hugetlb.c 189.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33
#include <linux/migrate.h>
34

D
David Gibson 已提交
35
#include <asm/page.h>
36
#include <asm/pgalloc.h>
37
#include <asm/tlb.h>
D
David Gibson 已提交
38

39
#include <linux/io.h>
D
David Gibson 已提交
40
#include <linux/hugetlb.h>
41
#include <linux/hugetlb_cgroup.h>
42
#include <linux/node.h>
43
#include <linux/page_owner.h>
44
#include "internal.h"
45
#include "hugetlb_vmemmap.h"
L
Linus Torvalds 已提交
46

47
int hugetlb_max_hstate __read_mostly;
48 49
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
50

51
#ifdef CONFIG_CMA
52
static struct cma *hugetlb_cma[MAX_NUMNODES];
53
static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
54 55 56 57 58 59 60 61 62 63
static bool hugetlb_cma_page(struct page *page, unsigned int order)
{
	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
				1 << order);
}
#else
static bool hugetlb_cma_page(struct page *page, unsigned int order)
{
	return false;
}
64 65
#endif
static unsigned long hugetlb_cma_size __initdata;
66

67 68 69 70 71
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
72

73 74
__initdata LIST_HEAD(huge_boot_pages);

75 76 77
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
78
static bool __initdata parsed_valid_hugepagesz = true;
79
static bool __initdata parsed_default_hugepagesz;
80

81
/*
82 83
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
84
 */
85
DEFINE_SPINLOCK(hugetlb_lock);
86

87 88 89 90 91
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
92
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93

94 95 96
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

97
static inline bool subpool_is_free(struct hugepage_subpool *spool)
98
{
99 100 101 102 103 104 105 106 107
	if (spool->count)
		return false;
	if (spool->max_hpages != -1)
		return spool->used_hpages == 0;
	if (spool->min_hpages != -1)
		return spool->rsv_hpages == spool->min_hpages;

	return true;
}
108

109 110
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
						unsigned long irq_flags)
111
{
112
	spin_unlock_irqrestore(&spool->lock, irq_flags);
113 114

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
115
	 * remain, give up any reservations based on minimum size and
116
	 * free the subpool */
117
	if (subpool_is_free(spool)) {
118 119 120
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
121
		kfree(spool);
122
	}
123 124
}

125 126
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
127 128 129
{
	struct hugepage_subpool *spool;

130
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
131 132 133 134 135
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
136 137 138 139 140 141 142 143 144
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
145 146 147 148 149 150

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
151 152 153
	unsigned long flags;

	spin_lock_irqsave(&spool->lock, flags);
154 155
	BUG_ON(!spool->count);
	spool->count--;
156
	unlock_or_release_subpool(spool, flags);
157 158
}

159 160 161
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
162
 * request.  Otherwise, return the number of pages by which the
163 164
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
165
 * a subpool minimum size must be maintained.
166 167
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
168 169
				      long delta)
{
170
	long ret = delta;
171 172

	if (!spool)
173
		return ret;
174

175
	spin_lock_irq(&spool->lock);
176 177 178 179 180 181 182 183

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
184 185
	}

186 187
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
188 189 190 191 192 193 194 195 196 197 198 199 200 201
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
202
	spin_unlock_irq(&spool->lock);
203 204 205
	return ret;
}

206 207 208 209 210 211 212
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
213 214
				       long delta)
{
215
	long ret = delta;
216
	unsigned long flags;
217

218
	if (!spool)
219
		return delta;
220

221
	spin_lock_irqsave(&spool->lock, flags);
222 223 224 225

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

226 227
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
228 229 230 231 232 233 234 235 236 237 238 239 240 241
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
242
	unlock_or_release_subpool(spool, flags);
243 244

	return ret;
245 246 247 248 249 250 251 252 253
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
254
	return subpool_inode(file_inode(vma->vm_file));
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
299 300 301 302 303 304 305 306 307 308 309
		/*
		 * The caller will hold exactly one h_cg->css reference for the
		 * whole contiguous reservation region. But this area might be
		 * scattered when there are already some file_regions reside in
		 * it. As a result, many file_regions may share only one css
		 * reference. In order to ensure that one file_region must hold
		 * exactly one h_cg->css reference, we should do css_get for
		 * each file_region and leave the reference held by caller
		 * untouched.
		 */
		css_get(&h_cg->css);
310 311 312 313 314 315 316 317 318 319 320 321 322
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

323 324 325 326 327 328 329 330
static void put_uncharge_info(struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (rg->css)
		css_put(rg->css);
#endif
}

331 332 333 334
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
335
	return rg->reservation_counter == org->reservation_counter &&
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
353
		put_uncharge_info(rg);
354 355
		kfree(rg);

356
		rg = prg;
357 358 359 360 361 362 363 364
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
365
		put_uncharge_info(rg);
366 367 368 369
		kfree(rg);
	}
}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static inline long
hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
		     long *regions_needed)
{
	struct file_region *nrg;

	if (!regions_needed) {
		nrg = get_file_region_entry_from_cache(map, from, to);
		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
		list_add(&nrg->link, rg->link.prev);
		coalesce_file_region(map, nrg);
	} else
		*regions_needed += 1;

	return to - from;
}

388 389 390 391 392 393 394
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
395 396
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
397
				     struct hugetlb_cgroup *h_cg,
398
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
399
{
400
	long add = 0;
M
Mina Almasry 已提交
401
	struct list_head *head = &resv->regions;
402
	long last_accounted_offset = f;
403
	struct file_region *rg = NULL, *trg = NULL;
M
Mina Almasry 已提交
404

405 406
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421
	/* In this loop, we essentially handle an entry for the range
	 * [last_accounted_offset, rg->from), at every iteration, with some
	 * bounds checking.
	 */
	list_for_each_entry_safe(rg, trg, head, link) {
		/* Skip irrelevant regions that start before our range. */
		if (rg->from < f) {
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
			if (rg->to > last_accounted_offset)
				last_accounted_offset = rg->to;
			continue;
		}
M
Mina Almasry 已提交
422

423 424 425
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
426
		if (rg->from >= t)
M
Mina Almasry 已提交
427 428
			break;

429 430 431
		/* Add an entry for last_accounted_offset -> rg->from, and
		 * update last_accounted_offset.
		 */
432 433 434 435 436
		if (rg->from > last_accounted_offset)
			add += hugetlb_resv_map_add(resv, rg,
						    last_accounted_offset,
						    rg->from, h, h_cg,
						    regions_needed);
437 438 439 440 441 442 443

		last_accounted_offset = rg->to;
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
444 445 446
	if (last_accounted_offset < t)
		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
					    t, h, h_cg, regions_needed);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
I
Ingo Molnar 已提交
480
		 * for all the existing adds_in_progress. We should only be
481
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
482
		 */
483 484 485 486 487 488 489 490
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
491 492
		}

493 494
		spin_lock(&resv->lock);

495 496
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
497 498
	}

499
	return 0;
M
Mina Almasry 已提交
500

501 502 503 504 505 506
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
507 508
}

509 510
/*
 * Add the huge page range represented by [f, t) to the reserve
511 512 513 514 515
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
516
 *
517 518 519 520
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
521
 * this operation and we were not able to allocate, it returns -ENOMEM.
522 523 524
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
525
 */
526
static long region_add(struct resv_map *resv, long f, long t,
527 528
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
529
{
530
	long add = 0, actual_regions_needed = 0;
531

532
	spin_lock(&resv->lock);
533 534 535
retry:

	/* Count how many regions are actually needed to execute this add. */
536 537
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
538

539
	/*
540 541 542 543 544 545 546
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
547
	 */
548 549 550 551 552 553 554 555
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
556

557 558 559 560
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
561

562
		goto retry;
563 564
	}

565
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
566 567

	resv->adds_in_progress -= in_regions_needed;
568

569
	spin_unlock(&resv->lock);
570
	return add;
571 572
}

573 574 575 576 577 578 579
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
580 581 582 583 584 585 586
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
587 588 589 590 591
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
592
 */
593 594
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
595 596 597
{
	long chg = 0;

598
	spin_lock(&resv->lock);
599

600
	/* Count how many hugepages in this range are NOT represented. */
601
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
602
				       out_regions_needed);
603

604 605
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
606

607 608
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
609

610
	resv->adds_in_progress += *out_regions_needed;
611 612

	spin_unlock(&resv->lock);
613 614 615
	return chg;
}

616 617 618 619 620
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
621 622 623
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
624 625 626 627 628
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
629 630
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
631 632 633
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
634
	resv->adds_in_progress -= regions_needed;
635 636 637
	spin_unlock(&resv->lock);
}

638
/*
639 640 641 642 643 644 645 646 647 648 649 650
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
651
 */
652
static long region_del(struct resv_map *resv, long f, long t)
653
{
654
	struct list_head *head = &resv->regions;
655
	struct file_region *rg, *trg;
656 657
	struct file_region *nrg = NULL;
	long del = 0;
658

659
retry:
660
	spin_lock(&resv->lock);
661
	list_for_each_entry_safe(rg, trg, head, link) {
662 663 664 665 666 667 668 669
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
670
			continue;
671

672
		if (rg->from >= t)
673 674
			break;

675 676 677 678 679 680 681 682 683 684 685 686 687
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
688

689 690 691 692 693 694 695 696 697
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
698
			hugetlb_cgroup_uncharge_file_region(
699
				resv, rg, t - f, false);
700 701 702 703

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
704 705 706

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

707 708 709 710 711 712 713
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
714
			break;
715 716 717 718
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
719
			hugetlb_cgroup_uncharge_file_region(resv, rg,
720
							    rg->to - rg->from, true);
721 722 723 724 725 726
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
727
			hugetlb_cgroup_uncharge_file_region(resv, rg,
728
							    t - rg->from, false);
729

730 731 732
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
733
			hugetlb_cgroup_uncharge_file_region(resv, rg,
734
							    rg->to - f, false);
735 736 737

			del += rg->to - f;
			rg->to = f;
738
		}
739
	}
740 741

	spin_unlock(&resv->lock);
742 743
	kfree(nrg);
	return del;
744 745
}

746 747 748 749 750 751 752 753 754
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
755
void hugetlb_fix_reserve_counts(struct inode *inode)
756 757 758
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;
759
	bool reserved = false;
760 761

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
762
	if (rsv_adjust > 0) {
763 764
		struct hstate *h = hstate_inode(inode);

765 766 767 768
		if (!hugetlb_acct_memory(h, 1))
			reserved = true;
	} else if (!rsv_adjust) {
		reserved = true;
769
	}
770 771 772

	if (!reserved)
		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
773 774
}

775 776 777 778
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
779
static long region_count(struct resv_map *resv, long f, long t)
780
{
781
	struct list_head *head = &resv->regions;
782 783 784
	struct file_region *rg;
	long chg = 0;

785
	spin_lock(&resv->lock);
786 787
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
788 789
		long seg_from;
		long seg_to;
790 791 792 793 794 795 796 797 798 799 800

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
801
	spin_unlock(&resv->lock);
802 803 804 805

	return chg;
}

806 807 808 809
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
810 811
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
812
{
813 814
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
815 816
}

817 818 819 820 821
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
822
EXPORT_SYMBOL_GPL(linear_hugepage_index);
823

824 825 826 827 828 829
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
830 831 832
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
833
}
834
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
835

836 837 838
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
839 840
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
841
 */
842
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
843 844 845 846
{
	return vma_kernel_pagesize(vma);
}

847 848 849 850 851 852 853
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
854
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
855

856 857 858 859 860 861 862 863 864
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
865 866 867 868 869 870 871 872 873
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
874
 */
875 876 877 878 879 880 881 882 883 884 885
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

905
struct resv_map *resv_map_alloc(void)
906 907
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
908 909 910 911 912
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
913
		return NULL;
914
	}
915 916

	kref_init(&resv_map->refs);
917
	spin_lock_init(&resv_map->lock);
918 919
	INIT_LIST_HEAD(&resv_map->regions);

920
	resv_map->adds_in_progress = 0;
921 922 923 924 925 926 927
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
928 929 930 931 932

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

933 934 935
	return resv_map;
}

936
void resv_map_release(struct kref *ref)
937 938
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
939 940
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
941 942

	/* Clear out any active regions before we release the map. */
943
	region_del(resv_map, 0, LONG_MAX);
944 945 946 947 948 949 950 951 952

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

953 954 955
	kfree(resv_map);
}

956 957
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
958 959 960 961 962 963 964 965 966
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
967 968
}

969
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
970
{
971
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
972 973 974 975 976 977 978
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
979 980
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
981
	}
982 983
}

984
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
985
{
986 987
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988

989 990
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
991 992 993 994
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
995 996
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
997 998

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
999 1000 1001 1002
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
1003
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004 1005

	return (get_vma_private_data(vma) & flag) != 0;
1006 1007
}

1008
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1009 1010
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
1011
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012
	if (!(vma->vm_flags & VM_MAYSHARE))
1013 1014 1015
		vma->vm_private_data = (void *)0;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * Reset and decrement one ref on hugepage private reservation.
 * Called with mm->mmap_sem writer semaphore held.
 * This function should be only used by move_vma() and operate on
 * same sized vma. It should never come here with last ref on the
 * reservation.
 */
void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	/*
	 * Clear the old hugetlb private page reservation.
	 * It has already been transferred to new_vma.
	 *
	 * During a mremap() operation of a hugetlb vma we call move_vma()
	 * which copies vma into new_vma and unmaps vma. After the copy
	 * operation both new_vma and vma share a reference to the resv_map
	 * struct, and at that point vma is about to be unmapped. We don't
	 * want to return the reservation to the pool at unmap of vma because
	 * the reservation still lives on in new_vma, so simply decrement the
	 * ref here and remove the resv_map reference from this vma.
	 */
	struct resv_map *reservations = vma_resv_map(vma);

	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&reservations->refs, resv_map_release);

	reset_vma_resv_huge_pages(vma);
}

1045
/* Returns true if the VMA has associated reserve pages */
1046
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1047
{
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1059
			return true;
1060
		else
1061
			return false;
1062
	}
1063 1064

	/* Shared mappings always use reserves */
1065 1066 1067 1068 1069
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1070
		 * fallocate.  In this case, there really are no reserves to
1071 1072 1073 1074 1075 1076 1077
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1078 1079 1080 1081 1082

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1104

1105
	return false;
1106 1107
}

1108
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1109 1110
{
	int nid = page_to_nid(page);
1111 1112

	lockdep_assert_held(&hugetlb_lock);
1113 1114
	VM_BUG_ON_PAGE(page_count(page), page);

1115
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1116 1117
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1118
	SetHPageFreed(page);
L
Linus Torvalds 已提交
1119 1120
}

1121
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1122 1123
{
	struct page *page;
1124
	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1125

1126
	lockdep_assert_held(&hugetlb_lock);
1127
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1128
		if (pin && !is_pinnable_page(page))
1129
			continue;
1130

1131 1132 1133 1134 1135
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1136
		ClearHPageFreed(page);
1137 1138 1139
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1140 1141
	}

1142
	return NULL;
1143 1144
}

1145 1146
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1147
{
1148 1149 1150 1151
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1152
	int node = NUMA_NO_NODE;
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1170 1171 1172 1173 1174

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1175 1176 1177
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1178 1179 1180
	return NULL;
}

1181 1182
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1183 1184
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1185
{
1186
	struct page *page = NULL;
1187
	struct mempolicy *mpol;
1188
	gfp_t gfp_mask;
1189
	nodemask_t *nodemask;
1190
	int nid;
L
Linus Torvalds 已提交
1191

1192 1193 1194 1195 1196
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1197
	if (!vma_has_reserves(vma, chg) &&
1198
			h->free_huge_pages - h->resv_huge_pages == 0)
1199
		goto err;
1200

1201
	/* If reserves cannot be used, ensure enough pages are in the pool */
1202
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1203
		goto err;
1204

1205 1206
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	if (mpol_is_preferred_many(mpol)) {
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);

		/* Fallback to all nodes if page==NULL */
		nodemask = NULL;
	}

	if (!page)
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);

1218
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1219
		SetHPageRestoreReserve(page);
1220
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1221
	}
1222

1223
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1224
	return page;
1225 1226 1227

err:
	return NULL;
L
Linus Torvalds 已提交
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1239
	nid = next_node_in(nid, *nodes_allowed);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
1272
 * helper for remove_pool_huge_page() - return the previously saved
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1301
/* used to demote non-gigantic_huge pages as well */
1302 1303
static void __destroy_compound_gigantic_page(struct page *page,
					unsigned int order, bool demote)
1304 1305 1306 1307 1308
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1309
	atomic_set(compound_mapcount_ptr(page), 0);
1310
	atomic_set(compound_pincount_ptr(page), 0);
1311

1312
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1313
		p->mapping = NULL;
1314
		clear_compound_head(p);
1315 1316
		if (!demote)
			set_page_refcounted(p);
1317 1318 1319
	}

	set_compound_order(page, 0);
1320
	page[1].compound_nr = 0;
1321 1322 1323
	__ClearPageHead(page);
}

1324 1325 1326 1327 1328 1329 1330
static void destroy_compound_hugetlb_page_for_demote(struct page *page,
					unsigned int order)
{
	__destroy_compound_gigantic_page(page, order, true);
}

#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1331 1332 1333 1334 1335 1336
static void destroy_compound_gigantic_page(struct page *page,
					unsigned int order)
{
	__destroy_compound_gigantic_page(page, order, false);
}

1337
static void free_gigantic_page(struct page *page, unsigned int order)
1338
{
1339 1340 1341 1342
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1343 1344
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1345
		return;
1346
#endif
1347

1348 1349 1350
	free_contig_range(page_to_pfn(page), 1 << order);
}

1351
#ifdef CONFIG_CONTIG_ALLOC
1352 1353
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1354
{
1355
	unsigned long nr_pages = pages_per_huge_page(h);
1356 1357
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1358

1359 1360
#ifdef CONFIG_CMA
	{
1361 1362 1363
		struct page *page;
		int node;

1364 1365 1366
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1367 1368 1369
			if (page)
				return page;
		}
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1382
	}
1383
#endif
1384

1385
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1386 1387
}

1388 1389 1390 1391 1392 1393 1394
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1395

1396
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1397
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1398 1399 1400 1401
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1402
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1403
static inline void destroy_compound_gigantic_page(struct page *page,
1404
						unsigned int order) { }
1405 1406
#endif

1407 1408
/*
 * Remove hugetlb page from lists, and update dtor so that page appears
1409 1410 1411
 * as just a compound page.
 *
 * A reference is held on the page, except in the case of demote.
1412 1413 1414
 *
 * Must be called with hugetlb lock held.
 */
1415 1416 1417
static void __remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus,
							bool demote)
1418 1419 1420 1421 1422 1423
{
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);

1424
	lockdep_assert_held(&hugetlb_lock);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return;

	list_del(&page->lru);

	if (HPageFreed(page)) {
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
	}
	if (adjust_surplus) {
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
	}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * Very subtle
	 *
	 * For non-gigantic pages set the destructor to the normal compound
	 * page dtor.  This is needed in case someone takes an additional
	 * temporary ref to the page, and freeing is delayed until they drop
	 * their reference.
	 *
	 * For gigantic pages set the destructor to the null dtor.  This
	 * destructor will never be called.  Before freeing the gigantic
	 * page destroy_compound_gigantic_page will turn the compound page
	 * into a simple group of pages.  After this the destructor does not
	 * apply.
	 *
	 * This handles the case where more than one ref is held when and
	 * after update_and_free_page is called.
1455 1456 1457
	 *
	 * In the case of demote we do not ref count the page as it will soon
	 * be turned into a page of smaller size.
1458
	 */
1459 1460
	if (!demote)
		set_page_refcounted(page);
1461 1462 1463 1464
	if (hstate_is_gigantic(h))
		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
	else
		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1465 1466 1467 1468 1469

	h->nr_huge_pages--;
	h->nr_huge_pages_node[nid]--;
}

1470 1471 1472 1473 1474 1475
static void remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	__remove_hugetlb_page(h, page, adjust_surplus, false);
}

1476 1477 1478 1479 1480 1481
static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	__remove_hugetlb_page(h, page, adjust_surplus, true);
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static void add_hugetlb_page(struct hstate *h, struct page *page,
			     bool adjust_surplus)
{
	int zeroed;
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);

	lockdep_assert_held(&hugetlb_lock);

	INIT_LIST_HEAD(&page->lru);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;

	if (adjust_surplus) {
		h->surplus_huge_pages++;
		h->surplus_huge_pages_node[nid]++;
	}

	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
	set_page_private(page, 0);
	SetHPageVmemmapOptimized(page);

	/*
1506 1507 1508
	 * This page is about to be managed by the hugetlb allocator and
	 * should have no users.  Drop our reference, and check for others
	 * just in case.
1509 1510
	 */
	zeroed = put_page_testzero(page);
1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (!zeroed)
		/*
		 * It is VERY unlikely soneone else has taken a ref on
		 * the page.  In this case, we simply return as the
		 * hugetlb destructor (free_huge_page) will be called
		 * when this other ref is dropped.
		 */
		return;

1520 1521 1522 1523
	arch_clear_hugepage_flags(page);
	enqueue_huge_page(h, page);
}

1524
static void __update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1525 1526
{
	int i;
1527
	struct page *subpage = page;
1528

1529
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1530
		return;
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (alloc_huge_page_vmemmap(h, page)) {
		spin_lock_irq(&hugetlb_lock);
		/*
		 * If we cannot allocate vmemmap pages, just refuse to free the
		 * page and put the page back on the hugetlb free list and treat
		 * as a surplus page.
		 */
		add_hugetlb_page(h, page, true);
		spin_unlock_irq(&hugetlb_lock);
		return;
	}

1544 1545 1546
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1547
				1 << PG_referenced | 1 << PG_dirty |
1548 1549
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1550
	}
1551 1552 1553 1554 1555 1556 1557

	/*
	 * Non-gigantic pages demoted from CMA allocated gigantic pages
	 * need to be given back to CMA in free_gigantic_page.
	 */
	if (hstate_is_gigantic(h) ||
	    hugetlb_cma_page(page, huge_page_order(h))) {
1558 1559 1560 1561 1562
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/*
 * As update_and_free_page() can be called under any context, so we cannot
 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
 * the vmemmap pages.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
 * freed and frees them one-by-one. As the page->mapping pointer is going
 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
 * structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		struct page *page;
		struct hstate *h;

		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		page->mapping = NULL;
		/*
		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
		 * is going to trigger because a previous call to
		 * remove_hugetlb_page() will set_compound_page_dtor(page,
		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
		 */
		h = size_to_hstate(page_size(page));

		__update_and_free_page(h, page);

		cond_resched();
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

static inline void flush_free_hpage_work(struct hstate *h)
{
	if (free_vmemmap_pages_per_hpage(h))
		flush_work(&free_hpage_work);
}

static void update_and_free_page(struct hstate *h, struct page *page,
				 bool atomic)
{
1616
	if (!HPageVmemmapOptimized(page) || !atomic) {
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		__update_and_free_page(h, page);
		return;
	}

	/*
	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
	 *
	 * Only call schedule_work() if hpage_freelist is previously
	 * empty. Otherwise, schedule_work() had been called but the workfn
	 * hasn't retrieved the list yet.
	 */
	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
		schedule_work(&free_hpage_work);
}

1632 1633 1634 1635 1636
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
{
	struct page *page, *t_page;

	list_for_each_entry_safe(page, t_page, list, lru) {
1637
		update_and_free_page(h, page, false);
1638 1639 1640 1641
		cond_resched();
	}
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1653
void free_huge_page(struct page *page)
1654
{
1655 1656 1657 1658
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1659
	struct hstate *h = page_hstate(page);
1660
	int nid = page_to_nid(page);
1661
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1662
	bool restore_reserve;
1663
	unsigned long flags;
1664

1665 1666
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1667

1668
	hugetlb_set_page_subpool(page, NULL);
1669
	page->mapping = NULL;
1670 1671
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1672

1673
	/*
1674
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1675 1676 1677
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
M
Miaohe Lin 已提交
1678
	 * reservation, do not call hugepage_subpool_put_pages() as this will
1679
	 * remove the reserved page from the subpool.
1680
	 */
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1691

1692
	spin_lock_irqsave(&hugetlb_lock, flags);
1693
	ClearHPageMigratable(page);
1694 1695
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1696 1697
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1698 1699 1700
	if (restore_reserve)
		h->resv_huge_pages++;

1701
	if (HPageTemporary(page)) {
1702
		remove_hugetlb_page(h, page, false);
1703
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1704
		update_and_free_page(h, page, true);
1705
	} else if (h->surplus_huge_pages_node[nid]) {
1706
		/* remove the page from active list */
1707
		remove_hugetlb_page(h, page, true);
1708
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1709
		update_and_free_page(h, page, true);
1710
	} else {
1711
		arch_clear_hugepage_flags(page);
1712
		enqueue_huge_page(h, page);
1713
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1714 1715 1716
	}
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/*
 * Must be called with the hugetlb lock held
 */
static void __prep_account_new_huge_page(struct hstate *h, int nid)
{
	lockdep_assert_held(&hugetlb_lock);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
}

1727
static void __prep_new_huge_page(struct hstate *h, struct page *page)
1728
{
1729
	free_huge_page_vmemmap(h, page);
1730
	INIT_LIST_HEAD(&page->lru);
1731
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1732
	hugetlb_set_page_subpool(page, NULL);
1733
	set_hugetlb_cgroup(page, NULL);
1734
	set_hugetlb_cgroup_rsvd(page, NULL);
1735 1736 1737 1738
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
1739
	__prep_new_huge_page(h, page);
1740
	spin_lock_irq(&hugetlb_lock);
1741
	__prep_account_new_huge_page(h, nid);
1742
	spin_unlock_irq(&hugetlb_lock);
1743 1744
}

1745 1746
static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
								bool demote)
1747
{
1748
	int i, j;
1749 1750 1751 1752 1753
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1754
	__ClearPageReserved(page);
1755
	__SetPageHead(page);
1756
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1757 1758 1759 1760
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1761
		 * too.  Otherwise drivers using get_user_pages() to access tail
1762 1763 1764 1765 1766 1767 1768 1769
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		/*
		 * Subtle and very unlikely
		 *
		 * Gigantic 'page allocators' such as memblock or cma will
		 * return a set of pages with each page ref counted.  We need
		 * to turn this set of pages into a compound page with tail
		 * page ref counts set to zero.  Code such as speculative page
		 * cache adding could take a ref on a 'to be' tail page.
		 * We need to respect any increased ref count, and only set
		 * the ref count to zero if count is currently 1.  If count
1780 1781 1782 1783
		 * is not 1, we return an error.  An error return indicates
		 * the set of pages can not be converted to a gigantic page.
		 * The caller who allocated the pages should then discard the
		 * pages using the appropriate free interface.
1784 1785
		 *
		 * In the case of demote, the ref count will be zero.
1786
		 */
1787 1788 1789 1790 1791 1792 1793
		if (!demote) {
			if (!page_ref_freeze(p, 1)) {
				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
				goto out_error;
			}
		} else {
			VM_BUG_ON_PAGE(page_count(p), p);
1794
		}
1795
		set_compound_head(p, page);
1796
	}
1797
	atomic_set(compound_mapcount_ptr(page), -1);
1798
	atomic_set(compound_pincount_ptr(page), 0);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	return true;

out_error:
	/* undo tail page modifications made above */
	p = page + 1;
	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
		clear_compound_head(p);
		set_page_refcounted(p);
	}
	/* need to clear PG_reserved on remaining tail pages  */
	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
		__ClearPageReserved(p);
	set_compound_order(page, 0);
	page[1].compound_nr = 0;
	__ClearPageHead(page);
	return false;
1815 1816
}

1817 1818 1819 1820 1821
static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
{
	return __prep_compound_gigantic_page(page, order, false);
}

1822 1823 1824 1825 1826 1827
static bool prep_compound_gigantic_page_for_demote(struct page *page,
							unsigned int order)
{
	return __prep_compound_gigantic_page(page, order, true);
}

A
Andrew Morton 已提交
1828 1829 1830 1831 1832
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1833 1834 1835 1836 1837 1838
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1839
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1840
}
1841 1842
EXPORT_SYMBOL_GPL(PageHuge);

1843 1844 1845 1846 1847 1848 1849 1850 1851
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1852
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1853 1854
}

1855 1856 1857
/*
 * Find and lock address space (mapping) in write mode.
 *
1858 1859 1860
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1861 1862 1863
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1864
	struct address_space *mapping = page_mapping(hpage);
1865 1866 1867 1868 1869 1870 1871

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1872
	return NULL;
1873 1874
}

1875
pgoff_t hugetlb_basepage_index(struct page *page)
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1889
static struct page *alloc_buddy_huge_page(struct hstate *h,
1890 1891
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1892
{
1893
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1894
	struct page *page;
1895
	bool alloc_try_hard = true;
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1909 1910
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1911
	page = __alloc_pages(gfp_mask, order, nid, nmask);
1912 1913 1914 1915
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1933 1934 1935
	return page;
}

1936 1937 1938 1939 1940
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1941 1942
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1943 1944
{
	struct page *page;
1945
	bool retry = false;
1946

1947
retry:
1948 1949 1950 1951
	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1952
				nid, nmask, node_alloc_noretry);
1953 1954 1955
	if (!page)
		return NULL;

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	if (hstate_is_gigantic(h)) {
		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
			/*
			 * Rare failure to convert pages to compound page.
			 * Free pages and try again - ONCE!
			 */
			free_gigantic_page(page, huge_page_order(h));
			if (!retry) {
				retry = true;
				goto retry;
			}
			return NULL;
		}
	}
1970 1971 1972 1973 1974
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1975 1976 1977 1978
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1979 1980
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1981 1982 1983
{
	struct page *page;
	int nr_nodes, node;
1984
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1985 1986

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1987 1988
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
1989
		if (page)
1990 1991 1992
			break;
	}

1993 1994
	if (!page)
		return 0;
1995

1996 1997 1998
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1999 2000
}

2001
/*
2002 2003 2004 2005
 * Remove huge page from pool from next node to free.  Attempt to keep
 * persistent huge pages more or less balanced over allowed nodes.
 * This routine only 'removes' the hugetlb page.  The caller must make
 * an additional call to free the page to low level allocators.
2006 2007
 * Called with hugetlb_lock locked.
 */
2008 2009 2010
static struct page *remove_pool_huge_page(struct hstate *h,
						nodemask_t *nodes_allowed,
						 bool acct_surplus)
2011
{
2012
	int nr_nodes, node;
2013
	struct page *page = NULL;
2014

2015
	lockdep_assert_held(&hugetlb_lock);
2016
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2017 2018 2019 2020
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
2021 2022
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
2023
			page = list_entry(h->hugepage_freelists[node].next,
2024
					  struct page, lru);
2025
			remove_hugetlb_page(h, page, acct_surplus);
2026
			break;
2027
		}
2028
	}
2029

2030
	return page;
2031 2032
}

2033 2034
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
2035 2036 2037
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
2038 2039 2040 2041 2042 2043 2044 2045
 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
 *           when the system is under memory pressure and the feature of
 *           freeing unused vmemmap pages associated with each hugetlb page
 *           is enabled.
 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
 *           (allocated or reserved.)
 *       0:  successfully dissolved free hugepages or the page is not a
 *           hugepage (considered as already dissolved)
2046
 */
2047
int dissolve_free_huge_page(struct page *page)
2048
{
2049
	int rc = -EBUSY;
2050

2051
retry:
2052 2053 2054 2055
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

2056
	spin_lock_irq(&hugetlb_lock);
2057 2058 2059 2060 2061 2062
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
2063 2064
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
2065
		if (h->free_huge_pages - h->resv_huge_pages == 0)
2066
			goto out;
2067 2068 2069 2070 2071

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
2072
		if (unlikely(!HPageFreed(head))) {
2073
			spin_unlock_irq(&hugetlb_lock);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

2087
		remove_hugetlb_page(h, head, false);
2088
		h->max_huge_pages--;
2089
		spin_unlock_irq(&hugetlb_lock);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

		/*
		 * Normally update_and_free_page will allocate required vmemmmap
		 * before freeing the page.  update_and_free_page will fail to
		 * free the page if it can not allocate required vmemmap.  We
		 * need to adjust max_huge_pages if the page is not freed.
		 * Attempt to allocate vmemmmap here so that we can take
		 * appropriate action on failure.
		 */
		rc = alloc_huge_page_vmemmap(h, head);
		if (!rc) {
			/*
			 * Move PageHWPoison flag from head page to the raw
			 * error page, which makes any subpages rather than
			 * the error page reusable.
			 */
			if (PageHWPoison(head) && page != head) {
				SetPageHWPoison(page);
				ClearPageHWPoison(head);
			}
			update_and_free_page(h, head, false);
		} else {
			spin_lock_irq(&hugetlb_lock);
			add_hugetlb_page(h, head, false);
			h->max_huge_pages++;
			spin_unlock_irq(&hugetlb_lock);
		}

		return rc;
2119
	}
2120
out:
2121
	spin_unlock_irq(&hugetlb_lock);
2122
	return rc;
2123 2124 2125 2126 2127
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
2128 2129
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
2130 2131
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
2132
 */
2133
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2134 2135
{
	unsigned long pfn;
2136
	struct page *page;
2137
	int rc = 0;
2138

2139
	if (!hugepages_supported())
2140
		return rc;
2141

2142 2143
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
2144 2145 2146
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
2147
	}
2148 2149

	return rc;
2150 2151
}

2152 2153 2154
/*
 * Allocates a fresh surplus page from the page allocator.
 */
2155
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2156
		int nid, nodemask_t *nmask, bool zero_ref)
2157
{
2158
	struct page *page = NULL;
2159
	bool retry = false;
2160

2161
	if (hstate_is_gigantic(h))
2162 2163
		return NULL;

2164
	spin_lock_irq(&hugetlb_lock);
2165 2166
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
2167
	spin_unlock_irq(&hugetlb_lock);
2168

2169
retry:
2170
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2171
	if (!page)
2172
		return NULL;
2173

2174
	spin_lock_irq(&hugetlb_lock);
2175 2176 2177 2178 2179 2180 2181 2182
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2183
		SetHPageTemporary(page);
2184
		spin_unlock_irq(&hugetlb_lock);
2185
		put_page(page);
2186
		return NULL;
2187
	}
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (zero_ref) {
		/*
		 * Caller requires a page with zero ref count.
		 * We will drop ref count here.  If someone else is holding
		 * a ref, the page will be freed when they drop it.  Abuse
		 * temporary page flag to accomplish this.
		 */
		SetHPageTemporary(page);
		if (!put_page_testzero(page)) {
			/*
			 * Unexpected inflated ref count on freshly allocated
			 * huge.  Retry once.
			 */
			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
			spin_unlock_irq(&hugetlb_lock);
			if (retry)
				return NULL;

			retry = true;
			goto retry;
		}
		ClearHPageTemporary(page);
	}

	h->surplus_huge_pages++;
	h->surplus_huge_pages_node[page_to_nid(page)]++;

2216
out_unlock:
2217
	spin_unlock_irq(&hugetlb_lock);
2218 2219 2220 2221

	return page;
}

2222
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2223
				     int nid, nodemask_t *nmask)
2224 2225 2226 2227 2228 2229
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

2230
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2231 2232 2233 2234 2235 2236 2237
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
2238
	SetHPageTemporary(page);
2239 2240 2241 2242

	return page;
}

2243 2244 2245
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
2246
static
2247
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2248 2249
		struct vm_area_struct *vma, unsigned long addr)
{
2250
	struct page *page = NULL;
2251 2252 2253 2254 2255 2256
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2257 2258 2259 2260 2261
	if (mpol_is_preferred_many(mpol)) {
		gfp_t gfp = gfp_mask | __GFP_NOWARN;

		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2262

2263 2264 2265 2266 2267 2268 2269
		/* Fallback to all nodes if page==NULL */
		nodemask = NULL;
	}

	if (!page)
		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
	mpol_cond_put(mpol);
2270
	return page;
2271 2272
}

2273
/* page migration callback function */
2274
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2275
		nodemask_t *nmask, gfp_t gfp_mask)
2276
{
2277
	spin_lock_irq(&hugetlb_lock);
2278
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2279 2280 2281 2282
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
2283
			spin_unlock_irq(&hugetlb_lock);
2284
			return page;
2285 2286
		}
	}
2287
	spin_unlock_irq(&hugetlb_lock);
2288

2289
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2290 2291
}

2292
/* mempolicy aware migration callback */
2293 2294
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2295 2296 2297 2298 2299 2300 2301 2302 2303
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2304
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2305 2306 2307 2308 2309
	mpol_cond_put(mpol);

	return page;
}

2310
/*
L
Lucas De Marchi 已提交
2311
 * Increase the hugetlb pool such that it can accommodate a reservation
2312 2313
 * of size 'delta'.
 */
2314
static int gather_surplus_pages(struct hstate *h, long delta)
2315
	__must_hold(&hugetlb_lock)
2316 2317 2318
{
	struct list_head surplus_list;
	struct page *page, *tmp;
2319 2320 2321
	int ret;
	long i;
	long needed, allocated;
2322
	bool alloc_ok = true;
2323

2324
	lockdep_assert_held(&hugetlb_lock);
2325
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2326
	if (needed <= 0) {
2327
		h->resv_huge_pages += delta;
2328
		return 0;
2329
	}
2330 2331 2332 2333 2334 2335

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
2336
	spin_unlock_irq(&hugetlb_lock);
2337
	for (i = 0; i < needed; i++) {
2338
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2339
				NUMA_NO_NODE, NULL, true);
2340 2341 2342 2343
		if (!page) {
			alloc_ok = false;
			break;
		}
2344
		list_add(&page->lru, &surplus_list);
2345
		cond_resched();
2346
	}
2347
	allocated += i;
2348 2349 2350 2351 2352

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
2353
	spin_lock_irq(&hugetlb_lock);
2354 2355
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2366 2367
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2368
	 * needed to accommodate the reservation.  Add the appropriate number
2369
	 * of pages to the hugetlb pool and free the extras back to the buddy
2370 2371 2372
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2373 2374
	 */
	needed += allocated;
2375
	h->resv_huge_pages += delta;
2376
	ret = 0;
2377

2378
	/* Free the needed pages to the hugetlb pool */
2379
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2380 2381
		if ((--needed) < 0)
			break;
2382
		/* Add the page to the hugetlb allocator */
2383
		enqueue_huge_page(h, page);
2384
	}
2385
free:
2386
	spin_unlock_irq(&hugetlb_lock);
2387

2388 2389 2390 2391
	/*
	 * Free unnecessary surplus pages to the buddy allocator.
	 * Pages have no ref count, call free_huge_page directly.
	 */
2392
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2393
		free_huge_page(page);
2394
	spin_lock_irq(&hugetlb_lock);
2395 2396 2397 2398 2399

	return ret;
}

/*
2400 2401 2402 2403 2404 2405
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
2406
 */
2407 2408
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2409 2410
{
	unsigned long nr_pages;
2411 2412 2413
	struct page *page;
	LIST_HEAD(page_list);

2414
	lockdep_assert_held(&hugetlb_lock);
2415 2416
	/* Uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2417

2418
	/* Cannot return gigantic pages currently */
2419
	if (hstate_is_gigantic(h))
2420
		goto out;
2421

2422 2423 2424 2425
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2426
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2427

2428 2429
	/*
	 * We want to release as many surplus pages as possible, spread
2430 2431 2432
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2433
	 * remove_pool_huge_page() will balance the freed pages across the
2434
	 * on-line nodes with memory and will handle the hstate accounting.
2435 2436
	 */
	while (nr_pages--) {
2437 2438
		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
		if (!page)
2439
			goto out;
2440 2441

		list_add(&page->lru, &page_list);
2442
	}
2443 2444

out:
2445
	spin_unlock_irq(&hugetlb_lock);
2446
	update_and_free_pages_bulk(h, &page_list);
2447
	spin_lock_irq(&hugetlb_lock);
2448 2449
}

2450

2451
/*
2452
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2453
 * are used by the huge page allocation routines to manage reservations.
2454 2455 2456 2457 2458 2459
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2460 2461 2462
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2463 2464 2465 2466 2467 2468
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2469 2470 2471 2472 2473
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2474 2475 2476 2477 2478
 *
 * vma_del_reservation is used in error paths where an entry in the reserve
 * map was created during huge page allocation and must be removed.  It is to
 * be called after calling vma_needs_reservation to determine if a reservation
 * exists.
2479
 */
2480 2481 2482
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2483
	VMA_END_RESV,
2484
	VMA_ADD_RESV,
2485
	VMA_DEL_RESV,
2486
};
2487 2488
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2489
				enum vma_resv_mode mode)
2490
{
2491 2492
	struct resv_map *resv;
	pgoff_t idx;
2493
	long ret;
2494
	long dummy_out_regions_needed;
2495

2496 2497
	resv = vma_resv_map(vma);
	if (!resv)
2498
		return 1;
2499

2500
	idx = vma_hugecache_offset(h, vma, addr);
2501 2502
	switch (mode) {
	case VMA_NEEDS_RESV:
2503 2504 2505 2506 2507 2508
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2509 2510
		break;
	case VMA_COMMIT_RESV:
2511
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2512 2513
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2514
		break;
2515
	case VMA_END_RESV:
2516
		region_abort(resv, idx, idx + 1, 1);
2517 2518
		ret = 0;
		break;
2519
	case VMA_ADD_RESV:
2520
		if (vma->vm_flags & VM_MAYSHARE) {
2521
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2522 2523 2524 2525
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2526 2527 2528
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	case VMA_DEL_RESV:
		if (vma->vm_flags & VM_MAYSHARE) {
			region_abort(resv, idx, idx + 1, 1);
			ret = region_del(resv, idx, idx + 1);
		} else {
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		}
		break;
2539 2540 2541
	default:
		BUG();
	}
2542

2543
	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2544
		return ret;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	/*
	 * We know private mapping must have HPAGE_RESV_OWNER set.
	 *
	 * In most cases, reserves always exist for private mappings.
	 * However, a file associated with mapping could have been
	 * hole punched or truncated after reserves were consumed.
	 * As subsequent fault on such a range will not use reserves.
	 * Subtle - The reserve map for private mappings has the
	 * opposite meaning than that of shared mappings.  If NO
	 * entry is in the reserve map, it means a reservation exists.
	 * If an entry exists in the reserve map, it means the
	 * reservation has already been consumed.  As a result, the
	 * return value of this routine is the opposite of the
	 * value returned from reserve map manipulation routines above.
	 */
	if (ret > 0)
		return 0;
	if (ret == 0)
		return 1;
	return ret;
2565
}
2566 2567

static long vma_needs_reservation(struct hstate *h,
2568
			struct vm_area_struct *vma, unsigned long addr)
2569
{
2570
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2571
}
2572

2573 2574 2575
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2576 2577 2578
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2579
static void vma_end_reservation(struct hstate *h,
2580 2581
			struct vm_area_struct *vma, unsigned long addr)
{
2582
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2583 2584
}

2585 2586 2587 2588 2589 2590
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

2591 2592 2593 2594 2595 2596
static long vma_del_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
}

2597
/*
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
 * This routine is called to restore reservation information on error paths.
 * It should ONLY be called for pages allocated via alloc_huge_page(), and
 * the hugetlb mutex should remain held when calling this routine.
 *
 * It handles two specific cases:
 * 1) A reservation was in place and the page consumed the reservation.
 *    HPageRestoreReserve is set in the page.
 * 2) No reservation was in place for the page, so HPageRestoreReserve is
 *    not set.  However, alloc_huge_page always updates the reserve map.
 *
 * In case 1, free_huge_page later in the error path will increment the
 * global reserve count.  But, free_huge_page does not have enough context
 * to adjust the reservation map.  This case deals primarily with private
 * mappings.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.  Make sure the
 * reserve map indicates there is a reservation present.
 *
 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2616
 */
2617 2618
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
			unsigned long address, struct page *page)
2619
{
2620
	long rc = vma_needs_reservation(h, vma, address);
2621

2622 2623
	if (HPageRestoreReserve(page)) {
		if (unlikely(rc < 0))
2624 2625
			/*
			 * Rare out of memory condition in reserve map
2626
			 * manipulation.  Clear HPageRestoreReserve so that
2627 2628 2629 2630 2631 2632 2633 2634
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2635
			ClearHPageRestoreReserve(page);
2636 2637 2638 2639 2640 2641 2642 2643
		else if (rc)
			(void)vma_add_reservation(h, vma, address);
		else
			vma_end_reservation(h, vma, address);
	} else {
		if (!rc) {
			/*
			 * This indicates there is an entry in the reserve map
2644
			 * not added by alloc_huge_page.  We know it was added
2645 2646 2647 2648 2649 2650 2651
			 * before the alloc_huge_page call, otherwise
			 * HPageRestoreReserve would be set on the page.
			 * Remove the entry so that a subsequent allocation
			 * does not consume a reservation.
			 */
			rc = vma_del_reservation(h, vma, address);
			if (rc < 0)
2652
				/*
2653 2654 2655 2656 2657 2658
				 * VERY rare out of memory condition.  Since
				 * we can not delete the entry, set
				 * HPageRestoreReserve so that the reserve
				 * count will be incremented when the page
				 * is freed.  This reserve will be consumed
				 * on a subsequent allocation.
2659
				 */
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
				SetHPageRestoreReserve(page);
		} else if (rc < 0) {
			/*
			 * Rare out of memory condition from
			 * vma_needs_reservation call.  Memory allocation is
			 * only attempted if a new entry is needed.  Therefore,
			 * this implies there is not an entry in the
			 * reserve map.
			 *
			 * For shared mappings, no entry in the map indicates
			 * no reservation.  We are done.
			 */
			if (!(vma->vm_flags & VM_MAYSHARE))
				/*
				 * For private mappings, no entry indicates
				 * a reservation is present.  Since we can
				 * not add an entry, set SetHPageRestoreReserve
				 * on the page so reserve count will be
				 * incremented when freed.  This reserve will
				 * be consumed on a subsequent allocation.
				 */
				SetHPageRestoreReserve(page);
2682
		} else
2683 2684 2685 2686
			/*
			 * No reservation present, do nothing
			 */
			 vma_end_reservation(h, vma, address);
2687 2688 2689
	}
}

2690 2691 2692 2693
/*
 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
 * @h: struct hstate old page belongs to
 * @old_page: Old page to dissolve
2694
 * @list: List to isolate the page in case we need to
2695 2696
 * Returns 0 on success, otherwise negated error.
 */
2697 2698
static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
					struct list_head *list)
2699 2700 2701
{
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
	int nid = page_to_nid(old_page);
2702
	bool alloc_retry = false;
2703 2704 2705 2706 2707
	struct page *new_page;
	int ret = 0;

	/*
	 * Before dissolving the page, we need to allocate a new one for the
2708 2709 2710 2711
	 * pool to remain stable.  Here, we allocate the page and 'prep' it
	 * by doing everything but actually updating counters and adding to
	 * the pool.  This simplifies and let us do most of the processing
	 * under the lock.
2712
	 */
2713
alloc_retry:
2714 2715 2716
	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
	if (!new_page)
		return -ENOMEM;
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	/*
	 * If all goes well, this page will be directly added to the free
	 * list in the pool.  For this the ref count needs to be zero.
	 * Attempt to drop now, and retry once if needed.  It is VERY
	 * unlikely there is another ref on the page.
	 *
	 * If someone else has a reference to the page, it will be freed
	 * when they drop their ref.  Abuse temporary page flag to accomplish
	 * this.  Retry once if there is an inflated ref count.
	 */
	SetHPageTemporary(new_page);
	if (!put_page_testzero(new_page)) {
		if (alloc_retry)
			return -EBUSY;

		alloc_retry = true;
		goto alloc_retry;
	}
	ClearHPageTemporary(new_page);

2737
	__prep_new_huge_page(h, new_page);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

retry:
	spin_lock_irq(&hugetlb_lock);
	if (!PageHuge(old_page)) {
		/*
		 * Freed from under us. Drop new_page too.
		 */
		goto free_new;
	} else if (page_count(old_page)) {
		/*
2748 2749
		 * Someone has grabbed the page, try to isolate it here.
		 * Fail with -EBUSY if not possible.
2750
		 */
2751 2752 2753 2754
		spin_unlock_irq(&hugetlb_lock);
		if (!isolate_huge_page(old_page, list))
			ret = -EBUSY;
		spin_lock_irq(&hugetlb_lock);
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		goto free_new;
	} else if (!HPageFreed(old_page)) {
		/*
		 * Page's refcount is 0 but it has not been enqueued in the
		 * freelist yet. Race window is small, so we can succeed here if
		 * we retry.
		 */
		spin_unlock_irq(&hugetlb_lock);
		cond_resched();
		goto retry;
	} else {
		/*
		 * Ok, old_page is still a genuine free hugepage. Remove it from
		 * the freelist and decrease the counters. These will be
		 * incremented again when calling __prep_account_new_huge_page()
		 * and enqueue_huge_page() for new_page. The counters will remain
		 * stable since this happens under the lock.
		 */
		remove_hugetlb_page(h, old_page, false);

		/*
2776 2777
		 * Ref count on new page is already zero as it was dropped
		 * earlier.  It can be directly added to the pool free list.
2778 2779 2780 2781 2782 2783 2784 2785
		 */
		__prep_account_new_huge_page(h, nid);
		enqueue_huge_page(h, new_page);

		/*
		 * Pages have been replaced, we can safely free the old one.
		 */
		spin_unlock_irq(&hugetlb_lock);
2786
		update_and_free_page(h, old_page, false);
2787 2788 2789 2790 2791 2792
	}

	return ret;

free_new:
	spin_unlock_irq(&hugetlb_lock);
2793 2794
	/* Page has a zero ref count, but needs a ref to be freed */
	set_page_refcounted(new_page);
2795
	update_and_free_page(h, new_page, false);
2796 2797 2798 2799

	return ret;
}

2800
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2801 2802 2803
{
	struct hstate *h;
	struct page *head;
2804
	int ret = -EBUSY;
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

	/*
	 * The page might have been dissolved from under our feet, so make sure
	 * to carefully check the state under the lock.
	 * Return success when racing as if we dissolved the page ourselves.
	 */
	spin_lock_irq(&hugetlb_lock);
	if (PageHuge(page)) {
		head = compound_head(page);
		h = page_hstate(head);
	} else {
		spin_unlock_irq(&hugetlb_lock);
		return 0;
	}
	spin_unlock_irq(&hugetlb_lock);

	/*
	 * Fence off gigantic pages as there is a cyclic dependency between
	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
	 * of bailing out right away without further retrying.
	 */
	if (hstate_is_gigantic(h))
		return -ENOMEM;

2829 2830 2831 2832 2833 2834
	if (page_count(head) && isolate_huge_page(head, list))
		ret = 0;
	else if (!page_count(head))
		ret = alloc_and_dissolve_huge_page(h, head, list);

	return ret;
2835 2836
}

2837
struct page *alloc_huge_page(struct vm_area_struct *vma,
2838
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2839
{
2840
	struct hugepage_subpool *spool = subpool_vma(vma);
2841
	struct hstate *h = hstate_vma(vma);
2842
	struct page *page;
2843 2844
	long map_chg, map_commit;
	long gbl_chg;
2845 2846
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2847
	bool deferred_reserve;
2848

2849
	idx = hstate_index(h);
2850
	/*
2851 2852 2853
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2854
	 */
2855 2856
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2857
		return ERR_PTR(-ENOMEM);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2869
			vma_end_reservation(h, vma, addr);
2870
			return ERR_PTR(-ENOSPC);
2871
		}
L
Linus Torvalds 已提交
2872

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2885 2886
	/* If this allocation is not consuming a reservation, charge it now.
	 */
2887
	deferred_reserve = map_chg || avoid_reserve;
2888 2889 2890 2891 2892 2893 2894
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2895
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2896
	if (ret)
2897
		goto out_uncharge_cgroup_reservation;
2898

2899
	spin_lock_irq(&hugetlb_lock);
2900 2901 2902 2903 2904 2905
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2906
	if (!page) {
2907
		spin_unlock_irq(&hugetlb_lock);
2908
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2909 2910
		if (!page)
			goto out_uncharge_cgroup;
2911
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2912
			SetHPageRestoreReserve(page);
2913 2914
			h->resv_huge_pages--;
		}
2915
		spin_lock_irq(&hugetlb_lock);
2916
		list_add(&page->lru, &h->hugepage_activelist);
2917
		/* Fall through */
K
Ken Chen 已提交
2918
	}
2919
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2920 2921 2922 2923 2924 2925 2926 2927
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2928
	spin_unlock_irq(&hugetlb_lock);
2929

2930
	hugetlb_set_page_subpool(page, spool);
2931

2932 2933
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2947 2948 2949
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2950
	}
2951
	return page;
2952 2953 2954

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2955 2956 2957 2958
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2959
out_subpool_put:
2960
	if (map_chg || avoid_reserve)
2961
		hugepage_subpool_put_pages(spool, 1);
2962
	vma_end_reservation(h, vma, addr);
2963
	return ERR_PTR(-ENOSPC);
2964 2965
}

2966 2967 2968
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2969 2970
{
	struct huge_bootmem_page *m;
2971
	int nr_nodes, node;
2972

2973
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2974 2975
		void *addr;

2976
		addr = memblock_alloc_try_nid_raw(
2977
				huge_page_size(h), huge_page_size(h),
2978
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2979 2980 2981 2982 2983 2984 2985
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2986
			goto found;
2987 2988 2989 2990 2991
		}
	}
	return 0;

found:
2992
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2993
	/* Put them into a private list first because mem_map is not up yet */
2994
	INIT_LIST_HEAD(&m->list);
2995 2996 2997 2998 2999
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

3000 3001 3002 3003
/*
 * Put bootmem huge pages into the standard lists after mem_map is up.
 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
 */
3004 3005 3006 3007 3008
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
3009
		struct page *page = virt_to_page(m);
3010
		struct hstate *h = m->hstate;
3011

3012
		VM_BUG_ON(!hstate_is_gigantic(h));
3013
		WARN_ON(page_count(page) != 1);
3014 3015 3016 3017 3018
		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
			WARN_ON(PageReserved(page));
			prep_new_huge_page(h, page, page_to_nid(page));
			put_page(page); /* add to the hugepage allocator */
		} else {
3019
			/* VERY unlikely inflated ref count on a tail page */
3020 3021
			free_gigantic_page(page, huge_page_order(h));
		}
3022

3023
		/*
3024 3025 3026
		 * We need to restore the 'stolen' pages to totalram_pages
		 * in order to fix confusing memory reports from free(1) and
		 * other side-effects, like CommitLimit going negative.
3027
		 */
3028
		adjust_managed_page_count(page, pages_per_huge_page(h));
3029
		cond_resched();
3030 3031 3032
	}
}

3033
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
3034 3035
{
	unsigned long i;
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	nodemask_t *node_alloc_noretry;

	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
3055

3056
	for (i = 0; i < h->max_huge_pages; ++i) {
3057
		if (hstate_is_gigantic(h)) {
3058
			if (hugetlb_cma_size) {
3059
				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3060
				goto free;
3061
			}
3062 3063
			if (!alloc_bootmem_huge_page(h))
				break;
3064
		} else if (!alloc_pool_huge_page(h,
3065 3066
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
3067
			break;
3068
		cond_resched();
L
Linus Torvalds 已提交
3069
	}
3070 3071 3072
	if (i < h->max_huge_pages) {
		char buf[32];

3073
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3074 3075 3076 3077
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
3078
free:
3079
	kfree(node_alloc_noretry);
3080 3081 3082 3083
}

static void __init hugetlb_init_hstates(void)
{
3084
	struct hstate *h, *h2;
3085 3086

	for_each_hstate(h) {
3087 3088 3089
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

3090
		/* oversize hugepages were init'ed in early boot */
3091
		if (!hstate_is_gigantic(h))
3092
			hugetlb_hstate_alloc_pages(h);
3093 3094 3095 3096 3097 3098

		/*
		 * Set demote order for each hstate.  Note that
		 * h->demote_order is initially 0.
		 * - We can not demote gigantic pages if runtime freeing
		 *   is not supported, so skip this.
3099 3100
		 * - If CMA allocation is possible, we can not demote
		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3101 3102 3103
		 */
		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
			continue;
3104 3105
		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
			continue;
3106 3107 3108 3109 3110 3111 3112
		for_each_hstate(h2) {
			if (h2 == h)
				continue;
			if (h2->order < h->order &&
			    h2->order > h->demote_order)
				h->demote_order = h2->order;
		}
3113
	}
3114
	VM_BUG_ON(minimum_order == UINT_MAX);
3115 3116 3117 3118 3119 3120 3121
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
3122
		char buf[32];
3123 3124

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3125
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3126
			buf, h->free_huge_pages);
3127 3128 3129
	}
}

L
Linus Torvalds 已提交
3130
#ifdef CONFIG_HIGHMEM
3131 3132
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3133
{
3134
	int i;
3135
	LIST_HEAD(page_list);
3136

3137
	lockdep_assert_held(&hugetlb_lock);
3138
	if (hstate_is_gigantic(h))
3139 3140
		return;

3141 3142 3143
	/*
	 * Collect pages to be freed on a list, and free after dropping lock
	 */
3144
	for_each_node_mask(i, *nodes_allowed) {
3145
		struct page *page, *next;
3146 3147 3148
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
3149
				goto out;
L
Linus Torvalds 已提交
3150 3151
			if (PageHighMem(page))
				continue;
3152
			remove_hugetlb_page(h, page, false);
3153
			list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3154 3155
		}
	}
3156 3157

out:
3158
	spin_unlock_irq(&hugetlb_lock);
3159
	update_and_free_pages_bulk(h, &page_list);
3160
	spin_lock_irq(&hugetlb_lock);
L
Linus Torvalds 已提交
3161 3162
}
#else
3163 3164
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3165 3166 3167 3168
{
}
#endif

3169 3170 3171 3172 3173
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
3174 3175
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
3176
{
3177
	int nr_nodes, node;
3178

3179
	lockdep_assert_held(&hugetlb_lock);
3180 3181
	VM_BUG_ON(delta != -1 && delta != 1);

3182 3183 3184 3185
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
3186
		}
3187 3188 3189 3190 3191
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
3192
		}
3193 3194
	}
	return 0;
3195

3196 3197 3198 3199
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
3200 3201
}

3202
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3203
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3204
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3205
{
3206
	unsigned long min_count, ret;
3207 3208
	struct page *page;
	LIST_HEAD(page_list);
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
3220

3221 3222 3223 3224 3225
	/*
	 * resize_lock mutex prevents concurrent adjustments to number of
	 * pages in hstate via the proc/sysfs interfaces.
	 */
	mutex_lock(&h->resize_lock);
3226
	flush_free_hpage_work(h);
3227
	spin_lock_irq(&hugetlb_lock);
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

3249 3250 3251 3252 3253 3254 3255 3256 3257
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
3258
			spin_unlock_irq(&hugetlb_lock);
3259
			mutex_unlock(&h->resize_lock);
3260
			NODEMASK_FREE(node_alloc_noretry);
3261 3262 3263 3264
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
3265

3266 3267 3268 3269
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
3270
	 *
3271
	 * We might race with alloc_surplus_huge_page() here and be unable
3272 3273 3274 3275
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
3276
	 */
3277
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3278
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3279 3280 3281
			break;
	}

3282
	while (count > persistent_huge_pages(h)) {
3283 3284 3285 3286 3287
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
3288
		spin_unlock_irq(&hugetlb_lock);
3289 3290 3291 3292

		/* yield cpu to avoid soft lockup */
		cond_resched();

3293 3294
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
3295
		spin_lock_irq(&hugetlb_lock);
3296 3297 3298
		if (!ret)
			goto out;

3299 3300 3301
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
3302 3303 3304 3305 3306 3307 3308 3309
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
3310 3311 3312 3313
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
3314
	 * alloc_surplus_huge_page() is checking the global counter,
3315 3316 3317
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
3318
	 */
3319
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3320
	min_count = max(count, min_count);
3321
	try_to_free_low(h, min_count, nodes_allowed);
3322 3323 3324 3325

	/*
	 * Collect pages to be removed on list without dropping lock
	 */
3326
	while (min_count < persistent_huge_pages(h)) {
3327 3328
		page = remove_pool_huge_page(h, nodes_allowed, 0);
		if (!page)
L
Linus Torvalds 已提交
3329
			break;
3330 3331

		list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3332
	}
3333
	/* free the pages after dropping lock */
3334
	spin_unlock_irq(&hugetlb_lock);
3335
	update_and_free_pages_bulk(h, &page_list);
3336
	flush_free_hpage_work(h);
3337
	spin_lock_irq(&hugetlb_lock);
3338

3339
	while (count < persistent_huge_pages(h)) {
3340
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3341 3342 3343
			break;
	}
out:
3344
	h->max_huge_pages = persistent_huge_pages(h);
3345
	spin_unlock_irq(&hugetlb_lock);
3346
	mutex_unlock(&h->resize_lock);
3347

3348 3349
	NODEMASK_FREE(node_alloc_noretry);

3350
	return 0;
L
Linus Torvalds 已提交
3351 3352
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static int demote_free_huge_page(struct hstate *h, struct page *page)
{
	int i, nid = page_to_nid(page);
	struct hstate *target_hstate;
	int rc = 0;

	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);

	remove_hugetlb_page_for_demote(h, page, false);
	spin_unlock_irq(&hugetlb_lock);

	rc = alloc_huge_page_vmemmap(h, page);
	if (rc) {
		/* Allocation of vmemmmap failed, we can not demote page */
		spin_lock_irq(&hugetlb_lock);
		set_page_refcounted(page);
		add_hugetlb_page(h, page, false);
		return rc;
	}

	/*
	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
	 * sizes as it will not ref count pages.
	 */
	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));

	/*
	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
	 * Without the mutex, pages added to target hstate could be marked
	 * as surplus.
	 *
	 * Note that we already hold h->resize_lock.  To prevent deadlock,
	 * use the convention of always taking larger size hstate mutex first.
	 */
	mutex_lock(&target_hstate->resize_lock);
	for (i = 0; i < pages_per_huge_page(h);
				i += pages_per_huge_page(target_hstate)) {
		if (hstate_is_gigantic(target_hstate))
			prep_compound_gigantic_page_for_demote(page + i,
							target_hstate->order);
		else
			prep_compound_page(page + i, target_hstate->order);
		set_page_private(page + i, 0);
		set_page_refcounted(page + i);
		prep_new_huge_page(target_hstate, page + i, nid);
		put_page(page + i);
	}
	mutex_unlock(&target_hstate->resize_lock);

	spin_lock_irq(&hugetlb_lock);

	/*
	 * Not absolutely necessary, but for consistency update max_huge_pages
	 * based on pool changes for the demoted page.
	 */
	h->max_huge_pages--;
	target_hstate->max_huge_pages += pages_per_huge_page(h);

	return rc;
}

3414 3415 3416
static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
	__must_hold(&hugetlb_lock)
{
3417 3418
	int nr_nodes, node;
	struct page *page;
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	int rc = 0;

	lockdep_assert_held(&hugetlb_lock);

	/* We should never get here if no demote order */
	if (!h->demote_order) {
		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
		return -EINVAL;		/* internal error */
	}

3429 3430 3431 3432 3433 3434 3435 3436 3437
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
		if (!list_empty(&h->hugepage_freelists[node])) {
			page = list_entry(h->hugepage_freelists[node].next,
					struct page, lru);
			rc = demote_free_huge_page(h, page);
			break;
		}
	}

3438 3439 3440
	return rc;
}

3441 3442 3443
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

3444 3445 3446
#define HSTATE_ATTR_WO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)

3447 3448 3449 3450 3451 3452 3453
#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

3454 3455 3456
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3457 3458
{
	int i;
3459

3460
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3461 3462 3463
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
3464
			return &hstates[i];
3465 3466 3467
		}

	return kobj_to_node_hstate(kobj, nidp);
3468 3469
}

3470
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3471 3472
					struct kobj_attribute *attr, char *buf)
{
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

3483
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3484
}
3485

3486 3487 3488
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
3489 3490
{
	int err;
3491
	nodemask_t nodes_allowed, *n_mask;
3492

3493 3494
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
3495

3496 3497 3498 3499 3500
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
3501 3502 3503 3504 3505
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
3506
		/*
3507 3508
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
3509
		 */
3510 3511
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
3512
	}
3513

3514
	err = set_max_huge_pages(h, count, nid, n_mask);
3515

3516
	return err ? err : len;
3517 3518
}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

3536 3537 3538 3539 3540 3541 3542 3543 3544
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3545
	return nr_hugepages_store_common(false, kobj, buf, len);
3546 3547 3548
}
HSTATE_ATTR(nr_hugepages);

3549 3550 3551 3552 3553 3554 3555
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3556 3557
					   struct kobj_attribute *attr,
					   char *buf)
3558 3559 3560 3561 3562 3563 3564
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3565
	return nr_hugepages_store_common(true, kobj, buf, len);
3566 3567 3568 3569 3570
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


3571 3572 3573
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3574
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3575
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3576
}
3577

3578 3579 3580 3581 3582
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
3583
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3584

3585
	if (hstate_is_gigantic(h))
3586 3587
		return -EINVAL;

3588
	err = kstrtoul(buf, 10, &input);
3589
	if (err)
3590
		return err;
3591

3592
	spin_lock_irq(&hugetlb_lock);
3593
	h->nr_overcommit_huge_pages = input;
3594
	spin_unlock_irq(&hugetlb_lock);
3595 3596 3597 3598 3599 3600 3601 3602

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

3613
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3614 3615 3616 3617 3618 3619
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3620
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3621
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3622 3623 3624 3625 3626 3627
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

3638
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3639 3640 3641
}
HSTATE_ATTR_RO(surplus_hugepages);

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
static ssize_t demote_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	unsigned long nr_demote;
	unsigned long nr_available;
	nodemask_t nodes_allowed, *n_mask;
	struct hstate *h;
	int err = 0;
	int nid;

	err = kstrtoul(buf, 10, &nr_demote);
	if (err)
		return err;
	h = kobj_to_hstate(kobj, &nid);

	if (nid != NUMA_NO_NODE) {
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
	} else {
		n_mask = &node_states[N_MEMORY];
	}

	/* Synchronize with other sysfs operations modifying huge pages */
	mutex_lock(&h->resize_lock);
	spin_lock_irq(&hugetlb_lock);

	while (nr_demote) {
		/*
		 * Check for available pages to demote each time thorough the
		 * loop as demote_pool_huge_page will drop hugetlb_lock.
		 */
		if (nid != NUMA_NO_NODE)
			nr_available = h->free_huge_pages_node[nid];
		else
			nr_available = h->free_huge_pages;
		nr_available -= h->resv_huge_pages;
		if (!nr_available)
			break;

		err = demote_pool_huge_page(h, n_mask);
		if (err)
			break;

		nr_demote--;
	}

	spin_unlock_irq(&hugetlb_lock);
	mutex_unlock(&h->resize_lock);

	if (err)
		return err;
	return len;
}
HSTATE_ATTR_WO(demote);

static ssize_t demote_size_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	int nid;
	struct hstate *h = kobj_to_hstate(kobj, &nid);
	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;

	return sysfs_emit(buf, "%lukB\n", demote_size);
}

static ssize_t demote_size_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t count)
{
	struct hstate *h, *demote_hstate;
	unsigned long demote_size;
	unsigned int demote_order;
	int nid;

	demote_size = (unsigned long)memparse(buf, NULL);

	demote_hstate = size_to_hstate(demote_size);
	if (!demote_hstate)
		return -EINVAL;
	demote_order = demote_hstate->order;
3722 3723
	if (demote_order < HUGETLB_PAGE_ORDER)
		return -EINVAL;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738

	/* demote order must be smaller than hstate order */
	h = kobj_to_hstate(kobj, &nid);
	if (demote_order >= h->order)
		return -EINVAL;

	/* resize_lock synchronizes access to demote size and writes */
	mutex_lock(&h->resize_lock);
	h->demote_order = demote_order;
	mutex_unlock(&h->resize_lock);

	return count;
}
HSTATE_ATTR(demote_size);

3739 3740 3741 3742 3743 3744
static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3745 3746 3747
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3748 3749 3750
	NULL,
};

3751
static const struct attribute_group hstate_attr_group = {
3752 3753 3754
	.attrs = hstate_attrs,
};

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
static struct attribute *hstate_demote_attrs[] = {
	&demote_size_attr.attr,
	&demote_attr.attr,
	NULL,
};

static const struct attribute_group hstate_demote_attr_group = {
	.attrs = hstate_demote_attrs,
};

J
Jeff Mahoney 已提交
3765 3766
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3767
				    const struct attribute_group *hstate_attr_group)
3768 3769
{
	int retval;
3770
	int hi = hstate_index(h);
3771

3772 3773
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3774 3775
		return -ENOMEM;

3776
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3777
	if (retval) {
3778
		kobject_put(hstate_kobjs[hi]);
3779 3780
		hstate_kobjs[hi] = NULL;
	}
3781

3782 3783 3784 3785 3786 3787
	if (h->demote_order) {
		if (sysfs_create_group(hstate_kobjs[hi],
					&hstate_demote_attr_group))
			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
	}

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3801 3802
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3803
		if (err)
3804
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3805 3806 3807
	}
}

3808 3809 3810 3811
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3812 3813 3814
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3815 3816 3817 3818 3819 3820
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3821
static struct node_hstate node_hstates[MAX_NUMNODES];
3822 3823

/*
3824
 * A subset of global hstate attributes for node devices
3825 3826 3827 3828 3829 3830 3831 3832
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3833
static const struct attribute_group per_node_hstate_attr_group = {
3834 3835 3836 3837
	.attrs = per_node_hstate_attrs,
};

/*
3838
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3861
 * Unregister hstate attributes from a single node device.
3862 3863
 * No-op if no hstate attributes attached.
 */
3864
static void hugetlb_unregister_node(struct node *node)
3865 3866
{
	struct hstate *h;
3867
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3868 3869

	if (!nhs->hugepages_kobj)
3870
		return;		/* no hstate attributes */
3871

3872 3873 3874 3875 3876
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3877
		}
3878
	}
3879 3880 3881 3882 3883 3884 3885

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3886
 * Register hstate attributes for a single node device.
3887 3888
 * No-op if attributes already registered.
 */
3889
static void hugetlb_register_node(struct node *node)
3890 3891
{
	struct hstate *h;
3892
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3893 3894 3895 3896 3897 3898
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3899
							&node->dev.kobj);
3900 3901 3902 3903 3904 3905 3906 3907
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3908
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3909
				h->name, node->dev.id);
3910 3911 3912 3913 3914 3915 3916
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3917
 * hugetlb init time:  register hstate attributes for all registered node
3918 3919
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3920
 */
3921
static void __init hugetlb_register_all_nodes(void)
3922 3923 3924
{
	int nid;

3925
	for_each_node_state(nid, N_MEMORY) {
3926
		struct node *node = node_devices[nid];
3927
		if (node->dev.id == nid)
3928 3929 3930 3931
			hugetlb_register_node(node);
	}

	/*
3932
	 * Let the node device driver know we're here so it can
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

3952 3953
static int __init hugetlb_init(void)
{
3954 3955
	int i;

3956 3957 3958
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

3959 3960 3961
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3962
		return 0;
3963
	}
3964

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
3993
		}
3994
	}
3995

3996
	hugetlb_cma_check();
3997
	hugetlb_init_hstates();
3998
	gather_bootmem_prealloc();
3999 4000 4001
	report_hugepages();

	hugetlb_sysfs_init();
4002
	hugetlb_register_all_nodes();
4003
	hugetlb_cgroup_file_init();
4004

4005 4006 4007 4008 4009
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
4010
	hugetlb_fault_mutex_table =
4011 4012
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
4013
	BUG_ON(!hugetlb_fault_mutex_table);
4014 4015

	for (i = 0; i < num_fault_mutexes; i++)
4016
		mutex_init(&hugetlb_fault_mutex_table[i]);
4017 4018
	return 0;
}
4019
subsys_initcall(hugetlb_init);
4020

4021 4022
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4023
{
4024
	return size == HPAGE_SIZE;
4025 4026
}

4027
void __init hugetlb_add_hstate(unsigned int order)
4028 4029
{
	struct hstate *h;
4030 4031
	unsigned long i;

4032 4033 4034
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
4035
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4036
	BUG_ON(order == 0);
4037
	h = &hstates[hugetlb_max_hstate++];
4038
	mutex_init(&h->resize_lock);
4039
	h->order = order;
4040
	h->mask = ~(huge_page_size(h) - 1);
4041 4042
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4043
	INIT_LIST_HEAD(&h->hugepage_activelist);
4044 4045
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
4046 4047
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
4048
	hugetlb_vmemmap_init(h);
4049

4050 4051 4052
	parsed_hstate = h;
}

4053 4054 4055 4056 4057 4058 4059 4060
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
4061 4062
{
	unsigned long *mhp;
4063
	static unsigned long *last_mhp;
4064

4065
	if (!parsed_valid_hugepagesz) {
4066
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4067
		parsed_valid_hugepagesz = true;
4068
		return 0;
4069
	}
4070

4071
	/*
4072 4073 4074 4075
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
4076
	 */
4077
	else if (!hugetlb_max_hstate)
4078 4079 4080 4081
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

4082
	if (mhp == last_mhp) {
4083 4084
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
4085 4086
	}

4087 4088 4089
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

4090 4091
	/*
	 * Global state is always initialized later in hugetlb_init.
4092
	 * But we need to allocate gigantic hstates here early to still
4093 4094
	 * use the bootmem allocator.
	 */
4095
	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4096 4097 4098 4099
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

4100 4101
	return 1;
}
4102
__setup("hugepages=", hugepages_setup);
4103

4104 4105 4106 4107 4108 4109 4110
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
4111
static int __init hugepagesz_setup(char *s)
4112
{
4113
	unsigned long size;
4114 4115 4116
	struct hstate *h;

	parsed_valid_hugepagesz = false;
4117 4118 4119
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
4120
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4121 4122 4123
		return 0;
	}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
4147 4148
	}

4149
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4150
	parsed_valid_hugepagesz = true;
4151 4152
	return 1;
}
4153 4154
__setup("hugepagesz=", hugepagesz_setup);

4155 4156 4157 4158
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
4159
static int __init default_hugepagesz_setup(char *s)
4160
{
4161 4162
	unsigned long size;

4163 4164 4165 4166 4167 4168
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

4169 4170 4171
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
4172
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4173 4174 4175
		return 0;
	}

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

4195 4196
	return 1;
}
4197
__setup("default_hugepagesz=", default_hugepagesz_setup);
4198

4199
static unsigned int allowed_mems_nr(struct hstate *h)
4200 4201 4202
{
	int node;
	unsigned int nr = 0;
4203 4204 4205 4206 4207
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
4208

4209
	for_each_node_mask(node, cpuset_current_mems_allowed) {
4210
		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4211 4212
			nr += array[node];
	}
4213 4214 4215 4216 4217

	return nr;
}

#ifdef CONFIG_SYSCTL
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

4234 4235
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
4236
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
4237
{
4238
	struct hstate *h = &default_hstate;
4239
	unsigned long tmp = h->max_huge_pages;
4240
	int ret;
4241

4242
	if (!hugepages_supported())
4243
		return -EOPNOTSUPP;
4244

4245 4246
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
4247 4248
	if (ret)
		goto out;
4249

4250 4251 4252
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
4253 4254
out:
	return ret;
L
Linus Torvalds 已提交
4255
}
4256

4257
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4258
			  void *buffer, size_t *length, loff_t *ppos)
4259 4260 4261 4262 4263 4264 4265 4266
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4267
			  void *buffer, size_t *length, loff_t *ppos)
4268 4269 4270 4271 4272 4273
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

4274
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4275
		void *buffer, size_t *length, loff_t *ppos)
4276
{
4277
	struct hstate *h = &default_hstate;
4278
	unsigned long tmp;
4279
	int ret;
4280

4281
	if (!hugepages_supported())
4282
		return -EOPNOTSUPP;
4283

4284
	tmp = h->nr_overcommit_huge_pages;
4285

4286
	if (write && hstate_is_gigantic(h))
4287 4288
		return -EINVAL;

4289 4290
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
4291 4292
	if (ret)
		goto out;
4293 4294

	if (write) {
4295
		spin_lock_irq(&hugetlb_lock);
4296
		h->nr_overcommit_huge_pages = tmp;
4297
		spin_unlock_irq(&hugetlb_lock);
4298
	}
4299 4300
out:
	return ret;
4301 4302
}

L
Linus Torvalds 已提交
4303 4304
#endif /* CONFIG_SYSCTL */

4305
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
4306
{
4307 4308 4309
	struct hstate *h;
	unsigned long total = 0;

4310 4311
	if (!hugepages_supported())
		return;
4312 4313 4314 4315

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

4316
		total += huge_page_size(h) * count;
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
4329
				   huge_page_size(h) / SZ_1K);
4330 4331
	}

4332
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
L
Linus Torvalds 已提交
4333 4334
}

4335
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
4336
{
4337
	struct hstate *h = &default_hstate;
4338

4339 4340
	if (!hugepages_supported())
		return 0;
4341 4342 4343 4344 4345 4346 4347 4348

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
4349 4350
}

4351 4352 4353 4354 4355
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

4356 4357 4358
	if (!hugepages_supported())
		return;

4359 4360 4361 4362 4363 4364 4365
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
4366
				huge_page_size(h) / SZ_1K);
4367 4368
}

4369 4370 4371 4372 4373 4374
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
4375 4376 4377
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
4378 4379 4380 4381 4382 4383
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
4384 4385
}

4386
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
4387 4388 4389
{
	int ret = -ENOMEM;

4390 4391 4392
	if (!delta)
		return 0;

4393
	spin_lock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
4410 4411 4412 4413 4414 4415
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
4416 4417
	 */
	if (delta > 0) {
4418
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
4419 4420
			goto out;

4421
		if (delta > allowed_mems_nr(h)) {
4422
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
4423 4424 4425 4426 4427 4428
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
4429
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
4430 4431

out:
4432
	spin_unlock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
4433 4434 4435
	return ret;
}

4436 4437
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
4438
	struct resv_map *resv = vma_resv_map(vma);
4439 4440 4441 4442 4443

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
4444
	 * has a reference to the reservation map it cannot disappear until
4445 4446 4447
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
4448 4449
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4450
		kref_get(&resv->refs);
4451
	}
4452 4453
}

4454 4455
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
4456
	struct hstate *h = hstate_vma(vma);
4457
	struct resv_map *resv = vma_resv_map(vma);
4458
	struct hugepage_subpool *spool = subpool_vma(vma);
4459
	unsigned long reserve, start, end;
4460
	long gbl_reserve;
4461

4462 4463
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
4464

4465 4466
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
4467

4468
	reserve = (end - start) - region_count(resv, start, end);
4469
	hugetlb_cgroup_uncharge_counter(resv, start, end);
4470
	if (reserve) {
4471 4472 4473 4474 4475 4476
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
4477
	}
4478 4479

	kref_put(&resv->refs, resv_map_release);
4480 4481
}

4482 4483 4484 4485 4486 4487 4488
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

4489 4490
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
4491
	return huge_page_size(hstate_vma(vma));
4492 4493
}

L
Linus Torvalds 已提交
4494 4495 4496
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
M
Miaohe Lin 已提交
4497
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
L
Linus Torvalds 已提交
4498 4499
 * this far.
 */
4500
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
4501 4502
{
	BUG();
N
Nick Piggin 已提交
4503
	return 0;
L
Linus Torvalds 已提交
4504 4505
}

4506 4507 4508 4509 4510 4511 4512
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
4513
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
4514
	.fault = hugetlb_vm_op_fault,
4515
	.open = hugetlb_vm_op_open,
4516
	.close = hugetlb_vm_op_close,
4517
	.may_split = hugetlb_vm_op_split,
4518
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
4519 4520
};

4521 4522
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
4523 4524
{
	pte_t entry;
4525
	unsigned int shift = huge_page_shift(hstate_vma(vma));
D
David Gibson 已提交
4526

4527
	if (writable) {
4528 4529
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
4530
	} else {
4531 4532
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
4533 4534 4535
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
4536
	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
D
David Gibson 已提交
4537 4538 4539 4540

	return entry;
}

4541 4542 4543 4544 4545
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

4546
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4547
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4548
		update_mmu_cache(vma, address, ptep);
4549 4550
}

4551
bool is_hugetlb_entry_migration(pte_t pte)
4552 4553 4554 4555
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4556
		return false;
4557
	swp = pte_to_swp_entry(pte);
4558
	if (is_migration_entry(swp))
4559
		return true;
4560
	else
4561
		return false;
4562 4563
}

4564
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4565 4566 4567 4568
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4569
		return false;
4570
	swp = pte_to_swp_entry(pte);
4571
	if (is_hwpoison_entry(swp))
4572
		return true;
4573
	else
4574
		return false;
4575
}
4576

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
static void
hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
		     struct page *new_page)
{
	__SetPageUptodate(new_page);
	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
	hugepage_add_new_anon_rmap(new_page, vma, addr);
	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
	ClearHPageRestoreReserve(new_page);
	SetHPageMigratable(new_page);
}

D
David Gibson 已提交
4589 4590 4591
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
4592
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
4593
	struct page *ptepage;
4594
	unsigned long addr;
4595
	bool cow = is_cow_mapping(vma->vm_flags);
4596 4597
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4598
	unsigned long npages = pages_per_huge_page(h);
4599
	struct address_space *mapping = vma->vm_file->f_mapping;
4600
	struct mmu_notifier_range range;
4601
	int ret = 0;
4602

4603
	if (cow) {
4604
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4605
					vma->vm_start,
4606 4607
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
4608 4609 4610 4611 4612 4613 4614 4615
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
4616
	}
4617

4618
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4619
		spinlock_t *src_ptl, *dst_ptl;
4620
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
4621 4622
		if (!src_pte)
			continue;
4623
		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4624 4625 4626 4627
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
4628

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4640 4641
			continue;

4642 4643 4644
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4645
		entry = huge_ptep_get(src_pte);
4646
		dst_entry = huge_ptep_get(dst_pte);
4647
again:
4648 4649 4650 4651 4652 4653
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
4654 4655 4656 4657 4658
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

4659
			if (is_writable_migration_entry(swp_entry) && cow) {
4660 4661 4662 4663
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
4664 4665
				swp_entry = make_readable_migration_entry(
							swp_offset(swp_entry));
4666
				entry = swp_entry_to_pte(swp_entry);
4667 4668
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
4669
			}
4670
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4671
		} else {
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
			entry = huge_ptep_get(src_pte);
			ptepage = pte_page(entry);
			get_page(ptepage);

			/*
			 * This is a rare case where we see pinned hugetlb
			 * pages while they're prone to COW.  We need to do the
			 * COW earlier during fork.
			 *
			 * When pre-allocating the page or copying data, we
			 * need to be without the pgtable locks since we could
			 * sleep during the process.
			 */
			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
				pte_t src_pte_old = entry;
				struct page *new;

				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				/* Do not use reserve as it's private owned */
				new = alloc_huge_page(vma, addr, 1);
				if (IS_ERR(new)) {
					put_page(ptepage);
					ret = PTR_ERR(new);
					break;
				}
				copy_user_huge_page(new, ptepage, addr, vma,
						    npages);
				put_page(ptepage);

				/* Install the new huge page if src pte stable */
				dst_ptl = huge_pte_lock(h, dst, dst_pte);
				src_ptl = huge_pte_lockptr(h, src, src_pte);
				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
				entry = huge_ptep_get(src_pte);
				if (!pte_same(src_pte_old, entry)) {
4708 4709
					restore_reserve_on_error(h, vma, addr,
								new);
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
					put_page(new);
					/* dst_entry won't change as in child */
					goto again;
				}
				hugetlb_install_page(vma, dst_pte, addr, new);
				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				continue;
			}

4720
			if (cow) {
4721 4722 4723 4724 4725
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
4726
				 * See Documentation/vm/mmu_notifier.rst
4727
				 */
4728
				huge_ptep_set_wrprotect(src, addr, src_pte);
4729
				entry = huge_pte_wrprotect(entry);
4730
			}
4731

4732
			page_dup_rmap(ptepage, true);
4733
			set_huge_pte_at(dst, addr, dst_pte, entry);
4734
			hugetlb_count_add(npages, dst);
4735
		}
4736 4737
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
4738 4739
	}

4740
	if (cow)
4741
		mmu_notifier_invalidate_range_end(&range);
4742 4743
	else
		i_mmap_unlock_read(mapping);
4744 4745

	return ret;
D
David Gibson 已提交
4746 4747
}

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
			  unsigned long new_addr, pte_t *src_pte)
{
	struct hstate *h = hstate_vma(vma);
	struct mm_struct *mm = vma->vm_mm;
	pte_t *dst_pte, pte;
	spinlock_t *src_ptl, *dst_ptl;

	dst_pte = huge_pte_offset(mm, new_addr, huge_page_size(h));
	dst_ptl = huge_pte_lock(h, mm, dst_pte);
	src_ptl = huge_pte_lockptr(h, mm, src_pte);

	/*
	 * We don't have to worry about the ordering of src and dst ptlocks
	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
	 */
	if (src_ptl != dst_ptl)
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
	set_huge_pte_at(mm, new_addr, dst_pte, pte);

	if (src_ptl != dst_ptl)
		spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
}

int move_hugetlb_page_tables(struct vm_area_struct *vma,
			     struct vm_area_struct *new_vma,
			     unsigned long old_addr, unsigned long new_addr,
			     unsigned long len)
{
	struct hstate *h = hstate_vma(vma);
	struct address_space *mapping = vma->vm_file->f_mapping;
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	unsigned long old_end = old_addr + len;
	unsigned long old_addr_copy;
	pte_t *src_pte, *dst_pte;
	struct mmu_notifier_range range;

	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
				old_end);
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
	/* Prevent race with file truncation */
	i_mmap_lock_write(mapping);
	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
		src_pte = huge_pte_offset(mm, old_addr, sz);
		if (!src_pte)
			continue;
		if (huge_pte_none(huge_ptep_get(src_pte)))
			continue;

		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
		 * arg may be modified. Pass a copy instead to preserve the
		 * value in old_addr.
		 */
		old_addr_copy = old_addr;

		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
			continue;

		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
		if (!dst_pte)
			break;

		move_huge_pte(vma, old_addr, new_addr, src_pte);
	}
	i_mmap_unlock_write(mapping);
	flush_tlb_range(vma, old_end - len, old_end);
	mmu_notifier_invalidate_range_end(&range);

	return len + old_addr - old_end;
}

4824 4825 4826
static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
				   unsigned long start, unsigned long end,
				   struct page *ref_page)
D
David Gibson 已提交
4827 4828 4829
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
4830
	pte_t *ptep;
D
David Gibson 已提交
4831
	pte_t pte;
4832
	spinlock_t *ptl;
D
David Gibson 已提交
4833
	struct page *page;
4834 4835
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4836
	struct mmu_notifier_range range;
4837

D
David Gibson 已提交
4838
	WARN_ON(!is_vm_hugetlb_page(vma));
4839 4840
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
4841

4842 4843 4844 4845
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
4846
	tlb_change_page_size(tlb, sz);
4847
	tlb_start_vma(tlb, vma);
4848 4849 4850 4851

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
4852 4853
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
4854 4855
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
4856 4857
	address = start;
	for (; address < end; address += sz) {
4858
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
4859
		if (!ptep)
4860 4861
			continue;

4862
		ptl = huge_pte_lock(h, mm, ptep);
4863
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4864
			spin_unlock(ptl);
4865 4866 4867 4868
			/*
			 * We just unmapped a page of PMDs by clearing a PUD.
			 * The caller's TLB flush range should cover this area.
			 */
4869 4870
			continue;
		}
4871

4872
		pte = huge_ptep_get(ptep);
4873 4874 4875 4876
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
4877 4878

		/*
4879 4880
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
4881
		 */
4882
		if (unlikely(!pte_present(pte))) {
4883
			huge_pte_clear(mm, address, ptep, sz);
4884 4885
			spin_unlock(ptl);
			continue;
4886
		}
4887 4888

		page = pte_page(pte);
4889 4890 4891 4892 4893 4894
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
4895 4896 4897 4898
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
4899 4900 4901 4902 4903 4904 4905 4906
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

4907
		pte = huge_ptep_get_and_clear(mm, address, ptep);
4908
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4909
		if (huge_pte_dirty(pte))
4910
			set_page_dirty(page);
4911

4912
		hugetlb_count_sub(pages_per_huge_page(h), mm);
4913
		page_remove_rmap(page, true);
4914

4915
		spin_unlock(ptl);
4916
		tlb_remove_page_size(tlb, page, huge_page_size(h));
4917 4918 4919 4920 4921
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
4922
	}
4923
	mmu_notifier_invalidate_range_end(&range);
4924
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
4925
}
D
David Gibson 已提交
4926

4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
4939
	 * is to clear it before releasing the i_mmap_rwsem. This works
4940
	 * because in the context this is called, the VMA is about to be
4941
	 * destroyed and the i_mmap_rwsem is held.
4942 4943 4944 4945
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

4946
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4947
			  unsigned long end, struct page *ref_page)
4948
{
4949
	struct mmu_gather tlb;
4950

4951
	tlb_gather_mmu(&tlb, vma->vm_mm);
4952
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4953
	tlb_finish_mmu(&tlb);
4954 4955
}

4956 4957
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4958
 * mapping it owns the reserve page for. The intention is to unmap the page
4959 4960 4961
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
4962 4963
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
4964
{
4965
	struct hstate *h = hstate_vma(vma);
4966 4967 4968 4969 4970 4971 4972 4973
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
4974
	address = address & huge_page_mask(h);
4975 4976
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
4977
	mapping = vma->vm_file->f_mapping;
4978

4979 4980 4981 4982 4983
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
4984
	i_mmap_lock_write(mapping);
4985
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4986 4987 4988 4989
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

4990 4991 4992 4993 4994 4995 4996 4997
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

4998 4999 5000 5001 5002 5003 5004 5005
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5006 5007
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
5008
	}
5009
	i_mmap_unlock_write(mapping);
5010 5011
}

5012 5013
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5014
 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5015 5016
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
5017
 */
5018
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5019
		       unsigned long address, pte_t *ptep,
5020
		       struct page *pagecache_page, spinlock_t *ptl)
5021
{
5022
	pte_t pte;
5023
	struct hstate *h = hstate_vma(vma);
5024
	struct page *old_page, *new_page;
5025 5026
	int outside_reserve = 0;
	vm_fault_t ret = 0;
5027
	unsigned long haddr = address & huge_page_mask(h);
5028
	struct mmu_notifier_range range;
5029

5030
	pte = huge_ptep_get(ptep);
5031 5032
	old_page = pte_page(pte);

5033
retry_avoidcopy:
5034 5035
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
5036
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5037
		page_move_anon_rmap(old_page, vma);
5038
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
5039
		return 0;
5040 5041
	}

5042 5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
5051
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5052 5053 5054
			old_page != pagecache_page)
		outside_reserve = 1;

5055
	get_page(old_page);
5056

5057 5058 5059 5060
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
5061
	spin_unlock(ptl);
5062
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5063

5064
	if (IS_ERR(new_page)) {
5065 5066 5067 5068 5069 5070 5071 5072
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
5073 5074 5075 5076
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

5077
			put_page(old_page);
5078
			BUG_ON(huge_pte_none(pte));
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

5093
			unmap_ref_private(mm, vma, old_page, haddr);
5094 5095 5096

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5097
			spin_lock(ptl);
5098
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5099 5100 5101 5102 5103 5104 5105 5106
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
5107 5108
		}

5109
		ret = vmf_error(PTR_ERR(new_page));
5110
		goto out_release_old;
5111 5112
	}

5113 5114 5115 5116
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
5117
	if (unlikely(anon_vma_prepare(vma))) {
5118 5119
		ret = VM_FAULT_OOM;
		goto out_release_all;
5120
	}
5121

5122
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
5123
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
5124
	__SetPageUptodate(new_page);
5125

5126
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5127
				haddr + huge_page_size(h));
5128
	mmu_notifier_invalidate_range_start(&range);
5129

5130
	/*
5131
	 * Retake the page table lock to check for racing updates
5132 5133
	 * before the page tables are altered
	 */
5134
	spin_lock(ptl);
5135
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5136
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5137
		ClearHPageRestoreReserve(new_page);
5138

5139
		/* Break COW */
5140
		huge_ptep_clear_flush(vma, haddr, ptep);
5141
		mmu_notifier_invalidate_range(mm, range.start, range.end);
5142
		set_huge_pte_at(mm, haddr, ptep,
5143
				make_huge_pte(vma, new_page, 1));
5144
		page_remove_rmap(old_page, true);
5145
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5146
		SetHPageMigratable(new_page);
5147 5148 5149
		/* Make the old page be freed below */
		new_page = old_page;
	}
5150
	spin_unlock(ptl);
5151
	mmu_notifier_invalidate_range_end(&range);
5152
out_release_all:
5153 5154 5155
	/* No restore in case of successful pagetable update (Break COW) */
	if (new_page != old_page)
		restore_reserve_on_error(h, vma, haddr, new_page);
5156
	put_page(new_page);
5157
out_release_old:
5158
	put_page(old_page);
5159

5160 5161
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
5162 5163
}

5164
/* Return the pagecache page at a given address within a VMA */
5165 5166
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
5167 5168
{
	struct address_space *mapping;
5169
	pgoff_t idx;
5170 5171

	mapping = vma->vm_file->f_mapping;
5172
	idx = vma_hugecache_offset(h, vma, address);
5173 5174 5175 5176

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
5177 5178 5179 5180 5181
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

5197 5198 5199 5200 5201 5202 5203 5204 5205
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
5206
	ClearHPageRestoreReserve(page);
5207

5208 5209 5210 5211 5212 5213
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

5214 5215 5216 5217 5218 5219
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
						  struct address_space *mapping,
						  pgoff_t idx,
						  unsigned int flags,
						  unsigned long haddr,
						  unsigned long reason)
{
	vm_fault_t ret;
	u32 hash;
	struct vm_fault vmf = {
		.vma = vma,
		.address = haddr,
		.flags = flags,

		/*
		 * Hard to debug if it ends up being
		 * used by a callee that assumes
		 * something about the other
		 * uninitialized fields... same as in
		 * memory.c
		 */
	};

	/*
	 * hugetlb_fault_mutex and i_mmap_rwsem must be
	 * dropped before handling userfault.  Reacquire
	 * after handling fault to make calling code simpler.
	 */
	hash = hugetlb_fault_mutex_hash(mapping, idx);
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
	i_mmap_unlock_read(mapping);
	ret = handle_userfault(&vmf, reason);
	i_mmap_lock_read(mapping);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);

	return ret;
}

5258 5259 5260 5261
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
5262
{
5263
	struct hstate *h = hstate_vma(vma);
5264
	vm_fault_t ret = VM_FAULT_SIGBUS;
5265
	int anon_rmap = 0;
A
Adam Litke 已提交
5266 5267
	unsigned long size;
	struct page *page;
5268
	pte_t new_pte;
5269
	spinlock_t *ptl;
5270
	unsigned long haddr = address & huge_page_mask(h);
5271
	bool new_page, new_pagecache_page = false;
A
Adam Litke 已提交
5272

5273 5274 5275
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
5276
	 * COW. Warn that such a situation has occurred as it may not be obvious
5277 5278
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5279
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5280
			   current->pid);
5281 5282 5283
		return ret;
	}

A
Adam Litke 已提交
5284
	/*
5285 5286 5287
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
5288
	 */
5289 5290 5291 5292
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

5293
retry:
5294
	new_page = false;
5295 5296
	page = find_lock_page(mapping, idx);
	if (!page) {
5297
		/* Check for page in userfault range */
5298
		if (userfaultfd_missing(vma)) {
5299 5300 5301
			ret = hugetlb_handle_userfault(vma, mapping, idx,
						       flags, haddr,
						       VM_UFFD_MISSING);
5302 5303 5304
			goto out;
		}

5305
		page = alloc_huge_page(vma, haddr, 0);
5306
		if (IS_ERR(page)) {
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
5320 5321 5322
			ret = 0;
			if (huge_pte_none(huge_ptep_get(ptep)))
				ret = vmf_error(PTR_ERR(page));
5323
			spin_unlock(ptl);
5324 5325
			goto out;
		}
A
Andrea Arcangeli 已提交
5326
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
5327
		__SetPageUptodate(page);
5328
		new_page = true;
5329

5330
		if (vma->vm_flags & VM_MAYSHARE) {
5331
			int err = huge_add_to_page_cache(page, mapping, idx);
5332 5333 5334 5335 5336 5337
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
5338
			new_pagecache_page = true;
5339
		} else {
5340
			lock_page(page);
5341 5342 5343 5344
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
5345
			anon_rmap = 1;
5346
		}
5347
	} else {
5348 5349 5350 5351 5352 5353
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
5354
			ret = VM_FAULT_HWPOISON_LARGE |
5355
				VM_FAULT_SET_HINDEX(hstate_index(h));
5356 5357
			goto backout_unlocked;
		}
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367

		/* Check for page in userfault range. */
		if (userfaultfd_minor(vma)) {
			unlock_page(page);
			put_page(page);
			ret = hugetlb_handle_userfault(vma, mapping, idx,
						       flags, haddr,
						       VM_UFFD_MINOR);
			goto out;
		}
5368
	}
5369

5370 5371 5372 5373 5374 5375
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
5376
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5377
		if (vma_needs_reservation(h, vma, haddr) < 0) {
5378 5379 5380
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
5381
		/* Just decrements count, does not deallocate */
5382
		vma_end_reservation(h, vma, haddr);
5383
	}
5384

5385
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
5386
	ret = 0;
5387
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
5388 5389
		goto backout;

5390
	if (anon_rmap) {
5391
		ClearHPageRestoreReserve(page);
5392
		hugepage_add_new_anon_rmap(page, vma, haddr);
5393
	} else
5394
		page_dup_rmap(page, true);
5395 5396
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
5397
	set_huge_pte_at(mm, haddr, ptep, new_pte);
5398

5399
	hugetlb_count_add(pages_per_huge_page(h), mm);
5400
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5401
		/* Optimization, do the COW without a second fault */
5402
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5403 5404
	}

5405
	spin_unlock(ptl);
5406 5407

	/*
5408 5409 5410
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
5411 5412
	 */
	if (new_page)
5413
		SetHPageMigratable(page);
5414

A
Adam Litke 已提交
5415 5416
	unlock_page(page);
out:
5417
	return ret;
A
Adam Litke 已提交
5418 5419

backout:
5420
	spin_unlock(ptl);
5421
backout_unlocked:
A
Adam Litke 已提交
5422
	unlock_page(page);
5423 5424 5425
	/* restore reserve for newly allocated pages not in page cache */
	if (new_page && !new_pagecache_page)
		restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
5426 5427
	put_page(page);
	goto out;
5428 5429
}

5430
#ifdef CONFIG_SMP
5431
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5432 5433 5434 5435
{
	unsigned long key[2];
	u32 hash;

5436 5437
	key[0] = (unsigned long) mapping;
	key[1] = idx;
5438

5439
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5440 5441 5442 5443 5444

	return hash & (num_fault_mutexes - 1);
}
#else
/*
M
Miaohe Lin 已提交
5445
 * For uniprocessor systems we always use a single mutex, so just
5446 5447
 * return 0 and avoid the hashing overhead.
 */
5448
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5449 5450 5451 5452 5453
{
	return 0;
}
#endif

5454
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5455
			unsigned long address, unsigned int flags)
5456
{
5457
	pte_t *ptep, entry;
5458
	spinlock_t *ptl;
5459
	vm_fault_t ret;
5460 5461
	u32 hash;
	pgoff_t idx;
5462
	struct page *page = NULL;
5463
	struct page *pagecache_page = NULL;
5464
	struct hstate *h = hstate_vma(vma);
5465
	struct address_space *mapping;
5466
	int need_wait_lock = 0;
5467
	unsigned long haddr = address & huge_page_mask(h);
5468

5469
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5470
	if (ptep) {
5471 5472 5473 5474 5475
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
5476
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
5477
		if (unlikely(is_hugetlb_entry_migration(entry))) {
5478
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
5479 5480
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5481
			return VM_FAULT_HWPOISON_LARGE |
5482
				VM_FAULT_SET_HINDEX(hstate_index(h));
5483 5484
	}

5485 5486
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5487 5488 5489 5490
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
5491 5492 5493 5494 5495
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
5496
	mapping = vma->vm_file->f_mapping;
5497
	i_mmap_lock_read(mapping);
5498
	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5499 5500 5501 5502
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
5503

5504 5505 5506 5507 5508
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
5509
	idx = vma_hugecache_offset(h, vma, haddr);
5510
	hash = hugetlb_fault_mutex_hash(mapping, idx);
5511
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5512

5513 5514
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
5515
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5516
		goto out_mutex;
5517
	}
5518

N
Nick Piggin 已提交
5519
	ret = 0;
5520

5521 5522 5523
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
5524 5525 5526
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
5527 5528 5529 5530
	 */
	if (!pte_present(entry))
		goto out_mutex;

5531 5532 5533 5534 5535 5536 5537 5538
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
5539
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5540
		if (vma_needs_reservation(h, vma, haddr) < 0) {
5541
			ret = VM_FAULT_OOM;
5542
			goto out_mutex;
5543
		}
5544
		/* Just decrements count, does not deallocate */
5545
		vma_end_reservation(h, vma, haddr);
5546

5547
		if (!(vma->vm_flags & VM_MAYSHARE))
5548
			pagecache_page = hugetlbfs_pagecache_page(h,
5549
								vma, haddr);
5550 5551
	}

5552 5553 5554 5555 5556 5557
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

5558 5559 5560 5561 5562 5563 5564
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
5565 5566 5567 5568
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
5569

5570
	get_page(page);
5571

5572
	if (flags & FAULT_FLAG_WRITE) {
5573
		if (!huge_pte_write(entry)) {
5574
			ret = hugetlb_cow(mm, vma, address, ptep,
5575
					  pagecache_page, ptl);
5576
			goto out_put_page;
5577
		}
5578
		entry = huge_pte_mkdirty(entry);
5579 5580
	}
	entry = pte_mkyoung(entry);
5581
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5582
						flags & FAULT_FLAG_WRITE))
5583
		update_mmu_cache(vma, haddr, ptep);
5584 5585 5586 5587
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
5588 5589
out_ptl:
	spin_unlock(ptl);
5590 5591 5592 5593 5594

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
5595
out_mutex:
5596
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5597
	i_mmap_unlock_read(mapping);
5598 5599 5600 5601 5602 5603 5604 5605 5606
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
5607
	return ret;
5608 5609
}

5610
#ifdef CONFIG_USERFAULTFD
5611 5612 5613 5614 5615 5616 5617 5618 5619
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
5620
			    enum mcopy_atomic_mode mode,
5621 5622
			    struct page **pagep)
{
5623
	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5624 5625 5626
	struct hstate *h = hstate_vma(dst_vma);
	struct address_space *mapping = dst_vma->vm_file->f_mapping;
	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5627
	unsigned long size;
5628
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5629 5630
	pte_t _dst_pte;
	spinlock_t *ptl;
5631
	int ret = -ENOMEM;
5632
	struct page *page;
5633
	int writable;
5634
	bool new_pagecache_page = false;
5635

5636 5637 5638 5639 5640 5641
	if (is_continue) {
		ret = -EFAULT;
		page = find_lock_page(mapping, idx);
		if (!page)
			goto out;
	} else if (!*pagep) {
5642 5643 5644 5645 5646 5647 5648 5649 5650
		/* If a page already exists, then it's UFFDIO_COPY for
		 * a non-missing case. Return -EEXIST.
		 */
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			ret = -EEXIST;
			goto out;
		}

5651
		page = alloc_huge_page(dst_vma, dst_addr, 0);
5652 5653
		if (IS_ERR(page)) {
			ret = -ENOMEM;
5654
			goto out;
5655
		}
5656 5657 5658

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
5659
						pages_per_huge_page(h), false);
5660

5661
		/* fallback to copy_from_user outside mmap_lock */
5662
		if (unlikely(ret)) {
5663
			ret = -ENOENT;
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
			/* Free the allocated page which may have
			 * consumed a reservation.
			 */
			restore_reserve_on_error(h, dst_vma, dst_addr, page);
			put_page(page);

			/* Allocate a temporary page to hold the copied
			 * contents.
			 */
			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
			if (!page) {
				ret = -ENOMEM;
				goto out;
			}
5678
			*pagep = page;
5679 5680 5681 5682
			/* Set the outparam pagep and return to the caller to
			 * copy the contents outside the lock. Don't free the
			 * page.
			 */
5683 5684 5685
			goto out;
		}
	} else {
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			put_page(*pagep);
			ret = -EEXIST;
			*pagep = NULL;
			goto out;
		}

		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page)) {
			ret = -ENOMEM;
			*pagep = NULL;
			goto out;
		}
		copy_huge_page(page, *pagep);
		put_page(*pagep);
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

5712 5713
	/* Add shared, newly allocated pages to the page cache. */
	if (vm_shared && !is_continue) {
5714 5715 5716 5717
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
5718

5719 5720 5721 5722 5723 5724
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
5725 5726 5727
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
5728
		new_pagecache_page = true;
5729 5730
	}

5731 5732 5733
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

5748 5749 5750 5751
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

5752 5753 5754
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
5755
		ClearHPageRestoreReserve(page);
5756 5757
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
5758

5759 5760 5761 5762 5763 5764 5765 5766
	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
	if (is_continue && !vm_shared)
		writable = 0;
	else
		writable = dst_vma->vm_flags & VM_WRITE;

	_dst_pte = make_huge_pte(dst_vma, page, writable);
	if (writable)
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
5780 5781 5782
	if (!is_continue)
		SetHPageMigratable(page);
	if (vm_shared || is_continue)
5783
		unlock_page(page);
5784 5785 5786 5787 5788
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
5789
	if (vm_shared || is_continue)
5790
		unlock_page(page);
5791
out_release_nounlock:
5792 5793
	if (!new_pagecache_page)
		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5794 5795 5796
	put_page(page);
	goto out;
}
5797
#endif /* CONFIG_USERFAULTFD */
5798

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
				 int refs, struct page **pages,
				 struct vm_area_struct **vmas)
{
	int nr;

	for (nr = 0; nr < refs; nr++) {
		if (likely(pages))
			pages[nr] = mem_map_offset(page, nr);
		if (vmas)
			vmas[nr] = vma;
	}
}

5813 5814 5815
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
5816
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
5817
{
5818 5819
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
5820
	unsigned long remainder = *nr_pages;
5821
	struct hstate *h = hstate_vma(vma);
5822
	int err = -EFAULT, refs;
D
David Gibson 已提交
5823 5824

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
5825
		pte_t *pte;
5826
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
5827
		int absent;
A
Adam Litke 已提交
5828
		struct page *page;
D
David Gibson 已提交
5829

5830 5831 5832 5833
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
5834
		if (fatal_signal_pending(current)) {
5835 5836 5837 5838
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
5839 5840
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
5841
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
5842
		 * first, for the page indexing below to work.
5843 5844
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
5845
		 */
5846 5847
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
5848 5849
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
5850 5851 5852 5853
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
5854 5855 5856 5857
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
5858
		 */
H
Hugh Dickins 已提交
5859 5860
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5861 5862
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
5863 5864 5865
			remainder = 0;
			break;
		}
D
David Gibson 已提交
5866

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5878 5879
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
5880
			vm_fault_t ret;
5881
			unsigned int fault_flags = 0;
D
David Gibson 已提交
5882

5883 5884
			if (pte)
				spin_unlock(ptl);
5885 5886
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
5887
			if (locked)
5888 5889
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
5890 5891 5892 5893
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
5894 5895 5896 5897
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
5898 5899 5900 5901
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
5902
				err = vm_fault_to_errno(ret, flags);
5903 5904 5905 5906
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
5907
				if (locked &&
5908
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5909
					*locked = 0;
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
5923 5924
		}

5925
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5926
		page = pte_page(huge_ptep_get(pte));
5927

5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

5942 5943 5944
		/* vaddr may not be aligned to PAGE_SIZE */
		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5945

5946 5947 5948 5949 5950
		if (pages || vmas)
			record_subpages_vmas(mem_map_offset(page, pfn_offset),
					     vma, refs,
					     likely(pages) ? pages + i : NULL,
					     vmas ? vmas + i : NULL);
D
David Gibson 已提交
5951

5952
		if (pages) {
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
			/*
			 * try_grab_compound_head() should always succeed here,
			 * because: a) we hold the ptl lock, and b) we've just
			 * checked that the huge page is present in the page
			 * tables. If the huge page is present, then the tail
			 * pages must also be present. The ptl prevents the
			 * head page and tail pages from being rearranged in
			 * any way. So this page must be available at this
			 * point, unless the page refcount overflowed:
			 */
5963
			if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5964 5965 5966 5967 5968 5969 5970
								 refs,
								 flags))) {
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
5971
		}
5972 5973 5974 5975 5976

		vaddr += (refs << PAGE_SHIFT);
		remainder -= refs;
		i += refs;

5977
		spin_unlock(ptl);
D
David Gibson 已提交
5978
	}
5979
	*nr_pages = remainder;
5980 5981 5982 5983 5984
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
5985 5986
	*position = vaddr;

5987
	return i ? i : err;
D
David Gibson 已提交
5988
}
5989

5990
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5991 5992 5993 5994 5995 5996
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
5997
	struct hstate *h = hstate_vma(vma);
5998
	unsigned long pages = 0;
5999
	bool shared_pmd = false;
6000
	struct mmu_notifier_range range;
6001 6002 6003

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
6004
	 * start/end.  Set range.start/range.end to cover the maximum possible
6005 6006
	 * range if PMD sharing is possible.
	 */
6007 6008
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
6009
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6010 6011

	BUG_ON(address >= end);
6012
	flush_cache_range(vma, range.start, range.end);
6013

6014
	mmu_notifier_invalidate_range_start(&range);
6015
	i_mmap_lock_write(vma->vm_file->f_mapping);
6016
	for (; address < end; address += huge_page_size(h)) {
6017
		spinlock_t *ptl;
6018
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6019 6020
		if (!ptep)
			continue;
6021
		ptl = huge_pte_lock(h, mm, ptep);
6022
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6023
			pages++;
6024
			spin_unlock(ptl);
6025
			shared_pmd = true;
6026
			continue;
6027
		}
6028 6029 6030 6031 6032 6033 6034 6035
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

6036
			if (is_writable_migration_entry(entry)) {
6037 6038
				pte_t newpte;

6039 6040
				entry = make_readable_migration_entry(
							swp_offset(entry));
6041
				newpte = swp_entry_to_pte(entry);
6042 6043
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
6044 6045 6046 6047 6048 6049
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
6050
			pte_t old_pte;
6051
			unsigned int shift = huge_page_shift(hstate_vma(vma));
6052 6053 6054

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6055
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6056
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6057
			pages++;
6058
		}
6059
		spin_unlock(ptl);
6060
	}
6061
	/*
6062
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6063
	 * may have cleared our pud entry and done put_page on the page table:
6064
	 * once we release i_mmap_rwsem, another task can do the final put_page
6065 6066
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
6067
	 */
6068
	if (shared_pmd)
6069
		flush_hugetlb_tlb_range(vma, range.start, range.end);
6070 6071
	else
		flush_hugetlb_tlb_range(vma, start, end);
6072 6073 6074 6075
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
6076
	 * See Documentation/vm/mmu_notifier.rst
6077
	 */
6078
	i_mmap_unlock_write(vma->vm_file->f_mapping);
6079
	mmu_notifier_invalidate_range_end(&range);
6080 6081

	return pages << h->order;
6082 6083
}

6084 6085
/* Return true if reservation was successful, false otherwise.  */
bool hugetlb_reserve_pages(struct inode *inode,
6086
					long from, long to,
6087
					struct vm_area_struct *vma,
6088
					vm_flags_t vm_flags)
6089
{
6090
	long chg, add = -1;
6091
	struct hstate *h = hstate_inode(inode);
6092
	struct hugepage_subpool *spool = subpool_inode(inode);
6093
	struct resv_map *resv_map;
6094
	struct hugetlb_cgroup *h_cg = NULL;
6095
	long gbl_reserve, regions_needed = 0;
6096

6097 6098 6099
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
6100
		return false;
6101 6102
	}

6103 6104 6105
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
6106
	 * without using reserves
6107
	 */
6108
	if (vm_flags & VM_NORESERVE)
6109
		return true;
6110

6111 6112 6113 6114 6115 6116
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
6117
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6118 6119 6120 6121 6122
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
6123
		resv_map = inode_resv_map(inode);
6124

6125
		chg = region_chg(resv_map, from, to, &regions_needed);
6126 6127

	} else {
6128
		/* Private mapping. */
6129
		resv_map = resv_map_alloc();
6130
		if (!resv_map)
6131
			return false;
6132

6133
		chg = to - from;
6134

6135 6136 6137 6138
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

6139
	if (chg < 0)
6140
		goto out_err;
6141

6142 6143
	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
				chg * pages_per_huge_page(h), &h_cg) < 0)
6144 6145 6146 6147 6148 6149 6150 6151 6152
		goto out_err;

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

6153 6154 6155 6156 6157 6158
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6159
	if (gbl_reserve < 0)
6160
		goto out_uncharge_cgroup;
6161 6162

	/*
6163
	 * Check enough hugepages are available for the reservation.
6164
	 * Hand the pages back to the subpool if there are not
6165
	 */
6166
	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6167
		goto out_put_pages;
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
6180
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6181
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6182 6183 6184

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
6185
			goto out_put_pages;
6186
		} else if (unlikely(chg > add)) {
6187 6188 6189 6190 6191 6192 6193 6194 6195
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

6196 6197 6198 6199
			/*
			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
			 * reference to h_cg->css. See comment below for detail.
			 */
6200 6201 6202 6203
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

6204 6205 6206
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
6207 6208 6209 6210 6211 6212 6213 6214
		} else if (h_cg) {
			/*
			 * The file_regions will hold their own reference to
			 * h_cg->css. So we should release the reference held
			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
			 * done.
			 */
			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6215 6216
		}
	}
6217 6218
	return true;

6219 6220 6221 6222 6223 6224
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
6225
out_err:
6226
	if (!vma || vma->vm_flags & VM_MAYSHARE)
6227 6228 6229 6230 6231
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
6232 6233
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
6234
	return false;
6235 6236
}

6237 6238
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
6239
{
6240
	struct hstate *h = hstate_inode(inode);
6241
	struct resv_map *resv_map = inode_resv_map(inode);
6242
	long chg = 0;
6243
	struct hugepage_subpool *spool = subpool_inode(inode);
6244
	long gbl_reserve;
K
Ken Chen 已提交
6245

6246 6247 6248 6249
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
6261
	spin_lock(&inode->i_lock);
6262
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
6263 6264
	spin_unlock(&inode->i_lock);

6265 6266 6267
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
6268 6269 6270
	 *
	 * Note that !resv_map implies freed == 0. So (chg - freed)
	 * won't go negative.
6271 6272 6273
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
6274 6275

	return 0;
6276
}
6277

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
6289 6290
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6291 6292 6293 6294 6295 6296 6297

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
6298
	    !range_in_vma(svma, sbase, s_end))
6299 6300 6301 6302 6303
		return 0;

	return saddr;
}

6304
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6305 6306 6307 6308 6309 6310 6311
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
6312
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6313 6314
		return true;
	return false;
6315 6316
}

6317 6318 6319 6320 6321 6322 6323 6324 6325
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
#ifdef CONFIG_USERFAULTFD
	if (uffd_disable_huge_pmd_share(vma))
		return false;
#endif
	return vma_shareable(vma, addr);
}

6326 6327 6328 6329 6330 6331 6332 6333
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
6334 6335
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6336

6337
	/*
I
Ingo Molnar 已提交
6338 6339
	 * vma needs to span at least one aligned PUD size, and the range
	 * must be at least partially within in.
6340 6341 6342
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
6343 6344
		return;

6345
	/* Extend the range to be PUD aligned for a worst case scenario */
6346 6347
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
6348

6349 6350
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
6351 6352
}

6353 6354 6355 6356
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
6357 6358
 * code much cleaner.
 *
6359 6360 6361 6362
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
6363
 */
6364 6365
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
6366 6367 6368 6369 6370 6371 6372 6373
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
6374
	spinlock_t *ptl;
6375

6376
	i_mmap_assert_locked(mapping);
6377 6378 6379 6380 6381 6382
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
6383 6384
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

6395
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6396
	if (pud_none(*pud)) {
6397 6398
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6399
		mm_inc_nr_pmds(mm);
6400
	} else {
6401
		put_page(virt_to_page(spte));
6402
	}
6403
	spin_unlock(ptl);
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
6416
 * Called with page table lock held and i_mmap_rwsem held in write mode.
6417 6418 6419 6420
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
6421 6422
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
6423 6424
{
	pgd_t *pgd = pgd_offset(mm, *addr);
6425 6426
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
6427

6428
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6429 6430 6431 6432 6433 6434
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
6435
	mm_dec_nr_pmds(mm);
6436 6437 6438
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
6439

6440
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6441 6442
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
6443 6444 6445
{
	return NULL;
}
6446

6447 6448
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
6449 6450 6451
{
	return 0;
}
6452 6453 6454 6455 6456

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
6457 6458 6459 6460 6461

bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
	return false;
}
6462 6463
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

6464
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6465
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6466 6467 6468
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
6469
	p4d_t *p4d;
6470 6471 6472 6473
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
6474 6475 6476
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
6477
	pud = pud_alloc(mm, p4d, addr);
6478 6479 6480 6481 6482
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
6483
			if (want_pmd_share(vma, addr) && pud_none(*pud))
6484
				pte = huge_pmd_share(mm, vma, addr, pud);
6485 6486 6487 6488
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
6489
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6490 6491 6492 6493

	return pte;
}

6494 6495 6496 6497
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
6498 6499
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6500 6501 6502
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
6503 6504
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
6505 6506
{
	pgd_t *pgd;
6507
	p4d_t *p4d;
6508 6509
	pud_t *pud;
	pmd_t *pmd;
6510 6511

	pgd = pgd_offset(mm, addr);
6512 6513 6514 6515 6516
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
6517

6518
	pud = pud_offset(p4d, addr);
6519 6520
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
6521
		return (pte_t *)pud;
6522
	if (!pud_present(*pud))
6523
		return NULL;
6524
	/* must have a valid entry and size to go further */
6525

6526 6527 6528
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
6529 6530
}

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

6544 6545 6546 6547 6548 6549 6550 6551
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

6552
struct page * __weak
6553
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6554
		pmd_t *pmd, int flags)
6555
{
6556 6557
	struct page *page = NULL;
	spinlock_t *ptl;
6558
	pte_t pte;
J
John Hubbard 已提交
6559 6560 6561 6562 6563 6564

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

6565 6566 6567 6568 6569 6570 6571 6572 6573
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
6574 6575
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
6576
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
6589
	} else {
6590
		if (is_hugetlb_entry_migration(pte)) {
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
6602 6603 6604
	return page;
}

6605
struct page * __weak
6606
follow_huge_pud(struct mm_struct *mm, unsigned long address,
6607
		pud_t *pud, int flags)
6608
{
J
John Hubbard 已提交
6609
	if (flags & (FOLL_GET | FOLL_PIN))
6610
		return NULL;
6611

6612
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6613 6614
}

6615 6616 6617
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
6618
	if (flags & (FOLL_GET | FOLL_PIN))
6619 6620 6621 6622 6623
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

6624 6625
bool isolate_huge_page(struct page *page, struct list_head *list)
{
6626 6627
	bool ret = true;

6628
	spin_lock_irq(&hugetlb_lock);
6629 6630
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
6631
	    !get_page_unless_zero(page)) {
6632 6633 6634
		ret = false;
		goto unlock;
	}
6635
	ClearHPageMigratable(page);
6636
	list_move_tail(&page->lru, list);
6637
unlock:
6638
	spin_unlock_irq(&hugetlb_lock);
6639
	return ret;
6640 6641
}

6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
{
	int ret = 0;

	*hugetlb = false;
	spin_lock_irq(&hugetlb_lock);
	if (PageHeadHuge(page)) {
		*hugetlb = true;
		if (HPageFreed(page) || HPageMigratable(page))
			ret = get_page_unless_zero(page);
6652 6653
		else
			ret = -EBUSY;
6654 6655 6656 6657 6658
	}
	spin_unlock_irq(&hugetlb_lock);
	return ret;
}

6659 6660
void putback_active_hugepage(struct page *page)
{
6661
	spin_lock_irq(&hugetlb_lock);
6662
	SetHPageMigratable(page);
6663
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6664
	spin_unlock_irq(&hugetlb_lock);
6665 6666
	put_page(page);
}
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
6685
	if (HPageTemporary(newpage)) {
6686 6687 6688
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

6689 6690
		SetHPageTemporary(oldpage);
		ClearHPageTemporary(newpage);
6691

6692 6693 6694 6695 6696 6697
		/*
		 * There is no need to transfer the per-node surplus state
		 * when we do not cross the node.
		 */
		if (new_nid == old_nid)
			return;
6698
		spin_lock_irq(&hugetlb_lock);
6699 6700 6701 6702
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
6703
		spin_unlock_irq(&hugetlb_lock);
6704 6705
	}
}
6706

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
/*
 * This function will unconditionally remove all the shared pmd pgtable entries
 * within the specific vma for a hugetlbfs memory range.
 */
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_notifier_range range;
	unsigned long address, start, end;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	start = ALIGN(vma->vm_start, PUD_SIZE);
	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);

	if (start >= end)
		return;

	/*
	 * No need to call adjust_range_if_pmd_sharing_possible(), because
	 * we have already done the PUD_SIZE alignment.
	 */
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
				start, end);
	mmu_notifier_invalidate_range_start(&range);
	i_mmap_lock_write(vma->vm_file->f_mapping);
	for (address = start; address < end; address += PUD_SIZE) {
		unsigned long tmp = address;

		ptep = huge_pte_offset(mm, address, sz);
		if (!ptep)
			continue;
		ptl = huge_pte_lock(h, mm, ptep);
		/* We don't want 'address' to be changed */
		huge_pmd_unshare(mm, vma, &tmp, ptep);
		spin_unlock(ptl);
	}
	flush_hugetlb_tlb_range(vma, start, end);
	i_mmap_unlock_write(vma->vm_file->f_mapping);
	/*
	 * No need to call mmu_notifier_invalidate_range(), see
	 * Documentation/vm/mmu_notifier.rst.
	 */
	mmu_notifier_invalidate_range_end(&range);
}

6758 6759 6760 6761 6762
#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
	int nid, count = 0;
	unsigned long tmp;
	char *s = p;

	while (*s) {
		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
			break;

		if (s[count] == ':') {
			nid = tmp;
			if (nid < 0 || nid >= MAX_NUMNODES)
				break;

			s += count + 1;
			tmp = memparse(s, &s);
			hugetlb_cma_size_in_node[nid] = tmp;
			hugetlb_cma_size += tmp;

			/*
			 * Skip the separator if have one, otherwise
			 * break the parsing.
			 */
			if (*s == ',')
				s++;
			else
				break;
		} else {
			hugetlb_cma_size = memparse(p, &p);
			break;
		}
	}

6795 6796 6797 6798 6799 6800 6801 6802
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
6803
	bool node_specific_cma_alloc = false;
6804 6805 6806 6807
	int nid;

	cma_reserve_called = true;

6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
	if (!hugetlb_cma_size)
		return;

	for (nid = 0; nid < MAX_NUMNODES; nid++) {
		if (hugetlb_cma_size_in_node[nid] == 0)
			continue;

		if (!node_state(nid, N_ONLINE)) {
			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
			hugetlb_cma_size_in_node[nid] = 0;
			continue;
		}

		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
				nid, (PAGE_SIZE << order) / SZ_1M);
			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
			hugetlb_cma_size_in_node[nid] = 0;
		} else {
			node_specific_cma_alloc = true;
		}
	}

	/* Validate the CMA size again in case some invalid nodes specified. */
6833 6834 6835 6836 6837 6838
	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
6839
		hugetlb_cma_size = 0;
6840 6841 6842
		return;
	}

6843 6844 6845 6846 6847 6848 6849 6850 6851
	if (!node_specific_cma_alloc) {
		/*
		 * If 3 GB area is requested on a machine with 4 numa nodes,
		 * let's allocate 1 GB on first three nodes and ignore the last one.
		 */
		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
	}
6852 6853 6854 6855

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
6856
		char name[CMA_MAX_NAME];
6857

6858 6859 6860 6861 6862 6863 6864 6865 6866
		if (node_specific_cma_alloc) {
			if (hugetlb_cma_size_in_node[nid] == 0)
				continue;

			size = hugetlb_cma_size_in_node[nid];
		} else {
			size = min(per_node, hugetlb_cma_size - reserved);
		}

6867 6868
		size = round_up(size, PAGE_SIZE << order);

6869
		snprintf(name, sizeof(name), "hugetlb%d", nid);
6870 6871 6872 6873 6874 6875 6876
		/*
		 * Note that 'order per bit' is based on smallest size that
		 * may be returned to CMA allocator in the case of
		 * huge page demotion.
		 */
		res = cma_declare_contiguous_nid(0, size, 0,
						PAGE_SIZE << HUGETLB_PAGE_ORDER,
6877
						 0, false, name,
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
6892 6893 6894 6895 6896 6897 6898

	if (!reserved)
		/*
		 * hugetlb_cma_size is used to determine if allocations from
		 * cma are possible.  Set to zero if no cma regions are set up.
		 */
		hugetlb_cma_size = 0;
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */