engine_pool_node *pool;
2039 2040
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
2041
	int err;
2042

2043 2044 2045
	if (!eb_use_cmdparser(eb))
		return 0;

2046 2047 2048 2049 2050 2051 2052
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2053 2054
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2055 2056 2057 2058 2059 2060 2061
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

	pool = intel_engine_get_pool(eb->engine, len);
2062
	if (IS_ERR(pool))
2063
		return PTR_ERR(pool);
2064

2065 2066 2067
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2068
		goto err;
2069
	}
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	i915_gem_object_set_readonly(shadow->obj);

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2087

2088
	err = eb_parse_pipeline(eb, shadow, trampoline);
2089 2090
	if (err)
		goto err_trampoline;
2091

2092
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
2093
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
2094
	eb->batch = &eb->vma[eb->buffer_count++];
2095

2096
	eb->trampoline = trampoline;
2097 2098
	eb->batch_start_offset = 0;

2099
	shadow->private = pool;
2100
	return 0;
2101

2102 2103 2104 2105 2106
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2107 2108
err:
	intel_engine_pool_put(pool);
2109
	return err;
2110
}
2111

2112
static void
2113
add_to_client(struct i915_request *rq, struct drm_file *file)
2114
{
2115 2116 2117 2118 2119 2120 2121
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2122 2123
}

2124
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2125
{
2126
	int err;
2127

2128 2129 2130
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2131

2132
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2133 2134 2135
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2136 2137
	}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2150
	err = eb->engine->emit_bb_start(eb->request,
2151
					batch->node.start +
2152 2153
					eb->batch_start_offset,
					eb->batch_len,
2154 2155 2156
					eb->batch_flags);
	if (err)
		return err;
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2168
	if (intel_context_nopreempt(eb->context))
2169
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2170

C
Chris Wilson 已提交
2171
	return 0;
2172 2173
}

2174 2175 2176 2177 2178 2179
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2180
/*
2181
 * Find one BSD ring to dispatch the corresponding BSD command.
2182
 * The engine index is returned.
2183
 */
2184
static unsigned int
2185 2186
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2187 2188 2189
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2190
	/* Check whether the file_priv has already selected one ring. */
2191
	if ((int)file_priv->bsd_engine < 0)
2192 2193
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2194

2195
	return file_priv->bsd_engine;
2196 2197
}

2198
static const enum intel_engine_id user_ring_map[] = {
2199 2200 2201 2202 2203
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2204 2205
};

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2246 2247 2248 2249
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2250
	err = intel_gt_terminally_wedged(ce->engine->gt);
2251 2252 2253
	if (err)
		return err;

2254 2255 2256
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2257 2258 2259 2260 2261
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2262
	err = intel_context_pin(ce);
2263 2264
	if (err)
		return err;
2265

2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2274 2275 2276
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2277
		goto err_unpin;
2278
	}
2279 2280

	intel_context_enter(ce);
2281 2282 2283 2284 2285
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2286 2287 2288 2289 2290 2291
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2292

2293 2294 2295
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2296
		i915_request_put(rq);
2297 2298 2299 2300 2301

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2302
	}
2303

2304
	eb->engine = ce->engine;
2305 2306
	eb->context = ce;
	return 0;
2307

2308 2309 2310 2311
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2312
err_unpin:
2313
	intel_context_unpin(ce);
2314
	return err;
2315 2316
}

2317
static void eb_unpin_engine(struct i915_execbuffer *eb)
2318
{
2319
	struct intel_context *ce = eb->context;
2320
	struct intel_timeline *tl = ce->timeline;
2321 2322 2323 2324 2325

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2326
	intel_context_unpin(ce);
2327
}
2328

2329 2330 2331 2332
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2333
{
2334
	struct drm_i915_private *i915 = eb->i915;
2335 2336
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2337 2338
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2339 2340 2341
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2342
		return -1;
2343 2344
	}

2345
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2346 2347 2348
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2349
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2350 2351
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2352
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2353 2354
			bsd_idx--;
		} else {
2355 2356 2357
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2358
			return -1;
2359 2360
		}

2361
		return _VCS(bsd_idx);
2362 2363
	}

2364
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2365 2366
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2367
		return -1;
2368 2369
	}

2370 2371 2372 2373
	return user_ring_map[user_ring_id];
}

static int
2374 2375 2376
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2377 2378 2379 2380 2381
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2382 2383 2384 2385
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2386 2387 2388 2389 2390

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2391
	err = __eb_pin_engine(eb, ce);
2392 2393 2394
	intel_context_put(ce);

	return err;
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2409
	const unsigned long nfences = args->num_cliprects;
2410 2411
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2412
	unsigned long n;
2413 2414 2415 2416 2417
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2418 2419 2420 2421 2422
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2423 2424 2425
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2426
	if (!access_ok(user, nfences * sizeof(*user)))
2427 2428
		return ERR_PTR(-EFAULT);

2429
	fences = kvmalloc_array(nfences, sizeof(*fences),
2430
				__GFP_NOWARN | GFP_KERNEL);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2443 2444 2445 2446 2447
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2448 2449 2450 2451 2452 2453 2454
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2455 2456 2457
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2493
		fence = drm_syncobj_fence_get(syncobj);
2494 2495 2496
		if (!fence)
			return -EINVAL;

2497
		err = i915_request_await_dma_fence(eb->request, fence);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2522
		drm_syncobj_replace_fence(syncobj, fence);
2523 2524 2525
	}
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
	if (likely(rcu_access_pointer(eb->context->gem_context))) {
		attr = eb->gem_context->sched;

		/*
		 * Boost actual workloads past semaphores!
		 *
		 * With semaphores we spin on one engine waiting for another,
		 * simply to reduce the latency of starting our work when
		 * the signaler completes. However, if there is any other
		 * work that we could be doing on this engine instead, that
		 * is better utilisation and will reduce the overall duration
		 * of the current work. To avoid PI boosting a semaphore
		 * far in the distance past over useful work, we keep a history
		 * of any semaphore use along our dependency chain.
		 */
		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
			attr.priority |= I915_PRIORITY_NOSEMAPHORE;

		/*
		 * Boost priorities to new clients (new request flows).
		 *
		 * Allow interactive/synchronous clients to jump ahead of
		 * the bulk clients. (FQ_CODEL)
		 */
		if (list_empty(&rq->sched.signalers_list))
			attr.priority |= I915_PRIORITY_WAIT;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2578 2579
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	}

	local_bh_disable();
	__i915_request_queue(rq, &attr);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2593
static int
2594
i915_gem_do_execbuffer(struct drm_device *dev,
2595 2596
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2597 2598
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2599
{
2600
	struct drm_i915_private *i915 = to_i915(dev);
2601
	struct i915_execbuffer eb;
2602
	struct dma_fence *in_fence = NULL;
2603
	struct dma_fence *exec_fence = NULL;
2604
	struct sync_file *out_fence = NULL;
2605
	struct i915_vma *batch;
2606
	int out_fence_fd = -1;
2607
	int err;
2608

2609
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2610 2611
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2612

2613
	eb.i915 = i915;
2614 2615
	eb.file = file;
	eb.args = args;
2616
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2617
		args->flags |= __EXEC_HAS_RELOC;
2618

2619
	eb.exec = exec;
2620 2621
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
2622

2623
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2624 2625
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2626
	eb.buffer_count = args->buffer_count;
2627 2628
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2629
	eb.trampoline = NULL;
2630

2631
	eb.batch_flags = 0;
2632
	if (args->flags & I915_EXEC_SECURE) {
2633 2634 2635 2636 2637 2638 2639
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2640
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2641
			return -EPERM;
2642

2643
		eb.batch_flags |= I915_DISPATCH_SECURE;
2644
	}
2645
	if (args->flags & I915_EXEC_IS_PINNED)
2646
		eb.batch_flags |= I915_DISPATCH_PINNED;
2647

2648 2649
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2650 2651
		if (!in_fence)
			return -EINVAL;
2652 2653
	}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2667 2668 2669
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2670
			err = out_fence_fd;
2671
			goto err_exec_fence;
2672 2673 2674
		}
	}

2675 2676 2677 2678 2679
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2680

2681 2682 2683 2684
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2685
	err = eb_pin_engine(&eb, file, args);
2686
	if (unlikely(err))
2687
		goto err_context;
2688

2689
	err = eb_relocate(&eb);
2690
	if (err) {
2691 2692 2693 2694 2695 2696 2697 2698 2699
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2700
	}
2701

2702
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2703 2704
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2705 2706
		err = -EINVAL;
		goto err_vma;
2707
	}
2708 2709 2710 2711

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2712
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2713 2714
		err = -EINVAL;
		goto err_vma;
2715
	}
2716

2717
	if (eb.batch_len == 0)
2718
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2719

2720 2721 2722
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2723

2724 2725
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2726
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2727
	 * hsw should have this fixed, but bdw mucks it up again. */
2728
	batch = eb.batch->vma;
2729
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2730
		struct i915_vma *vma;
2731

2732 2733 2734 2735 2736 2737
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2738
		 *   so we don't really have issues with multiple objects not
2739 2740 2741
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2742
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2743
		if (IS_ERR(vma)) {
2744
			err = PTR_ERR(vma);
2745
			goto err_parse;
C
Chris Wilson 已提交
2746
		}
2747

2748
		batch = vma;
2749
	}
2750

2751 2752 2753
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2754
	/* Allocate a request for this batch buffer nice and early. */
2755
	eb.request = i915_request_create(eb.context);
2756
	if (IS_ERR(eb.request)) {
2757
		err = PTR_ERR(eb.request);
2758
		goto err_batch_unpin;
2759
	}
2760

2761
	if (in_fence) {
2762
		err = i915_request_await_dma_fence(eb.request, in_fence);
2763
		if (err < 0)
2764 2765 2766
			goto err_request;
	}

2767 2768 2769 2770 2771 2772 2773
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2774 2775 2776 2777 2778 2779
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2780
	if (out_fence_fd != -1) {
2781
		out_fence = sync_file_create(&eb.request->fence);
2782
		if (!out_fence) {
2783
			err = -ENOMEM;
2784 2785 2786 2787
			goto err_request;
		}
	}

2788 2789
	/*
	 * Whilst this request exists, batch_obj will be on the
2790 2791 2792 2793 2794
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2795 2796 2797
	eb.request->batch = batch;
	if (batch->private)
		intel_engine_pool_mark_active(batch->private, eb.request);
2798

2799
	trace_i915_request_queue(eb.request, eb.batch_flags);
2800
	err = eb_submit(&eb, batch);
2801
err_request:
2802
	add_to_client(eb.request, file);
2803
	i915_request_get(eb.request);
2804
	eb_request_add(&eb);
2805

2806 2807 2808
	if (fences)
		signal_fence_array(&eb, fences);

2809
	if (out_fence) {
2810
		if (err == 0) {
2811
			fd_install(out_fence_fd, out_fence->file);
2812
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2813 2814 2815 2816 2817 2818
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2819
	i915_request_put(eb.request);
2820

2821
err_batch_unpin:
2822
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2823
		i915_vma_unpin(batch);
2824
err_parse:
2825 2826
	if (batch->private)
		intel_engine_pool_put(batch->private);
2827 2828 2829
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2830 2831
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2832
	eb_unpin_engine(&eb);
2833
err_context:
2834
	i915_gem_context_put(eb.gem_context);
2835
err_destroy:
2836
	eb_destroy(&eb);
2837
err_out_fence:
2838 2839
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2840 2841
err_exec_fence:
	dma_fence_put(exec_fence);
2842
err_in_fence:
2843
	dma_fence_put(in_fence);
2844
	return err;
2845 2846
}

2847 2848
static size_t eb_element_size(void)
{
2849
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2865 2866 2867 2868 2869
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2870 2871
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2872
{
2873
	struct drm_i915_private *i915 = to_i915(dev);
2874 2875 2876 2877
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2878
	const size_t count = args->buffer_count;
2879 2880
	unsigned int i;
	int err;
2881

2882
	if (!check_buffer_count(count)) {
2883
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2884 2885 2886
		return -EINVAL;
	}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2898 2899 2900
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2901

2902
	/* Copy in the exec list from userland */
2903
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2904
				   __GFP_NOWARN | GFP_KERNEL);
2905
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2906
				    __GFP_NOWARN | GFP_KERNEL);
2907
	if (exec_list == NULL || exec2_list == NULL) {
2908 2909 2910
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2911 2912
		kvfree(exec_list);
		kvfree(exec2_list);
2913 2914
		return -ENOMEM;
	}
2915
	err = copy_from_user(exec_list,
2916
			     u64_to_user_ptr(args->buffers_ptr),
2917
			     sizeof(*exec_list) * count);
2918
	if (err) {
2919 2920
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2921 2922
		kvfree(exec_list);
		kvfree(exec2_list);
2923 2924 2925 2926 2927 2928 2929 2930 2931
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2932
		if (INTEL_GEN(to_i915(dev)) < 4)
2933 2934 2935 2936 2937
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2938
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2939
	if (exec2.flags & __EXEC_HAS_RELOC) {
2940
		struct drm_i915_gem_exec_object __user *user_exec_list =
2941
			u64_to_user_ptr(args->buffers_ptr);
2942

2943
		/* Copy the new buffer offsets back to the user's exec list. */
2944
		for (i = 0; i < args->buffer_count; i++) {
2945 2946 2947
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2948
			exec2_list[i].offset =
2949 2950 2951 2952 2953
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2954
				break;
2955 2956 2957
		}
	}

M
Michal Hocko 已提交
2958 2959
	kvfree(exec_list);
	kvfree(exec2_list);
2960
	return err;
2961 2962 2963
}

int
2964 2965
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2966
{
2967
	struct drm_i915_private *i915 = to_i915(dev);
2968
	struct drm_i915_gem_execbuffer2 *args = data;
2969
	struct drm_i915_gem_exec_object2 *exec2_list;
2970
	struct drm_syncobj **fences = NULL;
2971
	const size_t count = args->buffer_count;
2972
	int err;
2973

2974
	if (!check_buffer_count(count)) {
2975
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2976 2977 2978
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2979 2980 2981
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2982 2983

	/* Allocate an extra slot for use by the command parser */
2984
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2985
				    __GFP_NOWARN | GFP_KERNEL);
2986
	if (exec2_list == NULL) {
2987 2988
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2989 2990
		return -ENOMEM;
	}
2991 2992
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2993
			   sizeof(*exec2_list) * count)) {
2994
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2995
		kvfree(exec2_list);
2996 2997 2998
		return -EFAULT;
	}

2999 3000 3001 3002 3003 3004 3005 3006 3007
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
3008 3009 3010 3011 3012 3013 3014 3015

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3016
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3017 3018
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3019

3020
		/* Copy the new buffer offsets back to the user's exec list. */
3021 3022 3023 3024 3025 3026 3027 3028
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
3029
			goto end;
3030

3031
		for (i = 0; i < args->buffer_count; i++) {
3032 3033 3034
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3035
			exec2_list[i].offset =
3036 3037 3038 3039
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3040
		}
3041 3042
end_user:
		user_access_end();
3043
end:;
3044 3045
	}

3046
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3047
	put_fence_array(args, fences);
M
Michal Hocko 已提交
3048
	kvfree(exec2_list);
3049
	return err;
3050
}