intel_lrc.c 87.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_lrc_reg.h"
142
#include "intel_mocs.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 169
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
170 171 172 173
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184 185 186 187 188
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
189
	return (intel_engine_has_preemption(engine) &&
190 191
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
192 193
}

194
/*
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205 206
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 223
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
224
{
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

237 238 239 240 241
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
258

259
	ce->lrc_desc = desc;
260 261
}

262
static struct i915_priolist *
263
lookup_priolist(struct intel_engine_cs *engine, int prio)
264
{
265
	struct intel_engine_execlists * const execlists = &engine->execlists;
266 267 268 269
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

270
	if (unlikely(execlists->no_priolist))
271 272 273 274 275
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
276
	parent = &execlists->queue.rb_root.rb_node;
277 278
	while (*parent) {
		rb = *parent;
279
		p = to_priolist(rb);
280 281 282 283 284 285
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
286
			return p;
287 288 289 290
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
291
		p = &execlists->default_priolist;
292 293 294 295 296 297 298 299 300 301 302 303 304 305
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
306
			execlists->no_priolist = true;
307 308 309 310 311
			goto find_priolist;
		}
	}

	p->priority = prio;
312
	INIT_LIST_HEAD(&p->requests);
313
	rb_link_node(&p->node, rb, parent);
314
	rb_insert_color_cached(&p->node, &execlists->queue, first);
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330

331
	lockdep_assert_held(&engine->timeline.lock);
332 333

	list_for_each_entry_safe_reverse(rq, rn,
334
					 &engine->timeline.requests,
335
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
345
			p = lookup_priolist(engine, last_prio);
346
		}
347
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
348

349
		GEM_BUG_ON(p->priority != rq_prio(rq));
350
		list_add(&rq->sched.link, &p->requests);
351 352 353
	}
}

354
void
355 356 357 358 359 360 361 362
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	__unwind_incomplete_requests(engine);
}

363
static inline void
364
execlists_context_status_change(struct i915_request *rq, unsigned long status)
365
{
366 367 368 369 370 371
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
372

373 374
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
375 376
}

377 378 379 380 381 382 383 384 385 386 387 388 389
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

390
static inline void
391
execlists_context_schedule_in(struct i915_request *rq)
392 393
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
394
	intel_engine_context_in(rq->engine);
395 396 397
}

static inline void
398
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
399
{
400
	intel_engine_context_out(rq->engine);
401 402
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
403 404
}

405 406 407 408 409 410 411 412 413
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

414
static u64 execlists_update_context(struct i915_request *rq)
415
{
416
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
417
	struct intel_context *ce = rq->hw_context;
418
	u32 *reg_state = ce->lrc_reg_state;
419

420
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
421

422 423 424 425 426
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
427
	if (!i915_vm_is_48bit(&ppgtt->vm))
428
		execlists_update_context_pdps(ppgtt, reg_state);
429 430

	return ce->lrc_desc;
431 432
}

433
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
434
{
435 436 437 438 439 440 441
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
442 443
}

444
static void execlists_submit_ports(struct intel_engine_cs *engine)
445
{
446 447
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
448
	unsigned int n;
449

450 451 452 453 454 455 456 457 458 459
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

460 461 462 463 464 465 466
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
467
		struct i915_request *rq;
468 469 470 471 472 473 474
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
475
				execlists_context_schedule_in(rq);
476 477 478
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
479

480
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
481
				  engine->name, n,
482
				  port[n].context_id, count,
483
				  rq->global_seqno,
484
				  rq->fence.context, rq->fence.seqno,
485
				  intel_engine_get_seqno(engine),
486
				  rq_prio(rq));
487 488 489 490
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
491

492
		write_desc(execlists, desc, n);
493
	}
494 495 496 497 498 499

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
500 501
}

502
static bool ctx_single_port_submission(const struct intel_context *ce)
503
{
504
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
505
		i915_gem_context_force_single_submission(ce->gem_context));
506
}
507

508 509
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
510 511 512
{
	if (prev != next)
		return false;
513

514 515
	if (ctx_single_port_submission(prev))
		return false;
516

517
	return true;
518 519
}

520
static void port_assign(struct execlist_port *port, struct i915_request *rq)
521 522 523 524
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
525
		i915_request_put(port_request(port));
526

527
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
528 529
}

C
Chris Wilson 已提交
530 531
static void inject_preempt_context(struct intel_engine_cs *engine)
{
532
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
533
	struct intel_context *ce =
534
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
535 536
	unsigned int n;

537
	GEM_BUG_ON(execlists->preempt_complete_status !=
538
		   upper_32_bits(ce->lrc_desc));
539

540 541 542 543
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
544
	GEM_TRACE("%s\n", engine->name);
545 546 547 548 549 550 551 552
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
553

554 555 556 557 558 559 560 561
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

562 563 564
	if (inject_preempt_hang(execlists))
		return;

565
	execlists_cancel_port_requests(execlists);
566 567 568
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
569 570
}

571
static void execlists_dequeue(struct intel_engine_cs *engine)
572
{
573 574
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
575 576
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
577
	struct i915_request *last = port_request(port);
578
	struct rb_node *rb;
579 580
	bool submit = false;

581 582
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
601
	 */
602

C
Chris Wilson 已提交
603 604 605 606 607 608 609
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
610 611
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
612
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
613

614 615 616 617 618 619 620 621
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
622
			return;
623

624
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
625
			inject_preempt_context(engine);
626
			return;
C
Chris Wilson 已提交
627
		}
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
651
			return;
652 653 654 655 656 657 658 659 660 661

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
662 663
	}

664
	while ((rb = rb_first_cached(&execlists->queue))) {
665
		struct i915_priolist *p = to_priolist(rb);
666
		struct i915_request *rq, *rn;
667

668
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
669 670 671 672 673 674 675 676 677 678
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
679
			 */
680 681
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
682 683 684 685 686
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
687
				if (port == last_port) {
688
					__list_del_many(&p->requests,
689
							&rq->sched.link);
690 691 692 693 694 695 696 697 698 699
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
700 701
				if (ctx_single_port_submission(last->hw_context) ||
				    ctx_single_port_submission(rq->hw_context)) {
702
					__list_del_many(&p->requests,
703
							&rq->sched.link);
704 705 706
					goto done;
				}

707
				GEM_BUG_ON(last->hw_context == rq->hw_context);
708 709 710 711

				if (submit)
					port_assign(port, last);
				port++;
712 713

				GEM_BUG_ON(port_isset(port));
714
			}
715

716
			INIT_LIST_HEAD(&rq->sched.link);
717 718
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
719 720
			last = rq;
			submit = true;
721
		}
722

723
		rb_erase_cached(&p->node, &execlists->queue);
724 725
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
726
			kmem_cache_free(engine->i915->priorities, p);
727
	}
728

729
done:
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

749
	if (submit) {
750
		port_assign(port, last);
751 752
		execlists_submit_ports(engine);
	}
753 754

	/* We must always keep the beast fed if we have work piled up */
755 756
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
757

758 759
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
760
		execlists_user_begin(execlists, execlists->port);
761

762 763 764 765
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
766 767
}

768
void
769
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
770
{
771
	struct execlist_port *port = execlists->port;
772
	unsigned int num_ports = execlists_num_ports(execlists);
773

774
	while (num_ports-- && port_isset(port)) {
775
		struct i915_request *rq = port_request(port);
776

777 778 779 780 781 782 783
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

784
		GEM_BUG_ON(!execlists->active);
785 786 787 788
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
789

790
		i915_request_put(rq);
791

792 793 794
		memset(port, 0, sizeof(*port));
		port++;
	}
795

796
	execlists_clear_all_active(execlists);
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = execlists->csb_write_reset;
	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
}

814 815 816 817 818
static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

819 820
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
821
	struct intel_engine_execlists * const execlists = &engine->execlists;
822
	struct i915_request *rq, *rn;
823 824 825
	struct rb_node *rb;
	unsigned long flags;

826 827
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
843
	spin_lock_irqsave(&engine->timeline.lock, flags);
844 845

	/* Cancel the requests on the HW and clear the ELSP tracker. */
846
	execlists_cancel_port_requests(execlists);
847
	execlists_user_end(execlists);
848 849

	/* Mark all executing requests as skipped. */
850
	list_for_each_entry(rq, &engine->timeline.requests, link) {
851
		GEM_BUG_ON(!rq->global_seqno);
852
		if (!i915_request_completed(rq))
853 854 855 856
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
857
	while ((rb = rb_first_cached(&execlists->queue))) {
858
		struct i915_priolist *p = to_priolist(rb);
859

860 861
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
862 863

			dma_fence_set_error(&rq->fence, -EIO);
864
			__i915_request_submit(rq);
865 866
		}

867
		rb_erase_cached(&p->node, &execlists->queue);
868 869 870 871 872 873 874
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

875
	execlists->queue_priority = INT_MIN;
876
	execlists->queue = RB_ROOT_CACHED;
877
	GEM_BUG_ON(port_isset(execlists->port));
878

879 880 881
	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;

882
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
883 884
}

885 886 887 888 889 890
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

891
static void process_csb(struct intel_engine_cs *engine)
892
{
893
	struct intel_engine_execlists * const execlists = &engine->execlists;
894
	struct execlist_port *port = execlists->port;
895 896
	const u32 * const buf = execlists->csb_status;
	u8 head, tail;
897

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
913

914 915 916 917 918 919 920 921 922
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
923

924
	do {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

		if (++head == GEN8_CSB_ENTRIES)
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
952
			  buf[2 * head + 0], buf[2 * head + 1],
953 954
			  execlists->active);

955
		status = buf[2 * head];
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
975
		}
976

977 978 979 980
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
981

982 983
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		rq = port_unpack(port, &count);
		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
			  engine->name,
			  port->context_id, count,
			  rq ? rq->global_seqno : 0,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
			  intel_engine_get_seqno(engine),
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1000
			/*
1001 1002 1003 1004 1005 1006
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1007
			 */
1008 1009 1010 1011 1012
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1013

1014 1015 1016 1017 1018 1019 1020
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1021

1022 1023 1024
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1025

1026 1027
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1028

1029 1030 1031 1032 1033 1034 1035
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1036
		}
1037
	} while (head != tail);
1038

1039
	execlists->csb_head = head;
1040
}
1041

1042
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1043
{
1044
	lockdep_assert_held(&engine->timeline.lock);
1045

C
Chris Wilson 已提交
1046
	process_csb(engine);
1047 1048
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1049 1050
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1066
	__execlists_submission_tasklet(engine);
1067 1068 1069
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1070
static void queue_request(struct intel_engine_cs *engine,
1071
			  struct i915_sched_node *node,
1072
			  int prio)
1073
{
1074
	list_add_tail(&node->link,
1075
		      &lookup_priolist(engine, prio)->requests);
1076
}
1077

1078
static void __update_queue(struct intel_engine_cs *engine, int prio)
1079 1080
{
	engine->execlists.queue_priority = prio;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1094 1095
}

1096 1097
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1098 1099 1100 1101
	if (prio > engine->execlists.queue_priority) {
		__update_queue(engine, prio);
		__submit_queue_imm(engine);
	}
1102 1103
}

1104
static void execlists_submit_request(struct i915_request *request)
1105
{
1106
	struct intel_engine_cs *engine = request->engine;
1107
	unsigned long flags;
1108

1109
	/* Will be called from irq-context when using foreign fences. */
1110
	spin_lock_irqsave(&engine->timeline.lock, flags);
1111

1112
	queue_request(engine, &request->sched, rq_prio(request));
1113

1114
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1115
	GEM_BUG_ON(list_empty(&request->sched.link));
1116

1117 1118
	submit_queue(engine, rq_prio(request));

1119
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1120 1121
}

1122
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1123
{
1124
	return container_of(node, struct i915_request, sched);
1125 1126
}

1127
static struct intel_engine_cs *
1128
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1129
{
1130
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1131 1132

	GEM_BUG_ON(!locked);
1133 1134

	if (engine != locked) {
1135 1136
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1137 1138 1139 1140 1141
	}

	return engine;
}

1142 1143
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1144
{
1145 1146
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1147 1148
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1149
	const int prio = attr->priority;
1150 1151
	LIST_HEAD(dfs);

1152 1153
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1154
	if (i915_request_completed(request))
1155 1156
		return;

1157
	if (prio <= READ_ONCE(request->sched.attr.priority))
1158 1159
		return;

1160 1161
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1162

1163
	stack.signaler = &request->sched;
1164 1165
	list_add(&stack.dfs_link, &dfs);

1166 1167
	/*
	 * Recursively bump all dependent priorities to match the new request.
1168 1169
	 *
	 * A naive approach would be to use recursion:
1170 1171
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1172
	 *		update_priorities(dep->signal, prio)
1173
	 *	queue_request(node);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1184
	list_for_each_entry(dep, &dfs, dfs_link) {
1185
		struct i915_sched_node *node = dep->signaler;
1186

1187 1188
		/*
		 * Within an engine, there can be no cycle, but we may
1189 1190 1191 1192
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1193
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1194 1195
			GEM_BUG_ON(p == dep); /* no cycles! */

1196
			if (i915_sched_node_signaled(p->signaler))
1197 1198
				continue;

1199 1200
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1201
				list_move_tail(&p->dfs_link, &dfs);
1202
		}
1203 1204
	}

1205 1206
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1207 1208 1209 1210
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1211
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1212
		GEM_BUG_ON(!list_empty(&request->sched.link));
1213
		request->sched.attr = *attr;
1214 1215 1216 1217 1218
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1219
	last = NULL;
1220
	engine = request->engine;
1221
	spin_lock_irq(&engine->timeline.lock);
1222

1223 1224
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1225
		struct i915_sched_node *node = dep->signaler;
1226 1227 1228

		INIT_LIST_HEAD(&dep->dfs_link);

1229
		engine = sched_lock_engine(node, engine);
1230

1231
		/* Recheck after acquiring the engine->timeline.lock */
1232
		if (prio <= node->attr.priority)
1233 1234
			continue;

1235 1236 1237
		if (i915_sched_node_signaled(node))
			continue;

1238
		node->attr.priority = prio;
1239
		if (!list_empty(&node->link)) {
1240 1241 1242 1243 1244 1245
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		} else {
			/*
			 * If the request is not in the priolist queue because
			 * it is not yet runnable, then it doesn't contribute
			 * to our preemption decisions. On the other hand,
			 * if the request is on the HW, it too is not in the
			 * queue; but in that case we may still need to reorder
			 * the inflight requests.
			 */
			if (!i915_sw_fence_done(&sched_to_request(node)->submit))
				continue;
1257
		}
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		if (prio <= engine->execlists.queue_priority)
			continue;

		/*
		 * If we are already the currently executing context, don't
		 * bother evaluating if we should preempt ourselves.
		 */
		if (sched_to_request(node)->global_seqno &&
		    i915_seqno_passed(port_request(engine->execlists.port)->global_seqno,
				      sched_to_request(node)->global_seqno))
			continue;

		/* Defer (tasklet) submission until after all of our updates. */
		__update_queue(engine, prio);
		tasklet_hi_schedule(&engine->execlists.tasklet);
1274 1275
	}

1276
	spin_unlock_irq(&engine->timeline.lock);
1277 1278
}

1279 1280 1281 1282
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1283 1284 1285
	if (!ce->state)
		return;

1286
	intel_ring_free(ce->ring);
1287 1288 1289

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1290 1291
}

1292
static void execlists_context_unpin(struct intel_context *ce)
1293
{
1294 1295
	i915_gem_context_unpin_hw_id(ce->gem_context);

1296 1297 1298 1299 1300 1301 1302 1303 1304
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1316
		err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1317 1318 1319 1320 1321
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
1322
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1323

1324
	return i915_vma_pin(vma, 0, 0, flags);
1325 1326
}

1327 1328 1329 1330
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1331
{
1332
	void *vaddr;
1333
	int ret;
1334

1335
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1336 1337
	if (ret)
		goto err;
1338
	GEM_BUG_ON(!ce->state);
1339

1340
	ret = __context_pin(ctx, ce->state);
1341
	if (ret)
1342
		goto err;
1343

1344 1345 1346
	vaddr = i915_gem_object_pin_map(ce->state->obj,
					i915_coherent_map_type(ctx->i915) |
					I915_MAP_OVERRIDE);
1347 1348
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1349
		goto unpin_vma;
1350 1351
	}

1352
	ret = intel_ring_pin(ce->ring);
1353
	if (ret)
1354
		goto unpin_map;
1355

1356 1357 1358 1359
	ret = i915_gem_context_pin_hw_id(ctx);
	if (ret)
		goto unpin_ring;

1360
	intel_lr_context_descriptor_update(ctx, engine, ce);
1361

1362 1363
	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));

1364 1365
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1366
		i915_ggtt_offset(ce->ring->vma);
1367 1368
	ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
	ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1369

1370
	ce->state->obj->pin_global++;
1371
	i915_gem_context_get(ctx);
1372
	return ce;
1373

1374 1375
unpin_ring:
	intel_ring_unpin(ce->ring);
1376
unpin_map:
1377 1378 1379
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1380
err:
1381
	ce->pin_count = 0;
1382
	return ERR_PTR(ret);
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1393
{
1394
	struct intel_context *ce = to_intel_context(ctx, engine);
1395

1396
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1397
	GEM_BUG_ON(!ctx->ppgtt);
1398

1399 1400 1401
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1402

1403
	ce->ops = &execlists_context_ops;
1404

1405
	return __execlists_context_pin(engine, ctx, ce);
1406 1407
}

1408
static int execlists_request_alloc(struct i915_request *request)
1409
{
1410
	int ret;
1411

1412
	GEM_BUG_ON(!request->hw_context->pin_count);
1413

1414 1415 1416 1417 1418 1419
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1420 1421 1422
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1451 1452
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1453
{
1454 1455 1456 1457 1458 1459 1460 1461 1462
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1463 1464 1465 1466
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1467 1468 1469 1470 1471 1472 1473

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1474 1475
}

1476 1477 1478 1479 1480 1481
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1482
 *
1483 1484
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1485
 *
1486 1487 1488 1489
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1490
 */
1491
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1492
{
1493
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1494
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1495

1496
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1497 1498
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1499

1500 1501
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1502 1503 1504 1505 1506 1507 1508
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1509

C
Chris Wilson 已提交
1510 1511
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1512
	/* Pad to end of cacheline */
1513 1514
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1515 1516 1517 1518 1519 1520 1521

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1522
	return batch;
1523 1524
}

1525 1526 1527 1528 1529 1530
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1531
{
1532
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1533

1534 1535 1536 1537 1538 1539
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1540

1541 1542
	return batch;
}
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1568

1569
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1570

1571 1572
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1573

1574
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1575

1576 1577
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1578
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1579 1580 1581 1582 1583 1584 1585
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1586
	}
1587

1588
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1603 1604 1605 1606 1607 1608
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1609 1610
	}

C
Chris Wilson 已提交
1611 1612
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1613
	/* Pad to end of cacheline */
1614 1615
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1616

1617
	return batch;
1618 1619
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1654 1655 1656
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1657
{
1658 1659 1660
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1661

1662
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1663 1664
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1665

1666
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1667 1668 1669
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1670 1671
	}

1672
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1673 1674 1675 1676
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1677
	return 0;
1678 1679 1680 1681

err:
	i915_gem_object_put(obj);
	return err;
1682 1683
}

1684
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1685
{
1686
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1687 1688
}

1689 1690
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1691
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1692
{
1693
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1694 1695 1696
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1697
	struct page *page;
1698 1699
	void *batch, *batch_ptr;
	unsigned int i;
1700
	int ret;
1701

1702
	if (GEM_WARN_ON(engine->id != RCS))
1703
		return -EINVAL;
1704

1705
	switch (INTEL_GEN(engine->i915)) {
1706 1707
	case 11:
		return 0;
1708
	case 10:
1709 1710 1711
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1712 1713
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1714
		wa_bb_fn[1] = NULL;
1715 1716 1717
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1718
		wa_bb_fn[1] = NULL;
1719 1720 1721
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1722
		return 0;
1723
	}
1724

1725
	ret = lrc_setup_wa_ctx(engine);
1726 1727 1728 1729 1730
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1731
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1732
	batch = batch_ptr = kmap_atomic(page);
1733

1734 1735 1736 1737 1738 1739 1740
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1741 1742
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1743 1744 1745
			ret = -EINVAL;
			break;
		}
1746 1747
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1748
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1749 1750
	}

1751 1752
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1753 1754
	kunmap_atomic(batch);
	if (ret)
1755
		lrc_destroy_wa_ctx(engine);
1756 1757 1758 1759

	return ret;
}

1760
static void enable_execlists(struct intel_engine_cs *engine)
1761
{
1762
	struct drm_i915_private *dev_priv = engine->i915;
1763 1764

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1781 1782 1783
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1784 1785 1786 1787 1788
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1802 1803
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1804
	intel_mocs_init_engine(engine);
1805

1806
	intel_engine_reset_breadcrumbs(engine);
1807

1808 1809 1810 1811 1812 1813
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1814
	enable_execlists(engine);
1815

1816
	return 0;
1817 1818
}

1819
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1820
{
1821
	struct drm_i915_private *dev_priv = engine->i915;
1822 1823
	int ret;

1824
	ret = gen8_init_common_ring(engine);
1825 1826 1827
	if (ret)
		return ret;

1828
	intel_whitelist_workarounds_apply(engine);
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1840
	return 0;
1841 1842
}

1843
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1844 1845 1846
{
	int ret;

1847
	ret = gen8_init_common_ring(engine);
1848 1849 1850
	if (ret)
		return ret;

1851
	intel_whitelist_workarounds_apply(engine);
1852 1853

	return 0;
1854 1855
}

1856 1857 1858 1859
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1860
	struct i915_request *request, *active;
1861
	unsigned long flags;
1862

1863 1864
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1877 1878
	spin_lock_irqsave(&engine->timeline.lock, flags);

1879 1880 1881 1882 1883 1884 1885
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
C
Chris Wilson 已提交
1886
	process_csb(engine);
1887 1888 1889 1890 1891 1892 1893 1894 1895

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
1896 1897 1898 1899 1900 1901
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
	}

1913 1914
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

1915
	return active;
1916 1917 1918 1919
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1920
{
1921
	struct intel_engine_execlists * const execlists = &engine->execlists;
1922
	unsigned long flags;
1923
	u32 *regs;
1924

1925
	GEM_TRACE("%s request global=%d, current=%d\n",
1926 1927
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1928

1929
	spin_lock_irqsave(&engine->timeline.lock, flags);
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1940
	execlists_cancel_port_requests(execlists);
1941

1942
	/* Push back any incomplete requests for replay after the reset. */
1943
	__unwind_incomplete_requests(engine);
1944

1945
	/* Following the reset, we need to reload the CSB read/write pointers */
1946
	reset_csb_pointers(&engine->execlists);
1947

1948
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1949

1950 1951
	/*
	 * If the request was innocent, we leave the request in the ELSP
1952 1953 1954 1955 1956 1957 1958 1959 1960
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1961
	if (!request || request->fence.error != -EIO)
1962
		return;
1963

1964 1965
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1966 1967 1968 1969 1970 1971
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1972
	regs = request->hw_context->lrc_reg_state;
1973 1974 1975 1976
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1977
	}
C
Chris Wilson 已提交
1978 1979
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1980

1981
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1982
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1983

1984 1985 1986
	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
	regs[CTX_RING_HEAD + 1] = request->ring->head;

1987 1988
	intel_ring_update_space(request->ring);

1989
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1990
	unwind_wa_tail(request);
1991 1992
}

1993 1994
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
1995 1996
	struct intel_engine_execlists * const execlists = &engine->execlists;

1997
	/*
1998 1999 2000
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2001 2002
	 *
	 */
2003 2004
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2005

2006
	tasklet_enable(&execlists->tasklet);
2007 2008
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2009 2010
}

2011
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2012
{
C
Chris Wilson 已提交
2013
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2014
	struct intel_engine_cs *engine = rq->engine;
2015
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2016 2017
	u32 *cs;
	int i;
2018

2019
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2020 2021
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2022

2023
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2024
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2025 2026
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2027 2028 2029 2030
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2031 2032
	}

2033
	*cs++ = MI_NOOP;
2034
	intel_ring_advance(rq, cs);
2035 2036 2037 2038

	return 0;
}

2039
static int gen8_emit_bb_start(struct i915_request *rq,
2040
			      u64 offset, u32 len,
2041
			      const unsigned int flags)
2042
{
2043
	u32 *cs;
2044 2045
	int ret;

2046 2047 2048 2049
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2050 2051
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
2052
	if ((intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2053
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2054 2055
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2056 2057
		if (ret)
			return ret;
2058

C
Chris Wilson 已提交
2059
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2060 2061
	}

2062
	cs = intel_ring_begin(rq, 6);
2063 2064
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2083 2084
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2085
	/* FIXME(BDW): Address space and security selectors. */
2086
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2087
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2088 2089
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2090 2091 2092

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2093
	intel_ring_advance(rq, cs);
2094 2095 2096 2097

	return 0;
}

2098
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2099
{
2100
	struct drm_i915_private *dev_priv = engine->i915;
2101 2102 2103
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2104 2105
}

2106
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2107
{
2108
	struct drm_i915_private *dev_priv = engine->i915;
2109
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2110 2111
}

2112
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2113
{
2114
	u32 cmd, *cs;
2115

2116 2117 2118
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2119 2120 2121

	cmd = MI_FLUSH_DW + 1;

2122 2123 2124 2125 2126 2127 2128
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2129
	if (mode & EMIT_INVALIDATE) {
2130
		cmd |= MI_INVALIDATE_TLB;
2131
		if (request->engine->id == VCS)
2132
			cmd |= MI_INVALIDATE_BSD;
2133 2134
	}

2135 2136 2137 2138 2139
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2140 2141 2142 2143

	return 0;
}

2144
static int gen8_emit_flush_render(struct i915_request *request,
2145
				  u32 mode)
2146
{
2147
	struct intel_engine_cs *engine = request->engine;
2148 2149
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2150
	bool vf_flush_wa = false, dc_flush_wa = false;
2151
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2152
	int len;
2153 2154 2155

	flags |= PIPE_CONTROL_CS_STALL;

2156
	if (mode & EMIT_FLUSH) {
2157 2158
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2159
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2160
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2161 2162
	}

2163
	if (mode & EMIT_INVALIDATE) {
2164 2165 2166 2167 2168 2169 2170 2171 2172
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2173 2174 2175 2176
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2177
		if (IS_GEN9(request->i915))
2178
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2179 2180 2181 2182

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2183
	}
2184

M
Mika Kuoppala 已提交
2185 2186 2187 2188 2189 2190 2191 2192
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2193 2194 2195
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2196

2197 2198
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2199

2200 2201 2202
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2203

2204
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2205

2206 2207
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2208

2209
	intel_ring_advance(request, cs);
2210 2211 2212 2213

	return 0;
}

2214 2215 2216 2217 2218
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2219
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2220
{
C
Chris Wilson 已提交
2221 2222
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2223 2224
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2225
}
2226

2227
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2228
{
2229 2230
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2231

2232 2233
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2234
	*cs++ = MI_USER_INTERRUPT;
2235
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2236
	request->tail = intel_ring_offset(request, cs);
2237
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2238

2239
	gen8_emit_wa_tail(request, cs);
2240
}
2241 2242
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2243
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2244
{
2245 2246 2247
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2248 2249
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2250
	*cs++ = MI_USER_INTERRUPT;
2251
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2252
	request->tail = intel_ring_offset(request, cs);
2253
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2254

2255
	gen8_emit_wa_tail(request, cs);
2256
}
2257
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2258

2259
static int gen8_init_rcs_context(struct i915_request *rq)
2260 2261 2262
{
	int ret;

2263
	ret = intel_ctx_workarounds_emit(rq);
2264 2265 2266
	if (ret)
		return ret;

2267
	ret = intel_rcs_context_init_mocs(rq);
2268 2269 2270 2271 2272 2273 2274
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2275
	return i915_gem_render_state_emit(rq);
2276 2277
}

2278 2279
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2280
 * @engine: Engine Command Streamer.
2281
 */
2282
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2283
{
2284
	struct drm_i915_private *dev_priv;
2285

2286 2287 2288 2289
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2290 2291 2292
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2293

2294
	dev_priv = engine->i915;
2295

2296 2297
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2298
	}
2299

2300 2301
	if (engine->cleanup)
		engine->cleanup(engine);
2302

2303
	intel_engine_cleanup_common(engine);
2304

2305
	lrc_destroy_wa_ctx(engine);
2306

2307
	engine->i915 = NULL;
2308 2309
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2310 2311
}

2312
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2313
{
2314
	engine->submit_request = execlists_submit_request;
2315
	engine->cancel_requests = execlists_cancel_requests;
2316
	engine->schedule = execlists_schedule;
2317
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2318

2319 2320
	engine->reset.prepare = execlists_reset_prepare;

2321 2322
	engine->park = NULL;
	engine->unpark = NULL;
2323 2324

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2325 2326
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2327 2328 2329 2330

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2331
	if (intel_engine_has_preemption(engine))
2332
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2333 2334
}

2335
static void
2336
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2337 2338
{
	/* Default vfuncs which can be overriden by each engine. */
2339
	engine->init_hw = gen8_init_common_ring;
2340 2341 2342 2343

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2344 2345

	engine->context_pin = execlists_context_pin;
2346 2347
	engine->request_alloc = execlists_request_alloc;

2348
	engine->emit_flush = gen8_emit_flush;
2349
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2350
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2351

2352
	engine->set_default_submission = intel_execlists_set_default_submission;
2353

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2365
	engine->emit_bb_start = gen8_emit_bb_start;
2366 2367
}

2368
static inline void
2369
logical_ring_default_irqs(struct intel_engine_cs *engine)
2370
{
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2385 2386
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2387 2388
}

2389 2390 2391
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
2392 2393
	intel_engine_setup_common(engine);

2394 2395 2396
	/* Intentionally left blank. */
	engine->buffer = NULL;

2397 2398
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2399 2400 2401 2402 2403

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2404 2405 2406 2407 2408 2409
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/* Older GVT emulation depends upon intercepting CSB mmio */
	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
}

2410
static int logical_ring_init(struct intel_engine_cs *engine)
2411
{
2412 2413
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2414 2415
	int ret;

2416
	ret = intel_engine_init_common(engine);
2417
	if (ret)
2418
		return ret;
2419

2420 2421
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
		execlists->submit_reg = i915->regs +
2422
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2423
		execlists->ctrl_reg = i915->regs +
2424 2425
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
2426
		execlists->submit_reg = i915->regs +
2427 2428
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2429

2430 2431
	execlists->preempt_complete_status = ~0u;
	if (i915->preempt_context) {
2432
		struct intel_context *ce =
2433
			to_intel_context(i915->preempt_context, engine);
2434

2435
		execlists->preempt_complete_status =
2436 2437
			upper_32_bits(ce->lrc_desc);
	}
2438

2439 2440 2441 2442 2443 2444 2445
	execlists->csb_read =
		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
	if (csb_force_mmio(i915)) {
		execlists->csb_status = (u32 __force *)
			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));

		execlists->csb_write = (u32 __force *)execlists->csb_read;
2446 2447 2448
		execlists->csb_write_reset =
			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
				      GEN8_CSB_ENTRIES - 1);
2449 2450 2451 2452 2453 2454
	} else {
		execlists->csb_status =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];

		execlists->csb_write =
			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2455
		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2456
	}
2457
	reset_csb_pointers(execlists);
2458

2459 2460 2461
	return 0;
}

2462
int logical_render_ring_init(struct intel_engine_cs *engine)
2463 2464 2465 2466
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2467 2468
	logical_ring_setup(engine);

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2479 2480
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2481

2482
	ret = logical_ring_init(engine);
2483 2484 2485
	if (ret)
		return ret;

2486 2487 2488 2489
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
	if (ret)
		goto err_cleanup_common;

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2501 2502 2503 2504 2505
	return 0;

err_cleanup_common:
	intel_engine_cleanup_common(engine);
	return ret;
2506 2507
}

2508
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2509 2510 2511 2512
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2513 2514
}

2515
static u32
2516
make_rpcs(struct drm_i915_private *dev_priv)
2517
{
2518 2519 2520
	bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
	u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
	u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2521 2522 2523 2524 2525 2526
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2527
	if (INTEL_GEN(dev_priv) < 9)
2528 2529
		return 0;

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
	/*
	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
	 * wide and Icelake has up to eight subslices, specfial programming is
	 * needed in order to correctly enable all subslices.
	 *
	 * According to documentation software must consider the configuration
	 * as 2x4x8 and hardware will translate this to 1x8x8.
	 *
	 * Furthemore, even though SScount is three bits, maximum documented
	 * value for it is four. From this some rules/restrictions follow:
	 *
	 * 1.
	 * If enabled subslice count is greater than four, two whole slices must
	 * be enabled instead.
	 *
	 * 2.
	 * When more than one slice is enabled, hardware ignores the subslice
	 * count altogether.
	 *
	 * From these restrictions it follows that it is not possible to enable
	 * a count of subslices between the SScount maximum of four restriction,
	 * and the maximum available number on a particular SKU. Either all
	 * subslices are enabled, or a count between one and four on the first
	 * slice.
	 */
	if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
		GEM_BUG_ON(subslices & 1);

		subslice_pg = false;
		slices *= 2;
	}

2562 2563 2564 2565 2566 2567
	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2568
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
		u32 mask, val = slices;

		if (INTEL_GEN(dev_priv) >= 11) {
			mask = GEN11_RPCS_S_CNT_MASK;
			val <<= GEN11_RPCS_S_CNT_SHIFT;
		} else {
			mask = GEN8_RPCS_S_CNT_MASK;
			val <<= GEN8_RPCS_S_CNT_SHIFT;
		}

		GEM_BUG_ON(val & ~mask);
		val &= mask;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2583 2584
	}

2585 2586 2587 2588 2589 2590 2591 2592 2593
	if (subslice_pg) {
		u32 val = subslices;

		val <<= GEN8_RPCS_SS_CNT_SHIFT;

		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
		val &= GEN8_RPCS_SS_CNT_MASK;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2594 2595
	}

2596
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
		u32 val;

		val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
		      GEN8_RPCS_EU_MIN_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
		val &= GEN8_RPCS_EU_MIN_MASK;

		rpcs |= val;

		val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
		      GEN8_RPCS_EU_MAX_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
		val &= GEN8_RPCS_EU_MAX_MASK;

		rpcs |= val;

2613 2614 2615 2616 2617 2618
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2619
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2620 2621 2622
{
	u32 indirect_ctx_offset;

2623
	switch (INTEL_GEN(engine->i915)) {
2624
	default:
2625
		MISSING_CASE(INTEL_GEN(engine->i915));
2626
		/* fall through */
2627 2628 2629 2630
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2631 2632 2633 2634
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2648
static void execlists_init_reg_state(u32 *regs,
2649 2650 2651
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2652
{
2653
	struct drm_i915_private *dev_priv = engine->i915;
2654
	u32 base = engine->mmio_base;
2655
	bool rcs = engine->class == RENDER_CLASS;
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2668
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2669
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2670 2671 2672 2673 2674
	if (INTEL_GEN(dev_priv) < 11) {
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2687 2688
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2689 2690 2691
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2692
		if (wa_ctx->indirect_ctx.size) {
2693
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2694

2695
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2696 2697
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2698

2699
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2700
				intel_lr_indirect_ctx_offset(engine) << 6;
2701 2702 2703 2704 2705
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2706

2707
			regs[CTX_BB_PER_CTX_PTR + 1] =
2708
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2709
		}
2710
	}
2711 2712 2713 2714

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2715
	/* PDP values well be assigned later if needed */
2716 2717 2718 2719 2720 2721 2722 2723
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2724

2725
	if (i915_vm_is_48bit(&ctx->ppgtt->vm)) {
2726 2727 2728 2729
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2730
		ASSIGN_CTX_PML4(ctx->ppgtt, regs);
2731 2732
	}

2733 2734 2735 2736
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2737 2738

		i915_oa_init_reg_state(engine, ctx, regs);
2739
	}
2740 2741 2742 2743

	regs[CTX_END] = MI_BATCH_BUFFER_END;
	if (INTEL_GEN(dev_priv) >= 10)
		regs[CTX_END] |= BIT(0);
2744 2745 2746 2747 2748 2749 2750 2751 2752
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2753
	u32 *regs;
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2768
	ctx_obj->mm.dirty = true;
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2781 2782 2783 2784
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2785 2786 2787 2788 2789

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2790 2791
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2792 2793 2794 2795 2796
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2797
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2798 2799 2800
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2801

2802
err_unpin_ctx:
2803
	i915_gem_object_unpin_map(ctx_obj);
2804
	return ret;
2805 2806
}

2807
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2808 2809
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2810
{
2811
	struct drm_i915_gem_object *ctx_obj;
2812
	struct i915_vma *vma;
2813
	uint32_t context_size;
2814
	struct intel_ring *ring;
2815
	struct i915_timeline *timeline;
2816 2817
	int ret;

2818 2819
	if (ce->state)
		return 0;
2820

2821
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2822

2823 2824 2825 2826 2827
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2828

2829
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2830 2831
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2832

2833
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2834 2835 2836 2837 2838
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2839 2840 2841 2842 2843 2844 2845 2846
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2847 2848
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2849
		goto error_deref_obj;
2850 2851
	}

2852
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2853 2854
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2855
		goto error_ring_free;
2856 2857
	}

2858
	ce->ring = ring;
2859
	ce->state = vma;
2860 2861

	return 0;
2862

2863
error_ring_free:
2864
	intel_ring_free(ring);
2865
error_deref_obj:
2866
	i915_gem_object_put(ctx_obj);
2867
	return ret;
2868
}
2869

2870
void intel_lr_context_resume(struct drm_i915_private *i915)
2871
{
2872
	struct intel_engine_cs *engine;
2873
	struct i915_gem_context *ctx;
2874
	enum intel_engine_id id;
2875

2876 2877
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
2878 2879 2880 2881 2882 2883 2884 2885 2886
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2887 2888
	list_for_each_entry(ctx, &i915->contexts.list, link) {
		for_each_engine(engine, i915, id) {
2889 2890
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2891

2892 2893
			if (!ce->state)
				continue;
2894

2895
			intel_ring_reset(ce->ring, 0);
2896

2897 2898
			if (ce->pin_count) { /* otherwise done in context_pin */
				u32 *regs = ce->lrc_reg_state;
2899

2900 2901 2902
				regs[CTX_RING_HEAD + 1] = ce->ring->head;
				regs[CTX_RING_TAIL + 1] = ce->ring->tail;
			}
2903
		}
2904 2905
	}
}
2906 2907 2908 2909

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif