i915_gem_execbuffer.c 91.0 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48 49 50
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};

51 52 53 54 55
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 58

#define __EXEC_HAS_RELOC	BIT(31)
59 60
#define __EXEC_ENGINE_PINNED	BIT(30)
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
61
#define UPDATE			PIN_OFFSET_FIXED
62 63

#define BATCH_OFFSET_BIAS (256*1024)
64

65
#define __I915_EXEC_ILLEGAL_FLAGS \
66 67 68
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
69

70 71 72 73 74 75 76 77 78
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

230 231 232 233 234 235 236
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

237
struct i915_execbuffer {
238 239 240 241
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
242
	struct eb_vma *vma;
243 244

	struct intel_engine_cs *engine; /** engine to queue the request to */
245 246
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
247

248
	struct i915_request *request; /** our request to build */
249
	struct eb_vma *batch; /** identity of the batch obj/vma */
250
	struct i915_vma *trampoline; /** trampoline used for chaining */
251 252 253 254 255 256 257 258 259 260

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

261 262
	struct i915_gem_ww_ctx ww;

263 264 265 266 267
	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
268
	struct reloc_cache {
269
		struct drm_mm_node node; /** temporary GTT binding */
270 271
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
272
		unsigned int gen; /** Cached value of INTEL_GEN */
273
		bool use_64bit_reloc : 1;
274 275 276
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
277

278
		struct i915_request *rq;
279 280
		u32 *rq_cmd;
		unsigned int rq_size;
281
		struct intel_gt_buffer_pool_node *pool;
282
	} reloc_cache;
283

284
	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
285
	struct intel_context *reloc_context;
286

287 288 289
	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

290
	u64 batch_len; /** Length of batch within object */
291 292
	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_flags; /** Flags composed for emit_bb_start() */
293
	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
294 295 296 297 298 299 300 301

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
302

303 304
	struct eb_fence *fences;
	unsigned long num_fences;
305 306
};

307
static int eb_parse(struct i915_execbuffer *eb);
308 309 310
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
					  bool throttle);
static void eb_unpin_engine(struct i915_execbuffer *eb);
311

312 313
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
314
	return intel_engine_requires_cmd_parser(eb->engine) ||
315 316
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
317 318
}

319
static int eb_create(struct i915_execbuffer *eb)
320
{
321 322
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
323

324 325 326 327 328 329 330 331 332 333 334
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
335
		do {
336
			gfp_t flags;
337 338 339 340 341 342 343

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
344
			flags = GFP_KERNEL;
345 346 347
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

348
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
349
					      flags);
350 351 352 353
			if (eb->buckets)
				break;
		} while (--size);

354
		if (unlikely(!size))
355
			return -ENOMEM;
356

357
		eb->lut_size = size;
358
	} else {
359
		eb->lut_size = -eb->buffer_count;
360
	}
361

362
	return 0;
363 364
}

365 366
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
367 368
		 const struct i915_vma *vma,
		 unsigned int flags)
369 370 371 372 373 374 375
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

376
	if (flags & EXEC_OBJECT_PINNED &&
377 378 379
	    vma->node.start != entry->offset)
		return true;

380
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
381 382 383
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

384
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
385
	    (vma->node.start + vma->node.size + 4095) >> 32)
386 387
		return true;

388 389 390 391
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

392 393 394
	return false;
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

421
static inline bool
422
eb_pin_vma(struct i915_execbuffer *eb,
423
	   const struct drm_i915_gem_exec_object2 *entry,
424
	   struct eb_vma *ev)
425
{
426
	struct i915_vma *vma = ev->vma;
427
	u64 pin_flags;
428

429
	if (vma->node.size)
430
		pin_flags = vma->node.start;
431
	else
432
		pin_flags = entry->offset & PIN_OFFSET_MASK;
433

434
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
435
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
436
		pin_flags |= PIN_GLOBAL;
437

438
	/* Attempt to reuse the current location if available */
439 440
	/* TODO: Add -EDEADLK handling here */
	if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
441 442 443 444
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
445 446 447 448 449
		if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
					     entry->pad_to_size,
					     entry->alignment,
					     eb_pin_flags(entry, ev->flags) |
					     PIN_USER | PIN_NOEVICT)))
450 451
			return false;
	}
452

453
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
454
		if (unlikely(i915_vma_pin_fence(vma))) {
455
			i915_vma_unpin(vma);
456
			return false;
457 458
		}

459
		if (vma->fence)
460
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
461 462
	}

463 464
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
465 466
}

467 468 469 470 471 472
static inline void
eb_unreserve_vma(struct eb_vma *ev)
{
	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
		return;

473 474 475 476
	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(ev->vma);

	__i915_vma_unpin(ev->vma);
477 478 479
	ev->flags &= ~__EXEC_OBJECT_RESERVED;
}

480 481 482 483
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
484
{
485 486
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
487

488 489
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
490 491 492 493 494 495 496
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
497
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
498 499 500 501 502 503 504 505
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
506
	}
507 508 509 510 511 512 513
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

514 515 516 517 518 519 520 521 522 523 524 525
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

526
	return 0;
527 528
}

529
static void
530 531 532
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
533
{
534
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
535
	struct eb_vma *ev = &eb->vma[i];
536

537
	ev->vma = vma;
538 539 540
	ev->exec = entry;
	ev->flags = entry->flags;

541
	if (eb->lut_size > 0) {
542 543
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
544 545
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
546
	}
547

548
	if (entry->relocation_count)
549
		list_add_tail(&ev->reloc_link, &eb->relocs);
550

551 552 553 554 555 556 557 558 559 560
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
561
		if (entry->relocation_count &&
562 563
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
564
		if (eb->reloc_cache.has_fence)
565
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
566

567
		eb->batch = ev;
568
	}
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

588
static int eb_reserve_vma(struct i915_execbuffer *eb,
589
			  struct eb_vma *ev,
590
			  u64 pin_flags)
591
{
592 593
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
594 595
	int err;

596 597 598 599 600 601 602
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

603
	err = i915_vma_pin_ww(vma, &eb->ww,
604
			   entry->pad_to_size, entry->alignment,
605
			   eb_pin_flags(entry, ev->flags) | pin_flags);
606 607 608 609 610 611 612 613
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

614
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
615
		err = i915_vma_pin_fence(vma);
616 617 618 619 620
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

621
		if (vma->fence)
622
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
623 624
	}

625
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
626
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
627

628 629 630 631 632 633
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
634
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
635
	struct list_head last;
636
	struct eb_vma *ev;
637
	unsigned int i, pass;
638
	int err = 0;
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */
	pass = 0;
	do {
655 656
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
657 658 659
			if (err)
				break;
		}
660
		if (err != -ENOSPC)
661
			return err;
662 663 664 665 666

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
667
			unsigned int flags;
668

669 670
			ev = &eb->vma[i];
			flags = ev->flags;
671 672
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
673 674
				continue;

675
			eb_unreserve_vma(ev);
676

677
			if (flags & EXEC_OBJECT_PINNED)
678
				/* Pinned must have their slot */
679
				list_add(&ev->bind_link, &eb->unbound);
680
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
681
				/* Map require the lowest 256MiB (aperture) */
682
				list_add_tail(&ev->bind_link, &eb->unbound);
683 684
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
685
				list_add(&ev->bind_link, &last);
686
			else
687
				list_add_tail(&ev->bind_link, &last);
688 689 690 691 692 693 694 695 696
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
697
			mutex_lock(&eb->context->vm->mutex);
698
			err = i915_gem_evict_vm(eb->context->vm);
699
			mutex_unlock(&eb->context->vm->mutex);
700
			if (err)
701
				return err;
702 703 704
			break;

		default:
705
			return -ENOSPC;
706
		}
707 708

		pin_flags = PIN_USER;
709
	} while (1);
710
}
711

712 713
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
714 715 716 717
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
718 719 720 721 722 723 724
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
725 726
	if (unlikely(!ctx))
		return -ENOENT;
727

728
	eb->gem_context = ctx;
729
	if (rcu_access_pointer(ctx->vm))
730
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
731 732

	eb->context_flags = 0;
733
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
734 735 736 737 738
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

739 740
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
741
{
742 743
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
744
	int err;
745

746 747 748 749 750 751 752 753 754 755 756 757
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
758 759 760 761 762 763
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
764
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
765 766
		else
			err = -ENOENT;
767 768 769
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

770
			spin_lock(&obj->lut_lock);
771 772 773 774 775 776
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
777
			spin_unlock(&obj->lut_lock);
778
		}
779
		mutex_unlock(&ctx->lut_mutex);
780 781 782
	}
	if (unlikely(err))
		goto err;
783

784
	return 0;
785

786
err:
C
Chris Wilson 已提交
787
	i915_vma_close(vma);
788 789 790 791
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
792

793 794
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
795 796
	struct i915_address_space *vm = eb->context->vm;

797 798
	do {
		struct drm_i915_gem_object *obj;
799
		struct i915_vma *vma;
800
		int err;
801

802 803
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
804
		if (likely(vma && vma->vm == vm))
805 806 807 808
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
809

810
		obj = i915_gem_object_lookup(eb->file, handle);
811 812
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
813

814
		vma = i915_vma_instance(obj, vm, NULL);
815
		if (IS_ERR(vma)) {
816 817
			i915_gem_object_put(obj);
			return vma;
818 819
		}

820 821 822
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
823

824 825 826 827 828
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
829

830 831
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
832
	struct drm_i915_private *i915 = eb->i915;
833 834 835
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
836

837 838 839 840 841 842 843 844
	INIT_LIST_HEAD(&eb->relocs);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
845
			goto err;
846
		}
847

848
		err = eb_validate_vma(eb, &eb->exec[i], vma);
849 850
		if (unlikely(err)) {
			i915_vma_put(vma);
851
			goto err;
852
		}
853

854
		eb_add_vma(eb, i, batch, vma);
855 856
	}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
		return -EINVAL;
	}

	if (range_overflows_t(u64,
			      eb->batch_start_offset, eb->batch_len,
			      eb->batch->vma->size)) {
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
		return -EINVAL;
	}

	if (eb->batch_len == 0)
		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
872 873 874 875
	if (unlikely(eb->batch_len == 0)) { /* impossible! */
		drm_dbg(&i915->drm, "Invalid batch length\n");
		return -EINVAL;
	}
876 877 878 879

	return 0;

err:
880
	eb->vma[i].vma = NULL;
881
	return err;
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static int eb_validate_vmas(struct i915_execbuffer *eb)
{
	unsigned int i;
	int err;

	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		err = i915_gem_object_lock(vma->obj, &eb->ww);
		if (err)
			return err;

		if (eb_pin_vma(eb, entry, ev)) {
			if (entry->offset != vma->node.start) {
				entry->offset = vma->node.start | UPDATE;
				eb->args->flags |= __EXEC_HAS_RELOC;
			}
		} else {
			eb_unreserve_vma(ev);

			list_add_tail(&ev->bind_link, &eb->unbound);
			if (drm_mm_node_allocated(&vma->node)) {
				err = i915_vma_unbind(vma);
				if (err)
					return err;
			}
		}

		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
	}

	if (!list_empty(&eb->unbound))
		return eb_reserve(eb);

	return 0;
}

926
static struct eb_vma *
927
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
928
{
929 930
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
931
			return NULL;
932
		return &eb->vma[handle];
933 934
	} else {
		struct hlist_head *head;
935
		struct eb_vma *ev;
936

937
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
938 939 940
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
941 942 943
		}
		return NULL;
	}
944 945
}

946
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
947 948 949 950 951 952 953 954 955 956 957
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;

		if (!vma)
			break;

958
		eb_unreserve_vma(ev);
959

960 961
		if (final)
			i915_vma_put(vma);
962
	}
963 964

	eb_unpin_engine(eb);
965 966
}

967
static void eb_destroy(const struct i915_execbuffer *eb)
968
{
969 970
	GEM_BUG_ON(eb->reloc_cache.rq);

971
	if (eb->lut_size > 0)
972
		kfree(eb->buckets);
973 974
}

975
static inline u64
976
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
977
		  const struct i915_vma *target)
978
{
979
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
980 981
}

982 983 984 985 986 987 988 989
static void reloc_cache_clear(struct reloc_cache *cache)
{
	cache->rq = NULL;
	cache->rq_cmd = NULL;
	cache->pool = NULL;
	cache->rq_size = 0;
}

990 991
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
992
{
993 994
	cache->page = -1;
	cache->vaddr = 0;
995
	/* Must be a variable in the struct to allow GCC to unroll. */
996
	cache->gen = INTEL_GEN(i915);
997
	cache->has_llc = HAS_LLC(i915);
998
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
999 1000
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1001
	cache->node.flags = 0;
1002
	reloc_cache_clear(cache);
1003
}
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
}

#define KMAP 0x4 /* after CLFLUSH_FLAGS */

static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

1024
static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1025
{
1026 1027
	if (!cache->pool)
		return;
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * This is a bit nasty, normally we keep objects locked until the end
	 * of execbuffer, but we already submit this, and have to unlock before
	 * dropping the reference. Fortunately we can only hold 1 pool node at
	 * a time, so this should be harmless.
	 */
	i915_gem_ww_unlock_single(cache->pool->obj);
	intel_gt_buffer_pool_put(cache->pool);
	cache->pool = NULL;
1038 1039
}

1040
static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1041
{
1042
	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1043

