i915_gem_execbuffer.c 74.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/reservation.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15
#include "gem/i915_gem_ioctls.h"
16
#include "gt/intel_context.h"
17 18
#include "gt/intel_gt_pm.h"

19
#include "i915_gem_ioctls.h"
20
#include "i915_gem_clflush.h"
21
#include "i915_gem_context.h"
22 23
#include "i915_trace.h"
#include "intel_drv.h"
24
#include "intel_frontbuffer.h"
25

26 27 28 29 30 31
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
32

33 34 35 36 37 38
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
39 40 41 42
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
43
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
44
#define UPDATE			PIN_OFFSET_FIXED
45 46

#define BATCH_OFFSET_BIAS (256*1024)
47

48
#define __I915_EXEC_ILLEGAL_FLAGS \
49 50 51
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
52

53 54 55 56 57 58 59 60 61
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

213
struct i915_execbuffer {
214 215 216 217
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
218 219
	struct i915_vma **vma;
	unsigned int *flags;
220 221

	struct intel_engine_cs *engine; /** engine to queue the request to */
222 223
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
224 225
	struct i915_address_space *vm; /** GTT and vma for the request */

226
	struct i915_request *request; /** our request to build */
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
243
	struct reloc_cache {
244 245 246
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
247
		unsigned int gen; /** Cached value of INTEL_GEN */
248
		bool use_64bit_reloc : 1;
249 250 251
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
252

253
		struct i915_request *rq;
254 255
		u32 *rq_cmd;
		unsigned int rq_size;
256
	} reloc_cache;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
272 273
};

274
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

295 296
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
297
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
298 299
}

300
static int eb_create(struct i915_execbuffer *eb)
301
{
302 303
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
304

305 306 307 308 309 310 311 312 313 314 315
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
316
		do {
317
			gfp_t flags;
318 319 320 321 322 323 324

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
325
			flags = GFP_KERNEL;
326 327 328
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

329
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
330
					      flags);
331 332 333 334
			if (eb->buckets)
				break;
		} while (--size);

335 336
		if (unlikely(!size))
			return -ENOMEM;
337

338
		eb->lut_size = size;
339
	} else {
340
		eb->lut_size = -eb->buffer_count;
341
	}
342

343
	return 0;
344 345
}

346 347
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
348 349
		 const struct i915_vma *vma,
		 unsigned int flags)
350 351 352 353 354 355 356
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

357
	if (flags & EXEC_OBJECT_PINNED &&
358 359 360
	    vma->node.start != entry->offset)
		return true;

361
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
362 363 364
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

365
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
366 367 368
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

369 370 371 372
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

373 374 375
	return false;
}

376
static inline bool
377
eb_pin_vma(struct i915_execbuffer *eb,
378
	   const struct drm_i915_gem_exec_object2 *entry,
379 380
	   struct i915_vma *vma)
{
381 382
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
383

384
	if (vma->node.size)
385
		pin_flags = vma->node.start;
386
	else
387
		pin_flags = entry->offset & PIN_OFFSET_MASK;
388

389 390 391
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
392

393 394
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
395

396
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
397
		if (unlikely(i915_vma_pin_fence(vma))) {
398
			i915_vma_unpin(vma);
399
			return false;
400 401
		}

402
		if (vma->fence)
403
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
404 405
	}

406 407
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
408 409
}

410
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
411
{
412
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
413

414
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
415
		__i915_vma_unpin_fence(vma);
416

417
	__i915_vma_unpin(vma);
418 419
}

420
static inline void
421
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
422
{
423
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
424
		return;
425

426 427
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
428 429
}

430 431 432 433
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
434
{
435 436
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
437

438 439 440 441 442 443 444 445
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
446
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
447 448 449 450 451 452 453 454
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
455 456
	}

457
	if (unlikely(vma->exec_flags)) {
458 459 460 461 462 463 464 465 466 467 468 469
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

470 471 472 473 474 475 476 477 478 479 480 481
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

482
	return 0;
483 484
}

485
static int
486 487 488
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
489
{
490
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
491 492 493 494 495 496 497 498
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
499 500
	}

501
	if (eb->lut_size > 0) {
502
		vma->exec_handle = entry->handle;
503
		hlist_add_head(&vma->exec_node,
504 505
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
506
	}
507

508 509 510 511 512 513 514 515 516
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
517
	eb->vma[i] = vma;
518
	eb->flags[i] = entry->flags;
519
	vma->exec_flags = &eb->flags[i];
520

521 522 523 524 525 526 527 528 529 530
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
531 532
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
533 534 535 536 537 538 539
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

