i915_gem_execbuffer.c 76.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21 22
#include "gt/intel_gt_pm.h"

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27 28
#include "i915_trace.h"

29 30 31 32 33 34
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
35

36 37 38 39 40 41
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 43 44 45
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
46
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47
#define UPDATE			PIN_OFFSET_FIXED
48 49

#define BATCH_OFFSET_BIAS (256*1024)
50

51
#define __I915_EXEC_ILLEGAL_FLAGS \
52 53 54
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
55

56 57 58 59 60 61 62 63 64
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

216
struct i915_execbuffer {
217 218 219 220
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 222
	struct i915_vma **vma;
	unsigned int *flags;
223 224

	struct intel_engine_cs *engine; /** engine to queue the request to */
225 226
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
227

228
	struct i915_request *request; /** our request to build */
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
245
	struct reloc_cache {
246 247 248
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
249
		unsigned int gen; /** Cached value of INTEL_GEN */
250
		bool use_64bit_reloc : 1;
251 252 253
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
254

255
		struct i915_request *rq;
256 257
		u32 *rq_cmd;
		unsigned int rq_size;
258
	} reloc_cache;
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
274 275
};

276
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

297 298
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
299
	return intel_engine_requires_cmd_parser(eb->engine) ||
300 301
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
302 303
}

304
static int eb_create(struct i915_execbuffer *eb)
305
{
306 307
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
308

309 310 311 312 313 314 315 316 317 318 319
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
320
		do {
321
			gfp_t flags;
322 323 324 325 326 327 328

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
329
			flags = GFP_KERNEL;
330 331 332
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

333
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
334
					      flags);
335 336 337 338
			if (eb->buckets)
				break;
		} while (--size);

339 340
		if (unlikely(!size))
			return -ENOMEM;
341

342
		eb->lut_size = size;
343
	} else {
344
		eb->lut_size = -eb->buffer_count;
345
	}
346

347
	return 0;
348 349
}

350 351
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
352 353
		 const struct i915_vma *vma,
		 unsigned int flags)
354 355 356 357 358 359 360
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

361
	if (flags & EXEC_OBJECT_PINNED &&
362 363 364
	    vma->node.start != entry->offset)
		return true;

365
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
366 367 368
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

369
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
370 371 372
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

373 374 375 376
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

377 378 379
	return false;
}

380
static inline bool
381
eb_pin_vma(struct i915_execbuffer *eb,
382
	   const struct drm_i915_gem_exec_object2 *entry,
383 384
	   struct i915_vma *vma)
{
385 386
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
387

388
	if (vma->node.size)
389
		pin_flags = vma->node.start;
390
	else
391
		pin_flags = entry->offset & PIN_OFFSET_MASK;
392

393 394 395
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
396

397 398
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
399

400
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
401
		if (unlikely(i915_vma_pin_fence(vma))) {
402
			i915_vma_unpin(vma);
403
			return false;
404 405
		}

406
		if (vma->fence)
407
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
408 409
	}

410 411
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
412 413
}

414
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
415
{
416
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
417

418
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
419
		__i915_vma_unpin_fence(vma);
420

421
	__i915_vma_unpin(vma);
422 423
}

424
static inline void
425
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
426
{
427
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
428
		return;
429

430 431
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
432 433
}

434 435 436 437
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
438
{
439 440
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
441

442 443 444 445 446 447 448 449
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
450
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
451 452 453 454 455 456 457 458
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
459 460
	}

461
	if (unlikely(vma->exec_flags)) {
462 463 464 465 466 467 468 469 470 471 472 473
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

474 475 476 477 478 479 480 481 482 483 484 485
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

486
	return 0;
487 488
}

489
static int
490 491 492
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
493
{
494
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
495 496 497 498 499 500 501 502
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
503 504
	}

505
	if (eb->lut_size > 0) {
506
		vma->exec_handle = entry->handle;
507
		hlist_add_head(&vma->exec_node,
508 509
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
510
	}
511

512 513 514 515 516 517 518 519 520
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
521
	eb->vma[i] = vma;
522
	eb->flags[i] = entry->flags;
523
	vma->exec_flags = &eb->flags[i];
524

525 526 527 528 529 530 531 532 533 534
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
535 536
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
537 538 539 540 541 542 543
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

544
	err = 0;
545
	if (eb_pin_vma(eb, entry, vma)) {
546 547 548 549
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
550 551 552 553 554 555
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
556 557
		if (unlikely(err))
			vma->exec_flags = NULL;
558 559 560 561 562 563 564 565 566 567
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

568 569 570 571 572
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
573 574 575 576 577 578 579 580 581

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
582 583 584
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
585 586
	int err;

587 588 589
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
590 591 592 593 594

