core.c 142.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
55 56
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
57
static LIST_HEAD(regulator_ena_gpio_list);
58
static LIST_HEAD(regulator_supply_alias_list);
59
static bool has_full_constraints;
60

61 62
static struct dentry *debugfs_root;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator *regulator);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
112 113 114
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
115 116 117
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
118
static void _regulator_put(struct regulator *regulator);
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
159
 * @ww_ctx:		w/w mutex acquire context
160 161 162 163 164 165 166
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
167 168
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
169
{
170 171 172 173 174 175 176
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
177
			rdev->ref_cnt++;
178 179 180 181 182 183 184
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
185
		}
186 187
	} else {
		lock = true;
188 189
	}

190 191 192 193 194 195 196 197
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
198 199
}

200 201 202 203 204 205 206 207 208 209 210
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
211
{
212
	regulator_lock_nested(rdev, NULL);
213
}
214
EXPORT_SYMBOL_GPL(regulator_lock);
215 216 217 218 219 220 221 222

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
223
void regulator_unlock(struct regulator_dev *rdev)
224
{
225
	mutex_lock(&regulator_nesting_mutex);
226

227 228 229
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
230
	}
231 232 233 234

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
235
}
236
EXPORT_SYMBOL_GPL(regulator_unlock);
237

238
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
239
{
240 241 242 243 244
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
245

246 247 248 249 250 251 252
		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

253 254
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
255
{
256
	struct regulator_dev *c_rdev;
257
	int i;
258

259 260
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
261 262 263 264

		if (!c_rdev)
			continue;

265
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
266 267 268
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
269

270 271
		regulator_unlock(c_rdev);
	}
272 273
}

274 275 276 277
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
278
{
279
	struct regulator_dev *c_rdev;
280
	int i, err;
281

282 283
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284

285 286
		if (!c_rdev)
			continue;
287

288 289 290 291 292 293 294
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
295

296 297 298 299 300 301 302
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

303
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
304 305 306 307 308 309 310 311
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
312 313
		}
	}
314 315 316 317 318 319 320

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
321 322
}

323
/**
324 325 326 327 328 329
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
 * Unlock all regulators related with rdev by coupling or suppling.
330
 */
331 332
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
333
{
334 335
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
336 337 338
}

/**
339 340
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
341
 * @ww_ctx:			w/w mutex acquire context
342 343 344
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
 * all regulators related with rdev by coupling or suppling.
345
 */
346 347
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
348
{
349 350 351
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;
352

353
	mutex_lock(&regulator_list_mutex);
354

355
	ww_acquire_init(ww_ctx, &regulator_ww_class);
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/**
 * of_get_child_regulator - get a child regulator device node
 * based on supply name
 * @parent: Parent device node
 * @prop_name: Combination regulator supply name and "-supply"
 *
 * Traverse all child nodes.
 * Extract the child regulator device node corresponding to the supply name.
 * returns the device node corresponding to the regulator if found, else
 * returns NULL.
 */
static struct device_node *of_get_child_regulator(struct device_node *parent,
						  const char *prop_name)
{
	struct device_node *regnode = NULL;
	struct device_node *child = NULL;

	for_each_child_of_node(parent, child) {
		regnode = of_parse_phandle(child, prop_name, 0);

		if (!regnode) {
			regnode = of_get_child_regulator(child, prop_name);
			if (regnode)
				return regnode;
		} else {
			return regnode;
		}
	}
	return NULL;
}

410 411 412 413 414 415
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
416
 * returns the device node corresponding to the regulator if found, else
417 418 419 420 421 422 423 424 425 426 427 428 429
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
430 431 432 433
		regnode = of_get_child_regulator(dev->of_node, prop_name);
		if (regnode)
			return regnode;

434 435
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
436 437 438 439 440
		return NULL;
	}
	return regnode;
}

441 442 443 444 445 446
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

447
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
448
		rdev_err(rdev, "voltage operation not allowed\n");
449 450 451 452 453 454 455 456
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

457 458
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
459
			 *min_uV, *max_uV);
460
		return -EINVAL;
461
	}
462 463 464 465

	return 0;
}

466 467 468 469 470 471
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

472 473 474 475
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
476 477
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
478 479
{
	struct regulator *regulator;
480
	struct regulator_voltage *voltage;
481 482

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
483
		voltage = &regulator->voltage[state];
484 485 486 487
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
488
		if (!voltage->min_uV && !voltage->max_uV)
489 490
			continue;

491 492 493 494
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
495 496
	}

497
	if (*min_uV > *max_uV) {
498 499
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
500
		return -EINVAL;
501
	}
502 503 504 505

	return 0;
}

506 507 508 509 510 511
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

512
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
513
		rdev_err(rdev, "current operation not allowed\n");
514 515 516 517 518 519 520 521
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

522 523
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
524
			 *min_uA, *max_uA);
525
		return -EINVAL;
526
	}
527 528 529 530 531

	return 0;
}

/* operating mode constraint check */
532 533
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
534
{
535
	switch (*mode) {
536 537 538 539 540 541
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
542
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
543 544 545
		return -EINVAL;
	}

546
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
547
		rdev_err(rdev, "mode operation not allowed\n");
548 549
		return -EPERM;
	}
550 551 552 553 554 555 556 557

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
558
	}
559 560

	return -EINVAL;
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

581 582 583
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
584
	struct regulator_dev *rdev = dev_get_drvdata(dev);
585 586
	ssize_t ret;

587
	regulator_lock(rdev);
588
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
589
	regulator_unlock(rdev);
590 591 592

	return ret;
}
593
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
594 595 596 597

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
598
	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 600 601

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
602
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
603

604 605
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
606 607 608
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

609
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
610
}
611
static DEVICE_ATTR_RO(name);
612

613
static const char *regulator_opmode_to_str(int mode)
614 615 616
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
617
		return "fast";
618
	case REGULATOR_MODE_NORMAL:
619
		return "normal";
620
	case REGULATOR_MODE_IDLE:
621
		return "idle";
622
	case REGULATOR_MODE_STANDBY:
623
		return "standby";
624
	}
625 626 627 628 629 630
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
631 632
}

D
David Brownell 已提交
633 634
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
635
{
636
	struct regulator_dev *rdev = dev_get_drvdata(dev);
637

D
David Brownell 已提交
638 639
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
640
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
641 642 643

static ssize_t regulator_print_state(char *buf, int state)
{
644 645 646 647 648 649 650 651
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
652 653 654 655
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
656 657
	ssize_t ret;

658
	regulator_lock(rdev);
659
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
660
	regulator_unlock(rdev);
D
David Brownell 已提交
661

662
	return ret;
D
David Brownell 已提交
663
}
664
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
665

D
David Brownell 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
699 700 701
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
702 703 704
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
705 706 707 708 709 710 711 712
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

713 714 715
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
716
	struct regulator_dev *rdev = dev_get_drvdata(dev);
717 718 719 720 721 722

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
723
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
724 725 726 727

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
728
	struct regulator_dev *rdev = dev_get_drvdata(dev);
729 730 731 732 733 734

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
735
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
736 737 738 739

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
740
	struct regulator_dev *rdev = dev_get_drvdata(dev);
741 742 743 744 745 746

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
747
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
748 749 750 751

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
752
	struct regulator_dev *rdev = dev_get_drvdata(dev);
753 754 755 756 757 758

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
759
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
760 761 762 763

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
764
	struct regulator_dev *rdev = dev_get_drvdata(dev);
765 766 767
	struct regulator *regulator;
	int uA = 0;

768
	regulator_lock(rdev);
769 770 771 772
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		if (regulator->enable_count)
			uA += regulator->uA_load;
	}
773
	regulator_unlock(rdev);
774 775
	return sprintf(buf, "%d\n", uA);
}
776
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
777

778 779
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
780
{
781
	struct regulator_dev *rdev = dev_get_drvdata(dev);
782 783
	return sprintf(buf, "%d\n", rdev->use_count);
}
784
static DEVICE_ATTR_RO(num_users);
785

786 787
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
788
{
789
	struct regulator_dev *rdev = dev_get_drvdata(dev);
790 791 792 793 794 795 796 797 798

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
799
static DEVICE_ATTR_RO(type);
800 801 802 803

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
804
	struct regulator_dev *rdev = dev_get_drvdata(dev);
805 806 807

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
808 809
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
810 811 812 813

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
814
	struct regulator_dev *rdev = dev_get_drvdata(dev);
815 816 817

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
818 819
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
820 821 822 823

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
824
	struct regulator_dev *rdev = dev_get_drvdata(dev);
825 826 827

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
828 829
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
830 831 832 833

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
834
	struct regulator_dev *rdev = dev_get_drvdata(dev);
835

D
David Brownell 已提交
836 837
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
838
}
839 840
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
841 842 843 844

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
845
	struct regulator_dev *rdev = dev_get_drvdata(dev);
846

D
David Brownell 已提交
847 848
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
849
}
850 851
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
852 853 854 855

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
856
	struct regulator_dev *rdev = dev_get_drvdata(dev);
857

D
David Brownell 已提交
858 859
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
860
}
861 862
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
863 864 865 866

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
867
	struct regulator_dev *rdev = dev_get_drvdata(dev);
868

D
David Brownell 已提交
869 870
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
871
}
872 873
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
874 875 876 877

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
878
	struct regulator_dev *rdev = dev_get_drvdata(dev);
879

D
David Brownell 已提交
880 881
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
882
}
883 884
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
885 886 887 888

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
889
	struct regulator_dev *rdev = dev_get_drvdata(dev);
890

D
David Brownell 已提交
891 892
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
893
}
894 895 896
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
918

919 920
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
921
static int drms_uA_update(struct regulator_dev *rdev)
922 923 924 925 926
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

927
	lockdep_assert_held_once(&rdev->mutex.base);
928

929 930 931 932
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
933
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
934 935
		return 0;

936 937
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
938 939
		return 0;

940 941
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
942
		return -EINVAL;
943 944

	/* calc total requested load */
945 946 947 948
	list_for_each_entry(sibling, &rdev->consumer_list, list) {
		if (sibling->enable_count)
			current_uA += sibling->uA_load;
	}
949

950 951
	current_uA += rdev->constraints->system_load;

952 953 954 955 956 957
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

976 977 978 979 980 981 982 983 984 985 986
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
987

988 989 990
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
991 992 993
	}

	return err;
994 995 996
}

static int suspend_set_state(struct regulator_dev *rdev,
997
				    suspend_state_t state)
998 999
{
	int ret = 0;
1000 1001 1002 1003
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
1004
		return 0;
1005 1006

	/* If we have no suspend mode configration don't set anything;
1007 1008
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
1009
	 */
1010 1011
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
1012 1013
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
1014
			rdev_warn(rdev, "No configuration\n");
1015 1016 1017
		return 0;
	}

1018 1019
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
1020
		ret = rdev->desc->ops->set_suspend_enable(rdev);
1021 1022
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
1023
		ret = rdev->desc->ops->set_suspend_disable(rdev);
1024 1025 1026
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

1027
	if (ret < 0) {
1028
		rdev_err(rdev, "failed to enabled/disable\n");
1029 1030 1031 1032 1033 1034
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
1035
			rdev_err(rdev, "failed to set voltage\n");
1036 1037 1038 1039 1040 1041 1042
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1043
			rdev_err(rdev, "failed to set mode\n");
1044 1045 1046 1047
			return ret;
		}
	}

1048
	return ret;
1049 1050 1051 1052 1053
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1054
	char buf[160] = "";
1055
	size_t len = sizeof(buf) - 1;
1056 1057
	int count = 0;
	int ret;
1058

1059
	if (constraints->min_uV && constraints->max_uV) {
1060
		if (constraints->min_uV == constraints->max_uV)
1061 1062
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1063
		else
1064 1065 1066 1067
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1068 1069 1070 1071 1072 1073
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1074 1075
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1076 1077
	}

1078
	if (constraints->uV_offset)
1079 1080
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1081

1082
	if (constraints->min_uA && constraints->max_uA) {
1083
		if (constraints->min_uA == constraints->max_uA)
1084 1085
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1086
		else
1087 1088 1089 1090
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1091 1092 1093 1094 1095 1096
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1097 1098
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1099
	}
1100

1101
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1102
		count += scnprintf(buf + count, len - count, "fast ");
1103
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1104
		count += scnprintf(buf + count, len - count, "normal ");
1105
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1106
		count += scnprintf(buf + count, len - count, "idle ");
1107
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1108
		count += scnprintf(buf + count, len - count, "standby");
1109

1110
	if (!count)
1111
		scnprintf(buf, len, "no parameters");
1112

1113
	rdev_dbg(rdev, "%s\n", buf);
1114 1115

	if ((constraints->min_uV != constraints->max_uV) &&
1116
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1117 1118
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1119 1120
}

1121
static int machine_constraints_voltage(struct regulator_dev *rdev,
1122
	struct regulation_constraints *constraints)
1123
{
1124
	const struct regulator_ops *ops = rdev->desc->ops;
1125 1126 1127 1128
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1129 1130
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1131
		int current_uV = _regulator_get_voltage(rdev);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1144
		if (current_uV < 0) {
1145 1146 1147
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1148 1149
			return current_uV;
		}
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1170 1171
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1172
			ret = _regulator_do_set_voltage(
1173
				rdev, target_min, target_max);
1174 1175
			if (ret < 0) {
				rdev_err(rdev,
1176 1177
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1178 1179
				return ret;
			}
1180
		}
1181
	}
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1194 1195
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1196
		if (count == 1 && !cmin) {
1197
			cmin = 1;
1198
			cmax = INT_MAX;
1199 1200
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1201 1202
		}

1203 1204
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1205
			return 0;
1206

1207
		/* else require explicit machine-level constraints */
1208
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1209
			rdev_err(rdev, "invalid voltage constraints\n");
1210
			return -EINVAL;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1230 1231 1232
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1233
			return -EINVAL;
1234 1235 1236 1237
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1238 1239
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1240 1241 1242
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1243 1244
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1245 1246 1247 1248
			constraints->max_uV = max_uV;
		}
	}

1249 1250 1251
	return 0;
}

1252 1253 1254
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1255
	const struct regulator_ops *ops = rdev->desc->ops;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1282 1283
static int _regulator_do_enable(struct regulator_dev *rdev);

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1296
	const struct regulation_constraints *constraints)
1297 1298
{
	int ret = 0;
1299
	const struct regulator_ops *ops = rdev->desc->ops;
1300

1301 1302 1303 1304 1305 1306
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1307 1308
	if (!rdev->constraints)
		return -ENOMEM;
1309

1310
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1311
	if (ret != 0)
1312
		return ret;
1313

1314
	ret = machine_constraints_current(rdev, rdev->constraints);
1315
	if (ret != 0)
1316
		return ret;
1317

1318 1319 1320 1321 1322
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1323
			return ret;
1324 1325 1326
		}
	}

1327
	/* do we need to setup our suspend state */
1328
	if (rdev->constraints->initial_state) {
1329
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1330
		if (ret < 0) {
1331
			rdev_err(rdev, "failed to set suspend state\n");
1332
			return ret;
1333 1334
		}
	}
1335

1336
	if (rdev->constraints->initial_mode) {
1337
		if (!ops->set_mode) {
1338
			rdev_err(rdev, "no set_mode operation\n");
1339
			return -EINVAL;
1340 1341
		}

1342
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1343
		if (ret < 0) {
1344
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1345
			return ret;
1346
		}
1347 1348 1349 1350 1351 1352
	} else if (rdev->constraints->system_load) {
		/*
		 * We'll only apply the initial system load if an
		 * initial mode wasn't specified.
		 */
		drms_uA_update(rdev);
1353 1354
	}

1355 1356
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1357 1358 1359
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1360
			return ret;
1361 1362 1363
		}
	}

S
Stephen Boyd 已提交
1364 1365 1366 1367
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1368
			return ret;
S
Stephen Boyd 已提交
1369 1370 1371
		}
	}

S
Stephen Boyd 已提交
1372 1373 1374 1375
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1376
			return ret;
S
Stephen Boyd 已提交
1377 1378 1379
		}
	}

1380 1381 1382 1383 1384
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1385
			return ret;
1386 1387 1388
		}
	}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1400 1401 1402 1403
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1404 1405 1406 1407 1408 1409 1410 1411 1412
		if (rdev->supply) {
			ret = regulator_enable(rdev->supply);
			if (ret < 0) {
				_regulator_put(rdev->supply);
				rdev->supply = NULL;
				return ret;
			}
		}

1413 1414 1415 1416 1417
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
			rdev_err(rdev, "failed to enable\n");
			return ret;
		}
1418
		rdev->use_count++;
1419 1420
	}

1421
	print_constraints(rdev);
1422
	return 0;
1423 1424 1425 1426
}

/**
 * set_supply - set regulator supply regulator
1427 1428
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1429 1430 1431 1432 1433 1434
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1435
		      struct regulator_dev *supply_rdev)
1436 1437 1438
{
	int err;

1439 1440
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1441 1442 1443
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1444
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1445 1446
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1447
		return err;
1448
	}
1449
	supply_rdev->open_count++;
1450 1451

	return 0;
1452 1453 1454
}

/**
1455
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1456
 * @rdev:         regulator source
1457
 * @consumer_dev_name: dev_name() string for device supply applies to
1458
 * @supply:       symbolic name for supply
1459 1460 1461 1462 1463 1464 1465
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1466 1467
				      const char *consumer_dev_name,
				      const char *supply)
1468 1469
{
	struct regulator_map *node;
1470
	int has_dev;
1471 1472 1473 1474

	if (supply == NULL)
		return -EINVAL;

1475 1476 1477 1478 1479
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1480
	list_for_each_entry(node, &regulator_map_list, list) {
1481 1482 1483 1484
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1485
			continue;
1486 1487
		}

1488 1489 1490
		if (strcmp(node->supply, supply) != 0)
			continue;

1491 1492 1493 1494 1495 1496
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1497 1498 1499
		return -EBUSY;
	}

1500
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1501 1502 1503 1504 1505 1506
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1507 1508 1509 1510 1511 1512
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1513 1514
	}

1515 1516 1517 1518
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1519 1520 1521 1522 1523 1524 1525
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1526
			kfree(node->dev_name);
1527 1528 1529 1530 1531
			kfree(node);
		}
	}
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1581
#define REG_STR_SIZE	64
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1595
	regulator_lock(rdev);
1596 1597 1598 1599
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1600 1601
		regulator->dev = dev;

1602
		/* Add a link to the device sysfs entry */
1603 1604
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1605
		if (size >= REG_STR_SIZE)
1606
			goto overflow_err;
1607 1608 1609

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1610
			goto overflow_err;
1611

1612
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1613 1614
					buf);
		if (err) {
1615
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1616
				  dev->kobj.name, err);
1617
			/* non-fatal */
1618
		}
1619
	} else {
1620
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1621
		if (regulator->supply_name == NULL)
1622
			goto overflow_err;
1623 1624 1625 1626
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1627
	if (!regulator->debugfs) {
1628
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1629 1630 1631 1632
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1633
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1634
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1635
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1636 1637 1638
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1639
	}
1640

1641 1642 1643 1644 1645
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1646
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1647 1648 1649
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1650
	regulator_unlock(rdev);
1651 1652 1653 1654
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1655
	regulator_unlock(rdev);
1656 1657 1658
	return NULL;
}

1659 1660
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1661 1662
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1663
	if (!rdev->desc->ops->enable_time)
1664
		return rdev->desc->enable_time;
1665 1666 1667
	return rdev->desc->ops->enable_time(rdev);
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1716 1717 1718 1719 1720
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1721
 */
1722
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1723
						  const char *supply)
1724
{
1725
	struct regulator_dev *r = NULL;
1726
	struct device_node *node;
1727 1728
	struct regulator_map *map;
	const char *devname = NULL;
1729

1730 1731
	regulator_supply_alias(&dev, &supply);

1732 1733 1734
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1735
		if (node) {
1736 1737 1738
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1739

1740
			/*
1741 1742
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1743
			 */
1744
			return ERR_PTR(-EPROBE_DEFER);
1745
		}
1746 1747 1748
	}

	/* if not found, try doing it non-dt way */
1749 1750 1751
	if (dev)
		devname = dev_name(dev);

1752
	mutex_lock(&regulator_list_mutex);
1753 1754 1755 1756 1757 1758
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1759 1760
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1761 1762
			r = map->regulator;
			break;
1763
		}
1764
	}
1765
	mutex_unlock(&regulator_list_mutex);
1766

1767 1768 1769 1770
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1771 1772 1773 1774
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1775 1776
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1791 1792 1793 1794
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1795 1796 1797 1798
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1799 1800
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1801
			get_device(&r->dev);
1802 1803 1804 1805 1806
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1807 1808
	}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1822 1823
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1824 1825
	if (ret < 0) {
		put_device(&r->dev);
1826
		return ret;
1827
	}
1828 1829

	ret = set_supply(rdev, r);
1830 1831
	if (ret < 0) {
		put_device(&r->dev);
1832
		return ret;
1833
	}
1834

1835 1836 1837 1838 1839 1840
	/*
	 * In set_machine_constraints() we may have turned this regulator on
	 * but we couldn't propagate to the supply if it hadn't been resolved
	 * yet.  Do it now.
	 */
	if (rdev->use_count) {
1841
		ret = regulator_enable(rdev->supply);
1842
		if (ret < 0) {
1843
			_regulator_put(rdev->supply);
1844
			rdev->supply = NULL;
1845
			return ret;
1846
		}
1847 1848 1849 1850 1851
	}

	return 0;
}

1852
/* Internal regulator request function */
1853 1854
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1855 1856
{
	struct regulator_dev *rdev;
1857
	struct regulator *regulator;
1858
	const char *devname = dev ? dev_name(dev) : "deviceless";
1859
	int ret;
1860

1861 1862 1863 1864 1865
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1866
	if (id == NULL) {
1867
		pr_err("get() with no identifier\n");
1868
		return ERR_PTR(-EINVAL);
1869 1870
	}

1871
	rdev = regulator_dev_lookup(dev, id);
1872 1873
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1874

1875 1876 1877 1878 1879 1880
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1881

1882 1883 1884 1885 1886
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1901

1902 1903 1904 1905
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1906

1907 1908 1909
		default:
			return ERR_PTR(-ENODEV);
		}
1910 1911
	}

1912 1913
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1914 1915
		put_device(&rdev->dev);
		return regulator;
1916 1917
	}

1918
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1919
		regulator = ERR_PTR(-EBUSY);
1920 1921
		put_device(&rdev->dev);
		return regulator;
1922 1923
	}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1934 1935 1936
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1937 1938
		put_device(&rdev->dev);
		return regulator;
1939 1940
	}

1941
	if (!try_module_get(rdev->owner)) {
1942
		regulator = ERR_PTR(-EPROBE_DEFER);
1943 1944 1945
		put_device(&rdev->dev);
		return regulator;
	}
1946

1947 1948 1949
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1950
		put_device(&rdev->dev);
1951
		module_put(rdev->owner);
1952
		return regulator;
1953 1954
	}

1955
	rdev->open_count++;
1956
	if (get_type == EXCLUSIVE_GET) {
1957 1958 1959 1960 1961 1962 1963 1964 1965
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1966 1967
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1968 1969
	return regulator;
}
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1986
	return _regulator_get(dev, id, NORMAL_GET);
1987
}
1988 1989
EXPORT_SYMBOL_GPL(regulator_get);

1990 1991 1992 1993 1994 1995 1996
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1997 1998 1999
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
2013
	return _regulator_get(dev, id, EXCLUSIVE_GET);
2014 2015 2016
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

2017 2018 2019 2020 2021 2022
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
2023
 * or IS_ERR() condition containing errno.
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
2039
	return _regulator_get(dev, id, OPTIONAL_GET);
2040 2041 2042
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

2043
/* regulator_list_mutex lock held by regulator_put() */
2044
static void _regulator_put(struct regulator *regulator)
2045 2046 2047
{
	struct regulator_dev *rdev;

2048
	if (IS_ERR_OR_NULL(regulator))
2049 2050
		return;

2051 2052
	lockdep_assert_held_once(&regulator_list_mutex);

2053 2054 2055
	/* Docs say you must disable before calling regulator_put() */
	WARN_ON(regulator->enable_count);

2056 2057
	rdev = regulator->rdev;

2058 2059
	debugfs_remove_recursive(regulator->debugfs);

2060
	if (regulator->dev) {
2061
		device_link_remove(regulator->dev, &rdev->dev);
2062 2063

		/* remove any sysfs entries */
2064
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 2066
	}

2067
	regulator_lock(rdev);
2068 2069
	list_del(&regulator->list);

2070 2071
	rdev->open_count--;
	rdev->exclusive = 0;
2072
	put_device(&rdev->dev);
2073
	regulator_unlock(rdev);
2074

2075
	kfree_const(regulator->supply_name);
2076 2077
	kfree(regulator);

2078
	module_put(rdev->owner);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2093 2094 2095 2096
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2174 2175
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2176
					 struct device *alias_dev,
2177
					 const char *const *alias_id,
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2215
					    const char *const *id,
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2226 2227 2228 2229 2230
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2231
	struct gpio_desc *gpiod;
2232 2233
	int ret;

2234 2235 2236 2237
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2238

2239
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2240
		if (pin->gpiod == gpiod) {
2241 2242 2243 2244 2245 2246
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2247 2248 2249 2250 2251 2252 2253
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2254 2255 2256

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2257 2258
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2259 2260 2261
		return -ENOMEM;
	}

2262
	pin->gpiod = gpiod;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2281
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2282 2283
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2284
				gpiod_put(pin->gpiod);
2285 2286
				list_del(&pin->list);
				kfree(pin);
2287 2288
				rdev->ena_pin = NULL;
				return;
2289 2290 2291 2292 2293 2294 2295
			} else {
				pin->request_count--;
			}
		}
	}
}

2296
/**
2297 2298 2299 2300
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2314 2315
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2326 2327
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2328 2329 2330 2331 2332 2333 2334
			pin->enable_count = 0;
		}
	}

	return 0;
}

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2414
	if (rdev->ena_pin) {
2415 2416 2417 2418 2419 2420
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2421
	} else if (rdev->desc->ops->enable) {
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2434
	_regulator_enable_delay(delay);
2435 2436 2437 2438 2439 2440

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/**
 * _regulator_handle_consumer_enable - handle that a consumer enabled
 * @regulator: regulator source
 *
 * Some things on a regulator consumer (like the contribution towards total
 * load on the regulator) only have an effect when the consumer wants the
 * regulator enabled.  Explained in example with two consumers of the same
 * regulator:
 *   consumer A: set_load(100);       => total load = 0
 *   consumer A: regulator_enable();  => total load = 100
 *   consumer B: set_load(1000);      => total load = 100
 *   consumer B: regulator_enable();  => total load = 1100
 *   consumer A: regulator_disable(); => total_load = 1000
 *
 * This function (together with _regulator_handle_consumer_disable) is
 * responsible for keeping track of the refcount for a given regulator consumer
 * and applying / unapplying these things.
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_enable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	regulator->enable_count++;
	if (regulator->uA_load && regulator->enable_count == 1)
		return drms_uA_update(rdev);

	return 0;
}

/**
 * _regulator_handle_consumer_disable - handle that a consumer disabled
 * @regulator: regulator source
 *
 * The opposite of _regulator_handle_consumer_enable().
 *
 * Returns 0 upon no error; -error upon error.
 */
static int _regulator_handle_consumer_disable(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	lockdep_assert_held_once(&rdev->mutex.base);

	if (!regulator->enable_count) {
		rdev_err(rdev, "Underflow of regulator enable count\n");
		return -EINVAL;
	}

	regulator->enable_count--;
	if (regulator->uA_load && regulator->enable_count == 0)
		return drms_uA_update(rdev);

	return 0;
}

2500
/* locks held by regulator_enable() */
2501
static int _regulator_enable(struct regulator *regulator)
2502
{
2503
	struct regulator_dev *rdev = regulator->rdev;
2504
	int ret;
2505

2506 2507
	lockdep_assert_held_once(&rdev->mutex.base);

2508
	if (rdev->use_count == 0 && rdev->supply) {
2509
		ret = _regulator_enable(rdev->supply);
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2520

2521 2522 2523
	ret = _regulator_handle_consumer_enable(regulator);
	if (ret < 0)
		goto err_disable_supply;
2524

2525 2526 2527 2528
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2529
			if (!regulator_ops_is_valid(rdev,
2530 2531
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
2532
				goto err_consumer_disable;
2533
			}
2534

2535
			ret = _regulator_do_enable(rdev);
2536
			if (ret < 0)
2537
				goto err_consumer_disable;
2538

2539 2540
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2541
		} else if (ret < 0) {
2542
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2543
			goto err_consumer_disable;
2544
		}
2545
		/* Fallthrough on positive return values - already enabled */
2546 2547
	}

2548 2549 2550
	rdev->use_count++;

	return 0;
2551

2552 2553 2554
err_consumer_disable:
	_regulator_handle_consumer_disable(regulator);

2555
err_disable_supply:
2556
	if (rdev->use_count == 0 && rdev->supply)
2557
		_regulator_disable(rdev->supply);
2558 2559

	return ret;
2560 2561 2562 2563 2564 2565
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2566 2567 2568 2569
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2570
 * NOTE: the output value can be set by other drivers, boot loader or may be
2571
 * hardwired in the regulator.
2572 2573 2574
 */
int regulator_enable(struct regulator *regulator)
{
2575
	struct regulator_dev *rdev = regulator->rdev;
2576
	struct ww_acquire_ctx ww_ctx;
2577
	int ret;
2578

2579
	regulator_lock_dependent(rdev, &ww_ctx);
2580
	ret = _regulator_enable(regulator);
2581
	regulator_unlock_dependent(rdev, &ww_ctx);
2582

2583 2584 2585 2586
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2587 2588 2589 2590 2591 2592
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2593
	if (rdev->ena_pin) {
2594 2595 2596 2597 2598 2599
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2600 2601 2602 2603 2604 2605 2606

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2607 2608 2609 2610 2611 2612
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2613 2614 2615 2616 2617
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2618
/* locks held by regulator_disable() */
2619
static int _regulator_disable(struct regulator *regulator)
2620
{
2621
	struct regulator_dev *rdev = regulator->rdev;
2622 2623
	int ret = 0;

2624
	lockdep_assert_held_once(&rdev->mutex.base);
2625

D
David Brownell 已提交
2626
	if (WARN(rdev->use_count <= 0,
2627
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2628 2629
		return -EIO;

2630
	/* are we the last user and permitted to disable ? */
2631 2632
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2633 2634

		/* we are last user */
2635
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2636 2637 2638 2639 2640 2641
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2642
			ret = _regulator_do_disable(rdev);
2643
			if (ret < 0) {
2644
				rdev_err(rdev, "failed to disable\n");
2645 2646 2647
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2648 2649
				return ret;
			}
2650 2651
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2652 2653 2654 2655 2656 2657
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
		rdev->use_count--;
	}
2658

2659 2660 2661
	if (ret == 0)
		ret = _regulator_handle_consumer_disable(regulator);

2662 2663 2664
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

2665
	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2666
		ret = _regulator_disable(rdev->supply);
2667

2668 2669 2670 2671 2672 2673 2674
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2675 2676 2677
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2678
 *
2679
 * NOTE: this will only disable the regulator output if no other consumer
2680 2681
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2682 2683 2684
 */
int regulator_disable(struct regulator *regulator)
{
2685
	struct regulator_dev *rdev = regulator->rdev;
2686
	struct ww_acquire_ctx ww_ctx;
2687
	int ret;
2688

2689
	regulator_lock_dependent(rdev, &ww_ctx);
2690
	ret = _regulator_disable(regulator);
2691
	regulator_unlock_dependent(rdev, &ww_ctx);
2692

2693 2694 2695 2696 2697
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2698
static int _regulator_force_disable(struct regulator_dev *rdev)
2699 2700 2701
{
	int ret = 0;

2702
	lockdep_assert_held_once(&rdev->mutex.base);
2703

2704 2705 2706 2707 2708
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2709 2710 2711
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2712 2713
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2714
		return ret;
2715 2716
	}

2717 2718 2719 2720
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2734
	struct regulator_dev *rdev = regulator->rdev;
2735
	struct ww_acquire_ctx ww_ctx;
2736 2737
	int ret;

2738
	regulator_lock_dependent(rdev, &ww_ctx);
2739

2740
	ret = _regulator_force_disable(regulator->rdev);
2741

2742 2743
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2744 2745 2746 2747 2748 2749

	if (regulator->uA_load) {
		regulator->uA_load = 0;
		ret = drms_uA_update(rdev);
	}

2750 2751
	if (rdev->use_count != 0 && rdev->supply)
		_regulator_disable(rdev->supply);
2752

2753
	regulator_unlock_dependent(rdev, &ww_ctx);
2754

2755 2756 2757 2758
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2759 2760 2761 2762
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2763
	struct ww_acquire_ctx ww_ctx;
2764
	int count, i, ret;
2765 2766
	struct regulator *regulator;
	int total_count = 0;
2767

2768
	regulator_lock_dependent(rdev, &ww_ctx);
2769

2770 2771 2772 2773 2774 2775 2776 2777
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		count = regulator->deferred_disables;

		if (!count)
			continue;

		total_count += count;
		regulator->deferred_disables = 0;

		for (i = 0; i < count; i++) {
			ret = _regulator_disable(regulator);
			if (ret != 0)
				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
		}
2792
	}
2793
	WARN_ON(!total_count);
2794

2795 2796 2797 2798
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2817 2818 2819
	if (!ms)
		return regulator_disable(regulator);

2820
	regulator_lock(rdev);
2821
	regulator->deferred_disables++;
2822 2823
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2824
	regulator_unlock(rdev);
2825

2826
	return 0;
2827 2828 2829
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2830 2831
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2832
	/* A GPIO control always takes precedence */
2833
	if (rdev->ena_pin)
2834 2835
		return rdev->ena_gpio_state;

2836
	/* If we don't know then assume that the regulator is always on */
2837
	if (!rdev->desc->ops->is_enabled)
2838
		return 1;
2839

2840
	return rdev->desc->ops->is_enabled(rdev);
2841 2842
}

2843 2844
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2856
			regulator_lock(rdev);
2857 2858
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2859
			regulator_unlock(rdev);
2860
	} else if (rdev->is_switch && rdev->supply) {
2861 2862
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2877 2878 2879 2880
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2881 2882 2883 2884 2885 2886 2887
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2888 2889 2890
 */
int regulator_is_enabled(struct regulator *regulator)
{
2891 2892
	int ret;

2893 2894 2895
	if (regulator->always_on)
		return 1;

2896
	regulator_lock(regulator->rdev);
2897
	ret = _regulator_is_enabled(regulator->rdev);
2898
	regulator_unlock(regulator->rdev);
2899 2900

	return ret;
2901 2902 2903
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2916 2917 2918
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2919
	if (!rdev->is_switch || !rdev->supply)
2920 2921 2922
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2933
 * zero if this selector code can't be used on this system, or a
2934 2935 2936 2937
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2938
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2939 2940 2941
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2974 2975
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2976 2977 2978 2979

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2980 2981
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
3001 3002
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
3040
	struct regulator_dev *rdev = regulator->rdev;
3041 3042
	int i, voltages, ret;

3043
	/* If we can't change voltage check the current voltage */
3044
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3045 3046
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
3047
			return min_uV <= ret && ret <= max_uV;
3048 3049 3050 3051
		else
			return ret;
	}

3052 3053 3054 3055 3056
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
3071
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

3087 3088 3089 3090 3091
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

3092 3093 3094
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3144 3145 3146 3147 3148 3149 3150 3151 3152
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3153 3154
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3155 3156 3157 3158 3159 3160
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3161 3162

	if (ramp_delay == 0) {
3163
		rdev_dbg(rdev, "ramp_delay not set\n");
3164 3165 3166 3167 3168 3169
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3170 3171 3172 3173
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3174
	int delay = 0;
3175
	int best_val = 0;
3176
	unsigned int selector;
3177
	int old_selector = -1;
3178
	const struct regulator_ops *ops = rdev->desc->ops;
3179
	int old_uV = _regulator_get_voltage(rdev);
3180 3181 3182

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3183 3184 3185
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3186 3187 3188 3189
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3190
	if (_regulator_is_enabled(rdev) &&
3191 3192
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3193 3194 3195 3196
		if (old_selector < 0)
			return old_selector;
	}

3197
	if (ops->set_voltage) {
3198 3199
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3200 3201

		if (ret >= 0) {
3202 3203 3204
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3205 3206 3207 3208
			else
				best_val = _regulator_get_voltage(rdev);
		}

3209
	} else if (ops->set_voltage_sel) {
3210
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3211
		if (ret >= 0) {
3212
			best_val = ops->list_voltage(rdev, ret);
3213 3214
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3215 3216 3217
				if (old_selector == selector)
					ret = 0;
				else
3218 3219
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3220 3221 3222
			} else {
				ret = -EINVAL;
			}
3223
		}
3224 3225 3226
	} else {
		ret = -EINVAL;
	}
3227

3228 3229
	if (ret)
		goto out;
3230

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3248
		}
3249
	}
3250

3251 3252 3253
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3254 3255
	}

3256 3257 3258 3259 3260 3261
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3262 3263
	}

3264
	if (best_val >= 0) {
3265 3266
		unsigned long data = best_val;

3267
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3268 3269
				     (void *)data);
	}
3270

3271
out:
3272
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3273 3274 3275 3276

	return ret;
}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3303
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3304 3305
					  int min_uV, int max_uV,
					  suspend_state_t state)
3306 3307
{
	struct regulator_dev *rdev = regulator->rdev;
3308
	struct regulator_voltage *voltage = &regulator->voltage[state];
3309
	int ret = 0;
3310
	int old_min_uV, old_max_uV;
3311
	int current_uV;
3312

3313 3314 3315 3316
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3317
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3318 3319
		goto out;

3320
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3321
	 * return successfully even though the regulator does not support
3322 3323
	 * changing the voltage.
	 */
3324
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3325 3326
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3327 3328
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3329 3330 3331 3332
			goto out;
		}
	}

3333
	/* sanity check */
3334 3335
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3336 3337 3338 3339 3340 3341 3342 3343
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3344

3345
	/* restore original values in case of error */
3346 3347 3348 3349
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3350

3351 3352
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3353
	if (ret < 0)
3354
		goto out2;
3355

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3372 3373 3374
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3375 3376
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3377 3378 3379 3380 3381 3382
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3383
			goto out;
3384 3385
		}

M
Mark Brown 已提交
3386
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3387 3388
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3389
			goto out;
3390 3391 3392 3393 3394 3395 3396
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3397
			goto out;
3398 3399 3400 3401 3402 3403 3404
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3405
				best_supply_uV, INT_MAX, state);
3406 3407 3408
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3409
			goto out;
3410 3411 3412
		}
	}

3413 3414 3415 3416 3417
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3418
	if (ret < 0)
3419
		goto out;
3420

3421 3422
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3423
				best_supply_uV, INT_MAX, state);
3424 3425 3426 3427 3428 3429 3430
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3431
out:
3432
	return ret;
3433 3434
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3512
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;
3523

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3688

3689 3690
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3691

3692 3693 3694 3695 3696 3697 3698 3699
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
3700 3701 3702
	return ret;
}

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3723 3724
	struct ww_acquire_ctx ww_ctx;
	int ret;
3725

3726
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3727

3728 3729
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3730

3731
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3732

3733 3734 3735 3736
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3749
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3803 3804
	struct ww_acquire_ctx ww_ctx;
	int ret;
3805 3806 3807 3808 3809

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3810
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3811 3812 3813 3814

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3815
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3816 3817 3818 3819 3820

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3834 3835
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3836 3837 3838 3839 3840
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3841 3842 3843 3844 3845
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3846
	/* Currently requires operations to do this */
3847
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3870
/**
3871 3872
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3873 3874 3875 3876 3877 3878
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3879
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3880
 * set_voltage_time_sel() operation.
3881 3882 3883 3884 3885
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3886
	int old_volt, new_volt;
3887

3888 3889 3890
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3891

3892 3893 3894
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3895 3896 3897 3898 3899
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3900
}
3901
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3902

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3914
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3915 3916
	int ret, min_uV, max_uV;

3917
	regulator_lock(rdev);
3918 3919 3920 3921 3922 3923 3924 3925

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3926
	if (!voltage->min_uV && !voltage->max_uV) {
3927 3928 3929 3930
		ret = -EINVAL;
		goto out;
	}

3931 3932
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3933 3934 3935 3936 3937 3938

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3939
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3940 3941 3942 3943 3944 3945
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3946
	regulator_unlock(rdev);
3947 3948 3949 3950
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3951 3952
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3953
	int sel, ret;
3954 3955 3956 3957 3958 3959 3960 3961
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3962 3963 3964 3965 3966
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3967 3968 3969 3970

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3971 3972 3973 3974 3975

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3976
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3977
	} else if (rdev->desc->ops->get_voltage) {
3978
		ret = rdev->desc->ops->get_voltage(rdev);
3979 3980
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3981 3982
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3983
	} else if (rdev->supply) {
3984
		ret = _regulator_get_voltage(rdev->supply->rdev);
3985
	} else {
3986
		return -EINVAL;
3987
	}
3988

3989 3990
	if (ret < 0)
		return ret;
3991
	return ret - rdev->constraints->uV_offset;
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
4005
	struct ww_acquire_ctx ww_ctx;
4006 4007
	int ret;

4008
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4009
	ret = _regulator_get_voltage(regulator->rdev);
4010
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4011 4012 4013 4014 4015 4016 4017 4018

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
4019
 * @min_uA: Minimum supported current in uA
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

4038
	regulator_lock(rdev);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
4053
	regulator_unlock(rdev);
4054 4055 4056 4057
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

4058 4059 4060 4061 4062 4063 4064 4065 4066
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

4067 4068 4069 4070
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

4071
	regulator_lock(rdev);
4072
	ret = _regulator_get_current_limit_unlocked(rdev);
4073
	regulator_unlock(rdev);
4074

4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
4108
	int regulator_curr_mode;
4109

4110
	regulator_lock(rdev);
4111 4112 4113 4114 4115 4116 4117

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4118 4119 4120 4121 4122 4123 4124 4125 4126
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4127
	/* constraints check */
4128
	ret = regulator_mode_constrain(rdev, &mode);
4129 4130 4131 4132 4133
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4134
	regulator_unlock(rdev);
4135 4136 4137 4138
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4139 4140 4141 4142 4143 4144 4145 4146 4147
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4148 4149 4150 4151
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4152
	regulator_lock(rdev);
4153
	ret = _regulator_get_mode_unlocked(rdev);
4154
	regulator_unlock(rdev);
4155

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4171 4172 4173 4174 4175
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4176
	regulator_lock(rdev);
4177 4178 4179 4180 4181 4182 4183 4184 4185

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4186
	regulator_unlock(rdev);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4204
/**
4205
 * regulator_set_load - set regulator load
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4228 4229 4230 4231 4232 4233 4234 4235
 * NOTE: when a regulator consumer requests to have a regulator
 * disabled then any load that consumer requested no longer counts
 * toward the total requested load.  If the regulator is re-enabled
 * then the previously requested load will start counting again.
 *
 * If a regulator is an always-on regulator then an individual consumer's
 * load will still be removed if that consumer is fully disabled.
 *
4236
 * On error a negative errno is returned.
4237
 */
4238
int regulator_set_load(struct regulator *regulator, int uA_load)
4239 4240
{
	struct regulator_dev *rdev = regulator->rdev;
4241 4242
	int old_uA_load;
	int ret = 0;
4243

4244
	regulator_lock(rdev);
4245
	old_uA_load = regulator->uA_load;
4246
	regulator->uA_load = uA_load;
4247 4248 4249 4250 4251
	if (regulator->enable_count && old_uA_load != uA_load) {
		ret = drms_uA_update(rdev);
		if (ret < 0)
			regulator->uA_load = old_uA_load;
	}
4252
	regulator_unlock(rdev);
4253

4254 4255
	return ret;
}
4256
EXPORT_SYMBOL_GPL(regulator_set_load);
4257

4258 4259 4260 4261
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4262
 * @enable: enable or disable bypass mode
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4277
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4278 4279
		return 0;

4280
	regulator_lock(rdev);
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4304
	regulator_unlock(rdev);
4305 4306 4307 4308 4309

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4310 4311 4312
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4313
 * @nb: notifier block
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4328
 * @nb: notifier block
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4340 4341 4342
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4343
static int _notifier_call_chain(struct regulator_dev *rdev,
4344 4345 4346
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4347
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4374 4375
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4376 4377
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4378 4379
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4380 4381 4382 4383 4384 4385 4386 4387
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4388
	while (--i >= 0)
4389 4390 4391 4392 4393 4394
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4395 4396 4397 4398 4399 4400 4401
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4417
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4418
	int i;
4419
	int ret = 0;
4420

4421
	for (i = 0; i < num_consumers; i++) {
4422 4423
		async_schedule_domain(regulator_bulk_enable_async,
				      &consumers[i], &async_domain);
4424
	}
4425 4426 4427 4428

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4429
	for (i = 0; i < num_consumers; i++) {
4430 4431
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4432
			goto err;
4433
		}
4434 4435 4436 4437 4438
	}

	return 0;

err:
4439 4440 4441 4442 4443 4444 4445
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4459 4460
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4461 4462 4463 4464 4465 4466
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4467
	int ret, r;
4468

4469
	for (i = num_consumers - 1; i >= 0; --i) {
4470 4471 4472 4473 4474 4475 4476 4477
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4478
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4479 4480 4481
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4482
			pr_err("Failed to re-enable %s: %d\n",
4483 4484
			       consumers[i].supply, r);
	}
4485 4486 4487 4488 4489

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4508
	int ret = 0;
4509

4510
	for (i = 0; i < num_consumers; i++) {
4511 4512 4513
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4514 4515
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4516 4517 4518 4519 4520 4521 4522
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4546
 * @rdev: regulator source
4547
 * @event: notifier block
4548
 * @data: callback-specific data.
4549 4550 4551
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4552
 * Note lock must be held by caller.
4553 4554 4555 4556
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4557
	lockdep_assert_held_once(&rdev->mutex.base);
4558

4559 4560 4561 4562 4563 4564
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4581
	case REGULATOR_MODE_STANDBY:
4582 4583
		return REGULATOR_STATUS_STANDBY;
	default:
4584
		return REGULATOR_STATUS_UNDEFINED;
4585 4586 4587 4588
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4616 4617 4618 4619
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4620 4621
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4622
{
4623
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4624
	struct regulator_dev *rdev = dev_to_rdev(dev);
4625
	const struct regulator_ops *ops = rdev->desc->ops;
4626 4627 4628 4629 4630 4631 4632
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4633 4634

	/* some attributes need specific methods to be displayed */
4635 4636 4637 4638 4639 4640 4641
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4642
	}
4643

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4659
	/* constraints need specific supporting methods */
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4695

4696 4697 4698
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4699 4700 4701

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4702
	kfree(rdev);
4703 4704
}

4705 4706
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4719
	if (!rdev->debugfs) {
4720 4721 4722 4723 4724 4725 4726 4727
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4728 4729
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4730 4731
}

4732 4733
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4734 4735 4736 4737 4738 4739
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4740 4741
}

4742
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4756 4757
		if (!c_rdev)
			continue;
4758

4759
		regulator_lock(c_rdev);
4760

4761 4762
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4763

4764
		regulator_unlock(c_rdev);
4765

4766 4767
		regulator_resolve_coupling(c_rdev);
	}
4768 4769
}

4770
static void regulator_remove_coupling(struct regulator_dev *rdev)
4771
{
4772 4773 4774 4775
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;
4776

4777
	n_coupled = c_desc->n_coupled;
4778

4779 4780
	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];
4781

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
4805 4806
}

4807
static int regulator_init_coupling(struct regulator_dev *rdev)
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4850 4851
/**
 * regulator_register - register regulator
4852
 * @regulator_desc: regulator to register
4853
 * @cfg: runtime configuration for regulator
4854 4855
 *
 * Called by regulator drivers to register a regulator.
4856 4857
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4858
 */
4859 4860
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4861
		   const struct regulator_config *cfg)
4862
{
4863
	const struct regulation_constraints *constraints = NULL;
4864
	const struct regulator_init_data *init_data;
4865
	struct regulator_config *config = NULL;
4866
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4867
	struct regulator_dev *rdev;
4868 4869
	bool dangling_cfg_gpiod = false;
	bool dangling_of_gpiod = false;
4870
	struct device *dev;
4871
	int ret, i;
4872

4873
	if (cfg == NULL)
4874
		return ERR_PTR(-EINVAL);
4875 4876 4877 4878 4879 4880
	if (cfg->ena_gpiod)
		dangling_cfg_gpiod = true;
	if (regulator_desc == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4881

4882
	dev = cfg->dev;
4883
	WARN_ON(!dev);
4884

4885 4886 4887 4888
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
		ret = -EINVAL;
		goto rinse;
	}
4889

4890
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4891 4892 4893 4894
	    regulator_desc->type != REGULATOR_CURRENT) {
		ret = -EINVAL;
		goto rinse;
	}
4895

4896 4897 4898
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4899 4900
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4901 4902 4903 4904

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4905 4906
		ret = -EINVAL;
		goto rinse;
4907
	}
4908 4909
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
4910 4911
		ret = -EINVAL;
		goto rinse;
4912
	}
4913

4914
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4915 4916 4917 4918
	if (rdev == NULL) {
		ret = -ENOMEM;
		goto rinse;
	}
4919

4920 4921 4922 4923 4924 4925 4926
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
4927 4928
		ret = -ENOMEM;
		goto rinse;
4929 4930
	}

4931
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4932
					       &rdev->dev.of_node);
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	/*
	 * We need to keep track of any GPIO descriptor coming from the
	 * device tree until we have handled it over to the core. If the
	 * config that was passed in to this function DOES NOT contain
	 * a descriptor, and the config after this call DOES contain
	 * a descriptor, we definately got one from parsing the device
	 * tree.
	 */
	if (!cfg->ena_gpiod && config->ena_gpiod)
		dangling_of_gpiod = true;
4943 4944 4945 4946 4947
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4948
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4949
	rdev->reg_data = config->driver_data;
4950 4951
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4952 4953
	if (config->regmap)
		rdev->regmap = config->regmap;
4954
	else if (dev_get_regmap(dev, NULL))
4955
		rdev->regmap = dev_get_regmap(dev, NULL);
4956 4957
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4958 4959 4960
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4961
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4962

4963
	/* preform any regulator specific init */
4964
	if (init_data && init_data->regulator_init) {
4965
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4966 4967
		if (ret < 0)
			goto clean;
4968 4969
	}

4970 4971 4972
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4973
		mutex_lock(&regulator_list_mutex);
4974
		ret = regulator_ena_gpio_request(rdev, config);
4975
		mutex_unlock(&regulator_list_mutex);
4976 4977 4978
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4979
			goto clean;
4980
		}
4981 4982 4983
		/* The regulator core took over the GPIO descriptor */
		dangling_cfg_gpiod = false;
		dangling_of_gpiod = false;
4984 4985
	}

4986
	/* register with sysfs */
4987
	rdev->dev.class = &regulator_class;
4988
	rdev->dev.parent = dev;
4989
	dev_set_name(&rdev->dev, "regulator.%lu",
4990
		    (unsigned long) atomic_inc_return(&regulator_no));
4991

4992
	/* set regulator constraints */
4993 4994 4995 4996
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4997
		rdev->supply_name = init_data->supply_regulator;
4998
	else if (regulator_desc->supply_name)
4999
		rdev->supply_name = regulator_desc->supply_name;
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

5013 5014
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
5015 5016
		goto wash;

5017
	/* add consumers devices */
5018
	if (init_data) {
5019
		mutex_lock(&regulator_list_mutex);
5020 5021 5022
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
5023
				init_data->consumer_supplies[i].supply);
5024
			if (ret < 0) {
5025
				mutex_unlock(&regulator_list_mutex);
5026 5027 5028 5029
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
5030
		}
5031
		mutex_unlock(&regulator_list_mutex);
5032
	}
5033

5034 5035 5036 5037 5038
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

5039
	dev_set_drvdata(&rdev->dev, rdev);
5040 5041 5042 5043 5044 5045
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

5046
	rdev_init_debugfs(rdev);
5047

5048 5049 5050 5051 5052
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

5053 5054 5055
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
5056
	kfree(config);
5057
	return rdev;
D
David Brownell 已提交
5058

5059
unset_supplies:
5060
	mutex_lock(&regulator_list_mutex);
5061
	unset_regulator_supplies(rdev);
5062
	mutex_unlock(&regulator_list_mutex);
5063
wash:
5064
	kfree(rdev->constraints);
5065
	mutex_lock(&regulator_list_mutex);
5066
	regulator_ena_gpio_free(rdev);
5067
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
5068
clean:
5069 5070
	if (dangling_of_gpiod)
		gpiod_put(config->ena_gpiod);
D
David Brownell 已提交
5071
	kfree(rdev);
5072
	kfree(config);
5073 5074 5075
rinse:
	if (dangling_cfg_gpiod)
		gpiod_put(cfg->ena_gpiod);
5076
	return ERR_PTR(ret);
5077 5078 5079 5080 5081
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
5082
 * @rdev: regulator to unregister
5083 5084 5085 5086 5087 5088 5089 5090
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

5091 5092 5093
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
5094
		regulator_put(rdev->supply);
5095
	}
5096

5097
	mutex_lock(&regulator_list_mutex);
5098

5099
	debugfs_remove_recursive(rdev->debugfs);
5100
	flush_work(&rdev->disable_work.work);
5101
	WARN_ON(rdev->open_count);
5102
	regulator_remove_coupling(rdev);
5103
	unset_regulator_supplies(rdev);
5104
	list_del(&rdev->list);
5105
	regulator_ena_gpio_free(rdev);
5106
	device_unregister(&rdev->dev);
5107 5108

	mutex_unlock(&regulator_list_mutex);
5109 5110 5111
}
EXPORT_SYMBOL_GPL(regulator_unregister);

5112
#ifdef CONFIG_SUSPEND
5113
/**
5114
 * regulator_suspend - prepare regulators for system wide suspend
5115
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5116 5117 5118
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
5119
static int regulator_suspend(struct device *dev)
5120
{
5121
	struct regulator_dev *rdev = dev_to_rdev(dev);
5122
	suspend_state_t state = pm_suspend_target_state;
5123 5124 5125 5126 5127
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
5128

5129
	return ret;
5130
}
5131

5132
static int regulator_resume(struct device *dev)
5133
{
5134
	suspend_state_t state = pm_suspend_target_state;
5135
	struct regulator_dev *rdev = dev_to_rdev(dev);
5136
	struct regulator_state *rstate;
5137
	int ret = 0;
5138

5139
	rstate = regulator_get_suspend_state(rdev, state);
5140
	if (rstate == NULL)
5141
		return 0;
5142

5143
	regulator_lock(rdev);
5144

5145
	if (rdev->desc->ops->resume &&
5146 5147
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
5148
		ret = rdev->desc->ops->resume(rdev);
5149

5150
	regulator_unlock(rdev);
5151

5152
	return ret;
5153
}
5154 5155
#else /* !CONFIG_SUSPEND */

5156 5157
#define regulator_suspend	NULL
#define regulator_resume	NULL
5158 5159 5160 5161 5162

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5163 5164
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5165 5166 5167
};
#endif

M
Mark Brown 已提交
5168
struct class regulator_class = {
5169 5170 5171 5172 5173 5174 5175
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5193 5194
/**
 * rdev_get_drvdata - get rdev regulator driver data
5195
 * @rdev: regulator
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5232
 * @rdev: regulator
5233 5234 5235 5236 5237 5238 5239
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5252
#ifdef CONFIG_DEBUG_FS
5253
static int supply_map_show(struct seq_file *sf, void *data)
5254 5255 5256 5257
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5258 5259 5260
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5261 5262
	}

5263 5264
	return 0;
}
5265
DEFINE_SHOW_ATTRIBUTE(supply_map);
5266

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5289 5290 5291 5292 5293 5294
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5295
	struct summary_data summary_data;
5296
	unsigned int opmode;
5297 5298 5299 5300

	if (!rdev)
		return;

5301
	opmode = _regulator_get_mode_unlocked(rdev);
5302
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5303 5304
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5305
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5306
		   regulator_opmode_to_str(opmode));
5307

5308
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5309 5310
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5329
		if (consumer->dev && consumer->dev->class == &regulator_class)
5330 5331 5332 5333
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5334 5335
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5336 5337 5338

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5339 5340
			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
				   consumer->enable_count,
5341
				   consumer->uA_load / 1000,
5342 5343
				   consumer->uA_load && !consumer->enable_count ?
				   '*' : ' ',
5344 5345
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5346 5347 5348 5349 5350 5351 5352 5353
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5354 5355 5356
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5357

5358 5359
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5397 5398

	regulator_unlock(rdev);
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5429 5430
	mutex_lock(&regulator_list_mutex);

5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5457 5458

	mutex_unlock(&regulator_list_mutex);
5459 5460
}

5461
static int regulator_summary_show_roots(struct device *dev, void *data)
5462
{
5463 5464
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5465

5466 5467
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5468

5469 5470
	return 0;
}
5471

5472 5473
static int regulator_summary_show(struct seq_file *s, void *data)
{
5474 5475
	struct ww_acquire_ctx ww_ctx;

5476 5477
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5478

5479 5480
	regulator_summary_lock(&ww_ctx);

5481 5482
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5483

5484 5485
	regulator_summary_unlock(&ww_ctx);

5486 5487
	return 0;
}
5488 5489
DEFINE_SHOW_ATTRIBUTE(regulator_summary);
#endif /* CONFIG_DEBUG_FS */
5490

5491 5492
static int __init regulator_init(void)
{
5493 5494 5495 5496
	int ret;

	ret = class_register(&regulator_class);

5497
	debugfs_root = debugfs_create_dir("regulator", NULL);
5498
	if (!debugfs_root)
5499
		pr_warn("regulator: Failed to create debugfs directory\n");
5500

5501
#ifdef CONFIG_DEBUG_FS
5502 5503
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5504

5505
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5506
			    NULL, &regulator_summary_fops);
5507
#endif
5508 5509 5510
	regulator_dummy_init();

	return ret;
5511 5512 5513 5514
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5515

5516
static int __init regulator_late_cleanup(struct device *dev, void *data)
5517
{
5518 5519 5520
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5521 5522
	int enabled, ret;

5523 5524 5525
	if (c && c->always_on)
		return 0;

5526
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5527 5528
		return 0;

5529
	regulator_lock(rdev);
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5560
	regulator_unlock(rdev);
5561 5562 5563 5564 5565 5566

	return 0;
}

static int __init regulator_init_complete(void)
{
5567 5568 5569 5570 5571 5572 5573 5574 5575
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5586
	/* If we have a full configuration then disable any regulators
5587 5588 5589
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5590
	 */
5591 5592
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5593 5594 5595

	return 0;
}
5596
late_initcall_sync(regulator_init_complete);