intel_lrc.c 86.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_lrc_reg.h"
142
#include "intel_mocs.h"
143
#include "intel_workarounds.h"
144

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159
#define GEN8_CTX_STATUS_COMPLETED_MASK \
160
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161

162 163
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164
#define WA_TAIL_DWORDS 2
165
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166

167
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168 169
					    struct intel_engine_cs *engine,
					    struct intel_context *ce);
170 171 172 173
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184 185 186 187 188
}

static inline bool need_preempt(const struct intel_engine_cs *engine,
				const struct i915_request *last,
				int prio)
{
189
	return (intel_engine_has_preemption(engine) &&
190 191
		__execlists_need_preempt(prio, rq_prio(last)) &&
		!i915_request_completed(last));
192 193
}

194
/*
195 196 197 198 199
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
200 201
 * This is what a descriptor looks like, from LSB to MSB::
 *
202
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205 206
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
207 208 209 210 211 212 213 214 215 216 217 218
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
219
 */
220
static void
221
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222 223
				   struct intel_engine_cs *engine,
				   struct intel_context *ce)
224
{
225
	u64 desc;
226

227 228
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229

230
	desc = ctx->desc_template;				/* bits  0-11 */
231 232
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

233
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234
								/* bits 12-31 */
235 236
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

237 238 239 240 241
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	if (INTEL_GEN(ctx->i915) >= 11) {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
258

259
	ce->lrc_desc = desc;
260 261
}

262
static struct i915_priolist *
263
lookup_priolist(struct intel_engine_cs *engine, int prio)
264
{
265
	struct intel_engine_execlists * const execlists = &engine->execlists;
266 267 268 269
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

270
	if (unlikely(execlists->no_priolist))
271 272 273 274 275
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
276
	parent = &execlists->queue.rb_root.rb_node;
277 278
	while (*parent) {
		rb = *parent;
279
		p = to_priolist(rb);
280 281 282 283 284 285
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
286
			return p;
287 288 289 290
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
291
		p = &execlists->default_priolist;
292 293 294 295 296 297 298 299 300 301 302 303 304 305
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
306
			execlists->no_priolist = true;
307 308 309 310 311
			goto find_priolist;
		}
	}

	p->priority = prio;
312
	INIT_LIST_HEAD(&p->requests);
313
	rb_link_node(&p->node, rb, parent);
314
	rb_insert_color_cached(&p->node, &execlists->queue, first);
315

316
	return p;
317 318
}

319
static void unwind_wa_tail(struct i915_request *rq)
320 321 322 323 324
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

325
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326
{
327
	struct i915_request *rq, *rn;
328 329
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
330

331
	lockdep_assert_held(&engine->timeline.lock);
332 333

	list_for_each_entry_safe_reverse(rq, rn,
334
					 &engine->timeline.requests,
335
					 link) {
336
		if (i915_request_completed(rq))
337 338
			return;

339
		__i915_request_unsubmit(rq);
340 341
		unwind_wa_tail(rq);

342 343 344
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
		if (rq_prio(rq) != last_prio) {
			last_prio = rq_prio(rq);
345
			p = lookup_priolist(engine, last_prio);
346 347
		}

348
		GEM_BUG_ON(p->priority != rq_prio(rq));
349
		list_add(&rq->sched.link, &p->requests);
350 351 352
	}
}

353
void
354 355 356 357
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);
358 359 360
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline.lock, flags);
361 362

	__unwind_incomplete_requests(engine);
363 364

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 366
}

367
static inline void
368
execlists_context_status_change(struct i915_request *rq, unsigned long status)
369
{
370 371 372 373 374 375
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
376

377 378
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
379 380
}

381 382 383 384 385 386 387 388 389 390 391 392 393
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

394
static inline void
395
execlists_context_schedule_in(struct i915_request *rq)
396 397
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398
	intel_engine_context_in(rq->engine);
399 400 401
}

static inline void
402
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403
{
404
	intel_engine_context_out(rq->engine);
405 406
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
407 408
}

409 410 411 412 413 414 415 416 417
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

418
static u64 execlists_update_context(struct i915_request *rq)
419
{
420
	struct intel_context *ce = rq->hw_context;
421
	struct i915_hw_ppgtt *ppgtt =
C
Chris Wilson 已提交
422
		rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423
	u32 *reg_state = ce->lrc_reg_state;
424

425
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426

427 428 429 430 431
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
432
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
433
		execlists_update_context_pdps(ppgtt, reg_state);
434 435

	return ce->lrc_desc;
436 437
}

438
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
439
{
440 441 442 443 444 445 446
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
447 448
}

449
static void execlists_submit_ports(struct intel_engine_cs *engine)
450
{
451 452
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
453
	unsigned int n;
454

455 456 457 458 459 460 461 462 463 464
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

465 466 467 468 469 470 471
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
472
		struct i915_request *rq;
473 474 475 476 477 478 479
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
480
				execlists_context_schedule_in(rq);
481 482 483
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
484

485
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
486
				  engine->name, n,
487
				  port[n].context_id, count,
488
				  rq->global_seqno,
489
				  rq->fence.context, rq->fence.seqno,
490
				  intel_engine_get_seqno(engine),
491
				  rq_prio(rq));
492 493 494 495
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
496

497
		write_desc(execlists, desc, n);
498
	}
499 500 501 502 503 504

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
505 506
}

507
static bool ctx_single_port_submission(const struct intel_context *ce)
508
{
509
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
510
		i915_gem_context_force_single_submission(ce->gem_context));
511
}
512

513 514
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
515 516 517
{
	if (prev != next)
		return false;
518

519 520
	if (ctx_single_port_submission(prev))
		return false;
521

522
	return true;
523 524
}

525
static void port_assign(struct execlist_port *port, struct i915_request *rq)
526 527 528 529
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
530
		i915_request_put(port_request(port));
531

532
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
533 534
}

C
Chris Wilson 已提交
535 536
static void inject_preempt_context(struct intel_engine_cs *engine)
{
537
	struct intel_engine_execlists *execlists = &engine->execlists;
C
Chris Wilson 已提交
538
	struct intel_context *ce =
539
		to_intel_context(engine->i915->preempt_context, engine);
C
Chris Wilson 已提交
540 541
	unsigned int n;

542
	GEM_BUG_ON(execlists->preempt_complete_status !=
543
		   upper_32_bits(ce->lrc_desc));
544

545 546 547 548
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
549
	GEM_TRACE("%s\n", engine->name);
550 551 552 553 554 555 556 557
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
558

559 560 561 562 563 564 565 566
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

567 568 569
	if (inject_preempt_hang(execlists))
		return;

570
	execlists_cancel_port_requests(execlists);
571 572 573
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
574 575
}

576
static void execlists_dequeue(struct intel_engine_cs *engine)
577
{
578 579
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
580 581
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
582
	struct i915_request *last = port_request(port);
583
	struct rb_node *rb;
584 585
	bool submit = false;

586 587
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
606
	 */
607

C
Chris Wilson 已提交
608 609 610 611 612 613 614
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
615 616
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
617
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
618

619 620 621 622 623 624 625 626
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
627
			return;
628

629
		if (need_preempt(engine, last, execlists->queue_priority)) {
C
Chris Wilson 已提交
630
			inject_preempt_context(engine);
631
			return;
C
Chris Wilson 已提交
632
		}
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
656
			return;
657 658 659 660 661 662 663 664 665 666

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
		 * request. See gen8_emit_breadcrumb() for
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
667 668
	}

669
	while ((rb = rb_first_cached(&execlists->queue))) {
670
		struct i915_priolist *p = to_priolist(rb);
671
		struct i915_request *rq, *rn;
672

673
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
674 675 676 677 678 679 680 681 682 683
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
684
			 */
685 686
			if (last &&
			    !can_merge_ctx(rq->hw_context, last->hw_context)) {
687 688 689 690 691
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
692
				if (port == last_port) {
693
					__list_del_many(&p->requests,
694
							&rq->sched.link);
695 696 697 698 699 700 701 702 703 704
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
705 706
				if (ctx_single_port_submission(last->hw_context) ||
				    ctx_single_port_submission(rq->hw_context)) {
707
					__list_del_many(&p->requests,
708
							&rq->sched.link);
709 710 711
					goto done;
				}

712
				GEM_BUG_ON(last->hw_context == rq->hw_context);
713 714 715 716

				if (submit)
					port_assign(port, last);
				port++;
717 718

				GEM_BUG_ON(port_isset(port));
719
			}
720

721
			INIT_LIST_HEAD(&rq->sched.link);
722 723
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
724 725
			last = rq;
			submit = true;
726
		}
727

728
		rb_erase_cached(&p->node, &execlists->queue);
729 730
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
731
			kmem_cache_free(engine->i915->priorities, p);
732
	}
733

734
done:
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
	 * We choose queue_priority such that if we add a request of greater
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
	 * HW. We derive the queue_priority then as the first "hole" in
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
	 * user, see queue_request(), the queue_priority is bumped to that
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
	execlists->queue_priority =
		port != execlists->port ? rq_prio(last) : INT_MIN;

754
	if (submit) {
755
		port_assign(port, last);
756 757
		execlists_submit_ports(engine);
	}
758 759

	/* We must always keep the beast fed if we have work piled up */
760 761
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
762

763 764
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
765
		execlists_user_begin(execlists, execlists->port);
766

767 768 769 770
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
771 772
}

773
void
774
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
775
{
776
	struct execlist_port *port = execlists->port;
777
	unsigned int num_ports = execlists_num_ports(execlists);
778

779
	while (num_ports-- && port_isset(port)) {
780
		struct i915_request *rq = port_request(port);
781

782 783 784 785 786 787 788
		GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->global_seqno,
			  rq->fence.context, rq->fence.seqno,
			  intel_engine_get_seqno(rq->engine));

789
		GEM_BUG_ON(!execlists->active);
790 791 792 793
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
794

795
		i915_request_put(rq);
796

797 798 799
		memset(port, 0, sizeof(*port));
		port++;
	}
800

801
	execlists_clear_all_active(execlists);
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = execlists->csb_write_reset;
	WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
}

819 820 821 822 823
static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

824 825
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
826
	struct intel_engine_execlists * const execlists = &engine->execlists;
827
	struct i915_request *rq, *rn;
828 829 830
	struct rb_node *rb;
	unsigned long flags;

831 832
	GEM_TRACE("%s current %d\n",
		  engine->name, intel_engine_get_seqno(engine));
833

834 835 836 837 838 839 840 841 842 843 844 845 846 847
	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
848
	spin_lock_irqsave(&engine->timeline.lock, flags);
849 850

	/* Cancel the requests on the HW and clear the ELSP tracker. */
851
	execlists_cancel_port_requests(execlists);
852
	execlists_user_end(execlists);
853 854

	/* Mark all executing requests as skipped. */
855
	list_for_each_entry(rq, &engine->timeline.requests, link) {
856
		GEM_BUG_ON(!rq->global_seqno);
857
		if (!i915_request_completed(rq))
858 859 860 861
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
862
	while ((rb = rb_first_cached(&execlists->queue))) {
863
		struct i915_priolist *p = to_priolist(rb);
864

865 866
		list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
			INIT_LIST_HEAD(&rq->sched.link);
867 868

			dma_fence_set_error(&rq->fence, -EIO);
869
			__i915_request_submit(rq);
870 871
		}

872
		rb_erase_cached(&p->node, &execlists->queue);
873 874 875 876 877 878 879
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

880
	execlists->queue_priority = INT_MIN;
881
	execlists->queue = RB_ROOT_CACHED;
882
	GEM_BUG_ON(port_isset(execlists->port));
883

884 885 886
	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;

887
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
888 889
}

890 891 892 893 894 895
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

896
static void process_csb(struct intel_engine_cs *engine)
897
{
898
	struct intel_engine_execlists * const execlists = &engine->execlists;
899
	struct execlist_port *port = execlists->port;
900 901
	const u32 * const buf = execlists->csb_status;
	u8 head, tail;
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
918

919 920 921 922 923 924 925 926 927
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
928

929
	do {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

		if (++head == GEN8_CSB_ENTRIES)
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
957
			  buf[2 * head + 0], buf[2 * head + 1],
958 959
			  execlists->active);

960
		status = buf[2 * head];
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
980
		}
981

982 983 984 985
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
986

987 988
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		rq = port_unpack(port, &count);
		GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
			  engine->name,
			  port->context_id, count,
			  rq ? rq->global_seqno : 0,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
			  intel_engine_get_seqno(engine),
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1005
			/*
1006 1007 1008 1009 1010 1011
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1012
			 */
1013 1014 1015 1016 1017
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1018

1019 1020 1021 1022 1023 1024 1025
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1026

1027 1028 1029
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1030

1031 1032
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1033

1034 1035 1036 1037 1038 1039 1040
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1041
		}
1042
	} while (head != tail);
1043

1044
	execlists->csb_head = head;
1045
}
1046

1047
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1048
{
1049
	lockdep_assert_held(&engine->timeline.lock);
1050

C
Chris Wilson 已提交
1051
	process_csb(engine);
1052 1053
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
		  engine->i915->gt.awake,
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1071
	__execlists_submission_tasklet(engine);
1072 1073 1074
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1075
static void queue_request(struct intel_engine_cs *engine,
1076
			  struct i915_sched_node *node,
1077
			  int prio)
1078
{
1079
	list_add_tail(&node->link,
1080
		      &lookup_priolist(engine, prio)->requests);
1081
}
1082

1083
static void __update_queue(struct intel_engine_cs *engine, int prio)
1084 1085
{
	engine->execlists.queue_priority = prio;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1099 1100
}

1101 1102
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1103 1104 1105 1106
	if (prio > engine->execlists.queue_priority) {
		__update_queue(engine, prio);
		__submit_queue_imm(engine);
	}
1107 1108
}

1109
static void execlists_submit_request(struct i915_request *request)
1110
{
1111
	struct intel_engine_cs *engine = request->engine;
1112
	unsigned long flags;
1113

1114
	/* Will be called from irq-context when using foreign fences. */
1115
	spin_lock_irqsave(&engine->timeline.lock, flags);
1116

1117
	queue_request(engine, &request->sched, rq_prio(request));
1118

1119
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1120
	GEM_BUG_ON(list_empty(&request->sched.link));
1121

1122 1123
	submit_queue(engine, rq_prio(request));

1124
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1125 1126
}

1127
static struct i915_request *sched_to_request(struct i915_sched_node *node)
1128
{
1129
	return container_of(node, struct i915_request, sched);
1130 1131
}

1132
static struct intel_engine_cs *
1133
sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1134
{
1135
	struct intel_engine_cs *engine = sched_to_request(node)->engine;
1136 1137

	GEM_BUG_ON(!locked);
1138 1139

	if (engine != locked) {
1140 1141
		spin_unlock(&locked->timeline.lock);
		spin_lock(&engine->timeline.lock);
1142 1143 1144 1145 1146
	}

	return engine;
}

1147 1148
static void execlists_schedule(struct i915_request *request,
			       const struct i915_sched_attr *attr)
1149
{
1150 1151
	struct i915_priolist *uninitialized_var(pl);
	struct intel_engine_cs *engine, *last;
1152 1153
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
1154
	const int prio = attr->priority;
1155 1156
	LIST_HEAD(dfs);

1157 1158
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

1159
	if (i915_request_completed(request))
1160 1161
		return;

1162
	if (prio <= READ_ONCE(request->sched.attr.priority))
1163 1164
		return;

1165 1166
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
1167

1168
	stack.signaler = &request->sched;
1169 1170
	list_add(&stack.dfs_link, &dfs);

1171 1172
	/*
	 * Recursively bump all dependent priorities to match the new request.
1173 1174
	 *
	 * A naive approach would be to use recursion:
1175 1176
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
1177
	 *		update_priorities(dep->signal, prio)
1178
	 *	queue_request(node);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
1189
	list_for_each_entry(dep, &dfs, dfs_link) {
1190
		struct i915_sched_node *node = dep->signaler;
1191

1192 1193
		/*
		 * Within an engine, there can be no cycle, but we may
1194 1195 1196 1197
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
1198
		list_for_each_entry(p, &node->signalers_list, signal_link) {
1199 1200
			GEM_BUG_ON(p == dep); /* no cycles! */

1201
			if (i915_sched_node_signaled(p->signaler))
1202 1203
				continue;

1204 1205
			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
1206
				list_move_tail(&p->dfs_link, &dfs);
1207
		}
1208 1209
	}

1210 1211
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1212 1213 1214 1215
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1216
	if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1217
		GEM_BUG_ON(!list_empty(&request->sched.link));
1218
		request->sched.attr = *attr;
1219 1220 1221 1222 1223
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1224
	last = NULL;
1225
	engine = request->engine;
1226
	spin_lock_irq(&engine->timeline.lock);
1227

1228 1229
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1230
		struct i915_sched_node *node = dep->signaler;
1231 1232 1233

		INIT_LIST_HEAD(&dep->dfs_link);

1234
		engine = sched_lock_engine(node, engine);
1235

1236
		if (prio <= node->attr.priority)
1237 1238
			continue;

1239
		node->attr.priority = prio;
1240
		if (!list_empty(&node->link)) {
1241 1242 1243 1244 1245 1246
			if (last != engine) {
				pl = lookup_priolist(engine, prio);
				last = engine;
			}
			GEM_BUG_ON(pl->priority != prio);
			list_move_tail(&node->link, &pl->requests);
1247
		}
1248 1249

		if (prio > engine->execlists.queue_priority &&
1250 1251 1252 1253 1254
		    i915_sw_fence_done(&sched_to_request(node)->submit)) {
			/* defer submission until after all of our updates */
			__update_queue(engine, prio);
			tasklet_hi_schedule(&engine->execlists.tasklet);
		}
1255 1256
	}

1257
	spin_unlock_irq(&engine->timeline.lock);
1258 1259
}

1260 1261 1262 1263
static void execlists_context_destroy(struct intel_context *ce)
{
	GEM_BUG_ON(ce->pin_count);

1264 1265 1266
	if (!ce->state)
		return;

1267
	intel_ring_free(ce->ring);
1268 1269 1270

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1271 1272
}

1273
static void execlists_context_unpin(struct intel_context *ce)
1274
{
1275 1276
	i915_gem_context_unpin_hw_id(ce->gem_context);

1277 1278 1279 1280 1281 1282 1283 1284 1285
	intel_ring_unpin(ce->ring);

	ce->state->obj->pin_global--;
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);

	i915_gem_context_put(ce->gem_context);
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1297
		err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1298 1299 1300 1301 1302
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
1303
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1304

1305
	return i915_vma_pin(vma, 0, 0, flags);
1306 1307
}

1308 1309 1310 1311
static struct intel_context *
__execlists_context_pin(struct intel_engine_cs *engine,
			struct i915_gem_context *ctx,
			struct intel_context *ce)
1312
{
1313
	void *vaddr;
1314
	int ret;
1315

1316
	ret = execlists_context_deferred_alloc(ctx, engine, ce);
1317 1318
	if (ret)
		goto err;
1319
	GEM_BUG_ON(!ce->state);
1320

1321
	ret = __context_pin(ctx, ce->state);
1322
	if (ret)
1323
		goto err;
1324

1325 1326 1327
	vaddr = i915_gem_object_pin_map(ce->state->obj,
					i915_coherent_map_type(ctx->i915) |
					I915_MAP_OVERRIDE);
1328 1329
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1330
		goto unpin_vma;
1331 1332
	}

1333
	ret = intel_ring_pin(ce->ring);
1334
	if (ret)
1335
		goto unpin_map;
1336

1337 1338 1339 1340
	ret = i915_gem_context_pin_hw_id(ctx);
	if (ret)
		goto unpin_ring;

1341
	intel_lr_context_descriptor_update(ctx, engine, ce);
1342

1343 1344
	GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));

1345 1346
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1347
		i915_ggtt_offset(ce->ring->vma);
1348 1349
	ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
	ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1350

1351
	ce->state->obj->pin_global++;
1352
	i915_gem_context_get(ctx);
1353
	return ce;
1354

1355 1356
unpin_ring:
	intel_ring_unpin(ce->ring);
1357
unpin_map:
1358 1359 1360
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1361
err:
1362
	ce->pin_count = 0;
1363
	return ERR_PTR(ret);
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373
static const struct intel_context_ops execlists_context_ops = {
	.unpin = execlists_context_unpin,
	.destroy = execlists_context_destroy,
};

static struct intel_context *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1374
{
1375
	struct intel_context *ce = to_intel_context(ctx, engine);
1376

1377
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1378

1379 1380 1381
	if (likely(ce->pin_count++))
		return ce;
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1382

1383
	ce->ops = &execlists_context_ops;
1384

1385
	return __execlists_context_pin(engine, ctx, ce);
1386 1387
}

1388
static int execlists_request_alloc(struct i915_request *request)
1389
{
1390
	int ret;
1391

1392
	GEM_BUG_ON(!request->hw_context->pin_count);
1393

1394 1395 1396 1397 1398 1399
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1400 1401 1402
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1431 1432
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1433
{
1434 1435 1436 1437 1438 1439 1440 1441 1442
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1443 1444 1445 1446
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1447 1448 1449 1450 1451 1452 1453

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1454 1455
}

1456 1457 1458 1459 1460 1461
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1462
 *
1463 1464
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1465
 *
1466 1467 1468 1469
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1470
 */
1471
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1472
{
1473
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1474
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1475

1476
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1477 1478
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1479

1480 1481
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1482 1483 1484 1485 1486 1487 1488
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1489

C
Chris Wilson 已提交
1490 1491
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1492
	/* Pad to end of cacheline */
1493 1494
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1495 1496 1497 1498 1499 1500 1501

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1502
	return batch;
1503 1504
}

1505 1506 1507 1508 1509 1510
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1511
{
1512
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1513

1514 1515 1516 1517 1518 1519
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1520

1521 1522
	return batch;
}
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1548

1549
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1550

1551 1552
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1553

1554
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1555

1556 1557
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1558
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1559 1560 1561 1562 1563 1564 1565
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1566
	}
1567

1568
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1583 1584 1585 1586 1587 1588
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1589 1590
	}

C
Chris Wilson 已提交
1591 1592
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1593
	/* Pad to end of cacheline */
1594 1595
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1596

1597
	return batch;
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1634 1635 1636
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1637
{
1638 1639 1640
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1641

1642
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1643 1644
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1645

1646
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1647 1648 1649
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1650 1651
	}

1652
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1653 1654 1655 1656
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1657
	return 0;
1658 1659 1660 1661

err:
	i915_gem_object_put(obj);
	return err;
1662 1663
}

1664
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1665
{
1666
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1667 1668
}

1669 1670
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1671
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1672
{
1673
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1674 1675 1676
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1677
	struct page *page;
1678 1679
	void *batch, *batch_ptr;
	unsigned int i;
1680
	int ret;
1681

1682
	if (GEM_WARN_ON(engine->id != RCS))
1683
		return -EINVAL;
1684

1685
	switch (INTEL_GEN(engine->i915)) {
1686 1687
	case 11:
		return 0;
1688
	case 10:
1689 1690 1691
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1692 1693
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1694
		wa_bb_fn[1] = NULL;
1695 1696 1697
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1698
		wa_bb_fn[1] = NULL;
1699 1700 1701
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1702
		return 0;
1703
	}
1704

1705
	ret = lrc_setup_wa_ctx(engine);
1706 1707 1708 1709 1710
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1711
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1712
	batch = batch_ptr = kmap_atomic(page);
1713

1714 1715 1716 1717 1718 1719 1720
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1721 1722
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1723 1724 1725
			ret = -EINVAL;
			break;
		}
1726 1727
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1728
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1729 1730
	}

1731 1732
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1733 1734
	kunmap_atomic(batch);
	if (ret)
1735
		lrc_destroy_wa_ctx(engine);
1736 1737 1738 1739

	return ret;
}

1740
static void enable_execlists(struct intel_engine_cs *engine)
1741
{
1742
	struct drm_i915_private *dev_priv = engine->i915;
1743 1744

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1761 1762 1763
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1764 1765 1766 1767 1768
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1782 1783
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1784
	intel_mocs_init_engine(engine);
1785

1786
	intel_engine_reset_breadcrumbs(engine);
1787

1788 1789 1790 1791 1792 1793
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1794
	enable_execlists(engine);
1795

1796
	return 0;
1797 1798
}

1799
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1800
{
1801
	struct drm_i915_private *dev_priv = engine->i915;
1802 1803
	int ret;

1804
	ret = gen8_init_common_ring(engine);
1805 1806 1807
	if (ret)
		return ret;

1808
	intel_whitelist_workarounds_apply(engine);
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1820
	return 0;
1821 1822
}

1823
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1824 1825 1826
{
	int ret;

1827
	ret = gen8_init_common_ring(engine);
1828 1829 1830
	if (ret)
		return ret;

1831
	intel_whitelist_workarounds_apply(engine);
1832 1833

	return 0;
1834 1835
}

1836 1837 1838 1839
static struct i915_request *
execlists_reset_prepare(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1840
	struct i915_request *request, *active;
1841
	unsigned long flags;
1842

1843 1844
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);

1857 1858
	spin_lock_irqsave(&engine->timeline.lock, flags);

1859 1860 1861 1862 1863 1864 1865
	/*
	 * We want to flush the pending context switches, having disabled
	 * the tasklet above, we can assume exclusive access to the execlists.
	 * For this allows us to catch up with an inflight preemption event,
	 * and avoid blaming an innocent request if the stall was due to the
	 * preemption itself.
	 */
C
Chris Wilson 已提交
1866
	process_csb(engine);
1867 1868 1869 1870 1871 1872 1873 1874 1875

	/*
	 * The last active request can then be no later than the last request
	 * now in ELSP[0]. So search backwards from there, so that if the GPU
	 * has advanced beyond the last CSB update, it will be pardoned.
	 */
	active = NULL;
	request = port_request(execlists->port);
	if (request) {
1876 1877 1878 1879 1880 1881
		/*
		 * Prevent the breadcrumb from advancing before we decide
		 * which request is currently active.
		 */
		intel_engine_stop_cs(engine);

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		list_for_each_entry_from_reverse(request,
						 &engine->timeline.requests,
						 link) {
			if (__i915_request_completed(request,
						     request->global_seqno))
				break;

			active = request;
		}
	}

1893 1894
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

1895
	return active;
1896 1897 1898 1899
}

static void execlists_reset(struct intel_engine_cs *engine,
			    struct i915_request *request)
1900
{
1901
	struct intel_engine_execlists * const execlists = &engine->execlists;
1902
	unsigned long flags;
1903
	u32 *regs;
1904

1905 1906 1907
	GEM_TRACE("%s request global=%x, current=%d\n",
		  engine->name, request ? request->global_seqno : 0,
		  intel_engine_get_seqno(engine));
1908

1909
	spin_lock_irqsave(&engine->timeline.lock, flags);
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1920
	execlists_cancel_port_requests(execlists);
1921

1922
	/* Push back any incomplete requests for replay after the reset. */
1923
	__unwind_incomplete_requests(engine);
1924

1925
	/* Following the reset, we need to reload the CSB read/write pointers */
1926
	reset_csb_pointers(&engine->execlists);
1927

1928
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1929

1930 1931
	/*
	 * If the request was innocent, we leave the request in the ELSP
1932 1933 1934 1935 1936 1937 1938 1939 1940
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1941
	if (!request || request->fence.error != -EIO)
1942
		return;
1943

1944 1945
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1946 1947 1948 1949 1950 1951
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1952
	regs = request->hw_context->lrc_reg_state;
1953 1954 1955 1956
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1957
	}
C
Chris Wilson 已提交
1958 1959
	execlists_init_reg_state(regs,
				 request->gem_context, engine, request->ring);
1960

1961
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1962
	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1963

1964 1965 1966
	request->ring->head = intel_ring_wrap(request->ring, request->postfix);
	regs[CTX_RING_HEAD + 1] = request->ring->head;

1967 1968
	intel_ring_update_space(request->ring);

1969
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1970
	unwind_wa_tail(request);
1971 1972
}

1973 1974
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
1975 1976
	struct intel_engine_execlists * const execlists = &engine->execlists;

1977
	/*
1978 1979 1980
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
1981 1982
	 *
	 */
1983 1984
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
1985

1986
	tasklet_enable(&execlists->tasklet);
1987 1988
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1989 1990
}

1991
static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1992
{
C
Chris Wilson 已提交
1993
	struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1994
	struct intel_engine_cs *engine = rq->engine;
1995
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1996 1997
	u32 *cs;
	int i;
1998

1999
	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2000 2001
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2002

2003
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2004
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2005 2006
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

2007 2008 2009 2010
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
2011 2012
	}

2013
	*cs++ = MI_NOOP;
2014
	intel_ring_advance(rq, cs);
2015 2016 2017 2018

	return 0;
}

2019
static int gen8_emit_bb_start(struct i915_request *rq,
2020
			      u64 offset, u32 len,
2021
			      const unsigned int flags)
2022
{
2023
	u32 *cs;
2024 2025
	int ret;

2026 2027 2028 2029
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
2030 2031
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
C
Chris Wilson 已提交
2032 2033
	if (rq->gem_context->ppgtt &&
	    (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2034
	    !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2035 2036
	    !intel_vgpu_active(rq->i915)) {
		ret = intel_logical_ring_emit_pdps(rq);
2037 2038
		if (ret)
			return ret;
2039

C
Chris Wilson 已提交
2040
		rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2041 2042
	}

2043
	cs = intel_ring_begin(rq, 6);
2044 2045
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
2064 2065
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2066
	/* FIXME(BDW): Address space and security selectors. */
2067
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2068
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2069 2070
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2071 2072 2073

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2074
	intel_ring_advance(rq, cs);
2075 2076 2077 2078

	return 0;
}

2079
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2080
{
2081
	struct drm_i915_private *dev_priv = engine->i915;
2082 2083 2084
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
2085 2086
}

2087
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2088
{
2089
	struct drm_i915_private *dev_priv = engine->i915;
2090
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2091 2092
}

2093
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2094
{
2095
	u32 cmd, *cs;
2096

2097 2098 2099
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2100 2101 2102

	cmd = MI_FLUSH_DW + 1;

2103 2104 2105 2106 2107 2108 2109
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2110
	if (mode & EMIT_INVALIDATE) {
2111
		cmd |= MI_INVALIDATE_TLB;
2112
		if (request->engine->id == VCS)
2113
			cmd |= MI_INVALIDATE_BSD;
2114 2115
	}

2116 2117 2118 2119 2120
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2121 2122 2123 2124

	return 0;
}

2125
static int gen8_emit_flush_render(struct i915_request *request,
2126
				  u32 mode)
2127
{
2128
	struct intel_engine_cs *engine = request->engine;
2129 2130
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2131
	bool vf_flush_wa = false, dc_flush_wa = false;
2132
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2133
	int len;
2134 2135 2136

	flags |= PIPE_CONTROL_CS_STALL;

2137
	if (mode & EMIT_FLUSH) {
2138 2139
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2140
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2141
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2142 2143
	}

2144
	if (mode & EMIT_INVALIDATE) {
2145 2146 2147 2148 2149 2150 2151 2152 2153
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2154 2155 2156 2157
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2158
		if (IS_GEN9(request->i915))
2159
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2160 2161 2162 2163

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2164
	}
2165

M
Mika Kuoppala 已提交
2166 2167 2168 2169 2170 2171 2172 2173
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2174 2175 2176
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2177

2178 2179
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2180

2181 2182 2183
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2184

2185
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2186

2187 2188
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2189

2190
	intel_ring_advance(request, cs);
2191 2192 2193 2194

	return 0;
}

2195 2196 2197 2198 2199
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2200
static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2201
{
C
Chris Wilson 已提交
2202 2203
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2204 2205
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
2206
}
2207

2208
static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2209
{
2210 2211
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2212

2213 2214
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
2215
	*cs++ = MI_USER_INTERRUPT;
2216
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2217
	request->tail = intel_ring_offset(request, cs);
2218
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2219

2220
	gen8_emit_wa_tail(request, cs);
2221
}
2222 2223
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

2224
static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2225
{
2226 2227 2228
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

2229 2230
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
2231
	*cs++ = MI_USER_INTERRUPT;
2232
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2233
	request->tail = intel_ring_offset(request, cs);
2234
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2235

2236
	gen8_emit_wa_tail(request, cs);
2237
}
2238
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2239

2240
static int gen8_init_rcs_context(struct i915_request *rq)
2241 2242 2243
{
	int ret;

2244
	ret = intel_ctx_workarounds_emit(rq);
2245 2246 2247
	if (ret)
		return ret;

2248
	ret = intel_rcs_context_init_mocs(rq);
2249 2250 2251 2252 2253 2254 2255
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2256
	return i915_gem_render_state_emit(rq);
2257 2258
}

2259 2260
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2261
 * @engine: Engine Command Streamer.
2262
 */
2263
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2264
{
2265
	struct drm_i915_private *dev_priv;
2266

2267 2268 2269 2270
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2271 2272 2273
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2274

2275
	dev_priv = engine->i915;
2276

2277 2278
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2279
	}
2280

2281 2282
	if (engine->cleanup)
		engine->cleanup(engine);
2283

2284
	intel_engine_cleanup_common(engine);
2285

2286
	lrc_destroy_wa_ctx(engine);
2287

2288
	engine->i915 = NULL;
2289 2290
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2291 2292
}

2293
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2294
{
2295
	engine->submit_request = execlists_submit_request;
2296
	engine->cancel_requests = execlists_cancel_requests;
2297
	engine->schedule = execlists_schedule;
2298
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2299

2300 2301
	engine->reset.prepare = execlists_reset_prepare;

2302 2303
	engine->park = NULL;
	engine->unpark = NULL;
2304 2305

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2306 2307
	if (engine->i915->preempt_context)
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2308 2309 2310 2311

	engine->i915->caps.scheduler =
		I915_SCHEDULER_CAP_ENABLED |
		I915_SCHEDULER_CAP_PRIORITY;
2312
	if (intel_engine_has_preemption(engine))
2313
		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2314 2315
}

2316
static void
2317
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2318 2319
{
	/* Default vfuncs which can be overriden by each engine. */
2320
	engine->init_hw = gen8_init_common_ring;
2321 2322 2323 2324

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2325 2326

	engine->context_pin = execlists_context_pin;
2327 2328
	engine->request_alloc = execlists_request_alloc;

2329
	engine->emit_flush = gen8_emit_flush;
2330
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2331
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2332

2333
	engine->set_default_submission = intel_execlists_set_default_submission;
2334

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2346
	engine->emit_bb_start = gen8_emit_bb_start;
2347 2348
}

2349
static inline void
2350
logical_ring_default_irqs(struct intel_engine_cs *engine)
2351
{
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
			[RCS]  = GEN8_RCS_IRQ_SHIFT,
			[BCS]  = GEN8_BCS_IRQ_SHIFT,
			[VCS]  = GEN8_VCS1_IRQ_SHIFT,
			[VCS2] = GEN8_VCS2_IRQ_SHIFT,
			[VECS] = GEN8_VECS_IRQ_SHIFT,
		};

		shift = irq_shifts[engine->id];
	}

2366 2367
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2368 2369
}

2370 2371 2372
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
2373 2374
	intel_engine_setup_common(engine);

2375 2376 2377
	/* Intentionally left blank. */
	engine->buffer = NULL;

2378 2379
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2380 2381 2382 2383 2384

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

2385 2386 2387 2388 2389 2390
static bool csb_force_mmio(struct drm_i915_private *i915)
{
	/* Older GVT emulation depends upon intercepting CSB mmio */
	return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
}

2391
static int logical_ring_init(struct intel_engine_cs *engine)
2392
{
2393 2394
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2395 2396
	int ret;

2397
	ret = intel_engine_init_common(engine);
2398 2399 2400
	if (ret)
		goto error;

2401 2402
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
		execlists->submit_reg = i915->regs +
2403
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2404
		execlists->ctrl_reg = i915->regs +
2405 2406
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
	} else {
2407
		execlists->submit_reg = i915->regs +
2408 2409
			i915_mmio_reg_offset(RING_ELSP(engine));
	}
2410

2411 2412
	execlists->preempt_complete_status = ~0u;
	if (i915->preempt_context) {
2413
		struct intel_context *ce =
2414
			to_intel_context(i915->preempt_context, engine);
2415

2416
		execlists->preempt_complete_status =
2417 2418
			upper_32_bits(ce->lrc_desc);
	}
2419

2420 2421 2422 2423 2424 2425 2426
	execlists->csb_read =
		i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
	if (csb_force_mmio(i915)) {
		execlists->csb_status = (u32 __force *)
			(i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));

		execlists->csb_write = (u32 __force *)execlists->csb_read;
2427 2428 2429
		execlists->csb_write_reset =
			_MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
				      GEN8_CSB_ENTRIES - 1);
2430 2431 2432 2433 2434 2435
	} else {
		execlists->csb_status =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];

		execlists->csb_write =
			&engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2436
		execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2437
	}
2438
	reset_csb_pointers(execlists);
2439

2440 2441 2442 2443 2444 2445 2446
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2447
int logical_render_ring_init(struct intel_engine_cs *engine)
2448 2449 2450 2451
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2452 2453
	logical_ring_setup(engine);

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2464 2465
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2466

2467
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2482
	return logical_ring_init(engine);
2483 2484
}

2485
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2486 2487 2488 2489
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2490 2491
}

2492
static u32
2493
make_rpcs(struct drm_i915_private *dev_priv)
2494
{
2495 2496 2497
	bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
	u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
	u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2498 2499 2500 2501 2502 2503
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2504
	if (INTEL_GEN(dev_priv) < 9)
2505 2506
		return 0;

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	/*
	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
	 * wide and Icelake has up to eight subslices, specfial programming is
	 * needed in order to correctly enable all subslices.
	 *
	 * According to documentation software must consider the configuration
	 * as 2x4x8 and hardware will translate this to 1x8x8.
	 *
	 * Furthemore, even though SScount is three bits, maximum documented
	 * value for it is four. From this some rules/restrictions follow:
	 *
	 * 1.
	 * If enabled subslice count is greater than four, two whole slices must
	 * be enabled instead.
	 *
	 * 2.
	 * When more than one slice is enabled, hardware ignores the subslice
	 * count altogether.
	 *
	 * From these restrictions it follows that it is not possible to enable
	 * a count of subslices between the SScount maximum of four restriction,
	 * and the maximum available number on a particular SKU. Either all
	 * subslices are enabled, or a count between one and four on the first
	 * slice.
	 */
	if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
		GEM_BUG_ON(subslices & 1);

		subslice_pg = false;
		slices *= 2;
	}

2539 2540 2541 2542 2543 2544
	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2545
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		u32 mask, val = slices;

		if (INTEL_GEN(dev_priv) >= 11) {
			mask = GEN11_RPCS_S_CNT_MASK;
			val <<= GEN11_RPCS_S_CNT_SHIFT;
		} else {
			mask = GEN8_RPCS_S_CNT_MASK;
			val <<= GEN8_RPCS_S_CNT_SHIFT;
		}

		GEM_BUG_ON(val & ~mask);
		val &= mask;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2560 2561
	}

2562 2563 2564 2565 2566 2567 2568 2569 2570
	if (subslice_pg) {
		u32 val = subslices;

		val <<= GEN8_RPCS_SS_CNT_SHIFT;

		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
		val &= GEN8_RPCS_SS_CNT_MASK;

		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2571 2572
	}

2573
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		u32 val;

		val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
		      GEN8_RPCS_EU_MIN_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
		val &= GEN8_RPCS_EU_MIN_MASK;

		rpcs |= val;

		val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
		      GEN8_RPCS_EU_MAX_SHIFT;
		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
		val &= GEN8_RPCS_EU_MAX_MASK;

		rpcs |= val;

2590 2591 2592 2593 2594 2595
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2596
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2597 2598 2599
{
	u32 indirect_ctx_offset;

2600
	switch (INTEL_GEN(engine->i915)) {
2601
	default:
2602
		MISSING_CASE(INTEL_GEN(engine->i915));
2603
		/* fall through */
2604 2605 2606 2607
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2608 2609 2610 2611
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2625
static void execlists_init_reg_state(u32 *regs,
2626 2627 2628
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2629
{
2630 2631
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2632
	u32 base = engine->mmio_base;
2633
	bool rcs = engine->class == RENDER_CLASS;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2646
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2647
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2648 2649 2650 2651 2652
	if (INTEL_GEN(dev_priv) < 11) {
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2665 2666
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2667 2668 2669
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2670
		if (wa_ctx->indirect_ctx.size) {
2671
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2672

2673
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2674 2675
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2676

2677
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2678
				intel_lr_indirect_ctx_offset(engine) << 6;
2679 2680 2681 2682 2683
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2684

2685
			regs[CTX_BB_PER_CTX_PTR + 1] =
2686
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2687
		}
2688
	}
2689 2690 2691 2692

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2693
	/* PDP values well be assigned later if needed */
2694 2695 2696 2697 2698 2699 2700 2701
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2702

2703
	if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2704 2705 2706 2707
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2708
		ASSIGN_CTX_PML4(ppgtt, regs);
2709 2710
	}

2711 2712 2713 2714
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2715 2716

		i915_oa_init_reg_state(engine, ctx, regs);
2717
	}
2718 2719 2720 2721

	regs[CTX_END] = MI_BATCH_BUFFER_END;
	if (INTEL_GEN(dev_priv) >= 10)
		regs[CTX_END] |= BIT(0);
2722 2723 2724 2725 2726 2727 2728 2729 2730
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2731
	u32 *regs;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2746
	ctx_obj->mm.dirty = true;
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2759 2760 2761 2762
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2763 2764 2765 2766 2767

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2768 2769
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2770 2771 2772 2773 2774
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2775
	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2776 2777 2778
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2779

2780
err_unpin_ctx:
2781
	i915_gem_object_unpin_map(ctx_obj);
2782
	return ret;
2783 2784
}

2785
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2786 2787
					    struct intel_engine_cs *engine,
					    struct intel_context *ce)
2788
{
2789
	struct drm_i915_gem_object *ctx_obj;
2790
	struct i915_vma *vma;
2791
	uint32_t context_size;
2792
	struct intel_ring *ring;
2793
	struct i915_timeline *timeline;
2794 2795
	int ret;

2796 2797
	if (ce->state)
		return 0;
2798

2799
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2800

2801 2802 2803 2804 2805
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2806

2807
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2808 2809
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2810

2811
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2812 2813 2814 2815 2816
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2817 2818 2819 2820 2821 2822 2823 2824
	timeline = i915_timeline_create(ctx->i915, ctx->name);
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

	ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
	i915_timeline_put(timeline);
2825 2826
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2827
		goto error_deref_obj;
2828 2829
	}

2830
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2831 2832
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2833
		goto error_ring_free;
2834 2835
	}

2836
	ce->ring = ring;
2837
	ce->state = vma;
2838 2839

	return 0;
2840

2841
error_ring_free:
2842
	intel_ring_free(ring);
2843
error_deref_obj:
2844
	i915_gem_object_put(ctx_obj);
2845
	return ret;
2846
}
2847

2848
void intel_lr_context_resume(struct drm_i915_private *i915)
2849
{
2850
	struct intel_engine_cs *engine;
2851
	struct i915_gem_context *ctx;
2852
	enum intel_engine_id id;
2853

2854 2855
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
2856 2857 2858 2859 2860 2861 2862 2863 2864
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2865 2866
	list_for_each_entry(ctx, &i915->contexts.list, link) {
		for_each_engine(engine, i915, id) {
2867 2868
			struct intel_context *ce =
				to_intel_context(ctx, engine);
2869

2870 2871
			if (!ce->state)
				continue;
2872

2873
			intel_ring_reset(ce->ring, 0);
2874

2875 2876
			if (ce->pin_count) { /* otherwise done in context_pin */
				u32 *regs = ce->lrc_reg_state;
2877

2878 2879 2880
				regs[CTX_RING_HEAD + 1] = ce->ring->head;
				regs[CTX_RING_TAIL + 1] = ce->ring->tail;
			}
2881
		}
2882 2883
	}
}
2884 2885 2886 2887

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_lrc.c"
#endif