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
595 596
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
597

598 599
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
600

601 602 603 604 605
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
606 607
	}

608 609 610
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
611 612 613 614 615 616 617 618
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

619
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
620
		err = i915_vma_pin_fence(vma);
621 622 623 624 625
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

626
		if (vma->fence)
627
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
628 629
	}

630 631
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
673 674
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
675

676 677
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
678 679
				continue;

680
			eb_unreserve_vma(vma, &eb->flags[i]);
681

682
			if (flags & EXEC_OBJECT_PINNED)
683
				/* Pinned must have their slot */
684
				list_add(&vma->exec_link, &eb->unbound);
685
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
686
				/* Map require the lowest 256MiB (aperture) */
687
				list_add_tail(&vma->exec_link, &eb->unbound);
688 689 690
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
691 692 693 694 695 696 697 698 699 700 701
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
702
			err = i915_gem_evict_vm(eb->context->vm);
703 704 705 706 707 708 709 710
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
711
}
712

713 714
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
715 716 717 718
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
719 720 721 722 723 724 725
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
726 727
	if (unlikely(!ctx))
		return -ENOENT;
728

729
	eb->gem_context = ctx;
730
	if (ctx->vm)
731
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
732 733

	eb->context_flags = 0;
734
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 736 737 738 739 740
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
741
{
742
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
743
	struct drm_i915_gem_object *obj;
744
	unsigned int i, batch;
745
	int err;
746

747
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
748 749
		return -EIO;

750 751
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
752

753 754
	batch = eb_batch_index(eb);

755 756 757 758 759 760
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

761 762
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
763
		struct i915_lut_handle *lut;
764
		struct i915_vma *vma;
765

766 767
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
768
			goto add_vma;
769

770
		obj = i915_gem_object_lookup(eb->file, handle);
771
		if (unlikely(!obj)) {
772
			err = -ENOENT;
773
			goto err_vma;
774 775
		}

776
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
777
		if (IS_ERR(vma)) {
778
			err = PTR_ERR(vma);
779
			goto err_obj;
780 781
		}

782
		lut = i915_lut_handle_alloc();
783 784 785 786 787 788 789
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
790
			i915_lut_handle_free(lut);
791
			goto err_obj;
792
		}
793

794 795
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
796
			i915_vma_reopen(vma);
797
		lut->handle = handle;
798 799 800 801 802
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
803

804
add_vma:
805
		err = eb_add_vma(eb, i, batch, vma);
806
		if (unlikely(err))
807
			goto err_vma;
808

809 810
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 812
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
813 814
	}

815 816
	mutex_unlock(&eb->gem_context->mutex);

817 818 819
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

820
err_obj:
821
	i915_gem_object_put(obj);
822 823
err_vma:
	eb->vma[i] = NULL;
824 825
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
826
	return err;
827 828
}

829
static struct i915_vma *
830
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
831
{
832 833
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
834
			return NULL;
835
		return eb->vma[handle];
836 837
	} else {
		struct hlist_head *head;
838
		struct i915_vma *vma;
839

840
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
841
		hlist_for_each_entry(vma, head, exec_node) {
842 843
			if (vma->exec_handle == handle)
				return vma;
844 845 846
		}
		return NULL;
	}
847 848
}

849
static void eb_release_vmas(const struct i915_execbuffer *eb)
850
{
851 852 853 854
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
855 856
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
857

858
		if (!vma)
859
			break;
860

861 862 863
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
864

865 866
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
867

868
		if (flags & __EXEC_OBJECT_HAS_REF)
869
			i915_vma_put(vma);
870
	}
871 872
}

873
static void eb_reset_vmas(const struct i915_execbuffer *eb)
874
{
875
	eb_release_vmas(eb);
876
	if (eb->lut_size > 0)
877 878
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
879 880
}

881
static void eb_destroy(const struct i915_execbuffer *eb)
882
{
883 884
	GEM_BUG_ON(eb->reloc_cache.rq);

885
	if (eb->lut_size > 0)
886
		kfree(eb->buckets);
887 888
}

889
static inline u64
890
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
891
		  const struct i915_vma *target)
892
{
893
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
894 895
}

896 897
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
898
{
899
	cache->page = -1;
900
	cache->vaddr = 0;
901
	/* Must be a variable in the struct to allow GCC to unroll. */
902
	cache->gen = INTEL_GEN(i915);
903
	cache->has_llc = HAS_LLC(i915);
904
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
905 906
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
907
	cache->node.allocated = false;
908 909
	cache->rq = NULL;
	cache->rq_size = 0;
910
}
911

912 913 914 915 916 917 918 919
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
920 921
}

922 923
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

924 925 926 927 928 929 930
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

931 932 933 934
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
935 936

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
937
	i915_gem_object_unpin_map(cache->rq->batch->obj);
938

939
	intel_gt_chipset_flush(cache->rq->engine->gt);
940

941
	i915_request_add(cache->rq);
942 943 944
	cache->rq = NULL;
}

945
static void reloc_cache_reset(struct reloc_cache *cache)
946
{
947
	void *vaddr;
948

949 950 951
	if (cache->rq)
		reloc_gpu_flush(cache);

952 953
	if (!cache->vaddr)
		return;
954

955 956 957 958
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
959

960
		kunmap_atomic(vaddr);
961
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
962
	} else {
963 964 965
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
966
		io_mapping_unmap_atomic((void __iomem *)vaddr);
967

968
		if (cache->node.allocated) {
969 970 971
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
972 973 974
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
975
		}
976
	}
977 978 979

	cache->vaddr = 0;
	cache->page = -1;
980 981 982 983
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
984
			unsigned long page)
985
{
986 987 988 989 990 991
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
992
		int err;
993

994
		err = i915_gem_object_prepare_write(obj, &flushes);
995 996
		if (err)
			return ERR_PTR(err);
997 998 999

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1000

1001 1002 1003 1004
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1005 1006
	}

1007 1008
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1009
	cache->page = page;
1010

1011
	return vaddr;
1012 1013
}

1014 1015
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1016
			 unsigned long page)
1017
{
1018
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1019
	unsigned long offset;
1020
	void *vaddr;
1021

1022
	if (cache->vaddr) {
1023
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1024
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1025 1026
	} else {
		struct i915_vma *vma;
1027
		int err;
1028

1029 1030 1031
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1032
		if (use_cpu_reloc(cache, obj))
1033
			return NULL;
1034

1035
		i915_gem_object_lock(obj);
1036
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1037
		i915_gem_object_unlock(obj);
1038 1039
		if (err)
			return ERR_PTR(err);
1040

1041
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1042
					       PIN_MAPPABLE |
1043 1044
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1045 1046
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1047
			err = drm_mm_insert_node_in_range
1048
				(&ggtt->vm.mm, &cache->node,
1049
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1050
				 0, ggtt->mappable_end,
1051
				 DRM_MM_INSERT_LOW);
1052
			if (err) /* no inactive aperture space, use cpu reloc */
1053
				return NULL;
1054 1055 1056
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1057
		}
1058
	}
1059

1060 1061
	offset = cache->node.start;
	if (cache->node.allocated) {
1062 1063 1064
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1065 1066
	} else {
		offset += page << PAGE_SHIFT;
1067 1068
	}

1069
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1070
							 offset);
1071 1072
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1073

1074
	return vaddr;
1075 1076
}

1077 1078
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1079
			 unsigned long page)
1080
{
1081
	void *vaddr;
1082

1083 1084 1085 1086 1087 1088 1089 1090
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1091 1092
	}

1093
	return vaddr;
1094 1095
}

1096
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1097
{
1098 1099 1100 1101 1102
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1103

1104
		*addr = value;
1105

1106 1107
		/*
		 * Writes to the same cacheline are serialised by the CPU
1108 1109 1110 1111 1112 1113 1114 1115 1116
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1139 1140 1141 1142 1143
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1144
	struct intel_engine_pool_node *pool;
1145
	struct i915_request *rq;
1146 1147 1148 1149
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1150 1151 1152
	pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1153

1154
	cmd = i915_gem_object_pin_map(pool->obj,
1155 1156 1157
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1158 1159 1160 1161
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1162

1163
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1164 1165 1166 1167 1168 1169 1170 1171 1172
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1173
	rq = i915_request_create(eb->context);
1174 1175 1176 1177 1178
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1179 1180 1181 1182
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1183
	err = reloc_move_to_gpu(rq, vma);
1184 1185 1186 1187 1188 1189 1190
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1191
		goto skip_request;
1192

1193
	i915_vma_lock(batch);
1194 1195 1196
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1197
	i915_vma_unlock(batch);
1198 1199
	if (err)
		goto skip_request;
1200 1201

	rq->batch = batch;
1202
	i915_vma_unpin(batch);
1203 1204 1205 1206 1207 1208

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1209
	goto out_pool;
1210

1211 1212
skip_request:
	i915_request_skip(rq, err);
1213
err_request:
1214
	i915_request_add(rq);
1215 1216 1217
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1218 1219 1220
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1237 1238 1239 1240
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1241 1242 1243
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1255 1256
static u64
relocate_entry(struct i915_vma *vma,
1257
	       const struct drm_i915_gem_relocation_entry *reloc,
1258 1259
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1260
{
1261
	u64 offset = reloc->offset;
1262 1263
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1264
	void *vaddr;
1265

