i915_gem_execbuffer.c 75.7 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13
#include <drm/i915_drm.h>
14

15 16
#include "display/intel_frontbuffer.h"

17
#include "gem/i915_gem_ioctls.h"
18
#include "gt/intel_context.h"
19
#include "gt/intel_engine_pool.h"
20
#include "gt/intel_gt.h"
21 22
#include "gt/intel_gt_pm.h"

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27 28
#include "i915_trace.h"

29 30 31 32 33 34
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
35

36 37 38 39 40 41
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 43 44 45
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
46
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47
#define UPDATE			PIN_OFFSET_FIXED
48 49

#define BATCH_OFFSET_BIAS (256*1024)
50

51
#define __I915_EXEC_ILLEGAL_FLAGS \
52 53 54
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
55

56 57 58 59 60 61 62 63 64
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

216
struct i915_execbuffer {
217 218 219 220
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 222
	struct i915_vma **vma;
	unsigned int *flags;
223 224

	struct intel_engine_cs *engine; /** engine to queue the request to */
225 226
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
227

228
	struct i915_request *request; /** our request to build */
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
245
	struct reloc_cache {
246 247 248
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
249
		unsigned int gen; /** Cached value of INTEL_GEN */
250
		bool use_64bit_reloc : 1;
251 252 253
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
254

255
		struct intel_context *ce;
256
		struct i915_request *rq;
257 258
		u32 *rq_cmd;
		unsigned int rq_size;
259
	} reloc_cache;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
275 276
};

277
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

298 299
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
300
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
301 302
}

303
static int eb_create(struct i915_execbuffer *eb)
304
{
305 306
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
307

308 309 310 311 312 313 314 315 316 317 318
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
319
		do {
320
			gfp_t flags;
321 322 323 324 325 326 327

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
328
			flags = GFP_KERNEL;
329 330 331
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

332
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
333
					      flags);
334 335 336 337
			if (eb->buckets)
				break;
		} while (--size);

338 339
		if (unlikely(!size))
			return -ENOMEM;
340

341
		eb->lut_size = size;
342
	} else {
343
		eb->lut_size = -eb->buffer_count;
344
	}
345

346
	return 0;
347 348
}

349 350
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
351 352
		 const struct i915_vma *vma,
		 unsigned int flags)
353 354 355 356 357 358 359
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

360
	if (flags & EXEC_OBJECT_PINNED &&
361 362 363
	    vma->node.start != entry->offset)
		return true;

364
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
365 366 367
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

368
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
369 370 371
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

372 373 374 375
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

376 377 378
	return false;
}

379
static inline bool
380
eb_pin_vma(struct i915_execbuffer *eb,
381
	   const struct drm_i915_gem_exec_object2 *entry,
382 383
	   struct i915_vma *vma)
{
384 385
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
386

387
	if (vma->node.size)
388
		pin_flags = vma->node.start;
389
	else
390
		pin_flags = entry->offset & PIN_OFFSET_MASK;
391

392 393 394
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
395

396 397
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
398

399
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
400
		if (unlikely(i915_vma_pin_fence(vma))) {
401
			i915_vma_unpin(vma);
402
			return false;
403 404
		}

405
		if (vma->fence)
406
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
407 408
	}

409 410
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
411 412
}

413
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
414
{
415
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
416

417
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
418
		__i915_vma_unpin_fence(vma);
419

420
	__i915_vma_unpin(vma);
421 422
}

423
static inline void
424
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
425
{
426
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
427
		return;
428

429 430
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
431 432
}

433 434 435 436
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
437
{
438 439
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
440

441 442 443 444 445 446 447 448
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
449
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
450 451 452 453 454 455 456 457
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
458 459
	}

460
	if (unlikely(vma->exec_flags)) {
461 462 463 464 465 466 467 468 469 470 471 472
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

473 474 475 476 477 478 479 480 481 482 483 484
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

485
	return 0;
486 487
}

488
static int
489 490 491
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
492
{
493
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
494 495 496 497 498 499 500 501
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
502 503
	}

504
	if (eb->lut_size > 0) {
505
		vma->exec_handle = entry->handle;
506
		hlist_add_head(&vma->exec_node,
507 508
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
509
	}
510

511 512 513 514 515 516 517 518 519
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
520
	eb->vma[i] = vma;
521
	eb->flags[i] = entry->flags;
522
	vma->exec_flags = &eb->flags[i];
523

524 525 526 527 528 529 530 531 532 533
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
534 535
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
536 537 538 539 540 541 542
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

543
	err = 0;
544
	if (eb_pin_vma(eb, entry, vma)) {
545 546 547 548
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
549 550 551 552 553 554
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
555 556
		if (unlikely(err))
			vma->exec_flags = NULL;
557 558 559 560 561 562 563 564 565 566
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

567 568 569 570 571
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
572 573 574 575 576 577 578 579 580

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
581 582 583
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
584 585
	int err;

586 587 588
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
589 590 591 592 593

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
594 595
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
596

597 598
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
599

600 601 602 603 604
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
605 606
	}

607 608 609
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
610 611 612 613 614 615 616 617
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

618
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
619
		err = i915_vma_pin_fence(vma);
620 621 622 623 624
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

625
		if (vma->fence)
626
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
627 628
	}

629 630
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
672 673
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
674

675 676
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
677 678
				continue;

679
			eb_unreserve_vma(vma, &eb->flags[i]);
680

681
			if (flags & EXEC_OBJECT_PINNED)
682
				/* Pinned must have their slot */
683
				list_add(&vma->exec_link, &eb->unbound);
684
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
685
				/* Map require the lowest 256MiB (aperture) */
686
				list_add_tail(&vma->exec_link, &eb->unbound);
687 688 689
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
				list_add(&vma->exec_link, &last);
690 691 692 693 694 695 696 697 698 699 700
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
701
			mutex_lock(&eb->context->vm->mutex);
702
			err = i915_gem_evict_vm(eb->context->vm);
703
			mutex_unlock(&eb->context->vm->mutex);
704 705 706 707 708 709 710 711
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
712
}
713

714 715
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
716 717 718 719
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
720 721 722 723 724 725 726
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
727 728
	if (unlikely(!ctx))
		return -ENOENT;
729

730
	eb->gem_context = ctx;
731
	if (ctx->vm)
732
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
733 734

	eb->context_flags = 0;
735
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736 737 738 739 740 741
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
742
{
743
	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
744
	struct drm_i915_gem_object *obj;
745
	unsigned int i, batch;
746
	int err;
747

748
	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
749 750
		return -EIO;

751 752
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
753

754 755
	batch = eb_batch_index(eb);

756 757 758 759 760 761
	mutex_lock(&eb->gem_context->mutex);
	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
		err = -ENOENT;
		goto err_ctx;
	}

762 763
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
764
		struct i915_lut_handle *lut;
765
		struct i915_vma *vma;
766

767 768
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
769
			goto add_vma;
770

771
		obj = i915_gem_object_lookup(eb->file, handle);
772
		if (unlikely(!obj)) {
773
			err = -ENOENT;
774
			goto err_vma;
775 776
		}

777
		vma = i915_vma_instance(obj, eb->context->vm, NULL);
778
		if (IS_ERR(vma)) {
779
			err = PTR_ERR(vma);
780
			goto err_obj;
781 782
		}

783
		lut = i915_lut_handle_alloc();
784 785 786 787 788 789 790
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
791
			i915_lut_handle_free(lut);
792
			goto err_obj;
793
		}
794

795 796
		/* transfer ref to lut */
		if (!atomic_fetch_inc(&vma->open_count))
797
			i915_vma_reopen(vma);
798
		lut->handle = handle;
799 800 801 802 803
		lut->ctx = eb->gem_context;

		i915_gem_object_lock(obj);
		list_add(&lut->obj_link, &obj->lut_list);
		i915_gem_object_unlock(obj);
804

805
add_vma:
806
		err = eb_add_vma(eb, i, batch, vma);
807
		if (unlikely(err))
808
			goto err_vma;
809

810 811
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
812 813
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
814 815
	}

816 817
	mutex_unlock(&eb->gem_context->mutex);

818 819 820
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

821
err_obj:
822
	i915_gem_object_put(obj);
823 824
err_vma:
	eb->vma[i] = NULL;
825 826
err_ctx:
	mutex_unlock(&eb->gem_context->mutex);
827
	return err;
828 829
}

830
static struct i915_vma *
831
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
832
{
833 834
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
835
			return NULL;
836
		return eb->vma[handle];
837 838
	} else {
		struct hlist_head *head;
839
		struct i915_vma *vma;
840

841
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
842
		hlist_for_each_entry(vma, head, exec_node) {
843 844
			if (vma->exec_handle == handle)
				return vma;
845 846 847
		}
		return NULL;
	}
848 849
}

850
static void eb_release_vmas(const struct i915_execbuffer *eb)
851
{
852 853 854 855
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
856 857
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
858

859
		if (!vma)
860
			break;
861

862 863 864
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
865

866 867
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
868

869
		if (flags & __EXEC_OBJECT_HAS_REF)
870
			i915_vma_put(vma);
871
	}
872 873
}

874
static void eb_reset_vmas(const struct i915_execbuffer *eb)
875
{
876
	eb_release_vmas(eb);
877
	if (eb->lut_size > 0)
878 879
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
880 881
}

882
static void eb_destroy(const struct i915_execbuffer *eb)
883
{
884 885
	GEM_BUG_ON(eb->reloc_cache.rq);

886 887 888
	if (eb->reloc_cache.ce)
		intel_context_put(eb->reloc_cache.ce);

889
	if (eb->lut_size > 0)
890
		kfree(eb->buckets);
891 892
}

893
static inline u64
894
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
895
		  const struct i915_vma *target)
896
{
897
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
898 899
}

900 901
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
902
{
903
	cache->page = -1;
904
	cache->vaddr = 0;
905
	/* Must be a variable in the struct to allow GCC to unroll. */
906
	cache->gen = INTEL_GEN(i915);
907
	cache->has_llc = HAS_LLC(i915);
908
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
909 910
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
911
	cache->node.allocated = false;
912
	cache->ce = NULL;
913 914
	cache->rq = NULL;
	cache->rq_size = 0;
915
}
916

917 918 919 920 921 922 923 924
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
925 926
}

927 928
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

929 930 931 932 933 934 935
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

936 937 938 939
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
940 941

	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
942
	i915_gem_object_unpin_map(cache->rq->batch->obj);
943

944
	intel_gt_chipset_flush(cache->rq->engine->gt);
945

946
	i915_request_add(cache->rq);
947 948 949
	cache->rq = NULL;
}

950
static void reloc_cache_reset(struct reloc_cache *cache)
951
{
952
	void *vaddr;
953

954 955 956
	if (cache->rq)
		reloc_gpu_flush(cache);

957 958
	if (!cache->vaddr)
		return;
959

960 961 962 963
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
964

965
		kunmap_atomic(vaddr);
966
		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
967
	} else {
968 969 970
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
971
		io_mapping_unmap_atomic((void __iomem *)vaddr);
972

973
		if (drm_mm_node_allocated(&cache->node)) {
974 975 976
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
977
			mutex_lock(&ggtt->vm.mutex);
978
			drm_mm_remove_node(&cache->node);
979
			mutex_unlock(&ggtt->vm.mutex);
980 981
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
982
		}
983
	}
984 985 986

	cache->vaddr = 0;
	cache->page = -1;
987 988 989 990
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
991
			unsigned long page)
992
{
993 994 995 996 997 998
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
999
		int err;
1000

1001
		err = i915_gem_object_prepare_write(obj, &flushes);
1002 1003
		if (err)
			return ERR_PTR(err);
1004 1005 1006

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1007

1008 1009 1010 1011
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
1012 1013
	}

1014 1015
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1016
	cache->page = page;
1017

1018
	return vaddr;
1019 1020
}

1021 1022
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1023
			 unsigned long page)
1024
{
1025
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1026
	unsigned long offset;
1027
	void *vaddr;
1028

1029
	if (cache->vaddr) {
1030
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1031
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1032 1033
	} else {
		struct i915_vma *vma;
1034
		int err;
1035

1036 1037 1038
		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

1039
		if (use_cpu_reloc(cache, obj))
1040
			return NULL;
1041

1042
		i915_gem_object_lock(obj);
1043
		err = i915_gem_object_set_to_gtt_domain(obj, true);
1044
		i915_gem_object_unlock(obj);
1045 1046
		if (err)
			return ERR_PTR(err);
1047

1048
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1049
					       PIN_MAPPABLE |
1050 1051
					       PIN_NONBLOCK /* NOWARN */ |
					       PIN_NOEVICT);
1052 1053
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1054
			mutex_lock(&ggtt->vm.mutex);
1055
			err = drm_mm_insert_node_in_range
1056
				(&ggtt->vm.mm, &cache->node,
1057
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1058
				 0, ggtt->mappable_end,
1059
				 DRM_MM_INSERT_LOW);
1060
			mutex_unlock(&ggtt->vm.mutex);
1061
			if (err) /* no inactive aperture space, use cpu reloc */
1062
				return NULL;
1063 1064 1065
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1066
		}
1067
	}
1068

1069
	offset = cache->node.start;
1070
	if (drm_mm_node_allocated(&cache->node)) {
1071 1072 1073
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1074 1075
	} else {
		offset += page << PAGE_SHIFT;
1076 1077
	}

1078
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1079
							 offset);
1080 1081
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1082

1083
	return vaddr;
1084 1085
}

1086 1087
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1088
			 unsigned long page)
1089
{
1090
	void *vaddr;
1091

1092 1093 1094 1095 1096 1097 1098 1099
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1100 1101
	}

1102
	return vaddr;
1103 1104
}

1105
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1106
{
1107 1108 1109 1110 1111
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1112

1113
		*addr = value;
1114

1115 1116
		/*
		 * Writes to the same cacheline are serialised by the CPU
1117 1118 1119 1120 1121 1122 1123 1124 1125
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1148 1149 1150 1151 1152
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1153
	struct intel_engine_pool_node *pool;
1154
	struct i915_request *rq;
1155 1156 1157 1158
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1159
	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1160 1161
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1162

1163
	cmd = i915_gem_object_pin_map(pool->obj,
1164 1165 1166
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1167 1168 1169 1170
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1171

1172
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1173 1174 1175 1176 1177 1178 1179 1180 1181
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1182
	rq = intel_context_create_request(cache->ce);
1183 1184 1185 1186 1187
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1188 1189 1190 1191
	err = intel_engine_pool_mark_active(pool, rq);
	if (err)
		goto err_request;

1192
	err = reloc_move_to_gpu(rq, vma);
1193 1194 1195 1196 1197 1198 1199
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
1200
		goto skip_request;
1201

1202
	i915_vma_lock(batch);
1203 1204 1205
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1206
	i915_vma_unlock(batch);
1207 1208
	if (err)
		goto skip_request;
1209 1210

	rq->batch = batch;
1211
	i915_vma_unpin(batch);
1212 1213 1214 1215 1216 1217

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
1218
	goto out_pool;
1219

1220 1221
skip_request:
	i915_request_skip(rq, err);
1222
err_request:
1223
	i915_request_add(rq);
1224 1225 1226
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1227 1228 1229
	i915_gem_object_unpin_map(pool->obj);
out_pool:
	intel_engine_pool_put(pool);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1246 1247 1248 1249
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1250 1251 1252
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		if (!cache->ce) {
			struct intel_context *ce;

			/*
			 * The CS pre-parser can pre-fetch commands across
			 * memory sync points and starting gen12 it is able to
			 * pre-fetch across BB_START and BB_END boundaries
			 * (within the same context). We therefore use a
			 * separate context gen12+ to guarantee that the reloc
			 * writes land before the parser gets to the target
			 * memory location.
			 */
			if (cache->gen >= 12)
				ce = intel_context_create(eb->context->gem_context,
							  eb->engine);
			else
				ce = intel_context_get(eb->context);
			if (IS_ERR(ce))
				return ERR_CAST(ce);

			cache->ce = ce;
		}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1287 1288
static u64
relocate_entry(struct i915_vma *vma,
1289
	       const struct drm_i915_gem_relocation_entry *reloc,
1290 1291
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1292
{
1293
	u64 offset = reloc->offset;
1294 1295
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1296
	void *vaddr;
1297

1298 1299
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1300
	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1301 1302 1303 1304 1305 1306 1307 1308 1309
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1310
		else
1311
			len = 3;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1357
repeat:
1358
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1359 1360 1361 1362 1363
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1364
			eb->reloc_cache.vaddr);
1365 1366 1367 1368 1369 1370

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1371 1372
	}

1373
out:
1374
	return target->node.start | UPDATE;
1375 1376
}

1377 1378 1379 1380
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1381
{
1382
	struct i915_vma *target;
1383
	int err;
1384

1385
	/* we've already hold a reference to all valid objects */
1386 1387
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1388
		return -ENOENT;
1389

1390
	/* Validate that the target is in a valid r/w GPU domain */
1391
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1392
		DRM_DEBUG("reloc with multiple write domains: "
1393
			  "target %d offset %d "
1394
			  "read %08x write %08x",
1395
			  reloc->target_handle,
1396 1397 1398
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1399
		return -EINVAL;
1400
	}
1401 1402
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1403
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1404
			  "target %d offset %d "
1405
			  "read %08x write %08x",
1406
			  reloc->target_handle,
1407 1408 1409
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1410
		return -EINVAL;
1411 1412
	}

1413
	if (reloc->write_domain) {
1414
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1415

1416 1417 1418 1419 1420 1421 1422
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1423
		    IS_GEN(eb->i915, 6)) {
1424
			err = i915_vma_bind(target, target->obj->cache_level,
1425
					    PIN_GLOBAL, NULL);
1426 1427 1428 1429
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1430
	}
1431

1432 1433
	/*
	 * If the relocation already has the right value in it, no
1434 1435
	 * more work needs to be done.
	 */
1436 1437
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1438
		return 0;
1439 1440

	/* Check that the relocation address is valid... */
1441
	if (unlikely(reloc->offset >
1442
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1443
		DRM_DEBUG("Relocation beyond object bounds: "
1444 1445 1446 1447
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1448
		return -EINVAL;
1449
	}
1450
	if (unlikely(reloc->offset & 3)) {
1451
		DRM_DEBUG("Relocation not 4-byte aligned: "
1452 1453 1454
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1455
		return -EINVAL;
1456 1457
	}

1458 1459 1460 1461 1462 1463
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1464
	 * out of our synchronisation.
1465
	 */
1466
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1467

1468
	/* and update the user's relocation entry */
1469
	return relocate_entry(vma, reloc, eb, target);
1470 1471
}

1472
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1473
{
1474
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1475 1476
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1477
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1478
	unsigned int remain;
1479

1480
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1481
	remain = entry->relocation_count;
1482 1483
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1484

1485 1486 1487 1488 1489
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1490
	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1491 1492 1493 1494 1495 1496 1497
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1498

1499 1500
		/*
		 * This is the fast path and we cannot handle a pagefault
1501 1502 1503 1504 1505 1506 1507
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1508
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1509
		pagefault_enable();
1510 1511
		if (unlikely(copied)) {
			remain = -EFAULT;
1512 1513
			goto out;
		}
1514

1515
		remain -= count;
1516
		do {
1517
			u64 offset = eb_relocate_entry(eb, vma, r);
1518

1519 1520 1521
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1522
				goto out;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1546 1547 1548 1549
				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
					remain = -EFAULT;
					goto out;
				}
1550
			}
1551 1552 1553
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1554
out:
1555
	reloc_cache_reset(&eb->reloc_cache);
1556
	return remain;
1557 1558 1559
}

static int
1560
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1561
{
1562
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1563 1564 1565 1566
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1567 1568

	for (i = 0; i < entry->relocation_count; i++) {
1569
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1570

1571 1572 1573 1574
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1575
	}
1576 1577 1578 1579
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1580 1581
}

1582
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1583
{
1584 1585 1586
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1587

1588 1589 1590
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1591

1592 1593
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1594

1595 1596
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
1597
	if (!access_ok(addr, size))
1598
		return -EFAULT;
1599

1600 1601 1602 1603 1604
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1605
	}
1606
	return __get_user(c, end - 1);
1607
}
1608

1609
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1610
{
1611 1612 1613
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1614

1615 1616 1617 1618 1619 1620
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1621

1622 1623
		if (nreloc == 0)
			continue;
1624

1625 1626 1627
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1628

1629 1630
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1631

1632
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1633 1634 1635 1636
		if (!relocs) {
			err = -ENOMEM;
			goto err;
		}
1637

1638 1639 1640 1641 1642 1643 1644
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1645
					     (char __user *)urelocs + copied,
1646
					     len)) {
1647
end_user:
1648
				user_access_end();
1649
end:
1650 1651 1652 1653
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1654

1655 1656
			copied += len;
		} while (copied < size);
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
1668
		if (!user_access_begin(urelocs, size))
1669
			goto end;
1670

1671 1672 1673 1674 1675
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();
1676

1677 1678
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1679

1680
	return 0;
1681

1682 1683 1684 1685 1686 1687 1688 1689
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1690 1691
}

1692
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1693
{
1694 1695
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1696

1697
	if (unlikely(i915_modparams.prefault_disable))
1698
		return 0;
1699

1700 1701
	for (i = 0; i < count; i++) {
		int err;
1702

1703 1704 1705 1706
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1707

1708
	return 0;
1709 1710
}

1711
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1712
{
1713
	struct drm_device *dev = &eb->i915->drm;
1714
	bool have_copy = false;
1715
	struct i915_vma *vma;
1716 1717 1718 1719 1720 1721 1722
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1723

1724
	/* We may process another execbuffer during the unlock... */
1725
	eb_reset_vmas(eb);
1726 1727
	mutex_unlock(&dev->struct_mutex);

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1749
	}
1750 1751 1752
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1753 1754
	}

1755 1756 1757
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1758 1759
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1760
		mutex_lock(&dev->struct_mutex);
1761
		goto out;
1762 1763
	}

1764
	/* reacquire the objects */
1765 1766
	err = eb_lookup_vmas(eb);
	if (err)
1767
		goto err;
1768

1769 1770
	GEM_BUG_ON(!eb->batch);

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1783 1784
	}

1785 1786
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1787 1788 1789 1790 1791 1792
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1814
	return err;
1815 1816
}

1817
static int eb_relocate(struct i915_execbuffer *eb)
1818
{
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1841
	struct ww_acquire_ctx acquire;
1842
	unsigned int i;
1843 1844 1845
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1846

1847
	for (i = 0; i < count; i++) {
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		struct i915_vma *vma = eb->vma[i];

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (!err)
			continue;

		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */

		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

				ww_mutex_unlock(&eb->vma[j]->resv->lock);

				swap(eb->flags[i], eb->flags[j]);
				swap(eb->vma[i],  eb->vma[j]);
				eb->vma[i]->exec_flags = &eb->flags[i];
			} while (--i);
			GEM_BUG_ON(vma != eb->vma[0]);
			vma->exec_flags = &eb->flags[0];

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1879 1880
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1881
		struct drm_i915_gem_object *obj = vma->obj;
1882

1883 1884
		assert_vma_held(vma);

1885
		if (flags & EXEC_OBJECT_CAPTURE) {
1886
			struct i915_capture_list *capture;
1887 1888

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1889 1890 1891 1892 1893
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1894 1895
		}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1909
			if (i915_gem_clflush_object(obj, 0))
1910
				flags &= ~EXEC_OBJECT_ASYNC;
1911 1912
		}

1913 1914 1915 1916
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1917

1918 1919
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1920

1921
		i915_vma_unlock(vma);
1922

1923 1924 1925 1926
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1927
			i915_vma_put(vma);
1928
	}
1929 1930 1931 1932 1933
	ww_acquire_fini(&acquire);

	if (unlikely(err))
		goto err_skip;

1934
	eb->exec = NULL;
1935

1936
	/* Unconditionally flush any chipset caches (for streaming writes). */
1937
	intel_gt_chipset_flush(eb->engine->gt);
1938
	return 0;
1939 1940 1941 1942

err_skip:
	i915_request_skip(eb->request, err);
	return err;
1943 1944
}

1945
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1946
{
1947
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1948 1949
		return false;

C
Chris Wilson 已提交
1950
	/* Kernel clipping was a DRI1 misfeature */
1951 1952 1953 1954
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1967 1968
}

1969
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1970
{
1971 1972
	u32 *cs;
	int i;
1973

1974
	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1975 1976 1977
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1978

1979
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1980 1981
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1982

1983
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1984
	for (i = 0; i < 4; i++) {
1985 1986
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1987
	}
1988
	*cs++ = MI_NOOP;
1989
	intel_ring_advance(rq, cs);
1990 1991 1992 1993

	return 0;
}

1994
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1995
{
1996
	struct intel_engine_pool_node *pool;
1997
	struct i915_vma *vma;
1998
	int err;
1999

2000
	pool = intel_engine_get_pool(eb->engine, eb->batch_len);
2001 2002
	if (IS_ERR(pool))
		return ERR_CAST(pool);
2003

2004
	err = intel_engine_cmd_parser(eb->engine,
2005
				      eb->batch->obj,
2006
				      pool->obj,
2007 2008
				      eb->batch_start_offset,
				      eb->batch_len,
2009
				      is_master);
2010 2011
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
2012 2013
			vma = NULL;
		else
2014
			vma = ERR_PTR(err);
2015
		goto err;
C
Chris Wilson 已提交
2016
	}
2017

2018
	vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2019
	if (IS_ERR(vma))
2020
		goto err;
C
Chris Wilson 已提交
2021

2022 2023 2024 2025 2026
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
2027

2028 2029 2030 2031 2032
	vma->private = pool;
	return vma;

err:
	intel_engine_pool_put(pool);
C
Chris Wilson 已提交
2033
	return vma;
2034
}
2035

2036
static void
2037
add_to_client(struct i915_request *rq, struct drm_file *file)
2038
{
2039 2040 2041 2042 2043 2044 2045
	struct drm_i915_file_private *file_priv = file->driver_priv;

	rq->file_priv = file_priv;

	spin_lock(&file_priv->mm.lock);
	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);
2046 2047
}

2048
static int eb_submit(struct i915_execbuffer *eb)
2049
{
2050
	int err;
2051

2052 2053 2054
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2055

2056
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2057 2058 2059
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2060 2061
	}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2074
	err = eb->engine->emit_bb_start(eb->request,
2075 2076 2077
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2078 2079 2080
					eb->batch_flags);
	if (err)
		return err;
2081

C
Chris Wilson 已提交
2082
	return 0;
2083 2084
}

2085 2086 2087 2088 2089 2090
static int num_vcs_engines(const struct drm_i915_private *i915)
{
	return hweight64(INTEL_INFO(i915)->engine_mask &
			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
}

2091
/*
2092
 * Find one BSD ring to dispatch the corresponding BSD command.
2093
 * The engine index is returned.
2094
 */
2095
static unsigned int
2096 2097
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2098 2099 2100
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2101
	/* Check whether the file_priv has already selected one ring. */
2102
	if ((int)file_priv->bsd_engine < 0)
2103 2104
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2105

2106
	return file_priv->bsd_engine;
2107 2108
}

2109
static const enum intel_engine_id user_ring_map[] = {
2110 2111 2112 2113 2114
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2115 2116
};

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2157 2158 2159 2160
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2161
	err = intel_gt_terminally_wedged(ce->engine->gt);
2162 2163 2164 2165 2166 2167 2168 2169
	if (err)
		return err;

	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2170
	err = intel_context_pin(ce);
2171 2172
	if (err)
		return err;
2173

2174 2175 2176 2177 2178 2179 2180 2181
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2182 2183 2184
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2185
		goto err_unpin;
2186
	}
2187 2188

	intel_context_enter(ce);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
		if (i915_request_wait(rq,
				      I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			err = -EINTR;
			goto err_exit;
		}

		i915_request_put(rq);
	}
2204

2205
	eb->engine = ce->engine;
2206 2207
	eb->context = ce;
	return 0;
2208

2209 2210 2211 2212
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2213
err_unpin:
2214
	intel_context_unpin(ce);
2215
	return err;
2216 2217
}

2218
static void eb_unpin_engine(struct i915_execbuffer *eb)
2219
{
2220
	struct intel_context *ce = eb->context;
2221
	struct intel_timeline *tl = ce->timeline;
2222 2223 2224 2225 2226

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2227
	intel_context_unpin(ce);
2228
}
2229

2230 2231 2232 2233
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2234
{
2235
	struct drm_i915_private *i915 = eb->i915;
2236 2237
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2238 2239
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2240 2241
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2242
		return -1;
2243 2244
	}

2245
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2246 2247 2248
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2249
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2250 2251
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2252
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2253 2254 2255 2256
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2257
			return -1;
2258 2259
		}

2260
		return _VCS(bsd_idx);
2261 2262
	}

2263 2264 2265
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
		return -1;
2266 2267
	}

2268 2269 2270 2271
	return user_ring_map[user_ring_id];
}

static int
2272 2273 2274
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2275 2276 2277 2278 2279
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2280 2281 2282 2283
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2284 2285 2286 2287 2288

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2289
	err = __eb_pin_engine(eb, ce);
2290 2291 2292
	intel_context_put(ce);

	return err;
2293 2294
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2307
	const unsigned long nfences = args->num_cliprects;
2308 2309
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2310
	unsigned long n;
2311 2312 2313 2314 2315
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2316 2317 2318 2319 2320
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2321 2322 2323
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2324
	if (!access_ok(user, nfences * sizeof(*user)))
2325 2326
		return ERR_PTR(-EFAULT);

2327
	fences = kvmalloc_array(nfences, sizeof(*fences),
2328
				__GFP_NOWARN | GFP_KERNEL);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2341 2342 2343 2344 2345
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2346 2347 2348 2349 2350 2351 2352
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2353 2354 2355
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2391
		fence = drm_syncobj_fence_get(syncobj);
2392 2393 2394
		if (!fence)
			return -EINVAL;

2395
		err = i915_request_await_dma_fence(eb->request, fence);
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2420
		drm_syncobj_replace_fence(syncobj, fence);
2421 2422 2423
	}
}

2424
static int
2425
i915_gem_do_execbuffer(struct drm_device *dev,
2426 2427
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2428 2429
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2430
{
2431
	struct i915_execbuffer eb;
2432
	struct dma_fence *in_fence = NULL;
2433
	struct dma_fence *exec_fence = NULL;
2434 2435
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2436
	int err;
2437

2438
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2439 2440
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2441

2442 2443 2444
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2445
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2446
		args->flags |= __EXEC_HAS_RELOC;
2447

2448
	eb.exec = exec;
2449 2450
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2451 2452
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2453
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2454 2455
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2456
	eb.buffer_count = args->buffer_count;
2457 2458 2459
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2460
	eb.batch_flags = 0;
2461
	if (args->flags & I915_EXEC_SECURE) {
2462
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2463 2464
		    return -EPERM;

2465
		eb.batch_flags |= I915_DISPATCH_SECURE;
2466
	}
2467
	if (args->flags & I915_EXEC_IS_PINNED)
2468
		eb.batch_flags |= I915_DISPATCH_PINNED;
2469

2470 2471
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2472 2473
		if (!in_fence)
			return -EINVAL;
2474 2475
	}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
		if (in_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}

		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
		if (!exec_fence) {
			err = -EINVAL;
			goto err_in_fence;
		}
	}

2489 2490 2491
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2492
			err = out_fence_fd;
2493
			goto err_exec_fence;
2494 2495 2496
		}
	}

2497 2498 2499 2500 2501
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2502

2503 2504 2505 2506
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2507
	err = eb_pin_engine(&eb, file, args);
2508
	if (unlikely(err))
2509
		goto err_context;
2510

2511 2512
	err = i915_mutex_lock_interruptible(dev);
	if (err)
2513 2514
		goto err_engine;

2515
	err = eb_relocate(&eb);
2516
	if (err) {
2517 2518 2519 2520 2521 2522 2523 2524 2525
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2526
	}
2527

2528
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2529
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2530 2531
		err = -EINVAL;
		goto err_vma;
2532
	}
2533 2534
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2535
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2536 2537
		err = -EINVAL;
		goto err_vma;
2538
	}
2539

2540
	if (eb_use_cmdparser(&eb)) {
2541 2542
		struct i915_vma *vma;

2543
		vma = eb_parse(&eb, drm_is_current_master(file));
2544
		if (IS_ERR(vma)) {
2545 2546
			err = PTR_ERR(vma);
			goto err_vma;
2547
		}
2548

2549
		if (vma) {
2550 2551 2552 2553 2554 2555 2556 2557 2558
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2559
			eb.batch_flags |= I915_DISPATCH_SECURE;
2560 2561
			eb.batch_start_offset = 0;
			eb.batch = vma;
2562
		}
2563 2564
	}

2565 2566
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2567

2568 2569
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2570
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2571
	 * hsw should have this fixed, but bdw mucks it up again. */
2572
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2573
		struct i915_vma *vma;
2574

2575 2576 2577 2578 2579 2580
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2581
		 *   so we don't really have issues with multiple objects not
2582 2583 2584
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2585
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2586
		if (IS_ERR(vma)) {
2587 2588
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2589
		}
2590

2591
		eb.batch = vma;
2592
	}
2593

2594 2595 2596
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2597
	/* Allocate a request for this batch buffer nice and early. */
2598
	eb.request = i915_request_create(eb.context);
2599
	if (IS_ERR(eb.request)) {
2600
		err = PTR_ERR(eb.request);
2601
		goto err_batch_unpin;
2602
	}
2603

2604
	if (in_fence) {
2605
		err = i915_request_await_dma_fence(eb.request, in_fence);
2606
		if (err < 0)
2607 2608 2609
			goto err_request;
	}

2610 2611 2612 2613 2614 2615 2616
	if (exec_fence) {
		err = i915_request_await_execution(eb.request, exec_fence,
						   eb.engine->bond_execute);
		if (err < 0)
			goto err_request;
	}

2617 2618 2619 2620 2621 2622
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2623
	if (out_fence_fd != -1) {
2624
		out_fence = sync_file_create(&eb.request->fence);
2625
		if (!out_fence) {
2626
			err = -ENOMEM;
2627 2628 2629 2630
			goto err_request;
		}
	}

2631 2632
	/*
	 * Whilst this request exists, batch_obj will be on the
2633 2634 2635 2636 2637
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2638
	eb.request->batch = eb.batch;
2639 2640
	if (eb.batch->private)
		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2641

2642
	trace_i915_request_queue(eb.request, eb.batch_flags);
2643
	err = eb_submit(&eb);
2644
err_request:
2645
	add_to_client(eb.request, file);
2646
	i915_request_add(eb.request);
2647

2648 2649 2650
	if (fences)
		signal_fence_array(&eb, fences);

2651
	if (out_fence) {
2652
		if (err == 0) {
2653
			fd_install(out_fence_fd, out_fence->file);
2654
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2655 2656 2657 2658 2659 2660
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2661

2662
err_batch_unpin:
2663
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2664
		i915_vma_unpin(eb.batch);
2665 2666
	if (eb.batch->private)
		intel_engine_pool_put(eb.batch->private);
2667 2668 2669
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2670
	mutex_unlock(&dev->struct_mutex);
2671 2672
err_engine:
	eb_unpin_engine(&eb);
2673
err_context:
2674
	i915_gem_context_put(eb.gem_context);
2675
err_destroy:
2676
	eb_destroy(&eb);
2677
err_out_fence:
2678 2679
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2680 2681
err_exec_fence:
	dma_fence_put(exec_fence);
2682
err_in_fence:
2683
	dma_fence_put(in_fence);
2684
	return err;
2685 2686
}

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2707 2708 2709 2710 2711
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2712 2713
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2714 2715 2716 2717 2718
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2719
	const size_t count = args->buffer_count;
2720 2721
	unsigned int i;
	int err;
2722

2723 2724
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2725 2726 2727
		return -EINVAL;
	}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2742
	/* Copy in the exec list from userland */
2743
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2744
				   __GFP_NOWARN | GFP_KERNEL);
2745
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2746
				    __GFP_NOWARN | GFP_KERNEL);
2747
	if (exec_list == NULL || exec2_list == NULL) {
2748
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2749
			  args->buffer_count);
M
Michal Hocko 已提交
2750 2751
		kvfree(exec_list);
		kvfree(exec2_list);
2752 2753
		return -ENOMEM;
	}
2754
	err = copy_from_user(exec_list,
2755
			     u64_to_user_ptr(args->buffers_ptr),
2756
			     sizeof(*exec_list) * count);
2757
	if (err) {
2758
		DRM_DEBUG("copy %d exec entries failed %d\n",
2759
			  args->buffer_count, err);
M
Michal Hocko 已提交
2760 2761
		kvfree(exec_list);
		kvfree(exec2_list);
2762 2763 2764 2765 2766 2767 2768 2769 2770
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2771
		if (INTEL_GEN(to_i915(dev)) < 4)
2772 2773 2774 2775 2776
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2777
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2778
	if (exec2.flags & __EXEC_HAS_RELOC) {
2779
		struct drm_i915_gem_exec_object __user *user_exec_list =
2780
			u64_to_user_ptr(args->buffers_ptr);
2781

2782
		/* Copy the new buffer offsets back to the user's exec list. */
2783
		for (i = 0; i < args->buffer_count; i++) {
2784 2785 2786
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2787
			exec2_list[i].offset =
2788 2789 2790 2791 2792
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2793
				break;
2794 2795 2796
		}
	}

M
Michal Hocko 已提交
2797 2798
	kvfree(exec_list);
	kvfree(exec2_list);
2799
	return err;
2800 2801 2802
}

int
2803 2804
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2805 2806
{
	struct drm_i915_gem_execbuffer2 *args = data;
2807
	struct drm_i915_gem_exec_object2 *exec2_list;
2808
	struct drm_syncobj **fences = NULL;
2809
	const size_t count = args->buffer_count;
2810
	int err;
2811

2812 2813
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2814 2815 2816
		return -EINVAL;
	}

2817 2818 2819 2820
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2821
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2822
				    __GFP_NOWARN | GFP_KERNEL);
2823
	if (exec2_list == NULL) {
2824 2825
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2826 2827
		return -ENOMEM;
	}
2828 2829
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2830 2831
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2832
		kvfree(exec2_list);
2833 2834 2835
		return -EFAULT;
	}

2836 2837 2838 2839 2840 2841 2842 2843 2844
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2845 2846 2847 2848 2849 2850 2851 2852

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2853
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2854 2855
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2856

2857
		/* Copy the new buffer offsets back to the user's exec list. */
2858 2859 2860 2861 2862 2863 2864 2865
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2866
			goto end;
2867

2868
		for (i = 0; i < args->buffer_count; i++) {
2869 2870 2871
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2872
			exec2_list[i].offset =
2873 2874 2875 2876
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2877
		}
2878 2879
end_user:
		user_access_end();
2880
end:;
2881 2882
	}

2883
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2884
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2885
	kvfree(exec2_list);
2886
	return err;
2887
}