1044 1045
	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1046

1047 1048
	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
	i915_gem_object_unpin_map(obj);
1049

1050
	intel_gt_chipset_flush(cache->rq->engine->gt);
1051

1052
	i915_request_add(cache->rq);
1053 1054
	reloc_cache_put_pool(eb, cache);
	reloc_cache_clear(cache);
1055

1056
	eb->reloc_pool = NULL;
1057 1058
}

1059
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1060 1061 1062
{
	void *vaddr;

1063
	if (cache->rq)
1064
		reloc_gpu_flush(eb, cache);
1065

1066 1067 1068 1069 1070
	if (!cache->vaddr)
		return;

	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
1071 1072
		struct drm_i915_gem_object *obj =
			(struct drm_i915_gem_object *)cache->node.mm;
1073 1074 1075 1076
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();

		kunmap_atomic(vaddr);
1077
		i915_gem_object_finish_access(obj);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	} else {
		struct i915_ggtt *ggtt = cache_to_ggtt(cache);

		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __iomem *)vaddr);

		if (drm_mm_node_allocated(&cache->node)) {
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
			mutex_lock(&ggtt->vm.mutex);
			drm_mm_remove_node(&cache->node);
			mutex_unlock(&ggtt->vm.mutex);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
		}
	}

	cache->vaddr = 0;
	cache->page = -1;
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
1102
			unsigned long pageno)
1103 1104
{
	void *vaddr;
1105
	struct page *page;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
		int err;

		err = i915_gem_object_prepare_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);

		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
	}

1126 1127 1128 1129 1130
	page = i915_gem_object_get_page(obj, pageno);
	if (!obj->mm.dirty)
		set_page_dirty(page);

	vaddr = kmap_atomic(page);
1131
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1132
	cache->page = pageno;
1133 1134 1135 1136 1137

	return vaddr;
}

static void *reloc_iomap(struct drm_i915_gem_object *obj,
1138
			 struct i915_execbuffer *eb,
1139 1140
			 unsigned long page)
{
1141
	struct reloc_cache *cache = &eb->reloc_cache;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
	unsigned long offset;
	void *vaddr;

	if (cache->vaddr) {
		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
	} else {
		struct i915_vma *vma;
		int err;

		if (i915_gem_object_is_tiled(obj))
			return ERR_PTR(-EINVAL);

		if (use_cpu_reloc(cache, obj))
			return NULL;

		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);

1163 1164 1165 1166 1167 1168 1169
		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
						  PIN_MAPPABLE |
						  PIN_NONBLOCK /* NOWARN */ |
						  PIN_NOEVICT);
		if (vma == ERR_PTR(-EDEADLK))
			return vma;

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
			mutex_lock(&ggtt->vm.mutex);
			err = drm_mm_insert_node_in_range
				(&ggtt->vm.mm, &cache->node,
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
				 0, ggtt->mappable_end,
				 DRM_MM_INSERT_LOW);
			mutex_unlock(&ggtt->vm.mutex);
			if (err) /* no inactive aperture space, use cpu reloc */
				return NULL;
		} else {
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
		}
	}

	offset = cache->node.start;
	if (drm_mm_node_allocated(&cache->node)) {
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
	} else {
		offset += page << PAGE_SHIFT;
	}

	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
							 offset);
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;

	return vaddr;
}

static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1205
			 struct i915_execbuffer *eb,
1206 1207
			 unsigned long page)
{
1208
	struct reloc_cache *cache = &eb->reloc_cache;
1209 1210 1211 1212 1213 1214 1215
	void *vaddr;

	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
1216
			vaddr = reloc_iomap(obj, eb, page);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
	}

	return vaddr;
}

static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}

		*addr = value;

		/*
		 * Writes to the same cacheline are serialised by the CPU
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
}

1247 1248 1249 1250 1251
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

1252
	assert_vma_held(vma);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	return err;
}

1265
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1266
			     struct intel_engine_cs *engine,
1267
			     struct i915_vma *vma,
1268 1269 1270
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1271
	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1272
	struct i915_request *rq;
1273 1274 1275 1276
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	if (!pool) {
		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
		if (IS_ERR(pool))
			return PTR_ERR(pool);
	}
	eb->reloc_pool = NULL;

	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err_pool;
1287

1288
	cmd = i915_gem_object_pin_map(pool->obj,
1289 1290 1291
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1292 1293
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
1294
		goto err_pool;
1295
	}
1296

1297
	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1298 1299 1300 1301 1302
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

1303
	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1304 1305 1306
	if (err)
		goto err_unmap;

1307 1308 1309
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
1310
		struct intel_context *ce = eb->reloc_context;
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		if (!ce) {
			ce = intel_context_create(engine);
			if (IS_ERR(ce)) {
				err = PTR_ERR(ce);
				goto err_unpin;
			}

			i915_vm_put(ce->vm);
			ce->vm = i915_vm_get(eb->context->vm);
			eb->reloc_context = ce;
1322 1323
		}

1324
		err = intel_context_pin_ww(ce, &eb->ww);
1325 1326
		if (err)
			goto err_unpin;
1327

1328 1329
		rq = i915_request_create(ce);
		intel_context_unpin(ce);
1330
	}
1331 1332 1333 1334 1335
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1336
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1337 1338 1339
	if (err)
		goto err_request;

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	err = reloc_move_to_gpu(rq, vma);
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto skip_request;

1350
	assert_vma_held(batch);
1351 1352 1353
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1354 1355
	if (err)
		goto skip_request;
1356 1357

	rq->batch = batch;
1358
	i915_vma_unpin(batch);
1359 1360 1361 1362

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1363
	cache->pool = pool;
1364 1365

	/* Return with batch mapping (cmd) still pinned */
1366
	return 0;
1367

1368
skip_request:
1369
	i915_request_set_error_once(rq, err);
1370
err_request:
1371
	i915_request_add(rq);
1372 1373 1374
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1375
	i915_gem_object_unpin_map(pool->obj);
1376 1377
err_pool:
	eb->reloc_pool = pool;
1378 1379 1380
	return err;
}

1381 1382 1383 1384 1385
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1386 1387 1388 1389 1390 1391
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1392 1393

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1394
		reloc_gpu_flush(eb, cache);
1395 1396

	if (unlikely(!cache->rq)) {
1397
		int err;
1398 1399
		struct intel_engine_cs *engine = eb->engine;

1400
		if (!reloc_can_use_engine(engine)) {
1401
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1402
			if (!engine)
1403 1404
				return ERR_PTR(-ENODEV);
		}
1405

1406
		err = __reloc_gpu_alloc(eb, engine, vma, len);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static inline bool use_reloc_gpu(struct i915_vma *vma)
{
	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC)
		return false;

	return !dma_resv_test_signaled_rcu(vma->resv, true);
}

1428
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1429
{
1430 1431
	struct page *page;
	unsigned long addr;
1432

1433
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1434

1435 1436 1437
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1438

1439 1440 1441
	return addr + offset_in_page(offset);
}

1442
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1443 1444 1445
			      struct i915_vma *vma,
			      u64 offset,
			      u64 target_addr)
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
1460
	if (batch == ERR_PTR(-EDEADLK))
1461
		return -EDEADLK;
1462
	else if (IS_ERR(batch))
1463
		return false;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1474 1475

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1476 1477 1478
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1479
		} else {
1480 1481 1482 1483 1484
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1485
		}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1510 1511
	}

1512 1513 1514
	return true;
}

1515
static int reloc_entry_gpu(struct i915_execbuffer *eb,
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
			    struct i915_vma *vma,
			    u64 offset,
			    u64 target_addr)
{
	if (eb->reloc_cache.vaddr)
		return false;

	if (!use_reloc_gpu(vma))
		return false;

	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1527 1528 1529
}

static u64
1530
relocate_entry(struct i915_vma *vma,
1531
	       const struct drm_i915_gem_relocation_entry *reloc,
1532
	       struct i915_execbuffer *eb,
1533 1534 1535
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1536
	u64 offset = reloc->offset;
1537 1538 1539 1540
	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);

	if (reloc_gpu < 0)
		return reloc_gpu;
1541

1542
	if (!reloc_gpu) {
1543 1544 1545 1546
		bool wide = eb->reloc_cache.use_64bit_reloc;
		void *vaddr;

repeat:
1547
		vaddr = reloc_vaddr(vma->obj, eb,
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
				    offset >> PAGE_SHIFT);
		if (IS_ERR(vaddr))
			return PTR_ERR(vaddr);

		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
		clflush_write32(vaddr + offset_in_page(offset),
				lower_32_bits(target_addr),
				eb->reloc_cache.vaddr);

		if (wide) {
			offset += sizeof(u32);
			target_addr >>= 32;
			wide = false;
			goto repeat;
		}
	}
1564

1565
	return target->node.start | UPDATE;
1566 1567
}

1568 1569
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1570
		  struct eb_vma *ev,
1571
		  const struct drm_i915_gem_relocation_entry *reloc)
1572
{
1573
	struct drm_i915_private *i915 = eb->i915;
1574
	struct eb_vma *target;
1575
	int err;
1576

1577
	/* we've already hold a reference to all valid objects */
1578 1579
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1580
		return -ENOENT;
1581

1582
	/* Validate that the target is in a valid r/w GPU domain */
1583
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1584
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1585
			  "target %d offset %d "
1586
			  "read %08x write %08x",
1587
			  reloc->target_handle,
1588 1589 1590
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1591
		return -EINVAL;
1592
	}
1593 1594
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1595
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1596
			  "target %d offset %d "
1597
			  "read %08x write %08x",
1598
			  reloc->target_handle,
1599 1600 1601
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1602
		return -EINVAL;
1603 1604
	}

1605
	if (reloc->write_domain) {
1606
		target->flags |= EXEC_OBJECT_WRITE;
1607

1608 1609 1610 1611 1612 1613 1614
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1615
		    IS_GEN(eb->i915, 6)) {
1616 1617
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1618
					    PIN_GLOBAL, NULL);
1619
			if (err)
1620 1621
				return err;
		}
1622
	}
1623

1624 1625
	/*
	 * If the relocation already has the right value in it, no
1626 1627
	 * more work needs to be done.
	 */
1628 1629
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1630
		return 0;
1631 1632

	/* Check that the relocation address is valid... */
1633
	if (unlikely(reloc->offset >
1634
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1635
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1636 1637 1638
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1639
			  (int)ev->vma->size);
1640
		return -EINVAL;
1641
	}
1642
	if (unlikely(reloc->offset & 3)) {
1643
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1644 1645 1646
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1647
		return -EINVAL;
1648 1649
	}

1650 1651 1652 1653 1654 1655
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1656
	 * out of our synchronisation.
1657
	 */
1658
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1659

1660
	/* and update the user's relocation entry */
1661
	return relocate_entry(ev->vma, reloc, eb, target->vma);
1662 1663
}

1664
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1665
{
1666
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1667
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1668
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1669 1670 1671
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1672

1673
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1674
		return -EINVAL;
1675

1676 1677 1678 1679 1680
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1681
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1682 1683 1684 1685 1686
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1687
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1688
		unsigned int copied;
1689

1690 1691
		/*
		 * This is the fast path and we cannot handle a pagefault
1692 1693 1694 1695 1696 1697
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1698 1699 1700
		pagefault_disable();
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
		pagefault_enable();
1701 1702 1703 1704
		if (unlikely(copied)) {
			remain = -EFAULT;
			goto out;
		}
1705

1706
		remain -= count;
1707
		do {
1708
			u64 offset = eb_relocate_entry(eb, ev, r);
1709

1710 1711
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1712 1713
				remain = (int)offset;
				goto out;
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1737 1738
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1739
			}
1740 1741 1742
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1743
out:
1744
	reloc_cache_reset(&eb->reloc_cache, eb);
1745
	return remain;
1746 1747
}

1748 1749
static int
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1750
{
1751 1752 1753 1754
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
1755 1756
	int err;

1757 1758
	for (i = 0; i < entry->relocation_count; i++) {
		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1759

1760 1761 1762 1763
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1764
	}
1765 1766
	err = 0;
err:
1767
	reloc_cache_reset(&eb->reloc_cache, eb);
1768 1769
	return err;
}
1770

1771 1772 1773 1774 1775
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
{
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1776

1777 1778 1779
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1780

1781 1782
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(addr, size))
		return -EFAULT;

	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
	}
	return __get_user(c, end - 1);
1796 1797
}

1798
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1799
{
1800
	struct drm_i915_gem_relocation_entry *relocs;
1801 1802
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1803
	int err;
1804

1805
	for (i = 0; i < count; i++) {
1806 1807 1808 1809
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		unsigned long size;
		unsigned long copied;
1810

1811 1812
		if (nreloc == 0)
			continue;
1813

1814 1815 1816
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1817

1818 1819
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1820

1821 1822 1823 1824
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
		if (!relocs) {
			err = -ENOMEM;
			goto err;
1825
		}
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
					     (char __user *)urelocs + copied,
					     len))
				goto end;

			copied += len;
		} while (copied < size);

		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		if (!user_access_begin(urelocs, size))
			goto end;

		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
		user_access_end();

		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}

	return 0;

end_user:
	user_access_end();
end:
	kvfree(relocs);
	err = -EFAULT;
err:
	while (i--) {
		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
}

static int eb_prefault_relocations(const struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
		int err;

		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}

	return 0;
}

1895 1896
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
					   struct i915_request *rq)
1897 1898 1899 1900 1901 1902 1903 1904 1905
{
	bool have_copy = false;
	struct eb_vma *ev;
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
1906
	}
1907

1908 1909 1910 1911
	/* We may process another execbuffer during the unlock... */
	eb_release_vmas(eb, false);
	i915_gem_ww_ctx_fini(&eb->ww);

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	if (rq) {
		/* nonblocking is always false */
		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
				      MAX_SCHEDULE_TIMEOUT) < 0) {
			i915_request_put(rq);
			rq = NULL;

			err = -EINTR;
			goto err_relock;
		}

		i915_request_put(rq);
		rq = NULL;
	}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
	}

1950 1951
	if (!err)
		flush_workqueue(eb->i915->mm.userptr_wq);
1952

1953
err_relock:
1954
	i915_gem_ww_ctx_init(&eb->ww, true);
1955 1956 1957
	if (err)
		goto out;

1958 1959
	/* reacquire the objects */
repeat_validate:
1960 1961 1962
	rq = eb_pin_engine(eb, false);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
1963
		rq = NULL;
1964 1965 1966 1967 1968 1969
		goto err;
	}

	/* We didn't throttle, should be NULL */
	GEM_WARN_ON(rq);

1970
	err = eb_validate_vmas(eb);
1971
	if (err)
1972 1973 1974
		goto err;

	GEM_BUG_ON(!eb->batch);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	list_for_each_entry(ev, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, ev);
			pagefault_enable();
			if (err)
				break;
		} else {
			err = eb_relocate_vma_slow(eb, ev);
			if (err)
				break;
		}
	}

1990 1991 1992
	if (err == -EDEADLK)
		goto err;

1993 1994 1995 1996 1997 1998
	if (err && !have_copy)
		goto repeat;

	if (err)
		goto err;

1999 2000 2001 2002 2003
	/* as last step, parse the command buffer */
	err = eb_parse(eb);
	if (err)
		goto err;

2004 2005 2006 2007 2008 2009 2010 2011
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
2012 2013 2014 2015 2016 2017 2018
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto repeat_validate;
	}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

2040 2041 2042
	if (rq)
		i915_request_put(rq);

2043 2044 2045
	return err;
}

2046
static int eb_relocate_parse(struct i915_execbuffer *eb)
2047
{
2048
	int err;
2049 2050
	struct i915_request *rq = NULL;
	bool throttle = true;
2051

2052
retry:
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	rq = eb_pin_engine(eb, throttle);
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		rq = NULL;
		if (err != -EDEADLK)
			return err;

		goto err;
	}

	if (rq) {
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;

		/* Need to drop all locks now for throttling, take slowpath */
		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
		if (err == -ETIME) {
			if (nonblock) {
				err = -EWOULDBLOCK;
				i915_request_put(rq);
				goto err;
			}
			goto slow;
		}
		i915_request_put(rq);
		rq = NULL;
	}

	/* only throttle once, even if we didn't need to throttle */
	throttle = false;

2083 2084 2085 2086 2087
	err = eb_validate_vmas(eb);
	if (err == -EAGAIN)
		goto slow;
	else if (err)
		goto err;
2088 2089 2090

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
2091
		struct eb_vma *ev;
2092

2093
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2094 2095
			err = eb_relocate_vma(eb, ev);
			if (err)
2096
				break;
2097
		}
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		if (err == -EDEADLK)
			goto err;
		else if (err)
			goto slow;
	}

	if (!err)
		err = eb_parse(eb);

err:
	if (err == -EDEADLK) {
		eb_release_vmas(eb, false);
		err = i915_gem_ww_ctx_backoff(&eb->ww);
		if (!err)
			goto retry;
2114 2115
	}

2116 2117 2118
	return err;

slow:
2119
	err = eb_relocate_parse_slow(eb, rq);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	if (err)
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		eb->args->flags &= ~__EXEC_HAS_RELOC;

	return err;
2131 2132 2133 2134 2135
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
2136
	unsigned int i = count;
2137 2138 2139
	int err = 0;

	while (i--) {
2140 2141 2142
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
2143
		struct drm_i915_gem_object *obj = vma->obj;
2144

2145 2146
		assert_vma_held(vma);

2147
		if (flags & EXEC_OBJECT_CAPTURE) {
2148
			struct i915_capture_list *capture;
2149 2150

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2151 2152 2153 2154 2155
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
2156 2157
		}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2171
			if (i915_gem_clflush_object(obj, 0))
2172
				flags &= ~EXEC_OBJECT_ASYNC;
2173 2174
		}

2175 2176 2177 2178
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
2179

2180 2181
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
2182
	}
2183

2184 2185 2186
	if (unlikely(err))
		goto err_skip;

2187
	/* Unconditionally flush any chipset caches (for streaming writes). */
2188
	intel_gt_chipset_flush(eb->engine->gt);
2189
	return 0;
2190 2191

err_skip:
2192
	i915_request_set_error_once(eb->request, err);
2193
	return err;
2194 2195
}

T
Tvrtko Ursulin 已提交
2196
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2197
{
2198
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
2199
		return -EINVAL;
2200

C
Chris Wilson 已提交
2201
	/* Kernel clipping was a DRI1 misfeature */
2202 2203
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
2204
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
2205
			return -EINVAL;
2206
	}
C
Chris Wilson 已提交
2207 2208 2209 2210 2211 2212

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
2213
		return -EINVAL;
C
Chris Wilson 已提交
2214 2215

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
2216
		return -EINVAL;
C
Chris Wilson 已提交
2217

T
Tvrtko Ursulin 已提交
2218
	return 0;
2219 2220
}

2221
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2222
{
2223 2224
	u32 *cs;
	int i;
2225

2226 2227
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2228 2229
		return -EINVAL;
	}
2230

2231
	cs = intel_ring_begin(rq, 4 * 2 + 2);
2232 2233
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2234

2235
	*cs++ = MI_LOAD_REGISTER_IMM(4);
2236
	for (i = 0; i < 4; i++) {
2237 2238
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
2239
	}
2240
	*cs++ = MI_NOOP;
2241
	intel_ring_advance(rq, cs);
2242 2243 2244 2245

	return 0;
}

2246
static struct i915_vma *
2247 2248
shadow_batch_pin(struct i915_execbuffer *eb,
		 struct drm_i915_gem_object *obj,
2249 2250
		 struct i915_address_space *vm,
		 unsigned int flags)
2251
{
2252 2253
	struct i915_vma *vma;
	int err;
2254

2255 2256 2257 2258
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

2259
	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2260 2261 2262 2263
	if (err)
		return ERR_PTR(err);

	return vma;
2264 2265
}

2266 2267 2268 2269 2270 2271
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
2272 2273
	unsigned long batch_offset;
	unsigned long batch_length;
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

2298 2299 2300
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
2301
	.release = __eb_parse_release,
2302 2303
};

2304 2305 2306 2307 2308 2309 2310
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

2311
	return i915_active_ref(&node->active, tl->fence_context, fence);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

2336 2337 2338 2339 2340 2341 2342
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

2343 2344 2345
	GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
	GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));

2346 2347 2348 2349
	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

2350
	err = i915_active_acquire(&eb->batch->vma->active);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

2364 2365 2366
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
2367
	pw->batch = eb->batch->vma;
2368 2369 2370 2371 2372
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

2373 2374 2375 2376 2377
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

2378 2379
	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
2380
		goto err_commit;
2381 2382 2383 2384 2385 2386

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
2387
		goto err_commit;
2388 2389 2390 2391 2392 2393 2394

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	/* Force execution to wait for completion of the parser */
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);

2395
	dma_fence_work_commit_imm(&pw->base);
2396 2397
	return 0;

2398 2399 2400 2401 2402
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

2403 2404 2405
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
2406
	i915_active_release(&eb->batch->vma->active);
2407
err_free:
2408 2409 2410 2411
	kfree(pw);
	return err;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
{
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
	 * hsw should have this fixed, but bdw mucks it up again. */
	if (eb->batch_flags & I915_DISPATCH_SECURE)
		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);

	return NULL;
}

2424
static int eb_parse(struct i915_execbuffer *eb)
2425
{
2426
	struct drm_i915_private *i915 = eb->i915;
2427
	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2428
	struct i915_vma *shadow, *trampoline, *batch;
2429
	unsigned long len;
2430
	int err;
2431

2432 2433 2434 2435 2436 2437 2438
	if (!eb_use_cmdparser(eb)) {
		batch = eb_dispatch_secure(eb, eb->batch->vma);
		if (IS_ERR(batch))
			return PTR_ERR(batch);

		goto secure_batch;
	}
2439

2440 2441 2442 2443 2444 2445 2446
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
2447 2448
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
2449 2450 2451 2452 2453
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}
2454 2455
	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
		return -EINVAL;
2456

2457 2458 2459 2460 2461 2462
	if (!pool) {
		pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
		if (IS_ERR(pool))
			return PTR_ERR(pool);
		eb->batch_pool = pool;
	}
2463

2464 2465 2466
	err = i915_gem_object_lock(pool->obj, &eb->ww);
	if (err)
		goto err;
2467

2468
	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2469 2470
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
2471
		goto err;
2472
	}
2473
	i915_gem_object_set_readonly(shadow->obj);
2474
	shadow->private = pool;
2475 2476 2477 2478 2479

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

2480
		shadow = shadow_batch_pin(eb, pool->obj,
2481 2482 2483 2484 2485 2486 2487
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
2488
		shadow->private = pool;
2489 2490 2491

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
2492

2493 2494 2495 2496 2497 2498
	batch = eb_dispatch_secure(eb, shadow);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_trampoline;
	}

2499
	err = eb_parse_pipeline(eb, shadow, trampoline);
2500
	if (err)
2501
		goto err_unpin_batch;
2502

2503
	eb->batch = &eb->vma[eb->buffer_count++];
2504 2505
	eb->batch->vma = i915_vma_get(shadow);
	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2506

2507
	eb->trampoline = trampoline;
2508 2509
	eb->batch_start_offset = 0;

2510 2511 2512 2513 2514 2515
secure_batch:
	if (batch) {
		eb->batch = &eb->vma[eb->buffer_count++];
		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
		eb->batch->vma = i915_vma_get(batch);
	}
2516
	return 0;
2517

2518 2519 2520
err_unpin_batch:
	if (batch)
		i915_vma_unpin(batch);
2521 2522 2523 2524 2525
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
2526
err:
2527
	return err;
2528
}
2529

2530
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2531
{
2532
	int err;
2533

2534 2535 2536
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2537

2538
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2539 2540 2541
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2542 2543
	}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

2556
	err = eb->engine->emit_bb_start(eb->request,
2557
					batch->node.start +
2558 2559
					eb->batch_start_offset,
					eb->batch_len,
2560 2561 2562
					eb->batch_flags);
	if (err)
		return err;
2563

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

2574
	if (intel_context_nopreempt(eb->context))
2575
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2576

C
Chris Wilson 已提交
2577
	return 0;
2578 2579
}

2580 2581
static int num_vcs_engines(const struct drm_i915_private *i915)
{
2582
	return hweight64(VDBOX_MASK(&i915->gt));
2583 2584
}

2585
/*
2586
 * Find one BSD ring to dispatch the corresponding BSD command.
2587
 * The engine index is returned.
2588
 */
2589
static unsigned int
2590 2591
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2592 2593 2594
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2595
	/* Check whether the file_priv has already selected one ring. */
2596
	if ((int)file_priv->bsd_engine < 0)
2597 2598
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2599

2600
	return file_priv->bsd_engine;
2601 2602
}

2603
static const enum intel_engine_id user_ring_map[] = {
2604 2605 2606 2607 2608
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2609 2610
};

2611
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

2645
static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2646
{
2647
	struct intel_context *ce = eb->context;
2648
	struct intel_timeline *tl;
2649
	struct i915_request *rq = NULL;
2650 2651
	int err;

2652
	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2653

2654
	if (unlikely(intel_context_is_banned(ce)))
2655
		return ERR_PTR(-EIO);
2656

2657 2658 2659 2660 2661
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2662
	err = intel_context_pin_ww(ce, &eb->ww);
2663
	if (err)
2664
		return ERR_PTR(err);
2665

2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2674 2675
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
2676 2677
		intel_context_unpin(ce);
		return ERR_CAST(tl);
2678
	}
2679 2680

	intel_context_enter(ce);
2681 2682
	if (throttle)
		rq = eb_throttle(eb, ce);
2683 2684
	intel_context_timeline_unlock(tl);

2685 2686
	eb->args->flags |= __EXEC_ENGINE_PINNED;
	return rq;
2687 2688
}

2689
static void eb_unpin_engine(struct i915_execbuffer *eb)
2690
{
2691
	struct intel_context *ce = eb->context;
2692
	struct intel_timeline *tl = ce->timeline;
2693

2694 2695 2696 2697 2698
	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
		return;

	eb->args->flags &= ~__EXEC_ENGINE_PINNED;

2699 2700 2701 2702
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2703
	intel_context_unpin(ce);
2704
}
2705

2706
static unsigned int
2707
eb_select_legacy_ring(struct i915_execbuffer *eb)
2708
{
2709
	struct drm_i915_private *i915 = eb->i915;
2710
	struct drm_i915_gem_execbuffer2 *args = eb->args;
2711 2712
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2713 2714
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2715 2716 2717
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2718
		return -1;
2719 2720
	}

2721
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2722 2723 2724
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2725
			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2726 2727
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2728
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2729 2730
			bsd_idx--;
		} else {
2731 2732 2733
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2734
			return -1;
2735 2736
		}

2737
		return _VCS(bsd_idx);
2738 2739
	}

2740
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2741 2742
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2743
		return -1;
2744 2745
	}

2746 2747 2748 2749
	return user_ring_map[user_ring_id];
}

static int
2750
eb_select_engine(struct i915_execbuffer *eb)
2751 2752 2753 2754 2755
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2756
	if (i915_gem_context_user_engines(eb->gem_context))
2757
		idx = eb->args->flags & I915_EXEC_RING_MASK;
2758
	else
2759
		idx = eb_select_legacy_ring(eb);
2760 2761 2762 2763 2764

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2765
	intel_gt_pm_get(ce->engine->gt);
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
		err = intel_context_alloc_state(ce);
		if (err)
			goto err;
	}

	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
	err = intel_gt_terminally_wedged(ce->engine->gt);
	if (err)
		goto err;

	eb->context = ce;
	eb->engine = ce->engine;

	/*
	 * Make sure engine pool stays alive even if we call intel_context_put
	 * during ww handling. The pool is destroyed when last pm reference
	 * is dropped, which breaks our -EDEADLK handling.
	 */
	return err;

err:
	intel_gt_pm_put(ce->engine->gt);
	intel_context_put(ce);
2794
	return err;
2795 2796
}

2797 2798 2799 2800 2801 2802 2803
static void
eb_put_engine(struct i915_execbuffer *eb)
{
	intel_gt_pm_put(eb->engine->gt);
	intel_context_put(eb->context);
}

2804
static void
2805
__free_fence_array(struct eb_fence *fences, unsigned int n)
2806
{
2807
	while (n--) {
2808
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2809 2810 2811
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2812 2813 2814
	kvfree(fences);
}

2815
static int
2816 2817
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2818
{
2819 2820 2821 2822 2823
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2824

2825 2826
	nfences = timeline_fences->fence_count;
	if (!nfences)
2827
		return 0;
2828

2829 2830 2831
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2832 2833
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2834
		return -EINVAL;
2835

2836 2837 2838 2839 2840 2841
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2842
		return -EFAULT;
2843

2844 2845 2846 2847
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2848
		return -ENOMEM;
2849

2850 2851 2852 2853 2854 2855 2856 2857
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2858
		struct drm_syncobj *syncobj;
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2880

2881 2882 2883 2884 2885
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2886 2887
		}

2888 2889 2890 2891 2892
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2893
			dma_fence_put(fence);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2934 2935
		}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2990 2991
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
3002 3003
		}

3004 3005 3006
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

3007 3008 3009 3010 3011 3012
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
3013 3014
	}

3015
	return 0;
3016
}
3017

3018 3019 3020 3021
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
3022 3023 3024
}

static int
3025
await_fence_array(struct i915_execbuffer *eb)
3026 3027 3028 3029
{
	unsigned int n;
	int err;

3030
	for (n = 0; n < eb->num_fences; n++) {
3031 3032 3033
		struct drm_syncobj *syncobj;
		unsigned int flags;

3034
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3035

3036 3037
		if (!eb->fences[n].dma_fence)
			continue;
3038

3039 3040
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
3041 3042 3043 3044 3045 3046 3047
		if (err < 0)
			return err;
	}

	return 0;
}

3048
static void signal_fence_array(const struct i915_execbuffer *eb)
3049 3050 3051 3052
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

3053
	for (n = 0; n < eb->num_fences; n++) {
3054 3055 3056
		struct drm_syncobj *syncobj;
		unsigned int flags;

3057
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3058 3059 3060
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
3074 3075 3076
	}
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

3089 3090 3091 3092 3093 3094 3095 3096 3097
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

3098
static int eb_request_add(struct i915_execbuffer *eb, int err)
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
3113
	if (likely(!intel_context_is_closed(eb->context))) {
3114 3115 3116
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
3117 3118
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
3119
		err = -ENOENT; /* override any transient errors */
3120 3121 3122 3123 3124 3125 3126 3127 3128
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
3129 3130

	return err;
3131 3132
}

3133
static const i915_user_extension_fn execbuf_extensions[] = {
3134
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

3159
static int
3160
i915_gem_do_execbuffer(struct drm_device *dev,
3161 3162
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
3163
		       struct drm_i915_gem_exec_object2 *exec)
3164
{
3165
	struct drm_i915_private *i915 = to_i915(dev);
3166
	struct i915_execbuffer eb;
3167 3168
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
3169
	struct i915_vma *batch;
3170
	int out_fence_fd = -1;
3171
	int err;
3172

3173
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3174 3175
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3176

3177
	eb.i915 = i915;
3178 3179
	eb.file = file;
	eb.args = args;
3180
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3181
		args->flags |= __EXEC_HAS_RELOC;
3182

3183
	eb.exec = exec;
3184 3185
	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
	eb.vma[0].vma = NULL;
3186
	eb.reloc_pool = eb.batch_pool = NULL;
3187
	eb.reloc_context = NULL;
3188

3189
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3190 3191
	reloc_cache_init(&eb.reloc_cache, eb.i915);

3192
	eb.buffer_count = args->buffer_count;
3193 3194
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
3195
	eb.trampoline = NULL;
3196

3197
	eb.fences = NULL;
3198
	eb.num_fences = 0;
3199

3200
	eb.batch_flags = 0;
3201
	if (args->flags & I915_EXEC_SECURE) {
3202 3203 3204 3205 3206 3207 3208
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

3209
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3210
			return -EPERM;
3211

3212
		eb.batch_flags |= I915_DISPATCH_SECURE;
3213
	}
3214
	if (args->flags & I915_EXEC_IS_PINNED)
3215
		eb.batch_flags |= I915_DISPATCH_PINNED;
3216

3217 3218 3219 3220 3221 3222 3223 3224
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

3225 3226 3227 3228 3229
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

3230
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3231 3232 3233 3234
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
3235
	}
3236
#undef IN_FENCES
3237

3238 3239 3240
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
3241
			err = out_fence_fd;
3242
			goto err_in_fence;
3243 3244 3245
		}
	}

3246 3247
	err = eb_create(&eb);
	if (err)
3248
		goto err_out_fence;
3249

3250
	GEM_BUG_ON(!eb.lut_size);
3251

3252 3253 3254 3255
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

3256
	err = eb_select_engine(&eb);
3257
	if (unlikely(err))
3258
		goto err_context;
3259

3260 3261 3262 3263 3264 3265 3266 3267
	err = eb_lookup_vmas(&eb);
	if (err) {
		eb_release_vmas(&eb, true);
		goto err_engine;
	}

	i915_gem_ww_ctx_init(&eb.ww, true);

3268
	err = eb_relocate_parse(&eb);
3269
	if (err) {
3270 3271 3272 3273 3274 3275 3276 3277 3278
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
3279
	}
3280

3281
	ww_acquire_done(&eb.ww.ctx);
3282 3283

	batch = eb.batch->vma;
3284

3285 3286 3287
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

3288
	/* Allocate a request for this batch buffer nice and early. */
3289
	eb.request = i915_request_create(eb.context);
3290
	if (IS_ERR(eb.request)) {
3291
		err = PTR_ERR(eb.request);
3292
		goto err_vma;
3293
	}
3294

3295
	if (in_fence) {
3296 3297 3298 3299 3300 3301 3302
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
3303 3304 3305 3306
		if (err < 0)
			goto err_request;
	}

3307
	if (eb.fences) {
3308
		err = await_fence_array(&eb);
3309 3310 3311 3312
		if (err)
			goto err_request;
	}

3313
	if (out_fence_fd != -1) {
3314
		out_fence = sync_file_create(&eb.request->fence);
3315
		if (!out_fence) {
3316
			err = -ENOMEM;
3317 3318 3319 3320
			goto err_request;
		}
	}

3321 3322
	/*
	 * Whilst this request exists, batch_obj will be on the
3323 3324 3325 3326 3327
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
3328
	eb.request->batch = batch;
3329 3330
	if (eb.batch_pool)
		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3331

3332
	trace_i915_request_queue(eb.request, eb.batch_flags);
3333
	err = eb_submit(&eb, batch);
3334
err_request:
3335
	i915_request_get(eb.request);
3336
	err = eb_request_add(&eb, err);
3337

3338
	if (eb.fences)
3339
		signal_fence_array(&eb);
3340

3341
	if (out_fence) {
3342
		if (err == 0) {
3343
			fd_install(out_fence_fd, out_fence->file);
3344
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3345 3346 3347 3348 3349 3350
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
3351
	i915_request_put(eb.request);
3352

3353
err_vma:
3354
	eb_release_vmas(&eb, true);
3355 3356
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
3357 3358 3359 3360 3361 3362 3363
	WARN_ON(err == -EDEADLK);
	i915_gem_ww_ctx_fini(&eb.ww);

	if (eb.batch_pool)
		intel_gt_buffer_pool_put(eb.batch_pool);
	if (eb.reloc_pool)
		intel_gt_buffer_pool_put(eb.reloc_pool);
3364 3365
	if (eb.reloc_context)
		intel_context_put(eb.reloc_context);
3366
err_engine:
3367
	eb_put_engine(&eb);
3368
err_context:
3369
	i915_gem_context_put(eb.gem_context);
3370
err_destroy:
3371
	eb_destroy(&eb);
3372
err_out_fence:
3373 3374
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
3375
err_in_fence:
3376
	dma_fence_put(in_fence);
3377 3378
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
3379
	return err;
3380 3381
}

3382 3383
static size_t eb_element_size(void)
{
3384
	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

3400 3401 3402 3403 3404
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
3405 3406
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
3407
{
3408
	struct drm_i915_private *i915 = to_i915(dev);
3409 3410 3411 3412
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3413
	const size_t count = args->buffer_count;
3414 3415
	unsigned int i;
	int err;
3416

3417
	if (!check_buffer_count(count)) {
3418
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3419 3420 3421
		return -EINVAL;
	}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
3433 3434 3435
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
3436

3437
	/* Copy in the exec list from userland */
3438
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3439
				   __GFP_NOWARN | GFP_KERNEL);
3440 3441 3442

	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3443
				    __GFP_NOWARN | GFP_KERNEL);
3444
	if (exec_list == NULL || exec2_list == NULL) {
3445 3446 3447
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
3448 3449
		kvfree(exec_list);
		kvfree(exec2_list);
3450 3451
		return -ENOMEM;
	}
3452
	err = copy_from_user(exec_list,
3453
			     u64_to_user_ptr(args->buffers_ptr),
3454
			     sizeof(*exec_list) * count);
3455
	if (err) {
3456 3457
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
3458 3459
		kvfree(exec_list);
		kvfree(exec2_list);
3460 3461 3462 3463 3464 3465 3466 3467 3468
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
3469
		if (INTEL_GEN(to_i915(dev)) < 4)
3470 3471 3472 3473 3474
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

3475
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3476
	if (exec2.flags & __EXEC_HAS_RELOC) {
3477
		struct drm_i915_gem_exec_object __user *user_exec_list =
3478
			u64_to_user_ptr(args->buffers_ptr);
3479

3480
		/* Copy the new buffer offsets back to the user's exec list. */
3481
		for (i = 0; i < args->buffer_count; i++) {
3482 3483 3484
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3485
			exec2_list[i].offset =
3486 3487 3488 3489 3490
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
3491
				break;
3492 3493 3494
		}
	}

M
Michal Hocko 已提交
3495 3496
	kvfree(exec_list);
	kvfree(exec2_list);
3497
	return err;
3498 3499 3500
}

int
3501 3502
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
3503
{
3504
	struct drm_i915_private *i915 = to_i915(dev);
3505
	struct drm_i915_gem_execbuffer2 *args = data;
3506
	struct drm_i915_gem_exec_object2 *exec2_list;
3507
	const size_t count = args->buffer_count;
3508
	int err;
3509

3510
	if (!check_buffer_count(count)) {
3511
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3512 3513 3514
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
3515 3516 3517
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
3518

3519 3520
	/* Allocate extra slots for use by the command parser */
	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3521
				    __GFP_NOWARN | GFP_KERNEL);
3522
	if (exec2_list == NULL) {
3523 3524
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
3525 3526
		return -ENOMEM;
	}
3527 3528
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
3529
			   sizeof(*exec2_list) * count)) {
3530
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
3531
		kvfree(exec2_list);
3532 3533 3534
		return -EFAULT;
	}

3535
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3536 3537 3538 3539 3540 3541 3542 3543

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
3544
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3545 3546
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
3547

3548
		/* Copy the new buffer offsets back to the user's exec list. */
3549 3550 3551 3552 3553 3554 3555
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
3556 3557
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
3558
			goto end;
3559

3560
		for (i = 0; i < args->buffer_count; i++) {
3561 3562 3563
			if (!(exec2_list[i].offset & UPDATE))
				continue;

3564
			exec2_list[i].offset =
3565 3566 3567 3568
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
3569
		}
3570
end_user:
3571
		user_write_access_end();
3572
end:;
3573 3574
	}

3575
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
3576
	kvfree(exec2_list);
3577
	return err;
3578
}
3579 3580 3581 3582

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif