i915_gem_execbuffer.c 78.1 KB
Newer Older
1
/*
2
 * SPDX-License-Identifier: MIT
3
 *
4
 * Copyright © 2008,2010 Intel Corporation
5 6
 */

7
#include <linux/intel-iommu.h>
8
#include <linux/dma-resv.h>
9
#include <linux/sync_file.h>
10 11
#include <linux/uaccess.h>

12
#include <drm/drm_syncobj.h>
13

14 15
#include "display/intel_frontbuffer.h"

16
#include "gem/i915_gem_ioctls.h"
17
#include "gt/intel_context.h"
18
#include "gt/intel_gt.h"
19
#include "gt/intel_gt_buffer_pool.h"
20
#include "gt/intel_gt_pm.h"
21
#include "gt/intel_ring.h"
22

23
#include "i915_drv.h"
24
#include "i915_gem_clflush.h"
25
#include "i915_gem_context.h"
26
#include "i915_gem_ioctls.h"
27
#include "i915_sw_fence_work.h"
28
#include "i915_trace.h"
29
#include "i915_user_extensions.h"
30

31 32 33 34 35 36 37 38 39 40 41 42 43
struct eb_vma {
	struct i915_vma *vma;
	unsigned int flags;

	/** This vma's place in the execbuf reservation list */
	struct drm_i915_gem_exec_object2 *exec;
	struct list_head bind_link;
	struct list_head reloc_link;

	struct hlist_node node;
	u32 handle;
};

44 45 46 47 48
struct eb_vma_array {
	struct kref kref;
	struct eb_vma vma[];
};

49 50 51 52 53
#define __EXEC_OBJECT_HAS_PIN		BIT(31)
#define __EXEC_OBJECT_HAS_FENCE		BIT(30)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
54 55

#define __EXEC_HAS_RELOC	BIT(31)
56
#define __EXEC_INTERNAL_FLAGS	(~0u << 31)
57
#define UPDATE			PIN_OFFSET_FIXED
58 59

#define BATCH_OFFSET_BIAS (256*1024)
60

61
#define __I915_EXEC_ILLEGAL_FLAGS \
62 63 64
	(__I915_EXEC_UNKNOWN_FLAGS | \
	 I915_EXEC_CONSTANTS_MASK  | \
	 I915_EXEC_RESOURCE_STREAMER)
65

66 67 68 69 70 71 72 73 74
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

226 227 228 229 230 231 232
struct eb_fence {
	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
	struct dma_fence *dma_fence;
	u64 value;
	struct dma_fence_chain *chain_fence;
};

233
struct i915_execbuffer {
234 235 236 237
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
238
	struct eb_vma *vma;
239 240

	struct intel_engine_cs *engine; /** engine to queue the request to */
241 242
	struct intel_context *context; /* logical state for the request */
	struct i915_gem_context *gem_context; /** caller's context */
243

244
	struct i915_request *request; /** our request to build */
245
	struct eb_vma *batch; /** identity of the batch obj/vma */
246
	struct i915_vma *trampoline; /** trampoline used for chaining */
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
262
	struct reloc_cache {
263
		struct drm_mm_node node; /** temporary GTT binding */
264
		unsigned int gen; /** Cached value of INTEL_GEN */
265
		bool use_64bit_reloc : 1;
266 267 268
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
269

270
		struct i915_vma *target;
271
		struct i915_request *rq;
272
		struct i915_vma *rq_vma;
273 274
		u32 *rq_cmd;
		unsigned int rq_size;
275
	} reloc_cache;
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
291
	struct eb_vma_array *array;
292

293 294
	struct eb_fence *fences;
	unsigned long num_fences;
295 296
};

297 298
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
299
	return intel_engine_requires_cmd_parser(eb->engine) ||
300 301
		(intel_engine_using_cmd_parser(eb->engine) &&
		 eb->args->batch_len);
302 303
}

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static struct eb_vma_array *eb_vma_array_create(unsigned int count)
{
	struct eb_vma_array *arr;

	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
	if (!arr)
		return NULL;

	kref_init(&arr->kref);
	arr->vma[0].vma = NULL;

	return arr;
}

static inline void eb_unreserve_vma(struct eb_vma *ev)
{
	struct i915_vma *vma = ev->vma;

	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
		__i915_vma_unpin_fence(vma);

	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
		__i915_vma_unpin(vma);

	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
		       __EXEC_OBJECT_HAS_FENCE);
}

static void eb_vma_array_destroy(struct kref *kref)
{
	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
	struct eb_vma *ev = arr->vma;

	while (ev->vma) {
		eb_unreserve_vma(ev);
		i915_vma_put(ev->vma);
		ev++;
	}

	kvfree(arr);
}

static void eb_vma_array_put(struct eb_vma_array *arr)
{
	kref_put(&arr->kref, eb_vma_array_destroy);
}

351
static int eb_create(struct i915_execbuffer *eb)
352
{
353 354 355 356 357 358 359
	/* Allocate an extra slot for use by the command parser + sentinel */
	eb->array = eb_vma_array_create(eb->buffer_count + 2);
	if (!eb->array)
		return -ENOMEM;

	eb->vma = eb->array->vma;

360 361
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
362

363 364 365 366 367 368 369 370 371 372 373
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
374
		do {
375
			gfp_t flags;
376 377 378 379 380 381 382

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
383
			flags = GFP_KERNEL;
384 385 386
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

387
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
388
					      flags);
389 390 391 392
			if (eb->buckets)
				break;
		} while (--size);

393 394
		if (unlikely(!size)) {
			eb_vma_array_put(eb->array);
395
			return -ENOMEM;
396
		}
397

398
		eb->lut_size = size;
399
	} else {
400
		eb->lut_size = -eb->buffer_count;
401
	}
402

403
	return 0;
404 405
}

406 407
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
408 409
		 const struct i915_vma *vma,
		 unsigned int flags)
410 411 412 413 414 415 416
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

417
	if (flags & EXEC_OBJECT_PINNED &&
418 419 420
	    vma->node.start != entry->offset)
		return true;

421
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
422 423 424
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

425
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
426 427 428
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

429 430 431 432
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

433 434 435
	return false;
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
			unsigned int exec_flags)
{
	u64 pin_flags = 0;

	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;

	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;

	if (exec_flags & EXEC_OBJECT_PINNED)
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;

	return pin_flags;
}

462
static inline bool
463
eb_pin_vma(struct i915_execbuffer *eb,
464
	   const struct drm_i915_gem_exec_object2 *entry,
465
	   struct eb_vma *ev)
466
{
467
	struct i915_vma *vma = ev->vma;
468
	u64 pin_flags;
469

470
	if (vma->node.size)
471
		pin_flags = vma->node.start;
472
	else
473
		pin_flags = entry->offset & PIN_OFFSET_MASK;
474

475
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
476
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
477
		pin_flags |= PIN_GLOBAL;
478

479 480 481 482 483 484 485 486 487 488 489 490 491
	/* Attempt to reuse the current location if available */
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
		if (entry->flags & EXEC_OBJECT_PINNED)
			return false;

		/* Failing that pick any _free_ space if suitable */
		if (unlikely(i915_vma_pin(vma,
					  entry->pad_to_size,
					  entry->alignment,
					  eb_pin_flags(entry, ev->flags) |
					  PIN_USER | PIN_NOEVICT)))
			return false;
	}
492

493
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
494
		if (unlikely(i915_vma_pin_fence(vma))) {
495
			i915_vma_unpin(vma);
496
			return false;
497 498
		}

499
		if (vma->fence)
500
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
501 502
	}

503 504
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, ev->flags);
505 506 507 508 509 510
}

static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
511
{
512 513
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
514

515 516
	if (unlikely(entry->alignment &&
		     !is_power_of_2_u64(entry->alignment)))
517 518 519 520 521 522 523
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
524
		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
525 526 527 528 529 530 531 532
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
533
	}
534 535 536 537 538 539 540
	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

541 542 543 544 545 546 547 548 549 550 551 552
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

553
	return 0;
554 555
}

556
static void
557 558 559
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
560
{
561
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
562
	struct eb_vma *ev = &eb->vma[i];
563 564 565

	GEM_BUG_ON(i915_vma_is_closed(vma));

566
	ev->vma = vma;
567 568 569
	ev->exec = entry;
	ev->flags = entry->flags;

570
	if (eb->lut_size > 0) {
571 572
		ev->handle = entry->handle;
		hlist_add_head(&ev->node,
573 574
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
575
	}
576

577
	if (entry->relocation_count)
578
		list_add_tail(&ev->reloc_link, &eb->relocs);
579

580 581 582 583 584 585 586 587 588 589
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
590
		if (entry->relocation_count &&
591 592
		    !(ev->flags & EXEC_OBJECT_PINNED))
			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
593
		if (eb->reloc_cache.has_fence)
594
			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
595

596
		eb->batch = ev;
597 598
	}

599
	if (eb_pin_vma(eb, entry, ev)) {
600 601 602 603
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
604
	} else {
605 606
		eb_unreserve_vma(ev);
		list_add_tail(&ev->bind_link, &eb->unbound);
607 608 609 610
	}
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
611
			  struct eb_vma *ev,
612
			  u64 pin_flags)
613
{
614 615
	struct drm_i915_gem_exec_object2 *entry = ev->exec;
	struct i915_vma *vma = ev->vma;
616 617
	int err;

618 619 620 621 622 623 624
	if (drm_mm_node_allocated(&vma->node) &&
	    eb_vma_misplaced(entry, vma, ev->flags)) {
		err = i915_vma_unbind(vma);
		if (err)
			return err;
	}

625 626
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
627
			   eb_pin_flags(entry, ev->flags) | pin_flags);
628 629 630 631 632 633 634 635
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

636
	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
637
		err = i915_vma_pin_fence(vma);
638 639 640 641 642
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

643
		if (vma->fence)
644
			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
645 646
	}

647
	ev->flags |= __EXEC_OBJECT_HAS_PIN;
648
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
649

650 651 652 653 654 655
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
656
	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
657
	struct list_head last;
658
	struct eb_vma *ev;
659
	unsigned int i, pass;
660
	int err = 0;
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

676 677 678
	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
		return -EINTR;

679 680
	pass = 0;
	do {
681 682
		list_for_each_entry(ev, &eb->unbound, bind_link) {
			err = eb_reserve_vma(eb, ev, pin_flags);
683 684 685
			if (err)
				break;
		}
686
		if (!(err == -ENOSPC || err == -EAGAIN))
687
			break;
688 689 690 691 692

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
693
			unsigned int flags;
694

695 696
			ev = &eb->vma[i];
			flags = ev->flags;
697 698
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
699 700
				continue;

701
			eb_unreserve_vma(ev);
702

703
			if (flags & EXEC_OBJECT_PINNED)
704
				/* Pinned must have their slot */
705
				list_add(&ev->bind_link, &eb->unbound);
706
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
707
				/* Map require the lowest 256MiB (aperture) */
708
				list_add_tail(&ev->bind_link, &eb->unbound);
709 710
			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
				/* Prioritise 4GiB region for restricted bo */
711
				list_add(&ev->bind_link, &last);
712
			else
713
				list_add_tail(&ev->bind_link, &last);
714 715 716
		}
		list_splice_tail(&last, &eb->unbound);

717
		if (err == -EAGAIN) {
718
			mutex_unlock(&eb->i915->drm.struct_mutex);
719
			flush_workqueue(eb->i915->mm.userptr_wq);
720
			mutex_lock(&eb->i915->drm.struct_mutex);
721 722 723
			continue;
		}

724 725 726 727 728 729
		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
730
			mutex_lock(&eb->context->vm->mutex);
731
			err = i915_gem_evict_vm(eb->context->vm);
732
			mutex_unlock(&eb->context->vm->mutex);
733
			if (err)
734
				goto unlock;
735 736 737
			break;

		default:
738 739
			err = -ENOSPC;
			goto unlock;
740
		}
741 742

		pin_flags = PIN_USER;
743
	} while (1);
744 745 746 747

unlock:
	mutex_unlock(&eb->i915->drm.struct_mutex);
	return err;
748
}
749

750 751
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
752 753 754 755
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
756 757 758 759 760 761 762
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
763 764
	if (unlikely(!ctx))
		return -ENOENT;
765

766
	eb->gem_context = ctx;
767
	if (rcu_access_pointer(ctx->vm))
768
		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
769 770

	eb->context_flags = 0;
771
	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
772 773 774 775 776
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

777 778
static int __eb_add_lut(struct i915_execbuffer *eb,
			u32 handle, struct i915_vma *vma)
779
{
780 781
	struct i915_gem_context *ctx = eb->gem_context;
	struct i915_lut_handle *lut;
782
	int err;
783

784 785 786 787 788 789 790 791 792 793 794 795
	lut = i915_lut_handle_alloc();
	if (unlikely(!lut))
		return -ENOMEM;

	i915_vma_get(vma);
	if (!atomic_fetch_inc(&vma->open_count))
		i915_vma_reopen(vma);
	lut->handle = handle;
	lut->ctx = ctx;

	/* Check that the context hasn't been closed in the meantime */
	err = -EINTR;
796 797 798 799 800 801
	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);

		if (unlikely(vm && vma->vm != vm))
			err = -EAGAIN; /* user racing with ctx set-vm */
		else if (likely(!i915_gem_context_is_closed(ctx)))
802
			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
803 804
		else
			err = -ENOENT;
805 806 807
		if (err == 0) { /* And nor has this handle */
			struct drm_i915_gem_object *obj = vma->obj;

808
			spin_lock(&obj->lut_lock);
809 810 811 812 813 814
			if (idr_find(&eb->file->object_idr, handle) == obj) {
				list_add(&lut->obj_link, &obj->lut_list);
			} else {
				radix_tree_delete(&ctx->handles_vma, handle);
				err = -ENOENT;
			}
815
			spin_unlock(&obj->lut_lock);
816
		}
817
		mutex_unlock(&ctx->lut_mutex);
818 819 820
	}
	if (unlikely(err))
		goto err;
821

822
	return 0;
823

824
err:
C
Chris Wilson 已提交
825
	i915_vma_close(vma);
826 827 828 829
	i915_vma_put(vma);
	i915_lut_handle_free(lut);
	return err;
}
830

831 832
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
{
833 834
	struct i915_address_space *vm = eb->context->vm;

835 836
	do {
		struct drm_i915_gem_object *obj;
837
		struct i915_vma *vma;
838
		int err;
839

840 841
		rcu_read_lock();
		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
842
		if (likely(vma && vma->vm == vm))
843 844 845 846
			vma = i915_vma_tryget(vma);
		rcu_read_unlock();
		if (likely(vma))
			return vma;
847

848
		obj = i915_gem_object_lookup(eb->file, handle);
849 850
		if (unlikely(!obj))
			return ERR_PTR(-ENOENT);
851

852
		vma = i915_vma_instance(obj, vm, NULL);
853
		if (IS_ERR(vma)) {
854 855
			i915_gem_object_put(obj);
			return vma;
856 857
		}

858 859 860
		err = __eb_add_lut(eb, handle, vma);
		if (likely(!err))
			return vma;
861

862 863 864 865 866
		i915_gem_object_put(obj);
		if (err != -EEXIST)
			return ERR_PTR(err);
	} while (1);
}
867

868 869 870 871 872
static int eb_lookup_vmas(struct i915_execbuffer *eb)
{
	unsigned int batch = eb_batch_index(eb);
	unsigned int i;
	int err = 0;
873

874 875 876 877 878 879 880 881 882 883 884
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);

	for (i = 0; i < eb->buffer_count; i++) {
		struct i915_vma *vma;

		vma = eb_lookup_vma(eb, eb->exec[i].handle);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			break;
		}
885

886
		err = eb_validate_vma(eb, &eb->exec[i], vma);
887 888 889 890
		if (unlikely(err)) {
			i915_vma_put(vma);
			break;
		}
891

892
		eb_add_vma(eb, i, batch, vma);
893 894
	}

895
	eb->vma[i].vma = NULL;
896
	return err;
897 898
}

899
static struct eb_vma *
900
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
901
{
902 903
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
904
			return NULL;
905
		return &eb->vma[handle];
906 907
	} else {
		struct hlist_head *head;
908
		struct eb_vma *ev;
909

910
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
911 912 913
		hlist_for_each_entry(ev, head, node) {
			if (ev->handle == handle)
				return ev;
914 915 916
		}
		return NULL;
	}
917 918
}

919
static void eb_destroy(const struct i915_execbuffer *eb)
920
{
921 922
	GEM_BUG_ON(eb->reloc_cache.rq);

923 924 925
	if (eb->array)
		eb_vma_array_put(eb->array);

926
	if (eb->lut_size > 0)
927
		kfree(eb->buckets);
928 929
}

930
static inline u64
931
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
932
		  const struct i915_vma *target)
933
{
934
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
935 936
}

937 938
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
939
{
940
	/* Must be a variable in the struct to allow GCC to unroll. */
941
	cache->gen = INTEL_GEN(i915);
942
	cache->has_llc = HAS_LLC(i915);
943
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
944 945
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
946
	cache->node.flags = 0;
947
	cache->rq = NULL;
948
	cache->target = NULL;
949
}
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
#define RELOC_TAIL 4

static int reloc_gpu_chain(struct reloc_cache *cache)
{
	struct intel_gt_buffer_pool_node *pool;
	struct i915_request *rq = cache->rq;
	struct i915_vma *batch;
	u32 *cmd;
	int err;

	pool = intel_gt_get_buffer_pool(rq->engine->gt, PAGE_SIZE);
	if (IS_ERR(pool))
		return PTR_ERR(pool);

	batch = i915_vma_instance(pool->obj, rq->context->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto out_pool;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto out_pool;

	GEM_BUG_ON(cache->rq_size + RELOC_TAIL > PAGE_SIZE  / sizeof(u32));
	cmd = cache->rq_cmd + cache->rq_size;
	*cmd++ = MI_ARB_CHECK;
978
	if (cache->gen >= 8)
979
		*cmd++ = MI_BATCH_BUFFER_START_GEN8;
980
	else if (cache->gen >= 6)
981
		*cmd++ = MI_BATCH_BUFFER_START;
982 983 984 985
	else
		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cmd++ = lower_32_bits(batch->node.start);
	*cmd++ = upper_32_bits(batch->node.start); /* Always 0 for gen<8 */
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	i915_gem_object_flush_map(cache->rq_vma->obj);
	i915_gem_object_unpin_map(cache->rq_vma->obj);
	cache->rq_vma = NULL;

	err = intel_gt_buffer_pool_mark_active(pool, rq);
	if (err == 0) {
		i915_vma_lock(batch);
		err = i915_request_await_object(rq, batch->obj, false);
		if (err == 0)
			err = i915_vma_move_to_active(batch, rq, 0);
		i915_vma_unlock(batch);
	}
	i915_vma_unpin(batch);
	if (err)
		goto out_pool;

	cmd = i915_gem_object_pin_map(batch->obj,
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}

	/* Return with batch mapping (cmd) still pinned */
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
	cache->rq_vma = batch;

out_pool:
	intel_gt_buffer_pool_put(pool);
	return err;
}

static unsigned int reloc_bb_flags(const struct reloc_cache *cache)
{
	return cache->gen > 5 ? 0 : I915_DISPATCH_SECURE;
}

1026
static int reloc_gpu_flush(struct reloc_cache *cache)
1027
{
1028 1029
	struct i915_request *rq;
	int err;
1030

1031 1032
	rq = fetch_and_zero(&cache->rq);
	if (!rq)
1033
		return 0;
1034

1035 1036
	if (cache->rq_vma) {
		struct drm_i915_gem_object *obj = cache->rq_vma->obj;
1037

1038 1039
		GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
		cache->rq_cmd[cache->rq_size++] = MI_BATCH_BUFFER_END;
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		__i915_gem_object_flush_map(obj,
					    0, sizeof(u32) * cache->rq_size);
		i915_gem_object_unpin_map(obj);
	}

	err = 0;
	if (rq->engine->emit_init_breadcrumb)
		err = rq->engine->emit_init_breadcrumb(rq);
	if (!err)
		err = rq->engine->emit_bb_start(rq,
						rq->batch->node.start,
						PAGE_SIZE,
						reloc_bb_flags(cache));
	if (err)
		i915_request_set_error_once(rq, err);

	intel_gt_chipset_flush(rq->engine->gt);
	i915_request_add(rq);
1059 1060

	return err;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	int err;

	i915_vma_lock(vma);

	if (obj->cache_dirty & ~obj->cache_coherent)
		i915_gem_clflush_object(obj, 0);
	obj->write_domain = 0;

	err = i915_request_await_object(rq, vma->obj, true);
	if (err == 0)
		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);

	i915_vma_unlock(vma);

	return err;
}

1083
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1084
			     struct intel_engine_cs *engine,
1085 1086 1087
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
1088
	struct intel_gt_buffer_pool_node *pool;
1089
	struct i915_request *rq;
1090 1091 1092 1093
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1094
	pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1095 1096
	if (IS_ERR(pool))
		return PTR_ERR(pool);
1097

1098
	cmd = i915_gem_object_pin_map(pool->obj,
1099 1100 1101
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1102 1103 1104 1105
	if (IS_ERR(cmd)) {
		err = PTR_ERR(cmd);
		goto out_pool;
	}
1106

1107
	batch = i915_vma_instance(pool->obj, eb->context->vm, NULL);
1108 1109 1110 1111 1112 1113 1114 1115 1116
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1117 1118 1119 1120 1121 1122 1123
	if (engine == eb->context->engine) {
		rq = i915_request_create(eb->context);
	} else {
		struct intel_context *ce;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
1124
			err = PTR_ERR(ce);
1125 1126 1127 1128 1129 1130 1131 1132 1133
			goto err_unpin;
		}

		i915_vm_put(ce->vm);
		ce->vm = i915_vm_get(eb->context->vm);

		rq = intel_context_create_request(ce);
		intel_context_put(ce);
	}
1134 1135 1136 1137 1138
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1139
	err = intel_gt_buffer_pool_mark_active(pool, rq);
1140 1141 1142
	if (err)
		goto err_request;

1143
	i915_vma_lock(batch);
1144 1145 1146
	err = i915_request_await_object(rq, batch->obj, false);
	if (err == 0)
		err = i915_vma_move_to_active(batch, rq, 0);
1147
	i915_vma_unlock(batch);
1148 1149
	if (err)
		goto skip_request;
1150 1151

	rq->batch = batch;
1152
	i915_vma_unpin(batch);
1153 1154 1155 1156

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;
1157
	cache->rq_vma = batch;
1158 1159

	/* Return with batch mapping (cmd) still pinned */
1160
	goto out_pool;
1161

1162
skip_request:
1163
	i915_request_set_error_once(rq, err);
1164
err_request:
1165
	i915_request_add(rq);
1166 1167 1168
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
1169 1170
	i915_gem_object_unpin_map(pool->obj);
out_pool:
1171
	intel_gt_buffer_pool_put(pool);
1172 1173 1174
	return err;
}

1175 1176 1177 1178 1179
static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
{
	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
}

1180 1181 1182 1183 1184 1185
static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;
1186
	int err;
1187 1188

	if (unlikely(!cache->rq)) {
1189 1190
		struct intel_engine_cs *engine = eb->engine;

1191
		if (!reloc_can_use_engine(engine)) {
1192
			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1193
			if (!engine)
1194 1195
				return ERR_PTR(-ENODEV);
		}
1196

1197
		err = __reloc_gpu_alloc(eb, engine, len);
1198 1199 1200 1201
		if (unlikely(err))
			return ERR_PTR(err);
	}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (vma != cache->target) {
		err = reloc_move_to_gpu(cache->rq, vma);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}

		cache->target = vma;
	}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	if (unlikely(cache->rq_size + len >
		     PAGE_SIZE / sizeof(u32) - RELOC_TAIL)) {
		err = reloc_gpu_chain(cache);
		if (unlikely(err)) {
			i915_request_set_error_once(cache->rq, err);
			return ERR_PTR(err);
		}
	}

	GEM_BUG_ON(cache->rq_size + len >= PAGE_SIZE  / sizeof(u32));
1222 1223 1224 1225 1226 1227
	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1228
static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1229
{
1230 1231
	struct page *page;
	unsigned long addr;
1232

1233
	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1234

1235 1236 1237
	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
	addr = PFN_PHYS(page_to_pfn(page));
	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1238

1239 1240 1241
	return addr + offset_in_page(offset);
}

1242 1243 1244 1245
static int __reloc_entry_gpu(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     u64 offset,
			     u64 target_addr)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
{
	const unsigned int gen = eb->reloc_cache.gen;
	unsigned int len;
	u32 *batch;
	u64 addr;

	if (gen >= 8)
		len = offset & 7 ? 8 : 5;
	else if (gen >= 4)
		len = 4;
	else
		len = 3;

	batch = reloc_gpu(eb, vma, len);
	if (IS_ERR(batch))
1261
		return PTR_ERR(batch);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	addr = gen8_canonical_addr(vma->node.start + offset);
	if (gen >= 8) {
		if (offset & 7) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);

			addr = gen8_canonical_addr(addr + 4);
1272 1273

			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1274 1275 1276
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = upper_32_bits(target_addr);
1277
		} else {
1278 1279 1280 1281 1282
			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
			*batch++ = lower_32_bits(addr);
			*batch++ = upper_32_bits(addr);
			*batch++ = lower_32_bits(target_addr);
			*batch++ = upper_32_bits(target_addr);
1283
		}
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	} else if (gen >= 6) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (IS_I965G(eb->i915)) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4;
		*batch++ = 0;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
	} else if (gen >= 4) {
		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
		*batch++ = 0;
		*batch++ = addr;
		*batch++ = target_addr;
	} else if (gen >= 3 &&
		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*batch++ = addr;
		*batch++ = target_addr;
	} else {
		*batch++ = MI_STORE_DWORD_IMM;
		*batch++ = vma_phys_addr(vma, offset);
		*batch++ = target_addr;
1308 1309
	}

1310
	return 0;
1311 1312 1313
}

static u64
1314 1315
relocate_entry(struct i915_execbuffer *eb,
	       struct i915_vma *vma,
1316 1317 1318 1319
	       const struct drm_i915_gem_relocation_entry *reloc,
	       const struct i915_vma *target)
{
	u64 target_addr = relocation_target(reloc, target);
1320 1321 1322 1323 1324
	int err;

	err = __reloc_entry_gpu(eb, vma, reloc->offset, target_addr);
	if (err)
		return err;
1325

1326
	return target->node.start | UPDATE;
1327 1328
}

1329 1330
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
1331
		  struct eb_vma *ev,
1332
		  const struct drm_i915_gem_relocation_entry *reloc)
1333
{
1334
	struct drm_i915_private *i915 = eb->i915;
1335
	struct eb_vma *target;
1336
	int err;
1337

1338
	/* we've already hold a reference to all valid objects */
1339 1340
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1341
		return -ENOENT;
1342

1343
	/* Validate that the target is in a valid r/w GPU domain */
1344
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1345
		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1346
			  "target %d offset %d "
1347
			  "read %08x write %08x",
1348
			  reloc->target_handle,
1349 1350 1351
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1352
		return -EINVAL;
1353
	}
1354 1355
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1356
		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1357
			  "target %d offset %d "
1358
			  "read %08x write %08x",
1359
			  reloc->target_handle,
1360 1361 1362
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1363
		return -EINVAL;
1364 1365
	}

1366
	if (reloc->write_domain) {
1367
		target->flags |= EXEC_OBJECT_WRITE;
1368

1369 1370 1371 1372 1373 1374 1375
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1376
		    IS_GEN(eb->i915, 6)) {
1377 1378
			err = i915_vma_bind(target->vma,
					    target->vma->obj->cache_level,
1379
					    PIN_GLOBAL, NULL);
1380
			if (err)
1381 1382
				return err;
		}
1383
	}
1384

1385 1386
	/*
	 * If the relocation already has the right value in it, no
1387 1388
	 * more work needs to be done.
	 */
1389
	if (gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1390
		return 0;
1391 1392

	/* Check that the relocation address is valid... */
1393
	if (unlikely(reloc->offset >
1394
		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1395
		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1396 1397 1398
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
1399
			  (int)ev->vma->size);
1400
		return -EINVAL;
1401
	}
1402
	if (unlikely(reloc->offset & 3)) {
1403
		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1404 1405 1406
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1407
		return -EINVAL;
1408 1409
	}

1410 1411 1412 1413 1414 1415
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1416
	 * out of our synchronisation.
1417
	 */
1418
	ev->flags &= ~EXEC_OBJECT_ASYNC;
1419

1420
	/* and update the user's relocation entry */
1421
	return relocate_entry(eb, ev->vma, reloc, target->vma);
1422 1423
}

1424
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1425
{
1426
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1427
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1428
	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1429 1430 1431
	struct drm_i915_gem_relocation_entry __user *urelocs =
		u64_to_user_ptr(entry->relocs_ptr);
	unsigned long remain = entry->relocation_count;
1432

1433
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1434
		return -EINVAL;
1435

1436 1437 1438 1439 1440
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1441
	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1442 1443 1444 1445 1446
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
1447
			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1448
		unsigned int copied;
1449

1450 1451
		/*
		 * This is the fast path and we cannot handle a pagefault
1452 1453 1454 1455 1456 1457
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
1458
		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1459 1460
		if (unlikely(copied))
			return -EFAULT;
1461

1462
		remain -= count;
1463
		do {
1464
			u64 offset = eb_relocate_entry(eb, ev, r);
1465

1466 1467
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
1468
				return (int)offset;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
1492 1493
				__put_user(offset,
					   &urelocs[r - stack].presumed_offset);
1494
			}
1495 1496 1497
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1498 1499

	return 0;
1500 1501
}

1502
static int eb_relocate(struct i915_execbuffer *eb)
1503
{
1504 1505 1506 1507 1508 1509
	int err;

	err = eb_lookup_vmas(eb);
	if (err)
		return err;

1510 1511 1512 1513 1514
	if (!list_empty(&eb->unbound)) {
		err = eb_reserve(eb);
		if (err)
			return err;
	}
1515 1516 1517

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
1518
		struct eb_vma *ev;
1519
		int flush;
1520

1521
		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1522 1523
			err = eb_relocate_vma(eb, ev);
			if (err)
1524
				break;
1525
		}
1526 1527 1528 1529

		flush = reloc_gpu_flush(&eb->reloc_cache);
		if (!err)
			err = flush;
1530 1531
	}

1532
	return err;
1533 1534 1535 1536 1537
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
1538
	struct ww_acquire_ctx acquire;
1539
	unsigned int i;
1540 1541 1542
	int err = 0;

	ww_acquire_init(&acquire, &reservation_ww_class);
1543

1544
	for (i = 0; i < count; i++) {
1545 1546
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
1547 1548 1549 1550 1551 1552 1553

		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
		if (err == -EDEADLK) {
			GEM_BUG_ON(i == 0);
			do {
				int j = i - 1;

1554
				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

				swap(eb->vma[i],  eb->vma[j]);
			} while (--i);

			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
							       &acquire);
		}
		if (err)
			break;
	}
	ww_acquire_done(&acquire);

	while (i--) {
1568 1569 1570
		struct eb_vma *ev = &eb->vma[i];
		struct i915_vma *vma = ev->vma;
		unsigned int flags = ev->flags;
1571
		struct drm_i915_gem_object *obj = vma->obj;
1572

1573 1574
		assert_vma_held(vma);

1575
		if (flags & EXEC_OBJECT_CAPTURE) {
1576
			struct i915_capture_list *capture;
1577 1578

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1579 1580 1581 1582 1583
			if (capture) {
				capture->next = eb->request->capture_list;
				capture->vma = vma;
				eb->request->capture_list = capture;
			}
1584 1585
		}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1599
			if (i915_gem_clflush_object(obj, 0))
1600
				flags &= ~EXEC_OBJECT_ASYNC;
1601 1602
		}

1603 1604 1605 1606
		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
			err = i915_request_await_object
				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
		}
1607

1608 1609
		if (err == 0)
			err = i915_vma_move_to_active(vma, eb->request, flags);
1610

1611
		i915_vma_unlock(vma);
1612
		eb_unreserve_vma(ev);
1613
	}
1614 1615
	ww_acquire_fini(&acquire);

1616 1617
	eb_vma_array_put(fetch_and_zero(&eb->array));

1618 1619 1620
	if (unlikely(err))
		goto err_skip;

1621
	/* Unconditionally flush any chipset caches (for streaming writes). */
1622
	intel_gt_chipset_flush(eb->engine->gt);
1623
	return 0;
1624 1625

err_skip:
1626
	i915_request_set_error_once(eb->request, err);
1627
	return err;
1628 1629
}

T
Tvrtko Ursulin 已提交
1630
static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1631
{
1632
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
T
Tvrtko Ursulin 已提交
1633
		return -EINVAL;
1634

C
Chris Wilson 已提交
1635
	/* Kernel clipping was a DRI1 misfeature */
1636 1637
	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
			     I915_EXEC_USE_EXTENSIONS))) {
1638
		if (exec->num_cliprects || exec->cliprects_ptr)
T
Tvrtko Ursulin 已提交
1639
			return -EINVAL;
1640
	}
C
Chris Wilson 已提交
1641 1642 1643 1644 1645 1646

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
T
Tvrtko Ursulin 已提交
1647
		return -EINVAL;
C
Chris Wilson 已提交
1648 1649

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
T
Tvrtko Ursulin 已提交
1650
		return -EINVAL;
C
Chris Wilson 已提交
1651

T
Tvrtko Ursulin 已提交
1652
	return 0;
1653 1654
}

1655
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1656
{
1657 1658
	u32 *cs;
	int i;
1659

1660 1661
	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
1662 1663
		return -EINVAL;
	}
1664

1665
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1666 1667
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1668

1669
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1670
	for (i = 0; i < 4; i++) {
1671 1672
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1673
	}
1674
	*cs++ = MI_NOOP;
1675
	intel_ring_advance(rq, cs);
1676 1677 1678 1679

	return 0;
}

1680
static struct i915_vma *
1681 1682 1683
shadow_batch_pin(struct drm_i915_gem_object *obj,
		 struct i915_address_space *vm,
		 unsigned int flags)
1684
{
1685 1686
	struct i915_vma *vma;
	int err;
1687

1688 1689 1690 1691 1692 1693 1694 1695 1696
	vma = i915_vma_instance(obj, vm, NULL);
	if (IS_ERR(vma))
		return vma;

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return ERR_PTR(err);

	return vma;
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
struct eb_parse_work {
	struct dma_fence_work base;
	struct intel_engine_cs *engine;
	struct i915_vma *batch;
	struct i915_vma *shadow;
	struct i915_vma *trampoline;
	unsigned int batch_offset;
	unsigned int batch_length;
};

static int __eb_parse(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	return intel_engine_cmd_parser(pw->engine,
				       pw->batch,
				       pw->batch_offset,
				       pw->batch_length,
				       pw->shadow,
				       pw->trampoline);
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static void __eb_parse_release(struct dma_fence_work *work)
{
	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);

	if (pw->trampoline)
		i915_active_release(&pw->trampoline->active);
	i915_active_release(&pw->shadow->active);
	i915_active_release(&pw->batch->active);
}

1731 1732 1733
static const struct dma_fence_work_ops eb_parse_ops = {
	.name = "eb_parse",
	.work = __eb_parse,
1734
	.release = __eb_parse_release,
1735 1736
};

1737 1738 1739 1740 1741 1742 1743
static inline int
__parser_mark_active(struct i915_vma *vma,
		     struct intel_timeline *tl,
		     struct dma_fence *fence)
{
	struct intel_gt_buffer_pool_node *node = vma->private;

1744
	return i915_active_ref(&node->active, tl->fence_context, fence);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
}

static int
parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
{
	int err;

	mutex_lock(&tl->mutex);

	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
	if (err)
		goto unlock;

	if (pw->trampoline) {
		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
		if (err)
			goto unlock;
	}

unlock:
	mutex_unlock(&tl->mutex);
	return err;
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static int eb_parse_pipeline(struct i915_execbuffer *eb,
			     struct i915_vma *shadow,
			     struct i915_vma *trampoline)
{
	struct eb_parse_work *pw;
	int err;

	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
	if (!pw)
		return -ENOMEM;

1780
	err = i915_active_acquire(&eb->batch->vma->active);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	if (err)
		goto err_free;

	err = i915_active_acquire(&shadow->active);
	if (err)
		goto err_batch;

	if (trampoline) {
		err = i915_active_acquire(&trampoline->active);
		if (err)
			goto err_shadow;
	}

1794 1795 1796
	dma_fence_work_init(&pw->base, &eb_parse_ops);

	pw->engine = eb->engine;
1797
	pw->batch = eb->batch->vma;
1798 1799 1800 1801 1802
	pw->batch_offset = eb->batch_start_offset;
	pw->batch_length = eb->batch_len;
	pw->shadow = shadow;
	pw->trampoline = trampoline;

1803 1804 1805 1806 1807
	/* Mark active refs early for this worker, in case we get interrupted */
	err = parser_mark_active(pw, eb->context->timeline);
	if (err)
		goto err_commit;

1808 1809
	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
	if (err)
1810
		goto err_commit;
1811 1812 1813

	err = dma_resv_reserve_shared(pw->batch->resv, 1);
	if (err)
1814
		goto err_commit_unlock;
1815 1816 1817 1818 1819 1820

	/* Wait for all writes (and relocs) into the batch to complete */
	err = i915_sw_fence_await_reservation(&pw->base.chain,
					      pw->batch->resv, NULL, false,
					      0, I915_FENCE_GFP);
	if (err < 0)
1821
		goto err_commit_unlock;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

	/* Keep the batch alive and unwritten as we parse */
	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);

	dma_resv_unlock(pw->batch->resv);

	/* Force execution to wait for completion of the parser */
	dma_resv_lock(shadow->resv, NULL);
	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
	dma_resv_unlock(shadow->resv);

1833
	dma_fence_work_commit_imm(&pw->base);
1834 1835
	return 0;

1836
err_commit_unlock:
1837
	dma_resv_unlock(pw->batch->resv);
1838 1839 1840 1841 1842
err_commit:
	i915_sw_fence_set_error_once(&pw->base.chain, err);
	dma_fence_work_commit_imm(&pw->base);
	return err;

1843 1844 1845
err_shadow:
	i915_active_release(&shadow->active);
err_batch:
1846
	i915_active_release(&eb->batch->vma->active);
1847
err_free:
1848 1849 1850 1851
	kfree(pw);
	return err;
}

1852
static int eb_parse(struct i915_execbuffer *eb)
1853
{
1854
	struct drm_i915_private *i915 = eb->i915;
1855
	struct intel_gt_buffer_pool_node *pool;
1856 1857
	struct i915_vma *shadow, *trampoline;
	unsigned int len;
1858
	int err;
1859

1860 1861 1862
	if (!eb_use_cmdparser(eb))
		return 0;

1863 1864 1865 1866 1867 1868 1869
	len = eb->batch_len;
	if (!CMDPARSER_USES_GGTT(eb->i915)) {
		/*
		 * ppGTT backed shadow buffers must be mapped RO, to prevent
		 * post-scan tampering
		 */
		if (!eb->context->vm->has_read_only) {
1870 1871
			drm_dbg(&i915->drm,
				"Cannot prevent post-scan tampering without RO capable vm\n");
1872 1873 1874 1875 1876 1877
			return -EINVAL;
		}
	} else {
		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
	}

1878
	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
1879
	if (IS_ERR(pool))
1880
		return PTR_ERR(pool);
1881

1882 1883 1884
	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
	if (IS_ERR(shadow)) {
		err = PTR_ERR(shadow);
1885
		goto err;
1886
	}
1887
	i915_gem_object_set_readonly(shadow->obj);
1888
	shadow->private = pool;
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	trampoline = NULL;
	if (CMDPARSER_USES_GGTT(eb->i915)) {
		trampoline = shadow;

		shadow = shadow_batch_pin(pool->obj,
					  &eb->engine->gt->ggtt->vm,
					  PIN_GLOBAL);
		if (IS_ERR(shadow)) {
			err = PTR_ERR(shadow);
			shadow = trampoline;
			goto err_shadow;
		}
1902
		shadow->private = pool;
1903 1904 1905

		eb->batch_flags |= I915_DISPATCH_SECURE;
	}
1906

1907
	err = eb_parse_pipeline(eb, shadow, trampoline);
1908 1909
	if (err)
		goto err_trampoline;
1910

1911
	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1912
	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1913
	eb->batch = &eb->vma[eb->buffer_count++];
1914
	eb->vma[eb->buffer_count].vma = NULL;
1915

1916
	eb->trampoline = trampoline;
1917 1918
	eb->batch_start_offset = 0;

1919
	return 0;
1920

1921 1922 1923 1924 1925
err_trampoline:
	if (trampoline)
		i915_vma_unpin(trampoline);
err_shadow:
	i915_vma_unpin(shadow);
1926
err:
1927
	intel_gt_buffer_pool_put(pool);
1928
	return err;
1929
}
1930

1931
static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1932
{
1933
	int err;
1934

1935 1936 1937
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
1938

1939
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1940 1941 1942
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
1943 1944
	}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	/*
	 * After we completed waiting for other engines (using HW semaphores)
	 * then we can signal that this request/batch is ready to run. This
	 * allows us to determine if the batch is still waiting on the GPU
	 * or actually running by checking the breadcrumb.
	 */
	if (eb->engine->emit_init_breadcrumb) {
		err = eb->engine->emit_init_breadcrumb(eb->request);
		if (err)
			return err;
	}

1957
	err = eb->engine->emit_bb_start(eb->request,
1958
					batch->node.start +
1959 1960
					eb->batch_start_offset,
					eb->batch_len,
1961 1962 1963
					eb->batch_flags);
	if (err)
		return err;
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	if (eb->trampoline) {
		GEM_BUG_ON(eb->batch_start_offset);
		err = eb->engine->emit_bb_start(eb->request,
						eb->trampoline->node.start +
						eb->batch_len,
						0, 0);
		if (err)
			return err;
	}

1975
	if (intel_context_nopreempt(eb->context))
1976
		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1977

C
Chris Wilson 已提交
1978
	return 0;
1979 1980
}

1981 1982
static int num_vcs_engines(const struct drm_i915_private *i915)
{
1983
	return hweight64(VDBOX_MASK(&i915->gt));
1984 1985
}

1986
/*
1987
 * Find one BSD ring to dispatch the corresponding BSD command.
1988
 * The engine index is returned.
1989
 */
1990
static unsigned int
1991 1992
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
1993 1994 1995
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

1996
	/* Check whether the file_priv has already selected one ring. */
1997
	if ((int)file_priv->bsd_engine < 0)
1998 1999
		file_priv->bsd_engine =
			get_random_int() % num_vcs_engines(dev_priv);
2000

2001
	return file_priv->bsd_engine;
2002 2003
}

2004
static const enum intel_engine_id user_ring_map[] = {
2005 2006 2007 2008 2009
	[I915_EXEC_DEFAULT]	= RCS0,
	[I915_EXEC_RENDER]	= RCS0,
	[I915_EXEC_BLT]		= BCS0,
	[I915_EXEC_BSD]		= VCS0,
	[I915_EXEC_VEBOX]	= VECS0
2010 2011
};

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
static struct i915_request *eb_throttle(struct intel_context *ce)
{
	struct intel_ring *ring = ce->ring;
	struct intel_timeline *tl = ce->timeline;
	struct i915_request *rq;

	/*
	 * Completely unscientific finger-in-the-air estimates for suitable
	 * maximum user request size (to avoid blocking) and then backoff.
	 */
	if (intel_ring_update_space(ring) >= PAGE_SIZE)
		return NULL;

	/*
	 * Find a request that after waiting upon, there will be at least half
	 * the ring available. The hysteresis allows us to compete for the
	 * shared ring and should mean that we sleep less often prior to
	 * claiming our resources, but not so long that the ring completely
	 * drains before we can submit our next request.
	 */
	list_for_each_entry(rq, &tl->requests, link) {
		if (rq->ring != ring)
			continue;

		if (__intel_ring_space(rq->postfix,
				       ring->emit, ring->size) > ring->size / 2)
			break;
	}
	if (&rq->link == &tl->requests)
		return NULL; /* weird, we will check again later for real */

	return i915_request_get(rq);
}

static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
{
	struct intel_timeline *tl;
	struct i915_request *rq;
	int err;

2052 2053 2054 2055
	/*
	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged.
	 */
2056
	err = intel_gt_terminally_wedged(ce->engine->gt);
2057 2058 2059
	if (err)
		return err;

2060 2061 2062
	if (unlikely(intel_context_is_banned(ce)))
		return -EIO;

2063 2064 2065 2066 2067
	/*
	 * Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
2068
	err = intel_context_pin(ce);
2069 2070
	if (err)
		return err;
2071

2072 2073 2074 2075 2076 2077 2078 2079
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
	 * we expect to access the hardware fairly frequently in the
	 * process, and require the engine to be kept awake between accesses.
	 * Upon dispatch, we acquire another prolonged wakeref that we hold
	 * until the timeline is idle, which in turn releases the wakeref
	 * taken on the engine, and the parent device.
	 */
2080 2081 2082
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl)) {
		err = PTR_ERR(tl);
2083
		goto err_unpin;
2084
	}
2085 2086

	intel_context_enter(ce);
2087 2088 2089 2090 2091
	rq = eb_throttle(ce);

	intel_context_timeline_unlock(tl);

	if (rq) {
2092 2093 2094 2095 2096 2097
		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
		long timeout;

		timeout = MAX_SCHEDULE_TIMEOUT;
		if (nonblock)
			timeout = 0;
2098

2099 2100 2101
		timeout = i915_request_wait(rq,
					    I915_WAIT_INTERRUPTIBLE,
					    timeout);
2102
		i915_request_put(rq);
2103 2104 2105 2106 2107

		if (timeout < 0) {
			err = nonblock ? -EWOULDBLOCK : timeout;
			goto err_exit;
		}
2108
	}
2109

2110
	eb->engine = ce->engine;
2111 2112
	eb->context = ce;
	return 0;
2113

2114 2115 2116 2117
err_exit:
	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	intel_context_timeline_unlock(tl);
2118
err_unpin:
2119
	intel_context_unpin(ce);
2120
	return err;
2121 2122
}

2123
static void eb_unpin_engine(struct i915_execbuffer *eb)
2124
{
2125
	struct intel_context *ce = eb->context;
2126
	struct intel_timeline *tl = ce->timeline;
2127 2128 2129 2130 2131

	mutex_lock(&tl->mutex);
	intel_context_exit(ce);
	mutex_unlock(&tl->mutex);

2132
	intel_context_unpin(ce);
2133
}
2134

2135 2136 2137 2138
static unsigned int
eb_select_legacy_ring(struct i915_execbuffer *eb,
		      struct drm_file *file,
		      struct drm_i915_gem_execbuffer2 *args)
2139
{
2140
	struct drm_i915_private *i915 = eb->i915;
2141 2142
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;

2143 2144
	if (user_ring_id != I915_EXEC_BSD &&
	    (args->flags & I915_EXEC_BSD_MASK)) {
2145 2146 2147
		drm_dbg(&i915->drm,
			"execbuf with non bsd ring but with invalid "
			"bsd dispatch flags: %d\n", (int)(args->flags));
2148
		return -1;
2149 2150
	}

2151
	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2152 2153 2154
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2155
			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2156 2157
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2158
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2159 2160
			bsd_idx--;
		} else {
2161 2162 2163
			drm_dbg(&i915->drm,
				"execbuf with unknown bsd ring: %u\n",
				bsd_idx);
2164
			return -1;
2165 2166
		}

2167
		return _VCS(bsd_idx);
2168 2169
	}

2170
	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2171 2172
		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
			user_ring_id);
2173
		return -1;
2174 2175
	}

2176 2177 2178 2179
	return user_ring_map[user_ring_id];
}

static int
2180 2181 2182
eb_pin_engine(struct i915_execbuffer *eb,
	      struct drm_file *file,
	      struct drm_i915_gem_execbuffer2 *args)
2183 2184 2185 2186 2187
{
	struct intel_context *ce;
	unsigned int idx;
	int err;

2188 2189 2190 2191
	if (i915_gem_context_user_engines(eb->gem_context))
		idx = args->flags & I915_EXEC_RING_MASK;
	else
		idx = eb_select_legacy_ring(eb, file, args);
2192 2193 2194 2195 2196

	ce = i915_gem_context_get_engine(eb->gem_context, idx);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

2197
	err = __eb_pin_engine(eb, ce);
2198 2199 2200
	intel_context_put(ce);

	return err;
2201 2202
}

2203
static void
2204
__free_fence_array(struct eb_fence *fences, unsigned int n)
2205
{
2206
	while (n--) {
2207
		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2208 2209 2210
		dma_fence_put(fences[n].dma_fence);
		kfree(fences[n].chain_fence);
	}
2211 2212 2213
	kvfree(fences);
}

2214
static int
2215 2216
add_timeline_fence_array(struct i915_execbuffer *eb,
			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2217
{
2218 2219 2220 2221 2222
	struct drm_i915_gem_exec_fence __user *user_fences;
	u64 __user *user_values;
	struct eb_fence *f;
	u64 nfences;
	int err = 0;
2223

2224 2225
	nfences = timeline_fences->fence_count;
	if (!nfences)
2226
		return 0;
2227

2228 2229 2230
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
2231 2232
			    ULONG_MAX / sizeof(*user_fences),
			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2233
		return -EINVAL;
2234

2235 2236 2237 2238 2239 2240
	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
		return -EFAULT;

	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2241
		return -EFAULT;
2242

2243 2244 2245 2246
	f = krealloc(eb->fences,
		     (eb->num_fences + nfences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
2247
		return -ENOMEM;
2248

2249 2250 2251 2252 2253 2254 2255 2256
	eb->fences = f;
	f += eb->num_fences;

	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

	while (nfences--) {
		struct drm_i915_gem_exec_fence user_fence;
2257
		struct drm_syncobj *syncobj;
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		struct dma_fence *fence = NULL;
		u64 point;

		if (__copy_from_user(&user_fence,
				     user_fences++,
				     sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		if (__get_user(point, user_values++))
			return -EFAULT;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			return -ENOENT;
		}

		fence = drm_syncobj_fence_get(syncobj);
2279

2280 2281 2282 2283 2284
		if (!fence && user_fence.flags &&
		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle has no fence\n");
			drm_syncobj_put(syncobj);
			return -EINVAL;
2285 2286
		}

2287 2288 2289 2290 2291
		if (fence)
			err = dma_fence_chain_find_seqno(&fence, point);

		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2292
			dma_fence_put(fence);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
			drm_syncobj_put(syncobj);
			return err;
		}

		/*
		 * A point might have been signaled already and
		 * garbage collected from the timeline. In this case
		 * just ignore the point and carry on.
		 */
		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
			drm_syncobj_put(syncobj);
			continue;
		}

		/*
		 * For timeline syncobjs we need to preallocate chains for
		 * later signaling.
		 */
		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
			/*
			 * Waiting and signaling the same point (when point !=
			 * 0) would break the timeline.
			 */
			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
				dma_fence_put(fence);
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}

			f->chain_fence =
				kmalloc(sizeof(*f->chain_fence),
					GFP_KERNEL);
			if (!f->chain_fence) {
				drm_syncobj_put(syncobj);
				dma_fence_put(fence);
				return -ENOMEM;
			}
		} else {
			f->chain_fence = NULL;
2333 2334
		}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = point;
		f++;
		eb->num_fences++;
	}

	return 0;
}

static int add_fence_array(struct i915_execbuffer *eb)
{
	struct drm_i915_gem_execbuffer2 *args = eb->args;
	struct drm_i915_gem_exec_fence __user *user;
	unsigned long num_fences = args->num_cliprects;
	struct eb_fence *f;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return 0;

	if (!num_fences)
		return 0;

	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (num_fences > min_t(unsigned long,
			       ULONG_MAX / sizeof(*user),
			       SIZE_MAX / sizeof(*f) - eb->num_fences))
		return -EINVAL;

	user = u64_to_user_ptr(args->cliprects_ptr);
	if (!access_ok(user, num_fences * sizeof(*user)))
		return -EFAULT;

	f = krealloc(eb->fences,
		     (eb->num_fences + num_fences) * sizeof(*f),
		     __GFP_NOWARN | GFP_KERNEL);
	if (!f)
		return -ENOMEM;

	eb->fences = f;
	f += eb->num_fences;
	while (num_fences--) {
		struct drm_i915_gem_exec_fence user_fence;
		struct drm_syncobj *syncobj;
		struct dma_fence *fence = NULL;

		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
			return -EFAULT;

		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
			return -EINVAL;

		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2389 2390
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
			return -ENOENT;
		}

		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
			fence = drm_syncobj_fence_get(syncobj);
			if (!fence) {
				DRM_DEBUG("Syncobj handle has no fence\n");
				drm_syncobj_put(syncobj);
				return -EINVAL;
			}
2401 2402
		}

2403 2404 2405
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2406 2407 2408 2409 2410 2411
		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
		f->dma_fence = fence;
		f->value = 0;
		f->chain_fence = NULL;
		f++;
		eb->num_fences++;
2412 2413
	}

2414
	return 0;
2415
}
2416

2417 2418 2419 2420
static void put_fence_array(struct eb_fence *fences, int num_fences)
{
	if (fences)
		__free_fence_array(fences, num_fences);
2421 2422 2423
}

static int
2424
await_fence_array(struct i915_execbuffer *eb)
2425 2426 2427 2428
{
	unsigned int n;
	int err;

2429
	for (n = 0; n < eb->num_fences; n++) {
2430 2431 2432
		struct drm_syncobj *syncobj;
		unsigned int flags;

2433
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2434

2435 2436
		if (!eb->fences[n].dma_fence)
			continue;
2437

2438 2439
		err = i915_request_await_dma_fence(eb->request,
						   eb->fences[n].dma_fence);
2440 2441 2442 2443 2444 2445 2446
		if (err < 0)
			return err;
	}

	return 0;
}

2447
static void signal_fence_array(const struct i915_execbuffer *eb)
2448 2449 2450 2451
{
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

2452
	for (n = 0; n < eb->num_fences; n++) {
2453 2454 2455
		struct drm_syncobj *syncobj;
		unsigned int flags;

2456
		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2457 2458 2459
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
		if (eb->fences[n].chain_fence) {
			drm_syncobj_add_point(syncobj,
					      eb->fences[n].chain_fence,
					      fence,
					      eb->fences[n].value);
			/*
			 * The chain's ownership is transferred to the
			 * timeline.
			 */
			eb->fences[n].chain_fence = NULL;
		} else {
			drm_syncobj_replace_fence(syncobj, fence);
		}
2473 2474 2475
	}
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
static int
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
{
	struct i915_execbuffer *eb = data;
	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;

	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
		return -EFAULT;

	return add_timeline_fence_array(eb, &timeline_fences);
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
{
	struct i915_request *rq, *rn;

	list_for_each_entry_safe(rq, rn, &tl->requests, link)
		if (rq == end || !i915_request_retire(rq))
			break;
}

static void eb_request_add(struct i915_execbuffer *eb)
{
	struct i915_request *rq = eb->request;
	struct intel_timeline * const tl = i915_request_timeline(rq);
	struct i915_sched_attr attr = {};
	struct i915_request *prev;

	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

	/* Check that the context wasn't destroyed before submission */
2512
	if (likely(!intel_context_is_closed(eb->context))) {
2513 2514 2515
		attr = eb->gem_context->sched;
	} else {
		/* Serialise with context_close via the add_to_timeline */
2516 2517
		i915_request_set_error_once(rq, -ENOENT);
		__i915_request_skip(rq);
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	}

	__i915_request_queue(rq, &attr);

	/* Try to clean up the client's timeline after submitting the request */
	if (prev)
		retire_requests(tl, prev);

	mutex_unlock(&tl->mutex);
}

2529
static const i915_user_extension_fn execbuf_extensions[] = {
2530
	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
};

static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
			  struct i915_execbuffer *eb)
{
	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
		return 0;

	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
	 * have another flag also using it at the same time.
	 */
	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
		return -EINVAL;

	if (args->num_cliprects != 0)
		return -EINVAL;

	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
				    execbuf_extensions,
				    ARRAY_SIZE(execbuf_extensions),
				    eb);
}

2555
static int
2556
i915_gem_do_execbuffer(struct drm_device *dev,
2557 2558
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2559
		       struct drm_i915_gem_exec_object2 *exec)
2560
{
2561
	struct drm_i915_private *i915 = to_i915(dev);
2562
	struct i915_execbuffer eb;
2563 2564
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
2565
	struct i915_vma *batch;
2566
	int out_fence_fd = -1;
2567
	int err;
2568

2569
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2570 2571
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2572

2573
	eb.i915 = i915;
2574 2575
	eb.file = file;
	eb.args = args;
2576
	if (!(args->flags & I915_EXEC_NO_RELOC))
2577
		args->flags |= __EXEC_HAS_RELOC;
2578

2579
	eb.exec = exec;
2580

2581
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2582 2583
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2584
	eb.buffer_count = args->buffer_count;
2585 2586
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;
2587
	eb.trampoline = NULL;
2588

2589
	eb.fences = NULL;
2590
	eb.num_fences = 0;
2591

2592
	eb.batch_flags = 0;
2593
	if (args->flags & I915_EXEC_SECURE) {
2594 2595 2596 2597 2598 2599 2600
		if (INTEL_GEN(i915) >= 11)
			return -ENODEV;

		/* Return -EPERM to trigger fallback code on old binaries. */
		if (!HAS_SECURE_BATCHES(i915))
			return -EPERM;

2601
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2602
			return -EPERM;
2603

2604
		eb.batch_flags |= I915_DISPATCH_SECURE;
2605
	}
2606
	if (args->flags & I915_EXEC_IS_PINNED)
2607
		eb.batch_flags |= I915_DISPATCH_PINNED;
2608

2609 2610 2611 2612 2613 2614 2615 2616
	err = parse_execbuf2_extensions(args, &eb);
	if (err)
		goto err_ext;

	err = add_fence_array(&eb);
	if (err)
		goto err_ext;

2617 2618 2619 2620 2621
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
	if (args->flags & IN_FENCES) {
		if ((args->flags & IN_FENCES) == IN_FENCES)
			return -EINVAL;

2622
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2623 2624 2625 2626
		if (!in_fence) {
			err = -EINVAL;
			goto err_ext;
		}
2627
	}
2628
#undef IN_FENCES
2629

2630 2631 2632
	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2633
			err = out_fence_fd;
2634
			goto err_in_fence;
2635 2636 2637
		}
	}

2638 2639
	err = eb_create(&eb);
	if (err)
2640
		goto err_out_fence;
2641

2642
	GEM_BUG_ON(!eb.lut_size);
2643

2644 2645 2646 2647
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2648
	err = eb_pin_engine(&eb, file, args);
2649
	if (unlikely(err))
2650
		goto err_context;
2651

2652
	err = eb_relocate(&eb);
2653
	if (err) {
2654 2655 2656 2657 2658 2659 2660 2661 2662
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2663
	}
2664

2665
	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2666 2667
		drm_dbg(&i915->drm,
			"Attempting to use self-modifying batch buffer\n");
2668 2669
		err = -EINVAL;
		goto err_vma;
2670
	}
2671 2672 2673 2674

	if (range_overflows_t(u64,
			      eb.batch_start_offset, eb.batch_len,
			      eb.batch->vma->size)) {
2675
		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2676 2677
		err = -EINVAL;
		goto err_vma;
2678
	}
2679

2680
	if (eb.batch_len == 0)
2681
		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2682

2683 2684 2685
	err = eb_parse(&eb);
	if (err)
		goto err_vma;
2686

2687 2688
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2689
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2690
	 * hsw should have this fixed, but bdw mucks it up again. */
2691
	batch = eb.batch->vma;
2692
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2693
		struct i915_vma *vma;
2694

2695 2696 2697 2698 2699 2700
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2701
		 *   so we don't really have issues with multiple objects not
2702 2703 2704
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2705
		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2706
		if (IS_ERR(vma)) {
2707
			err = PTR_ERR(vma);
2708
			goto err_parse;
C
Chris Wilson 已提交
2709
		}
2710

2711
		batch = vma;
2712
	}
2713

2714 2715 2716
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2717
	/* Allocate a request for this batch buffer nice and early. */
2718
	eb.request = i915_request_create(eb.context);
2719
	if (IS_ERR(eb.request)) {
2720
		err = PTR_ERR(eb.request);
2721
		goto err_batch_unpin;
2722
	}
2723

2724
	if (in_fence) {
2725 2726 2727 2728 2729 2730 2731
		if (args->flags & I915_EXEC_FENCE_SUBMIT)
			err = i915_request_await_execution(eb.request,
							   in_fence,
							   eb.engine->bond_execute);
		else
			err = i915_request_await_dma_fence(eb.request,
							   in_fence);
2732 2733 2734 2735
		if (err < 0)
			goto err_request;
	}

2736
	if (eb.fences) {
2737
		err = await_fence_array(&eb);
2738 2739 2740 2741
		if (err)
			goto err_request;
	}

2742
	if (out_fence_fd != -1) {
2743
		out_fence = sync_file_create(&eb.request->fence);
2744
		if (!out_fence) {
2745
			err = -ENOMEM;
2746 2747 2748 2749
			goto err_request;
		}
	}

2750 2751
	/*
	 * Whilst this request exists, batch_obj will be on the
2752 2753 2754 2755 2756
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2757 2758
	eb.request->batch = batch;
	if (batch->private)
2759
		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2760

2761
	trace_i915_request_queue(eb.request, eb.batch_flags);
2762
	err = eb_submit(&eb, batch);
2763
err_request:
2764
	i915_request_get(eb.request);
2765
	eb_request_add(&eb);
2766

2767
	if (eb.fences)
2768
		signal_fence_array(&eb);
2769

2770
	if (out_fence) {
2771
		if (err == 0) {
2772
			fd_install(out_fence_fd, out_fence->file);
2773
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2774 2775 2776 2777 2778 2779
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2780
	i915_request_put(eb.request);
2781

2782
err_batch_unpin:
2783
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2784
		i915_vma_unpin(batch);
2785
err_parse:
2786
	if (batch->private)
2787
		intel_gt_buffer_pool_put(batch->private);
2788
err_vma:
2789 2790
	if (eb.trampoline)
		i915_vma_unpin(eb.trampoline);
2791
	eb_unpin_engine(&eb);
2792
err_context:
2793
	i915_gem_context_put(eb.gem_context);
2794
err_destroy:
2795
	eb_destroy(&eb);
2796
err_out_fence:
2797 2798
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2799
err_in_fence:
2800
	dma_fence_put(in_fence);
2801 2802
err_ext:
	put_fence_array(eb.fences, eb.num_fences);
2803
	return err;
2804 2805
}

2806 2807
static size_t eb_element_size(void)
{
2808
	return sizeof(struct drm_i915_gem_exec_object2);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2824 2825 2826 2827 2828
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2829 2830
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2831
{
2832
	struct drm_i915_private *i915 = to_i915(dev);
2833 2834 2835 2836
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2837
	const size_t count = args->buffer_count;
2838 2839
	unsigned int i;
	int err;
2840

2841
	if (!check_buffer_count(count)) {
2842
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2843 2844 2845
		return -EINVAL;
	}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

T
Tvrtko Ursulin 已提交
2857 2858 2859
	err = i915_gem_check_execbuffer(&exec2);
	if (err)
		return err;
2860

2861
	/* Copy in the exec list from userland */
2862
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2863
				   __GFP_NOWARN | GFP_KERNEL);
2864
	exec2_list = kvmalloc_array(count, eb_element_size(),
2865
				    __GFP_NOWARN | GFP_KERNEL);
2866
	if (exec_list == NULL || exec2_list == NULL) {
2867 2868 2869
		drm_dbg(&i915->drm,
			"Failed to allocate exec list for %d buffers\n",
			args->buffer_count);
M
Michal Hocko 已提交
2870 2871
		kvfree(exec_list);
		kvfree(exec2_list);
2872 2873
		return -ENOMEM;
	}
2874
	err = copy_from_user(exec_list,
2875
			     u64_to_user_ptr(args->buffers_ptr),
2876
			     sizeof(*exec_list) * count);
2877
	if (err) {
2878 2879
		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
			args->buffer_count, err);
M
Michal Hocko 已提交
2880 2881
		kvfree(exec_list);
		kvfree(exec2_list);
2882 2883 2884 2885 2886 2887 2888 2889 2890
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2891
		if (INTEL_GEN(to_i915(dev)) < 4)
2892 2893 2894 2895 2896
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2897
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
2898
	if (exec2.flags & __EXEC_HAS_RELOC) {
2899
		struct drm_i915_gem_exec_object __user *user_exec_list =
2900
			u64_to_user_ptr(args->buffers_ptr);
2901

2902
		/* Copy the new buffer offsets back to the user's exec list. */
2903
		for (i = 0; i < args->buffer_count; i++) {
2904 2905 2906
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2907
			exec2_list[i].offset =
2908 2909 2910 2911 2912
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2913
				break;
2914 2915 2916
		}
	}

M
Michal Hocko 已提交
2917 2918
	kvfree(exec_list);
	kvfree(exec2_list);
2919
	return err;
2920 2921 2922
}

int
2923 2924
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2925
{
2926
	struct drm_i915_private *i915 = to_i915(dev);
2927
	struct drm_i915_gem_execbuffer2 *args = data;
2928
	struct drm_i915_gem_exec_object2 *exec2_list;
2929
	const size_t count = args->buffer_count;
2930
	int err;
2931

2932
	if (!check_buffer_count(count)) {
2933
		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2934 2935 2936
		return -EINVAL;
	}

T
Tvrtko Ursulin 已提交
2937 2938 2939
	err = i915_gem_check_execbuffer(args);
	if (err)
		return err;
2940

2941
	exec2_list = kvmalloc_array(count, eb_element_size(),
2942
				    __GFP_NOWARN | GFP_KERNEL);
2943
	if (exec2_list == NULL) {
2944 2945
		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
			count);
2946 2947
		return -ENOMEM;
	}
2948 2949
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2950
			   sizeof(*exec2_list) * count)) {
2951
		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2952
		kvfree(exec2_list);
2953 2954 2955
		return -EFAULT;
	}

2956
	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
2957 2958 2959 2960 2961 2962 2963 2964

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2965
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2966 2967
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2968

2969
		/* Copy the new buffer offsets back to the user's exec list. */
2970 2971 2972 2973 2974 2975 2976
		/*
		 * Note: count * sizeof(*user_exec_list) does not overflow,
		 * because we checked 'count' in check_buffer_count().
		 *
		 * And this range already got effectively checked earlier
		 * when we did the "copy_from_user()" above.
		 */
2977 2978
		if (!user_write_access_begin(user_exec_list,
					     count * sizeof(*user_exec_list)))
2979
			goto end;
2980

2981
		for (i = 0; i < args->buffer_count; i++) {
2982 2983 2984
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2985
			exec2_list[i].offset =
2986 2987 2988 2989
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2990
		}
2991
end_user:
2992
		user_write_access_end();
2993
end:;
2994 2995
	}

2996
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
M
Michal Hocko 已提交
2997
	kvfree(exec2_list);
2998
	return err;
2999
}
3000 3001 3002 3003

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_execbuffer.c"
#endif