1266 1267
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1268
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1269 1270 1271 1272 1273 1274 1275 1276 1277
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1278
		else
1279
			len = 3;
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1325
repeat:
1326
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1327 1328 1329 1330 1331
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1332
			eb->reloc_cache.vaddr);
1333 1334 1335 1336 1337 1338

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1339 1340
	}

1341
out:
1342
	return target->node.start | UPDATE;
1343 1344
}

1345 1346 1347 1348
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1349
{
1350
	struct i915_vma *target;
1351
	int err;
1352

1353
	/* we've already hold a reference to all valid objects */
1354 1355
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1356
		return -ENOENT;
1357

1358
	/* Validate that the target is in a valid r/w GPU domain */
1359
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1360
		DRM_DEBUG("reloc with multiple write domains: "
1361
			  "target %d offset %d "
1362
			  "read %08x write %08x",
1363
			  reloc->target_handle,
1364 1365 1366
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1367
		return -EINVAL;
1368
	}
1369 1370
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1371
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1372
			  "target %d offset %d "
1373
			  "read %08x write %08x",
1374
			  reloc->target_handle,
1375 1376 1377
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1378
		return -EINVAL;
1379 1380
	}

1381
	if (reloc->write_domain) {
1382
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1383

1384 1385 1386 1387 1388 1389 1390
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1391
		    IS_GEN(eb->i915, 6)) {
1392 1393 1394 1395 1396 1397
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1398
	}
1399

1400 1401
	/*
	 * If the relocation already has the right value in it, no
1402 1403
	 * more work needs to be done.
	 */
1404 1405
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1406
		return 0;
1407 1408

	/* Check that the relocation address is valid... */
1409
	if (unlikely(reloc->offset >
1410
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1411
		DRM_DEBUG("Relocation beyond object bounds: "
1412 1413 1414 1415
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1416
		return -EINVAL;
1417
	}
1418
	if (unlikely(reloc->offset & 3)) {
1419
		DRM_DEBUG("Relocation not 4-byte aligned: "
1420 1421 1422
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1423
		return -EINVAL;
1424 1425
	}

1426 1427 1428 1429 1430 1431
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1432
	 * out of our synchronisation.
1433
	 */
1434
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1435

1436
	/* and update the user's relocation entry */
1437
	return relocate_entry(vma, reloc, eb, target);
1438 1439
}

1440
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1441
{
1442
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1443 1444
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1445
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1446
	unsigned int remain;
1447

1448
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1449
	remain = entry->relocation_count;
1450 1451
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1452

1453 1454 1455 1456 1457
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1458
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1459 1460 1461 1462 1463 1464 1465
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1466

1467 1468
		/*
		 * This is the fast path and we cannot handle a pagefault
1469 1470 1471 1472 1473 1474 1475
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1476
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1477
		pagefault_enable();
1478 1479
		if (unlikely(copied)) {
			remain = -EFAULT;
1480 1481
			goto out;
		}
1482

1483
		remain -= count;
1484
		do {
1485
			u64 offset = eb_relocate_entry(eb, vma, r);
1486

1487 1488 1489
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1490
				goto out;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1514 1515 1516 1517
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1518
			}
1519 1520 1521
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1522
out:
1523
	reloc_cache_reset(&eb->reloc_cache);
1524
	return remain;
1525 1526 1527
}

static int
1528
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1529
{
1530
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1531 1532 1533 1534
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1535 1536

	for (i = 0; i < entry->relocation_count; i++) {
1537
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1538

1539 1540 1541 1542
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1543
	}
1544 1545 1546 1547
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1548 1549
}

1550
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1551
{
1552 1553 1554
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1555

1556 1557 1558
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1559

1560 1561
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1562

1563 1564
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1565
	if (!access_ok(addr, size))
1566
		return -EFAULT;
1567

1568 1569 1570 1571 1572
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1573
	}
1574
	return __get_user(c, end - 1);
1575
}
1576

1577
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1578
{
1579
	struct drm_i915_gem_relocation_entry *relocs;
1580 1581 1582
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1583

1584 1585 1586 1587 1588
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1589

1590 1591
		if (nreloc == 0)
			continue;
1592

1593 1594 1595
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1596

1597 1598
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1599

1600
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1601 1602 1603 1604
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1605

1606 1607 1608 1609 1610 1611 1612
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1613
					     (char __user *)urelocs + copied,
1614 1615
					     len))
				goto end;
1616

1617 1618
			copied += len;
		} while (copied < size);
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1630
		if (!user_access_begin(urelocs, size))
1631
			goto end;
1632

1633 1634 1635 1636 1637
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1638

1639 1640
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1641

1642
	return 0;
1643

1644 1645 1646 1647 1648
end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
1649 1650
err:
	while (i--) {
1651
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1652 1653 1654 1655
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1656 1657
}

1658
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1659
{
1660 1661
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1662

1663
	if (unlikely(i915_modparams.prefault_disable))
1664
		return 0;
1665

1666 1667
	for (i = 0; i < count; i++) {
		int err;
1668

1669 1670 1671 1672
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1673

1674
	return 0;
1675 1676
}

1677
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1678
{
1679
	struct drm_device *dev = &eb->i915->drm;
1680
	bool have_copy = false;
1681
	struct i915_vma *vma;
1682 1683 1684 1685 1686 1687 1688
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1689

1690
	/* We may process another execbuffer during the unlock... */
1691
	eb_reset_vmas(eb);
1692 1693
	mutex_unlock(&dev->struct_mutex);

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1715
	}
1716 1717 1718
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1719 1720
	}

1721 1722 1723
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1724 1725
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1726
		mutex_lock(&dev->struct_mutex);
1727
		goto out;
1728 1729
	}

1730
	/* reacquire the objects */
1731 1732
	err = eb_lookup_vmas(eb);
	if (err)
1733
		goto err;
1734

1735 1736
	GEM_BUG_ON(!eb->batch);

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1749 1750
	}

1751 1752
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1753 1754 1755 1756 1757 1758
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1780
	return err;
1781 1782
}

1783
static int eb_relocate(struct i915_execbuffer *eb)
1784
{
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1807
	struct ww_acquire_ctx acquire;
1808
	unsigned int i;
1809 1810 1811
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1812

1813
	for (i = 0; i < count; i++) {
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1845 1846
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1847
		struct drm_i915_gem_object *obj = vma->obj;
1848

1849 1850
		assert_vma_held(vma);

1851
		if (flags & EXEC_OBJECT_CAPTURE) {
1852
			struct i915_capture_list *capture;
1853 1854

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1855 1856 1857 1858 1859
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1860 1861
		}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1875
			if (i915_gem_clflush_object(obj, 0))
1876
				flags &= ~EXEC_OBJECT_ASYNC;
1877 1878
		}

1879 1880 1881 1882
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1883

1884 1885
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1886

1887
		i915_vma_unlock(vma);
1888

1889 1890 1891 1892
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1893
			i915_vma_put(vma);
1894
	}
1895 1896 1897 1898 1899
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1900
	eb->exec = NULL;
1901

1902
	/* Unconditionally flush any chipset caches (for streaming writes). */
1903
	intel_gt_chipset_flush(eb->engine->gt);
1904
	return 0;
1905 1906 1907 1908

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1909 1910
}

1911
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1912
{
1913
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1914 1915
		return false;

C
Chris Wilson 已提交
1916
	/* Kernel clipping was a DRI1 misfeature */
1917 1918 1919 1920
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1933 1934
}

1935
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1936
{
1937 1938
	u32 *cs;
	int i;
1939

1940
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1941 1942 1943
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1944

1945
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1946 1947
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1948

1949
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1950
	for (i = 0; i < 4; i++) {
1951 1952
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1953
	}
1954
	*cs++ = MI_NOOP;
1955
	intel_ring_advance(rq, cs);
1956 1957 1958 1959

	return 0;
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = eb->i915;
	struct i915_vma * const vma = *eb->vma;
	struct i915_address_space *vm;
	u64 flags;

	/*
	 * PPGTT backed shadow buffers must be mapped RO, to prevent
	 * post-scan tampering
	 */
	if (CMDPARSER_USES_GGTT(dev_priv)) {
		flags = PIN_GLOBAL;
		vm = &dev_priv->ggtt.vm;
		eb->batch_flags |= I915_DISPATCH_SECURE;
	} else if (vma->vm->has_read_only) {
		flags = PIN_USER;
		vm = vma->vm;
		i915_gem_object_set_readonly(obj);
	} else {
		DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
		return ERR_PTR(-EINVAL);
	}

	return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
}

1988
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1989
{
1990
	struct intel_engine_pool_node *pool;
1991
	struct i915_vma *vma;
1992
	int err;
1993

1994 1995 1996
	pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
	if (IS_ERR(pool))
		return ERR_CAST(pool);
1997

1998
	err = intel_engine_cmd_parser(eb->engine,
1999
				      eb->batch->obj,
2000
				      pool->obj,
2001
				      eb->batch_start_offset,
2002
				      eb->batch_len);
2003
	if (err) {
2004 2005 2006 2007 2008 2009 2010 2011
		/*
		 * Unsafe GGTT-backed buffers can still be submitted safely
		 * as non-secure.
		 * For PPGTT backing however, we have no choice but to forcibly
		 * reject unsafe buffers
		 */
		if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
			/* Execute original buffer non-secure */
C
Chris Wilson 已提交
2012 2013
			vma = NULL;
		else
2014
			vma = ERR_PTR(err);
2015
		goto err;
C
Chris Wilson 已提交
2016
	}
2017

2018
	vma = shadow_batch_pin(eb, pool->obj);
C
Chris Wilson 已提交
2019
	if (IS_ERR(vma))
2020
		goto err;
C
Chris Wilson 已提交
2021

2022 2023 2024 2025 2026
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2027

2028 2029 2030 2031
	eb->batch_start_offset = 0;
	eb->batch = vma;
	/* eb->batch_len unchanged */

2032 2033 2034 2035 2036
	vma->private = pool;
	return vma;

err:
	intel_engine_pool_put(pool);
C
Chris Wilson 已提交
2037
	return vma;
2038
}
2039

2040
static void
2041
add_to_client(struct i915_request *rq, struct drm_file *file)
2042
{
2043 2044 2045 2046 2047 2048 2049
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2050 2051
}

2052
static int eb_submit(struct i915_execbuffer *eb)
2053
{
2054
	int err;
2055

2056 2057 2058
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2059

2060
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2061 2062 2063
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2064 2065
	}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2078
	err = eb->engine->emit_bb_start(eb->request,
2079 2080 2081
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2082 2083 2084
					eb->batch_flags);
	if (err)
		return err;
2085

C
Chris Wilson 已提交
2086
	return 0;
2087 2088
}

2089 2090 2091 2092 2093 2094
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2095
/*
2096
 * Find one BSD ring to dispatch the corresponding BSD command.
2097
 * The engine index is returned.
2098
 */
2099
static unsigned int
2100 2101
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2102 2103 2104
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2105
	/* Check whether the file_priv has already selected one ring. */
2106
	if ((int)file_priv->bsd_engine < 0)
2107 2108
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2109

2110
	return file_priv->bsd_engine;
2111 2112
}

2113
static const enum intel_engine_id user_ring_map[] = {
2114 2115 2116 2117 2118
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2119 2120
};

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int
__eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2157
{
2158
	int err;
2159

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (likely(atomic_inc_not_zero(&ce->pin_count)))
		return 0;

	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
	if (err)
		return err;

	err = __intel_context_do_pin(ce);
	mutex_unlock(&eb->i915->drm.struct_mutex);

	return err;
}

static void
__eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
{
	if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
		return;

	mutex_lock(&eb->i915->drm.struct_mutex);
	intel_context_unpin(ce);
	mutex_unlock(&eb->i915->drm.struct_mutex);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2190 2191 2192 2193
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2194
	err = intel_gt_terminally_wedged(ce->engine->gt);
2195 2196 2197 2198 2199 2200 2201 2202
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2203
	err = __eb_pin_context(eb, ce);
2204 2205
	if (err)
		return err;
2206

2207 2208 2209 2210 2211 2212 2213 2214
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2215 2216 2217
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2218
		goto err_unpin;
2219
	}
2220 2221

	intel_context_enter(ce);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2237

2238
	eb->engine = ce->engine;
2239 2240
	eb->context = ce;
	return 0;
2241

2242 2243 2244 2245
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2246
err_unpin:
2247
	__eb_unpin_context(eb, ce);
2248
	return err;
2249 2250
}

2251
static void eb_unpin_engine(struct i915_execbuffer *eb)
2252
{
2253
	struct intel_context *ce = eb->context;
2254
	struct intel_timeline *tl = ce->timeline;
2255 2256 2257 2258 2259

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2260
	__eb_unpin_context(eb, ce);
2261
}
2262

2263 2264 2265 2266
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2267
{
2268
	struct drm_i915_private *i915 = eb->i915;
2269 2270
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2271 2272
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2273 2274
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2275
		return -1;
2276 2277
	}

2278
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2279 2280 2281
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2282
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2283 2284
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2285
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2286 2287 2288 2289
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2290
			return -1;
2291 2292
		}

2293
		return _VCS(bsd_idx);
2294 2295
	}

2296 2297 2298
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2299 2300
	}

2301 2302 2303 2304
	return user_ring_map[user_ring_id];
}

static int
2305 2306 2307
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2308 2309 2310 2311 2312
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2313 2314 2315 2316
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2317 2318 2319 2320 2321

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2322
	err = __eb_pin_engine(eb, ce);
2323 2324 2325
	intel_context_put(ce);

	return err;
2326 2327
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2340
	const unsigned long nfences = args->num_cliprects;
2341 2342
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2343
	unsigned long n;
2344 2345 2346 2347 2348
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2349 2350 2351 2352 2353
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2354 2355 2356
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2357
	if (!access_ok(user, nfences * sizeof(*user)))
2358 2359
		return ERR_PTR(-EFAULT);

2360
	fences = kvmalloc_array(nfences, sizeof(*fences),
2361
				__GFP_NOWARN | GFP_KERNEL);
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2374 2375 2376 2377 2378
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2379 2380 2381 2382 2383 2384 2385
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2386 2387 2388
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2424
		fence = drm_syncobj_fence_get(syncobj);
2425 2426 2427
		if (!fence)
			return -EINVAL;

2428
		err = i915_request_await_dma_fence(eb->request, fence);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2453
		drm_syncobj_replace_fence(syncobj, fence);
2454 2455 2456
	}
}

2457
static int
2458
i915_gem_do_execbuffer(struct drm_device *dev,
2459 2460
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2461 2462
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2463
{
2464
	struct drm_i915_private *i915 = to_i915(dev);
2465
	struct i915_execbuffer eb;
2466
	struct dma_fence *in_fence = NULL;
2467
	struct dma_fence *exec_fence = NULL;
2468 2469
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2470
	int err;
2471

2472
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2473 2474
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2475

2476
	eb.i915 = i915;
2477 2478
	eb.file = file;
	eb.args = args;
2479
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2480
		args->flags |= __EXEC_HAS_RELOC;
2481

2482
	eb.exec = exec;
2483 2484
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2485 2486
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2487
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2488 2489
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2490
	eb.buffer_count = args->buffer_count;
2491 2492 2493
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2494
	eb.batch_flags = 0;
2495
	if (args->flags & I915_EXEC_SECURE) {
2496 2497 2498 2499 2500 2501 2502
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2503
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2504
			return -EPERM;
2505

2506
		eb.batch_flags |= I915_DISPATCH_SECURE;
2507
	}
2508
	if (args->flags & I915_EXEC_IS_PINNED)
2509
		eb.batch_flags |= I915_DISPATCH_PINNED;
2510

2511 2512
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2513 2514
		if (!in_fence)
			return -EINVAL;
2515 2516
	}

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2530 2531 2532
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2533
			err = out_fence_fd;
2534
			goto err_exec_fence;
2535 2536 2537
		}
	}

2538 2539 2540 2541 2542
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2543

2544 2545 2546 2547
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2548
	err = eb_pin_engine(&eb, file, args);
2549
	if (unlikely(err))
2550
		goto err_context;
2551

2552 2553
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2554 2555
		goto err_engine;

2556
	err = eb_relocate(&eb);
2557
	if (err) {
2558 2559 2560 2561 2562 2563 2564 2565 2566
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2567
	}
2568

2569
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2570
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2571 2572
		err = -EINVAL;
		goto err_vma;
2573
	}
2574 2575
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2576
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2577 2578
		err = -EINVAL;
		goto err_vma;
2579
	}
2580

2581 2582 2583
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;

2584
	if (eb_use_cmdparser(&eb)) {
2585 2586
		struct i915_vma *vma;

2587
		vma = eb_parse(&eb);
2588
		if (IS_ERR(vma)) {
2589 2590
			err = PTR_ERR(vma);
			goto err_vma;
2591
		}
2592 2593
	}

2594 2595
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2596
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2597
	 * hsw should have this fixed, but bdw mucks it up again. */
2598
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2599
		struct i915_vma *vma;
2600

2601 2602 2603 2604 2605 2606
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2607
		 *   so we don't really have issues with multiple objects not
2608 2609 2610
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2611
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2612
		if (IS_ERR(vma)) {
2613 2614
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2615
		}
2616

2617
		eb.batch = vma;
2618
	}
2619

2620 2621 2622
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2623
	/* Allocate a request for this batch buffer nice and early. */
2624
	eb.request = i915_request_create(eb.context);
2625
	if (IS_ERR(eb.request)) {
2626
		err = PTR_ERR(eb.request);
2627
		goto err_batch_unpin;
2628
	}
2629

2630
	if (in_fence) {
2631
		err = i915_request_await_dma_fence(eb.request, in_fence);
2632
		if (err < 0)
2633 2634 2635
			goto err_request;
	}

2636 2637 2638 2639 2640 2641 2642
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2643 2644 2645 2646 2647 2648
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2649
	if (out_fence_fd != -1) {
2650
		out_fence = sync_file_create(&eb.request->fence);
2651
		if (!out_fence) {
2652
			err = -ENOMEM;
2653 2654 2655 2656
			goto err_request;
		}
	}

2657 2658
	/*
	 * Whilst this request exists, batch_obj will be on the
2659 2660 2661 2662 2663
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2664
	eb.request->batch = eb.batch;
2665 2666
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2667

2668
	trace_i915_request_queue(eb.request, eb.batch_flags);
2669
	err = eb_submit(&eb);
2670
err_request:
2671
	add_to_client(eb.request, file);
2672
	i915_request_add(eb.request);
2673

2674 2675 2676
	if (fences)
		signal_fence_array(&eb, fences);

2677
	if (out_fence) {
2678
		if (err == 0) {
2679
			fd_install(out_fence_fd, out_fence->file);
2680
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2681 2682 2683 2684 2685 2686
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2687

2688
err_batch_unpin:
2689
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2690
		i915_vma_unpin(eb.batch);
2691 2692
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2693 2694 2695
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2696
	mutex_unlock(&dev->struct_mutex);
2697 2698
err_engine:
	eb_unpin_engine(&eb);
2699
err_context:
2700
	i915_gem_context_put(eb.gem_context);
2701
err_destroy:
2702
	eb_destroy(&eb);
2703
err_out_fence:
2704 2705
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2706 2707
err_exec_fence:
	dma_fence_put(exec_fence);
2708
err_in_fence:
2709
	dma_fence_put(in_fence);
2710
	return err;
2711 2712
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2733 2734 2735 2736 2737
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2738 2739
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2740 2741 2742 2743 2744
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2745
	const size_t count = args->buffer_count;
2746 2747
	unsigned int i;
	int err;
2748

2749 2750
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2751 2752 2753
		return -EINVAL;
	}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2768
	/* Copy in the exec list from userland */
2769
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2770
				   __GFP_NOWARN | GFP_KERNEL);
2771
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2772
				    __GFP_NOWARN | GFP_KERNEL);
2773
	if (exec_list == NULL || exec2_list == NULL) {
2774
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2775
			  args->buffer_count);
M
Michal Hocko 已提交
2776 2777
		kvfree(exec_list);
		kvfree(exec2_list);
2778 2779
		return -ENOMEM;
	}
2780
	err = copy_from_user(exec_list,
2781
			     u64_to_user_ptr(args->buffers_ptr),
2782
			     sizeof(*exec_list) * count);
2783
	if (err) {
2784
		DRM_DEBUG("copy %d exec entries failed %d\n",
2785
			  args->buffer_count, err);
M
Michal Hocko 已提交
2786 2787
		kvfree(exec_list);
		kvfree(exec2_list);
2788 2789 2790 2791 2792 2793 2794 2795 2796
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2797
		if (INTEL_GEN(to_i915(dev)) < 4)
2798 2799 2800 2801 2802
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2803
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2804
	if (exec2.flags & __EXEC_HAS_RELOC) {
2805
		struct drm_i915_gem_exec_object __user *user_exec_list =
2806
			u64_to_user_ptr(args->buffers_ptr);
2807

2808
		/* Copy the new buffer offsets back to the user's exec list. */
2809
		for (i = 0; i < args->buffer_count; i++) {
2810 2811 2812
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2813
			exec2_list[i].offset =
2814 2815 2816 2817 2818
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2819
				break;
2820 2821 2822
		}
	}

M
Michal Hocko 已提交
2823 2824
	kvfree(exec_list);
	kvfree(exec2_list);
2825
	return err;
2826 2827 2828
}

int
2829 2830
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2831 2832
{
	struct drm_i915_gem_execbuffer2 *args = data;
2833
	struct drm_i915_gem_exec_object2 *exec2_list;
2834
	struct drm_syncobj **fences = NULL;
2835
	const size_t count = args->buffer_count;
2836
	int err;
2837

2838 2839
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2840 2841 2842
		return -EINVAL;
	}

2843 2844 2845 2846
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2847
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2848
				    __GFP_NOWARN | GFP_KERNEL);
2849
	if (exec2_list == NULL) {
2850 2851
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2852 2853
		return -ENOMEM;
	}
2854 2855
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2856 2857
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2858
		kvfree(exec2_list);
2859 2860 2861
		return -EFAULT;
	}

2862 2863 2864 2865 2866 2867 2868 2869 2870
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2871 2872 2873 2874 2875 2876 2877 2878

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2879
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2880 2881
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2882

2883
		/* Copy the new buffer offsets back to the user's exec list. */
2884 2885 2886 2887 2888 2889 2890 2891
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2892
			goto end;
2893

2894
		for (i = 0; i < args->buffer_count; i++) {
2895 2896 2897
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2898
			exec2_list[i].offset =
2899 2900 2901 2902
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2903
		}
2904 2905
end_user:
		user_access_end();
2906
end:;
2907 2908
	}

2909
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2910
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2911
	kvfree(exec2_list);
2912
	return err;
2913
}