540
	err = 0;
541
	if (eb_pin_vma(eb, entry, vma)) {
542 543 544 545
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
546 547 548 549 550 551
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
552 553
		if (unlikely(err))
			vma->exec_flags = NULL;
554 555 556 557 558 559 560 561 562 563
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

564 565 566 567 568
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
569 570 571 572 573 574 575 576 577

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
578 579 580
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
581 582
	int err;

583 584 585
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
586 587 588 589 590

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
591 592
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
593

594 595
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
596

597 598 599 600 601
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
602 603
	}

604 605 606
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
607 608 609 610 611 612 613 614
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

615
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
616
		err = i915_vma_pin_fence(vma);
617 618 619 620 621
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

622
		if (vma->fence)
623
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
624 625
	}

626 627
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
669 670
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
671

672 673
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
674 675
				continue;

676
			eb_unreserve_vma(vma, &eb->flags[i]);
677

678
			if (flags & EXEC_OBJECT_PINNED)
679
				/* Pinned must have their slot */
680
				list_add(&vma->exec_link, &eb->unbound);
681
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
682
				/* Map require the lowest 256MiB (aperture) */
683
				list_add_tail(&vma->exec_link, &eb->unbound);
684 685 686
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
707
}
708

709 710
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
711 712 713 714
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
715 716 717 718 719 720 721
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
722 723
	if (unlikely(!ctx))
		return -ENOENT;
724

725
	eb->gem_context = ctx;
726 727
	if (ctx->vm) {
		eb->vm = ctx->vm;
728 729 730 731
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
	} else {
		eb->vm = &eb->i915->ggtt.vm;
	}
732 733

	eb->context_flags = 0;
734
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 736 737 738 739
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring)
{
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &ring->request_list, ring_link) {
		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->ring_link == &ring->request_list)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int eb_wait_for_ring(const struct i915_execbuffer *eb)
{
	struct i915_request *rq;
	int ret = 0;

	/*
	 * Apply a light amount of backpressure to prevent excessive hogs
	 * from blocking waiting for space whilst holding struct_mutex and
	 * keeping all of their resources pinned.
	 */

780
	rq = __eb_wait_for_ring(eb->context->ring);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	if (rq) {
		mutex_unlock(&eb->i915->drm.struct_mutex);

		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0)
			ret = -EINTR;

		i915_request_put(rq);

		mutex_lock(&eb->i915->drm.struct_mutex);
	}

	return ret;
}

797
static int eb_lookup_vmas(struct i915_execbuffer *eb)
798
{
799
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
800
	struct drm_i915_gem_object *obj;
801
	unsigned int i, batch;
802
	int err;
803

804
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
805 806
		return -EIO;

807 808
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
809

810 811
	batch = eb_batch_index(eb);

812 813 814 815 816 817
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

818 819
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
820
		struct i915_lut_handle *lut;
821
		struct i915_vma *vma;
822

823 824
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
825
			goto add_vma;
826

827
		obj = i915_gem_object_lookup(eb->file, handle);
828
		if (unlikely(!obj)) {
829
			err = -ENOENT;
830
			goto err_vma;
831 832
		}

833
		vma = i915_vma_instance(obj, eb->vm, NULL);
834
		if (IS_ERR(vma)) {
835
			err = PTR_ERR(vma);
836
			goto err_obj;
837 838
		}

839
		lut = i915_lut_handle_alloc();
840 841 842 843 844 845 846
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
847
			i915_lut_handle_free(lut);
848
			goto err_obj;
849
		}
850

851 852
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
853
			i915_vma_reopen(vma);
854
		lut->handle = handle;
855 856 857 858 859
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
860

861
add_vma:
862
		err = eb_add_vma(eb, i, batch, vma);
863
		if (unlikely(err))
864
			goto err_vma;
865

866 867
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
868 869
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
870 871
	}

872 873
	mutex_unlock(&eb->gem_context->mutex);

874 875 876
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

877
err_obj:
878
	i915_gem_object_put(obj);
879 880
err_vma:
	eb->vma[i] = NULL;
881 882
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
883
	return err;
884 885
}

886
static struct i915_vma *
887
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
888
{
889 890
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
891
			return NULL;
892
		return eb->vma[handle];
893 894
	} else {
		struct hlist_head *head;
895
		struct i915_vma *vma;
896

897
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
898
		hlist_for_each_entry(vma, head, exec_node) {
899 900
			if (vma->exec_handle == handle)
				return vma;
901 902 903
		}
		return NULL;
	}
904 905
}

906
static void eb_release_vmas(const struct i915_execbuffer *eb)
907
{
908 909 910 911
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
912 913
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
914

915
		if (!vma)
916
			break;
917

918 919 920
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
921

922 923
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
924

925
		if (flags & __EXEC_OBJECT_HAS_REF)
926
			i915_vma_put(vma);
927
	}
928 929
}

930
static void eb_reset_vmas(const struct i915_execbuffer *eb)
931
{
932
	eb_release_vmas(eb);
933
	if (eb->lut_size > 0)
934 935
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
936 937
}

938
static void eb_destroy(const struct i915_execbuffer *eb)
939
{
940 941
	GEM_BUG_ON(eb->reloc_cache.rq);

942
	if (eb->lut_size > 0)
943
		kfree(eb->buckets);
944 945
}

946
static inline u64
947
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
948
		  const struct i915_vma *target)
949
{
950
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
951 952
}

953 954
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
955
{
956
	cache->page = -1;
957
	cache->vaddr = 0;
958
	/* Must be a variable in the struct to allow GCC to unroll. */
959
	cache->gen = INTEL_GEN(i915);
960
	cache->has_llc = HAS_LLC(i915);
961
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
962 963
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
964
	cache->node.allocated = false;
965 966
	cache->rq = NULL;
	cache->rq_size = 0;
967
}
968

969 970 971 972 973 974 975 976
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
977 978
}

979 980
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

981 982 983 984 985 986 987
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

988 989 990 991
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
992 993

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
994
	i915_gem_object_unpin_map(cache->rq->batch->obj);
995

996 997
	i915_gem_chipset_flush(cache->rq->i915);

998
	i915_request_add(cache->rq);
999 1000 1001
	cache->rq = NULL;
}

1002
static void reloc_cache_reset(struct reloc_cache *cache)
1003
{
1004
	void *vaddr;
1005

1006 1007 1008
	if (cache->rq)
		reloc_gpu_flush(cache);

1009 1010
	if (!cache->vaddr)
		return;
1011

1012 1013 1014 1015
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
1016

1017
		kunmap_atomic(vaddr);
1018
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1019
	} else {
1020
		wmb();
1021
		io_mapping_unmap_atomic((void __iomem *)vaddr);
1022
		if (cache->node.allocated) {
1023
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1024

1025 1026 1027
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
1028 1029 1030
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1031
		}
1032
	}
1033 1034 1035

	cache->vaddr = 0;
	cache->page = -1;
1036 1037 1038 1039
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1040
			unsigned long page)
1041
{
1042 1043 1044 1045 1046 1047
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
1048
		int err;
1049

1050
		err = i915_gem_object_prepare_write(obj, &flushes);
1051 1052
		if (err)
			return ERR_PTR(err);
1053 1054 1055

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1056

1057 1058 1059 1060
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1061 1062
	}

1063 1064
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1065
	cache->page = page;
1066

1067
	return vaddr;
1068 1069
}

1070 1071
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1072
			 unsigned long page)
1073
{
1074
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1075
	unsigned long offset;
1076
	void *vaddr;
1077

1078
	if (cache->vaddr) {
1079
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1080 1081
	} else {
		struct i915_vma *vma;
1082
		int err;
1083

1084
		if (use_cpu_reloc(cache, obj))
1085
			return NULL;
1086

1087
		i915_gem_object_lock(obj);
1088
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1089
		i915_gem_object_unlock(obj);
1090 1091
		if (err)
			return ERR_PTR(err);
1092

1093
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1094 1095 1096
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1097 1098
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1099
			err = drm_mm_insert_node_in_range
1100
				(&ggtt->vm.mm, &cache->node,
1101
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1102
				 0, ggtt->mappable_end,
1103
				 DRM_MM_INSERT_LOW);
1104
			if (err) /* no inactive aperture space, use cpu reloc */
1105
				return NULL;
1106
		} else {
1107 1108
			err = i915_vma_put_fence(vma);
			if (err) {
1109
				i915_vma_unpin(vma);
1110
				return ERR_PTR(err);
1111
			}
1112

1113 1114
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1115
		}
1116
	}
1117

1118 1119
	offset = cache->node.start;
	if (cache->node.allocated) {
1120
		wmb();
1121 1122 1123
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1124 1125
	} else {
		offset += page << PAGE_SHIFT;
1126 1127
	}

1128
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1129
							 offset);
1130 1131
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1132

1133
	return vaddr;
1134 1135
}

1136 1137
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1138
			 unsigned long page)
1139
{
1140
	void *vaddr;
1141

1142 1143 1144 1145 1146 1147 1148 1149
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1150 1151
	}

1152
	return vaddr;
1153 1154
}

1155
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1156
{
1157 1158 1159 1160 1161
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1162

1163
		*addr = value;
1164

1165 1166
		/*
		 * Writes to the same cacheline are serialised by the CPU
1167 1168 1169 1170 1171 1172 1173 1174 1175
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1176 1177
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1198 1199 1200 1201 1202 1203
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1204
	struct i915_request *rq;
1205 1206 1207 1208 1209 1210 1211 1212 1213
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1214 1215 1216
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1231
	rq = i915_request_create(eb->context);
1232 1233 1234 1235 1236
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1237
	err = reloc_move_to_gpu(rq, vma);
1238 1239 1240 1241 1242 1243 1244
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1245
		goto skip_request;
1246

1247
	i915_vma_lock(batch);
1248
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1249
	err = i915_vma_move_to_active(batch, rq, 0);
1250
	i915_vma_unlock(batch);
1251 1252
	if (err)
		goto skip_request;
1253 1254

	rq->batch = batch;
1255
	i915_vma_unpin(batch);
1256 1257 1258 1259 1260 1261 1262 1263

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

1264 1265
skip_request:
	i915_request_skip(rq, err);
1266
err_request:
1267
	i915_request_add(rq);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1288 1289 1290 1291
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1292 1293 1294
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1306 1307
static u64
relocate_entry(struct i915_vma *vma,
1308
	       const struct drm_i915_gem_relocation_entry *reloc,
1309 1310
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1311
{
1312
	u64 offset = reloc->offset;
1313 1314
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1315
	void *vaddr;
1316

1317 1318
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1319
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1320 1321 1322 1323 1324 1325 1326 1327 1328
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1329
		else
1330
			len = 3;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1376
repeat:
1377
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1378 1379 1380 1381 1382
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1383
			eb->reloc_cache.vaddr);
1384 1385 1386 1387 1388 1389

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1390 1391
	}

1392
out:
1393
	return target->node.start | UPDATE;
1394 1395
}

1396 1397 1398 1399
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1400
{
1401
	struct i915_vma *target;
1402
	int err;
1403

1404
	/* we've already hold a reference to all valid objects */
1405 1406
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1407
		return -ENOENT;
1408

1409
	/* Validate that the target is in a valid r/w GPU domain */
1410
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1411
		DRM_DEBUG("reloc with multiple write domains: "
1412
			  "target %d offset %d "
1413
			  "read %08x write %08x",
1414
			  reloc->target_handle,
1415 1416 1417
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1418
		return -EINVAL;
1419
	}
1420 1421
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1422
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1423
			  "target %d offset %d "
1424
			  "read %08x write %08x",
1425
			  reloc->target_handle,
1426 1427 1428
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1429
		return -EINVAL;
1430 1431
	}

1432
	if (reloc->write_domain) {
1433
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1434

1435 1436 1437 1438 1439 1440 1441
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1442
		    IS_GEN(eb->i915, 6)) {
1443 1444 1445 1446 1447 1448
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1449
	}
1450

1451 1452
	/*
	 * If the relocation already has the right value in it, no
1453 1454
	 * more work needs to be done.
	 */
1455 1456
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1457
		return 0;
1458 1459

	/* Check that the relocation address is valid... */
1460
	if (unlikely(reloc->offset >
1461
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1462
		DRM_DEBUG("Relocation beyond object bounds: "
1463 1464 1465 1466
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1467
		return -EINVAL;
1468
	}
1469
	if (unlikely(reloc->offset & 3)) {
1470
		DRM_DEBUG("Relocation not 4-byte aligned: "
1471 1472 1473
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1474
		return -EINVAL;
1475 1476
	}

1477 1478 1479 1480 1481 1482
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1483
	 * out of our synchronisation.
1484
	 */
1485
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1486

1487
	/* and update the user's relocation entry */
1488
	return relocate_entry(vma, reloc, eb, target);
1489 1490
}

1491
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1492
{
1493
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1494 1495
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1496
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1497
	unsigned int remain;
1498

1499
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1500
	remain = entry->relocation_count;
1501 1502
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1503

1504 1505 1506 1507 1508
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1509
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1510 1511 1512 1513 1514 1515 1516
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1517

1518 1519
		/*
		 * This is the fast path and we cannot handle a pagefault
1520 1521 1522 1523 1524 1525 1526
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1527
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1528
		pagefault_enable();
1529 1530
		if (unlikely(copied)) {
			remain = -EFAULT;
1531 1532
			goto out;
		}
1533

1534
		remain -= count;
1535
		do {
1536
			u64 offset = eb_relocate_entry(eb, vma, r);
1537

1538 1539 1540
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1541
				goto out;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1565 1566 1567 1568
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1569
			}
1570 1571 1572
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1573
out:
1574
	reloc_cache_reset(&eb->reloc_cache);
1575
	return remain;
1576 1577 1578
}

static int
1579
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1580
{
1581
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1582 1583 1584 1585
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1586 1587

	for (i = 0; i < entry->relocation_count; i++) {
1588
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1589

1590 1591 1592 1593
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1594
	}
1595 1596 1597 1598
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1599 1600
}

1601
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1602
{
1603 1604 1605
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1606

1607 1608 1609
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1610

1611 1612
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1613

1614 1615
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1616
	if (!access_ok(addr, size))
1617
		return -EFAULT;
1618

1619 1620 1621 1622 1623
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1624
	}
1625
	return __get_user(c, end - 1);
1626
}
1627

1628
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1629
{
1630 1631 1632
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1633

1634 1635 1636 1637 1638 1639
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1640

1641 1642
		if (nreloc == 0)
			continue;
1643

1644 1645 1646
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1647

1648 1649
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1650

1651
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1652 1653 1654 1655
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1656

1657 1658 1659 1660 1661 1662 1663
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1664
					     (char __user *)urelocs + copied,
1665
					     len)) {
1666
end_user:
1667
				user_access_end();
1668
end:
1669 1670 1671 1672
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1673

1674 1675
			copied += len;
		} while (copied < size);
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1687
		if (!user_access_begin(urelocs, size))
1688
			goto end;
1689

1690 1691 1692 1693 1694
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1695

1696 1697
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1698

1699
	return 0;
1700

1701 1702 1703 1704 1705 1706 1707 1708
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1709 1710
}

1711
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1712
{
1713 1714
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1715

1716
	if (unlikely(i915_modparams.prefault_disable))
1717
		return 0;
1718

1719 1720
	for (i = 0; i < count; i++) {
		int err;
1721

1722 1723 1724 1725
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1726

1727
	return 0;
1728 1729
}

1730
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1731
{
1732
	struct drm_device *dev = &eb->i915->drm;
1733
	bool have_copy = false;
1734
	struct i915_vma *vma;
1735 1736 1737 1738 1739 1740 1741
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1742

1743
	/* We may process another execbuffer during the unlock... */
1744
	eb_reset_vmas(eb);
1745 1746
	mutex_unlock(&dev->struct_mutex);

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1768
	}
1769 1770 1771
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1772 1773
	}

1774 1775 1776
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1777 1778
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1779
		mutex_lock(&dev->struct_mutex);
1780
		goto out;
1781 1782
	}

1783
	/* reacquire the objects */
1784 1785
	err = eb_lookup_vmas(eb);
	if (err)
1786
		goto err;
1787

1788 1789
	GEM_BUG_ON(!eb->batch);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1802 1803
	}

1804 1805
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1806 1807 1808 1809 1810 1811
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1833
	return err;
1834 1835
}

1836
static int eb_relocate(struct i915_execbuffer *eb)
1837
{
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1860
	struct ww_acquire_ctx acquire;
1861
	unsigned int i;
1862 1863 1864
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1865

1866
	for (i = 0; i < count; i++) {
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1898 1899
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1900
		struct drm_i915_gem_object *obj = vma->obj;
1901

1902 1903
		assert_vma_held(vma);

1904
		if (flags & EXEC_OBJECT_CAPTURE) {
1905
			struct i915_capture_list *capture;
1906 1907

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1908 1909 1910 1911 1912
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1913 1914
		}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1928
			if (i915_gem_clflush_object(obj, 0))
1929
				flags &= ~EXEC_OBJECT_ASYNC;
1930 1931
		}

1932 1933 1934 1935
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1936

1937 1938
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1939

1940
		i915_vma_unlock(vma);
1941

1942 1943 1944 1945
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1946
			i915_vma_put(vma);
1947
	}
1948 1949 1950 1951 1952
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1953
	eb->exec = NULL;
1954

1955
	/* Unconditionally flush any chipset caches (for streaming writes). */
1956
	i915_gem_chipset_flush(eb->i915);
1957
	return 0;
1958 1959 1960 1961

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1962 1963
}

1964
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1965
{
1966
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1967 1968
		return false;

C
Chris Wilson 已提交
1969
	/* Kernel clipping was a DRI1 misfeature */
1970 1971 1972 1973
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1986 1987
}

1988
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1989
{
1990 1991
	u32 *cs;
	int i;
1992

1993
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1994 1995 1996
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1997

1998
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1999 2000
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2001

2002
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2003
	for (i = 0; i < 4; i++) {
2004 2005
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2006
	}
2007
	*cs++ = MI_NOOP;
2008
	intel_ring_advance(rq, cs);
2009 2010 2011 2012

	return 0;
}

2013
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
2014 2015
{
	struct drm_i915_gem_object *shadow_batch_obj;
2016
	struct i915_vma *vma;
2017
	int err;
2018

2019 2020
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
2021
	if (IS_ERR(shadow_batch_obj))
2022
		return ERR_CAST(shadow_batch_obj);
2023

2024
	err = intel_engine_cmd_parser(eb->engine,
2025
				      eb->batch->obj,
2026
				      shadow_batch_obj,
2027 2028
				      eb->batch_start_offset,
				      eb->batch_len,
2029
				      is_master);
2030 2031
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2032 2033
			vma = NULL;
		else
2034
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
2035 2036
		goto out;
	}
2037

C
Chris Wilson 已提交
2038 2039 2040
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
2041

2042 2043 2044 2045 2046
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2047

C
Chris Wilson 已提交
2048
out:
C
Chris Wilson 已提交
2049
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
2050
	return vma;
2051
}
2052

2053
static void
2054
add_to_client(struct i915_request *rq, struct drm_file *file)
2055
{
2056 2057
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
2058 2059
}

2060
static int eb_submit(struct i915_execbuffer *eb)
2061
{
2062
	int err;
2063

2064 2065 2066
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2067

2068
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2069 2070 2071
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2072 2073
	}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2086
	err = eb->engine->emit_bb_start(eb->request,
2087 2088 2089
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2090 2091 2092
					eb->batch_flags);
	if (err)
		return err;
2093

C
Chris Wilson 已提交
2094
	return 0;
2095 2096
}

2097
/*
2098
 * Find one BSD ring to dispatch the corresponding BSD command.
2099
 * The engine index is returned.
2100
 */
2101
static unsigned int
2102 2103
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2104 2105 2106
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2107
	/* Check whether the file_priv has already selected one ring. */
2108 2109 2110
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2111

2112
	return file_priv->bsd_engine;
2113 2114
}

2115
static const enum intel_engine_id user_ring_map[] = {
2116 2117 2118 2119 2120
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2121 2122
};

2123
static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2124
{
2125
	int err;
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = i915_terminally_wedged(eb->i915);
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2140 2141 2142
	err = intel_context_pin(ce);
	if (err)
		return err;
2143

2144
	eb->engine = ce->engine;
2145 2146 2147 2148 2149 2150 2151 2152
	eb->context = ce;
	return 0;
}

static void eb_unpin_context(struct i915_execbuffer *eb)
{
	intel_context_unpin(eb->context);
}
2153

2154 2155 2156 2157
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2158
{
2159
	struct drm_i915_private *i915 = eb->i915;
2160 2161
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2162 2163
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2164 2165
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2166
		return -1;
2167 2168
	}

2169
	if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) {
2170 2171 2172
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2173
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2174 2175
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2176
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2177 2178 2179 2180
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2181
			return -1;
2182 2183
		}

2184
		return _VCS(bsd_idx);
2185 2186
	}

2187 2188 2189
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2190 2191
	}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	return user_ring_map[user_ring_id];
}

static int
eb_select_engine(struct i915_execbuffer *eb,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2204 2205 2206 2207
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2208 2209 2210 2211 2212 2213 2214 2215 2216

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	err = eb_pin_context(eb, ce);
	intel_context_put(ce);

	return err;
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2231
	const unsigned long nfences = args->num_cliprects;
2232 2233
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2234
	unsigned long n;
2235 2236 2237 2238 2239
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2240 2241 2242 2243 2244
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2245 2246 2247
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2248
	if (!access_ok(user, nfences * sizeof(*user)))
2249 2250
		return ERR_PTR(-EFAULT);

2251
	fences = kvmalloc_array(nfences, sizeof(*fences),
2252
				__GFP_NOWARN | GFP_KERNEL);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2265 2266 2267 2268 2269
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2270 2271 2272 2273 2274 2275 2276
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2277 2278 2279
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2315
		fence = drm_syncobj_fence_get(syncobj);
2316 2317 2318
		if (!fence)
			return -EINVAL;

2319
		err = i915_request_await_dma_fence(eb->request, fence);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2344
		drm_syncobj_replace_fence(syncobj, fence);
2345 2346 2347
	}
}

2348
static int
2349
i915_gem_do_execbuffer(struct drm_device *dev,
2350 2351
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2352 2353
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2354
{
2355
	struct i915_execbuffer eb;
2356
	struct dma_fence *in_fence = NULL;
2357
	struct dma_fence *exec_fence = NULL;
2358 2359
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2360
	int err;
2361

2362
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2363 2364
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2365

2366 2367 2368
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2369
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2370
		args->flags |= __EXEC_HAS_RELOC;
2371

2372
	eb.exec = exec;
2373 2374
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2375 2376
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2377
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2378 2379
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2380
	eb.buffer_count = args->buffer_count;
2381 2382 2383
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2384
	eb.batch_flags = 0;
2385
	if (args->flags & I915_EXEC_SECURE) {
2386
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2387 2388
		    return -EPERM;

2389
		eb.batch_flags |= I915_DISPATCH_SECURE;
2390
	}
2391
	if (args->flags & I915_EXEC_IS_PINNED)
2392
		eb.batch_flags |= I915_DISPATCH_PINNED;
2393

2394 2395
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2396 2397
		if (!in_fence)
			return -EINVAL;
2398 2399
	}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2413 2414 2415
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2416
			err = out_fence_fd;
2417
			goto err_exec_fence;
2418 2419 2420
		}
	}

2421 2422 2423 2424 2425
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2426

2427 2428 2429 2430
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2431 2432
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2433 2434 2435 2436 2437
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2438
	intel_gt_pm_get(eb.i915);
2439

2440 2441 2442
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2443

2444
	err = eb_select_engine(&eb, file, args);
2445 2446 2447
	if (unlikely(err))
		goto err_unlock;

2448 2449 2450 2451
	err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */
	if (unlikely(err))
		goto err_engine;

2452
	err = eb_relocate(&eb);
2453
	if (err) {
2454 2455 2456 2457 2458 2459 2460 2461 2462
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2463
	}
2464

2465
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2466
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2467 2468
		err = -EINVAL;
		goto err_vma;
2469
	}
2470 2471
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2472
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2473 2474
		err = -EINVAL;
		goto err_vma;
2475
	}
2476

2477
	if (eb_use_cmdparser(&eb)) {
2478 2479
		struct i915_vma *vma;

2480
		vma = eb_parse(&eb, drm_is_current_master(file));
2481
		if (IS_ERR(vma)) {
2482 2483
			err = PTR_ERR(vma);
			goto err_vma;
2484
		}
2485

2486
		if (vma) {
2487 2488 2489 2490 2491 2492 2493 2494 2495
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2496
			eb.batch_flags |= I915_DISPATCH_SECURE;
2497 2498
			eb.batch_start_offset = 0;
			eb.batch = vma;
2499
		}
2500 2501
	}

2502 2503
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2504

2505 2506
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2507
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2508
	 * hsw should have this fixed, but bdw mucks it up again. */
2509
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2510
		struct i915_vma *vma;
2511

2512 2513 2514 2515 2516 2517
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2518
		 *   so we don't really have issues with multiple objects not
2519 2520 2521
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2522
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2523
		if (IS_ERR(vma)) {
2524 2525
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2526
		}
2527

2528
		eb.batch = vma;
2529
	}
2530

2531 2532 2533
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2534
	/* Allocate a request for this batch buffer nice and early. */
2535
	eb.request = i915_request_create(eb.context);
2536
	if (IS_ERR(eb.request)) {
2537
		err = PTR_ERR(eb.request);
2538
		goto err_batch_unpin;
2539
	}
2540

2541
	if (in_fence) {
2542
		err = i915_request_await_dma_fence(eb.request, in_fence);
2543
		if (err < 0)
2544 2545 2546
			goto err_request;
	}

2547 2548 2549 2550 2551 2552 2553
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2554 2555 2556 2557 2558 2559
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2560
	if (out_fence_fd != -1) {
2561
		out_fence = sync_file_create(&eb.request->fence);
2562
		if (!out_fence) {
2563
			err = -ENOMEM;
2564 2565 2566 2567
			goto err_request;
		}
	}

2568 2569
	/*
	 * Whilst this request exists, batch_obj will be on the
2570 2571 2572 2573 2574
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2575
	eb.request->batch = eb.batch;
2576

2577
	trace_i915_request_queue(eb.request, eb.batch_flags);
2578
	err = eb_submit(&eb);
2579
err_request:
2580
	add_to_client(eb.request, file);
2581
	i915_request_add(eb.request);
2582

2583 2584 2585
	if (fences)
		signal_fence_array(&eb, fences);

2586
	if (out_fence) {
2587
		if (err == 0) {
2588
			fd_install(out_fence_fd, out_fence->file);
2589
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2590 2591 2592 2593 2594 2595
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2596

2597
err_batch_unpin:
2598
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2599
		i915_vma_unpin(eb.batch);
2600 2601 2602
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2603 2604
err_engine:
	eb_unpin_context(&eb);
2605
err_unlock:
2606
	mutex_unlock(&dev->struct_mutex);
2607
err_rpm:
2608 2609
	intel_gt_pm_put(eb.i915);
	i915_gem_context_put(eb.gem_context);
2610
err_destroy:
2611
	eb_destroy(&eb);
2612
err_out_fence:
2613 2614
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2615 2616
err_exec_fence:
	dma_fence_put(exec_fence);
2617
err_in_fence:
2618
	dma_fence_put(in_fence);
2619
	return err;
2620 2621
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2642 2643 2644 2645 2646
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2647 2648
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2649 2650 2651 2652 2653
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2654
	const size_t count = args->buffer_count;
2655 2656
	unsigned int i;
	int err;
2657

2658 2659
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2660 2661 2662
		return -EINVAL;
	}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2677
	/* Copy in the exec list from userland */
2678
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2679
				   __GFP_NOWARN | GFP_KERNEL);
2680
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2681
				    __GFP_NOWARN | GFP_KERNEL);
2682
	if (exec_list == NULL || exec2_list == NULL) {
2683
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2684
			  args->buffer_count);
M
Michal Hocko 已提交
2685 2686
		kvfree(exec_list);
		kvfree(exec2_list);
2687 2688
		return -ENOMEM;
	}
2689
	err = copy_from_user(exec_list,
2690
			     u64_to_user_ptr(args->buffers_ptr),
2691
			     sizeof(*exec_list) * count);
2692
	if (err) {
2693
		DRM_DEBUG("copy %d exec entries failed %d\n",
2694
			  args->buffer_count, err);
M
Michal Hocko 已提交
2695 2696
		kvfree(exec_list);
		kvfree(exec2_list);
2697 2698 2699 2700 2701 2702 2703 2704 2705
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2706
		if (INTEL_GEN(to_i915(dev)) < 4)
2707 2708 2709 2710 2711
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2712
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2713
	if (exec2.flags & __EXEC_HAS_RELOC) {
2714
		struct drm_i915_gem_exec_object __user *user_exec_list =
2715
			u64_to_user_ptr(args->buffers_ptr);
2716

2717
		/* Copy the new buffer offsets back to the user's exec list. */
2718
		for (i = 0; i < args->buffer_count; i++) {
2719 2720 2721
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2722
			exec2_list[i].offset =
2723 2724 2725 2726 2727
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2728
				break;
2729 2730 2731
		}
	}

M
Michal Hocko 已提交
2732 2733
	kvfree(exec_list);
	kvfree(exec2_list);
2734
	return err;
2735 2736 2737
}

int
2738 2739
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2740 2741
{
	struct drm_i915_gem_execbuffer2 *args = data;
2742
	struct drm_i915_gem_exec_object2 *exec2_list;
2743
	struct drm_syncobj **fences = NULL;
2744
	const size_t count = args->buffer_count;
2745
	int err;
2746

2747 2748
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2749 2750 2751
		return -EINVAL;
	}

2752 2753 2754 2755
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2756
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2757
				    __GFP_NOWARN | GFP_KERNEL);
2758
	if (exec2_list == NULL) {
2759 2760
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2761 2762
		return -ENOMEM;
	}
2763 2764
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2765 2766
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2767
		kvfree(exec2_list);
2768 2769 2770
		return -EFAULT;
	}

2771 2772 2773 2774 2775 2776 2777 2778 2779
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2780 2781 2782 2783 2784 2785 2786 2787

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2788
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2789 2790
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2791

2792
		/* Copy the new buffer offsets back to the user's exec list. */
2793 2794 2795 2796 2797 2798 2799 2800
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2801
			goto end;
2802

2803
		for (i = 0; i < args->buffer_count; i++) {
2804 2805 2806
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2807
			exec2_list[i].offset =
2808 2809 2810 2811
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2812
		}
2813 2814
end_user:
		user_access_end();
2815
end:;
2816 2817
	}

2818
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2819
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2820
	kvfree(exec2_list);
2821
	return err;
2822
}