intel_engine_cs.c 47.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		fallthrough;
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278
	struct drm_i915_private *i915 = gt->i915;
279 280
	struct intel_engine_cs *engine;

281 282 283
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

284 285 286
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 292
		return -EINVAL;

293
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 295
		return -EINVAL;

296 297 298
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
299

300 301
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

302
	engine->id = id;
303
	engine->legacy_idx = INVALID_ENGINE;
304
	engine->mask = BIT(id);
305
	engine->i915 = i915;
306 307
	engine->gt = gt;
	engine->uncore = gt->uncore;
308
	engine->hw_id = engine->guc_id = info->hw_id;
309
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310

311 312
	engine->class = info->class;
	engine->instance = info->instance;
313
	__sprint_engine_name(engine);
314

315 316
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 318
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 320
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 322
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
323 324
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
325

326 327 328 329
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

330 331
	engine->defaults = engine->props; /* never to change again */

332
	engine->context_size = intel_engine_context_size(gt, engine->class);
333 334
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
335
	if (engine->context_size)
336
		DRIVER_CAPS(i915)->has_logical_contexts = true;
337

338 339 340
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

341
	ewma__engine_latency_init(&engine->latency);
342
	seqlock_init(&engine->stats.lock);
343

344 345
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

346 347 348
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

349
	gt->engine_class[info->class][info->instance] = engine;
350
	gt->engine[id] = engine;
351

352
	return 0;
353 354
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
374 375
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
376 377 378 379 380 381 382 383 384 385
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

386
static void intel_setup_engine_capabilities(struct intel_gt *gt)
387 388 389 390
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

391
	for_each_engine(engine, gt, id)
392 393 394
		__setup_engine_capabilities(engine);
}

395
/**
396
 * intel_engines_release() - free the resources allocated for Command Streamers
397
 * @gt: pointer to struct intel_gt
398
 */
399
void intel_engines_release(struct intel_gt *gt)
400 401 402 403
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

404 405 406 407 408 409 410 411 412 413 414 415 416
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

417
	/* Decouple the backend; but keep the layout for late GPU resets */
418
	for_each_engine(engine, gt, id) {
419 420 421
		if (!engine->release)
			continue;

422 423 424
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

425 426 427 428
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
429 430 431
	}
}

432 433 434 435 436 437 438 439
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

440 441 442 443 444
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

445 446 447
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

448
	for_each_engine(engine, gt, id) {
449
		intel_engine_free_request_pool(engine);
450 451 452 453 454
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
468
	struct intel_gt_info *info = &gt->info;
469 470 471 472 473 474 475
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

476 477
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
505
			gt->info.vdbox_sfc_access |= BIT(i);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

529
/**
530
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
531
 * @gt: pointer to struct intel_gt
532 533 534
 *
 * Return: non-zero if the initialization failed.
 */
535
int intel_engines_init_mmio(struct intel_gt *gt)
536
{
537
	struct drm_i915_private *i915 = gt->i915;
538
	const unsigned int engine_mask = init_engine_mask(gt);
539
	unsigned int mask = 0;
540
	unsigned int i;
541
	int err;
542

543 544 545
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
546

547
	if (i915_inject_probe_failure(i915))
548 549
		return -ENODEV;

550
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
551
		if (!HAS_ENGINE(gt, i))
552 553
			continue;

554
		err = intel_engine_setup(gt, i);
555 556 557
		if (err)
			goto cleanup;

558
		mask |= BIT(i);
559 560 561 562 563 564 565
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
566
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
567
		gt->info.engine_mask = mask;
568

569
	gt->info.num_engines = hweight32(mask);
570

571
	intel_gt_check_and_clear_faults(gt);
572

573
	intel_setup_engine_capabilities(gt);
574

575 576
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

577 578 579
	return 0;

cleanup:
580
	intel_engines_free(gt);
581 582 583
	return err;
}

584
void intel_engine_init_execlists(struct intel_engine_cs *engine)
585 586 587
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

588
	execlists->port_mask = 1;
589
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
590 591
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

592 593 594 595
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

596
	execlists->queue_priority_hint = INT_MIN;
597
	execlists->queue = RB_ROOT_CACHED;
598 599
}

600
static void cleanup_status_page(struct intel_engine_cs *engine)
601
{
602 603
	struct i915_vma *vma;

604 605 606
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

607 608 609
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
610

611 612 613 614
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
615
	i915_gem_object_put(vma->obj);
616 617 618 619 620 621 622
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

623
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
624 625 626 627 628 629 630 631 632 633 634
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
635
		flags = PIN_MAPPABLE;
636
	else
637
		flags = PIN_HIGH;
638

639
	return i915_ggtt_pin(vma, NULL, 0, flags);
640 641 642 643 644 645 646 647 648
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

649 650 651 652 653 654 655
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
656 657
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
658 659
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
660 661 662
		return PTR_ERR(obj);
	}

663
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
664

665
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
666 667 668 669 670 671 672 673
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
674
		goto err;
675 676
	}

677
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
678
	engine->status_page.vma = vma;
679 680 681 682 683 684 685

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

686 687 688
	return 0;

err_unpin:
689
	i915_gem_object_unpin_map(obj);
690 691 692 693 694
err:
	i915_gem_object_put(obj);
	return ret;
}

695
static int engine_setup_common(struct intel_engine_cs *engine)
696 697 698
{
	int err;

699 700
	init_llist_head(&engine->barrier_tasks);

701 702 703 704
	err = init_status_page(engine);
	if (err)
		return err;

705 706 707 708 709 710
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

711
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
712
	intel_engine_init_execlists(engine);
713
	intel_engine_init_cmd_parser(engine);
714
	intel_engine_init__pm(engine);
715
	intel_engine_init_retire(engine);
716

717 718
	/* Use the whole device by default */
	engine->sseu =
719
		intel_sseu_from_device_info(&engine->gt->info.sseu);
720

721 722 723 724
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

725
	return 0;
726 727 728 729

err_status:
	cleanup_status_page(engine);
	return err;
730 731
}

732 733 734
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
735
	u32 cs[2048];
736 737
};

738
static int measure_breadcrumb_dw(struct intel_context *ce)
739
{
740
	struct intel_engine_cs *engine = ce->engine;
741
	struct measure_breadcrumb *frame;
742
	int dw;
743

744
	GEM_BUG_ON(!engine->gt->scratch);
745 746 747 748 749

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

750 751 752
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
753

754 755
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
756 757
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
758 759 760
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
761

762
	mutex_lock(&ce->timeline->mutex);
763
	spin_lock_irq(&engine->active.lock);
764

765
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
766

767
	spin_unlock_irq(&engine->active.lock);
768
	mutex_unlock(&ce->timeline->mutex);
769

770
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
771

772
	kfree(frame);
773 774 775
	return dw;
}

776 777 778 779
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
780
	INIT_LIST_HEAD(&engine->active.hold);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

798
static struct intel_context *
799 800 801 802
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
803 804 805 806
{
	struct intel_context *ce;
	int err;

807
	ce = intel_context_create(engine);
808 809 810
	if (IS_ERR(ce))
		return ce;

811
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
812
	ce->timeline = page_pack_bits(NULL, hwsp);
813

814
	err = intel_context_pin(ce); /* perma-pin so it is always available */
815 816 817 818 819
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

820 821 822 823 824 825
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
826
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
827

828 829 830
	return ce;
}

831 832 833 834 835 836 837 838 839
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

840 841 842 843 844 845 846 847 848 849 850
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
851
static int engine_init_common(struct intel_engine_cs *engine)
852
{
853
	struct intel_context *ce;
854 855
	int ret;

856 857
	engine->set_default_submission(engine);

858 859
	/*
	 * We may need to do things with the shrinker which
860 861 862 863 864 865
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
866 867 868 869
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

870 871 872 873 874
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
875
	engine->kernel_context = ce;
876

877
	return 0;
878 879 880 881

err_context:
	intel_context_put(ce);
	return ret;
882
}
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

915 916 917 918 919 920 921 922 923
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
924
	GEM_BUG_ON(!list_empty(&engine->active.requests));
925
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
926

927
	cleanup_status_page(engine);
928
	intel_breadcrumbs_free(engine->breadcrumbs);
929

930
	intel_engine_fini_retire(engine);
931
	intel_engine_cleanup_cmd_parser(engine);
932

933
	if (engine->default_state)
934
		fput(engine->default_state);
935

936 937 938 939
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
940
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
941

942
	intel_wa_list_free(&engine->ctx_wa_list);
943
	intel_wa_list_free(&engine->wa_list);
944
	intel_wa_list_free(&engine->whitelist);
945
}
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

961
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
962
{
963 964
	struct drm_i915_private *i915 = engine->i915;

965 966
	u64 acthd;

967 968 969 970
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
971
	else
972
		acthd = ENGINE_READ(engine, ACTHD);
973 974 975 976

	return acthd;
}

977
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
978 979 980
{
	u64 bbaddr;

981 982
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
983
	else
984
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
985 986 987

	return bbaddr;
}
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1004 1005
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
1006
	struct intel_uncore *uncore = engine->uncore;
1007 1008 1009 1010
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

1011
	if (INTEL_GEN(engine->i915) < 3)
1012 1013
		return -ENODEV;

1014
	ENGINE_TRACE(engine, "\n");
1015

1016
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1017 1018

	err = 0;
1019
	if (__intel_wait_for_register_fw(uncore,
1020
					 mode, MODE_IDLE, MODE_IDLE,
1021
					 1000, stop_timeout(engine),
1022
					 NULL)) {
1023
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1024 1025 1026 1027
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1028
	intel_uncore_posting_read_fw(uncore, mode);
1029 1030 1031 1032

	return err;
}

1033 1034
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1035
	ENGINE_TRACE(engine, "\n");
1036

1037
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1051
static u32
1052 1053
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1054
{
1055 1056
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1057
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1058 1059
	enum forcewake_domains fw_domains;

1060
	if (INTEL_GEN(i915) >= 11) {
1061 1062
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1063
	} else {
1064 1065
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1066 1067
	}

1068
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1069
						    FW_REG_READ);
1070
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1071 1072 1073
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1074 1075
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1076

1077
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1078

1079 1080
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1081
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1082

1083
	val = intel_uncore_read_fw(uncore, reg);
1084

1085 1086
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1087

1088
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1089

1090 1091
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1092

1093
	return val;
1094 1095 1096
}

/* NB: please notice the memset */
1097
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1098 1099
			       struct intel_instdone *instdone)
{
1100
	struct drm_i915_private *i915 = engine->i915;
1101
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1102
	struct intel_uncore *uncore = engine->uncore;
1103 1104 1105 1106 1107 1108
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1109
	switch (INTEL_GEN(i915)) {
1110
	default:
1111 1112
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1113

1114
		if (engine->id != RCS0)
1115 1116
			break;

1117 1118
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1119 1120 1121 1122 1123 1124
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1125
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1126
			instdone->sampler[slice][subslice] =
1127
				read_subslice_reg(engine, slice, subslice,
1128 1129
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1130
				read_subslice_reg(engine, slice, subslice,
1131 1132 1133 1134
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1135 1136
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1137

1138
		if (engine->id != RCS0)
1139 1140
			break;

1141 1142 1143 1144 1145 1146
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1147 1148 1149 1150 1151

		break;
	case 6:
	case 5:
	case 4:
1152 1153
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1154
		if (engine->id == RCS0)
1155
			/* HACK: Using the wrong struct member */
1156 1157
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1158 1159 1160
		break;
	case 3:
	case 2:
1161
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1162 1163 1164
		break;
	}
}
1165

1166 1167 1168 1169
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1170 1171 1172
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1173
	if (!intel_engine_pm_get_if_awake(engine))
1174
		return true;
1175

1176
	/* First check that no commands are left in the ring */
1177 1178
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1179
		idle = false;
1180

1181
	/* No bit for gen2, so assume the CS parser is idle */
1182
	if (INTEL_GEN(engine->i915) > 2 &&
1183
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1184 1185
		idle = false;

1186
	intel_engine_pm_put(engine);
1187 1188 1189 1190

	return idle;
}

1191
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1192 1193 1194
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1195 1196 1197
	if (!t->func)
		return;

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	/* Synchronise and wait for the tasklet on another CPU */
	tasklet_kill(t);

	/* Having cancelled the tasklet, ensure that is run */
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1208
	}
1209
	local_bh_enable();
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1221
	/* More white lies, if wedged, hw state is inconsistent */
1222
	if (intel_gt_is_wedged(engine->gt))
1223 1224
		return true;

1225
	if (!intel_engine_pm_is_awake(engine))
1226 1227
		return true;

1228
	/* Waiting to drain ELSP? */
1229
	if (execlists_active(&engine->execlists)) {
1230
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1231

1232
		intel_engine_flush_submission(engine);
1233

1234
		if (execlists_active(&engine->execlists))
1235 1236
			return false;
	}
1237

1238
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1239
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1240 1241
		return false;

1242
	/* Ring stopped? */
1243
	return ring_is_idle(engine);
1244 1245
}

1246
bool intel_engines_are_idle(struct intel_gt *gt)
1247 1248 1249 1250
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1251 1252
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1253 1254
	 * report that it is still busy, even though we have stopped using it.
	 */
1255
	if (intel_gt_is_wedged(gt))
1256 1257
		return true;

1258
	/* Already parked (and passed an idleness test); must still be idle */
1259
	if (!READ_ONCE(gt->awake))
1260 1261
		return true;

1262
	for_each_engine(engine, gt, id) {
1263 1264 1265 1266 1267 1268 1269
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1270
void intel_engines_reset_default_submission(struct intel_gt *gt)
1271 1272 1273 1274
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1275
	for_each_engine(engine, gt, id)
1276 1277 1278
		engine->set_default_submission(engine);
}

1279 1280 1281 1282 1283 1284 1285 1286
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1287 1288
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1289 1290 1291 1292 1293 1294 1295
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1296
static int print_sched_attr(const struct i915_sched_attr *attr,
1297
			    char *buf, int x, int len)
1298 1299
{
	if (attr->priority == I915_PRIORITY_INVALID)
1300 1301 1302 1303
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1304

1305
	return x;
1306 1307
}

1308
static void print_request(struct drm_printer *m,
1309
			  struct i915_request *rq,
1310 1311
			  const char *prefix)
{
1312
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1313
	char buf[80] = "";
1314 1315
	int x = 0;

1316
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1317

1318
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1319
		   prefix,
1320
		   rq->fence.context, rq->fence.seqno,
1321 1322 1323
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1324 1325
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1326
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1327 1328
			    &rq->fence.flags) ? "-" :
		   "",
1329
		   buf,
1330
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1331
		   name);
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1399
		drm_printf(m, "[%04zx] %s\n", pos, line);
1400 1401 1402 1403 1404 1405

		prev = buf + pos;
		skip = false;
	}
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1417
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1418
					 struct drm_printer *m)
1419 1420
{
	struct drm_i915_private *dev_priv = engine->i915;
1421
	struct intel_engine_execlists * const execlists = &engine->execlists;
1422 1423
	u64 addr;

1424
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1425
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1426 1427 1428 1429 1430 1431
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1432
	drm_printf(m, "\tRING_START: 0x%08x\n",
1433
		   ENGINE_READ(engine, RING_START));
1434
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1435
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1436
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1437
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1438
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1439 1440
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1441 1442
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1443 1444
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1445
	}
1446 1447

	if (INTEL_GEN(dev_priv) >= 6) {
1448
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1449
			   ENGINE_READ(engine, RING_IMR));
1450 1451 1452 1453 1454 1455
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1456 1457
	}

1458 1459 1460 1461 1462 1463
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1464
	if (INTEL_GEN(dev_priv) >= 8)
1465
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1466
	else if (INTEL_GEN(dev_priv) >= 4)
1467
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1468
	else
1469
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1470 1471 1472 1473
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1474
			   ENGINE_READ(engine, RING_IPEIR));
1475
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1476
			   ENGINE_READ(engine, RING_IPEHR));
1477
	} else {
1478 1479
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1480
	}
1481

1482
	if (HAS_EXECLISTS(dev_priv)) {
1483
		struct i915_request * const *port, *rq;
1484 1485
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1486
		const u8 num_entries = execlists->csb_size;
1487
		unsigned int idx;
1488
		u8 read, write;
1489

1490
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1491 1492 1493
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1494
			   repr_timer(&engine->execlists.preempt),
1495
			   repr_timer(&engine->execlists.timer));
1496

1497 1498 1499
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1500 1501 1502 1503 1504
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1505
		if (read >= num_entries)
1506
			read = 0;
1507
		if (write >= num_entries)
1508 1509
			write = 0;
		if (read > write)
1510
			write += num_entries;
1511
		while (read < write) {
1512 1513 1514
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1515 1516
		}

1517
		execlists_active_lock_bh(execlists);
1518
		rcu_read_lock();
1519
		for (port = execlists->active; (rq = *port); port++) {
1520
			char hdr[160];
1521 1522
			int len;

1523
			len = scnprintf(hdr, sizeof(hdr),
1524
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1525
					(int)(port - execlists->active),
1526 1527 1528
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1529
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1530
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1531 1532 1533
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1534 1535
			char hdr[160];
			int len;
1536

1537
			len = scnprintf(hdr, sizeof(hdr),
1538
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1539
					(int)(port - execlists->pending),
1540 1541 1542
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1543 1544 1545
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1546
		}
1547
		rcu_read_unlock();
1548
		execlists_active_unlock_bh(execlists);
1549 1550
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1551
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1552
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1553
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1554
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1555
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1556
	}
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1603 1604 1605 1606 1607
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1608
	struct i915_request *rq;
1609
	intel_wakeref_t wakeref;
1610
	unsigned long flags;
1611
	ktime_t dummy;
1612 1613 1614 1615 1616 1617 1618 1619 1620

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1621
	if (intel_gt_is_wedged(engine->gt))
1622 1623
		drm_printf(m, "*** WEDGED ***\n");

1624
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1625 1626
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1627 1628
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1629 1630 1631 1632
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1633 1634
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
		   engine->fw_domain, atomic_read(&engine->fw_active));
1635 1636 1637 1638 1639 1640 1641

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1642 1643 1644 1645 1646 1647
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1648
	spin_lock_irqsave(&engine->active.lock, flags);
1649
	rq = intel_engine_find_active_request(engine);
1650
	if (rq) {
1651 1652
		struct intel_timeline *tl = get_timeline(rq);

1653
		print_request(m, rq, "\t\tactive ");
1654

1655
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1656
			   i915_ggtt_offset(rq->ring->vma));
1657
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1658
			   rq->ring->head);
1659
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1660
			   rq->ring->tail);
1661 1662 1663 1664
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1665 1666 1667 1668 1669 1670

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1671 1672

		print_request_ring(m, rq);
1673

1674
		if (rq->context->lrc_reg_state) {
1675
			drm_printf(m, "Logical Ring Context:\n");
1676
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1677
		}
1678
	}
1679
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1680
	spin_unlock_irqrestore(&engine->active.lock, flags);
1681

1682
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1683
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1684
	if (wakeref) {
1685
		intel_engine_print_registers(engine, m);
1686
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1687 1688 1689
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1690

1691
	intel_execlists_show_requests(engine, m, print_request, 8);
1692

1693
	drm_printf(m, "HWSP:\n");
1694
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1695

1696
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1697 1698

	intel_engine_print_breadcrumbs(engine, m);
1699 1700
}

1701 1702
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1703 1704 1705 1706 1707 1708 1709
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1710
	*now = ktime_get();
1711
	if (atomic_read(&engine->stats.active))
1712
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1713 1714 1715 1716 1717 1718 1719

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1720
 * @now: monotonic timestamp of sampling
1721 1722 1723
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1724
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1725
{
1726
	unsigned int seq;
1727 1728
	ktime_t total;

1729 1730
	do {
		seq = read_seqbegin(&engine->stats.lock);
1731
		total = __intel_engine_get_busy_time(engine, now);
1732
	} while (read_seqretry(&engine->stats.lock, seq));
1733 1734 1735 1736

	return total;
}

1737 1738
static bool match_ring(struct i915_request *rq)
{
1739
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1760
	lockdep_assert_held(&engine->active.lock);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1778
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1779 1780 1781 1782
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1783
			continue;
1784 1785 1786

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1787
			continue;
1788 1789 1790 1791 1792 1793 1794 1795

		active = request;
		break;
	}

	return active;
}

1796
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1797
#include "mock_engine.c"
1798
#include "selftest_engine.c"
1799
#include "selftest_engine_cs.c"
1800
#endif