hugetlb.c 193.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3
/*
 * Generic hugetlb support.
4
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/memblock.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/sched/mm.h>
23
#include <linux/mmdebug.h>
24
#include <linux/sched/signal.h>
25
#include <linux/rmap.h>
26
#include <linux/string_helpers.h>
27 28
#include <linux/swap.h>
#include <linux/swapops.h>
29
#include <linux/jhash.h>
30
#include <linux/numa.h>
31
#include <linux/llist.h>
32
#include <linux/cma.h>
33
#include <linux/migrate.h>
34
#include <linux/nospec.h>
35

D
David Gibson 已提交
36
#include <asm/page.h>
37
#include <asm/pgalloc.h>
38
#include <asm/tlb.h>
D
David Gibson 已提交
39

40
#include <linux/io.h>
D
David Gibson 已提交
41
#include <linux/hugetlb.h>
42
#include <linux/hugetlb_cgroup.h>
43
#include <linux/node.h>
44
#include <linux/page_owner.h>
45
#include "internal.h"
46
#include "hugetlb_vmemmap.h"
L
Linus Torvalds 已提交
47

48
int hugetlb_max_hstate __read_mostly;
49 50
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
51

52
#ifdef CONFIG_CMA
53
static struct cma *hugetlb_cma[MAX_NUMNODES];
54
static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 56 57 58 59 60 61 62 63 64
static bool hugetlb_cma_page(struct page *page, unsigned int order)
{
	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
				1 << order);
}
#else
static bool hugetlb_cma_page(struct page *page, unsigned int order)
{
	return false;
}
65 66
#endif
static unsigned long hugetlb_cma_size __initdata;
67

68 69 70 71 72
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
73

74 75
__initdata LIST_HEAD(huge_boot_pages);

76 77 78
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
79
static bool __initdata parsed_valid_hugepagesz = true;
80
static bool __initdata parsed_default_hugepagesz;
81
static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82

83
/*
84 85
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
86
 */
87
DEFINE_SPINLOCK(hugetlb_lock);
88

89 90 91 92 93
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
94
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95

96 97 98
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

99
static inline bool subpool_is_free(struct hugepage_subpool *spool)
100
{
101 102 103 104 105 106 107 108 109
	if (spool->count)
		return false;
	if (spool->max_hpages != -1)
		return spool->used_hpages == 0;
	if (spool->min_hpages != -1)
		return spool->rsv_hpages == spool->min_hpages;

	return true;
}
110

111 112
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
						unsigned long irq_flags)
113
{
114
	spin_unlock_irqrestore(&spool->lock, irq_flags);
115 116

	/* If no pages are used, and no other handles to the subpool
E
Ethon Paul 已提交
117
	 * remain, give up any reservations based on minimum size and
118
	 * free the subpool */
119
	if (subpool_is_free(spool)) {
120 121 122
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
123
		kfree(spool);
124
	}
125 126
}

127 128
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
129 130 131
{
	struct hugepage_subpool *spool;

132
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133 134 135 136 137
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
138 139 140 141 142 143 144 145 146
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
147 148 149 150 151 152

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
153 154 155
	unsigned long flags;

	spin_lock_irqsave(&spool->lock, flags);
156 157
	BUG_ON(!spool->count);
	spool->count--;
158
	unlock_or_release_subpool(spool, flags);
159 160
}

161 162 163
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
164
 * request.  Otherwise, return the number of pages by which the
165 166
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
E
Ethon Paul 已提交
167
 * a subpool minimum size must be maintained.
168 169
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170 171
				      long delta)
{
172
	long ret = delta;
173 174

	if (!spool)
175
		return ret;
176

177
	spin_lock_irq(&spool->lock);
178 179 180 181 182 183 184 185

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
186 187
	}

188 189
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
204
	spin_unlock_irq(&spool->lock);
205 206 207
	return ret;
}

208 209 210 211 212 213 214
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215 216
				       long delta)
{
217
	long ret = delta;
218
	unsigned long flags;
219

220
	if (!spool)
221
		return delta;
222

223
	spin_lock_irqsave(&spool->lock, flags);
224 225 226 227

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

228 229
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
244
	unlock_or_release_subpool(spool, flags);
245 246

	return ret;
247 248 249 250 251 252 253 254 255
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
256
	return subpool_inode(file_inode(vma->vm_file));
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/* Helper that removes a struct file_region from the resv_map cache and returns
 * it for use.
 */
static struct file_region *
get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
{
	struct file_region *nrg = NULL;

	VM_BUG_ON(resv->region_cache_count <= 0);

	resv->region_cache_count--;
	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
	list_del(&nrg->link);

	nrg->from = from;
	nrg->to = to;

	return nrg;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
					      struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	nrg->reservation_counter = rg->reservation_counter;
	nrg->css = rg->css;
	if (rg->css)
		css_get(rg->css);
#endif
}

/* Helper that records hugetlb_cgroup uncharge info. */
static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
						struct hstate *h,
						struct resv_map *resv,
						struct file_region *nrg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (h_cg) {
		nrg->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		nrg->css = &h_cg->css;
301 302 303 304 305 306 307 308 309 310 311
		/*
		 * The caller will hold exactly one h_cg->css reference for the
		 * whole contiguous reservation region. But this area might be
		 * scattered when there are already some file_regions reside in
		 * it. As a result, many file_regions may share only one css
		 * reference. In order to ensure that one file_region must hold
		 * exactly one h_cg->css reference, we should do css_get for
		 * each file_region and leave the reference held by caller
		 * untouched.
		 */
		css_get(&h_cg->css);
312 313 314 315 316 317 318 319 320 321 322 323 324
		if (!resv->pages_per_hpage)
			resv->pages_per_hpage = pages_per_huge_page(h);
		/* pages_per_hpage should be the same for all entries in
		 * a resv_map.
		 */
		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
	} else {
		nrg->reservation_counter = NULL;
		nrg->css = NULL;
	}
#endif
}

325 326 327 328 329 330 331 332
static void put_uncharge_info(struct file_region *rg)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (rg->css)
		css_put(rg->css);
#endif
}

333 334 335 336
static bool has_same_uncharge_info(struct file_region *rg,
				   struct file_region *org)
{
#ifdef CONFIG_CGROUP_HUGETLB
337
	return rg->reservation_counter == org->reservation_counter &&
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	       rg->css == org->css;

#else
	return true;
#endif
}

static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
{
	struct file_region *nrg = NULL, *prg = NULL;

	prg = list_prev_entry(rg, link);
	if (&prg->link != &resv->regions && prg->to == rg->from &&
	    has_same_uncharge_info(prg, rg)) {
		prg->to = rg->to;

		list_del(&rg->link);
355
		put_uncharge_info(rg);
356 357
		kfree(rg);

358
		rg = prg;
359 360 361 362 363 364 365 366
	}

	nrg = list_next_entry(rg, link);
	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
	    has_same_uncharge_info(nrg, rg)) {
		nrg->from = rg->from;

		list_del(&rg->link);
367
		put_uncharge_info(rg);
368 369 370 371
		kfree(rg);
	}
}

372
static inline long
373
hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
374 375 376 377 378 379 380 381
		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
		     long *regions_needed)
{
	struct file_region *nrg;

	if (!regions_needed) {
		nrg = get_file_region_entry_from_cache(map, from, to);
		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382
		list_add(&nrg->link, rg);
383 384 385 386 387 388 389
		coalesce_file_region(map, nrg);
	} else
		*regions_needed += 1;

	return to - from;
}

390 391 392 393 394 395 396
/*
 * Must be called with resv->lock held.
 *
 * Calling this with regions_needed != NULL will count the number of pages
 * to be added but will not modify the linked list. And regions_needed will
 * indicate the number of file_regions needed in the cache to carry out to add
 * the regions for this range.
M
Mina Almasry 已提交
397 398
 */
static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399
				     struct hugetlb_cgroup *h_cg,
400
				     struct hstate *h, long *regions_needed)
M
Mina Almasry 已提交
401
{
402
	long add = 0;
M
Mina Almasry 已提交
403
	struct list_head *head = &resv->regions;
404
	long last_accounted_offset = f;
405 406
	struct file_region *iter, *trg = NULL;
	struct list_head *rg = NULL;
M
Mina Almasry 已提交
407

408 409
	if (regions_needed)
		*regions_needed = 0;
M
Mina Almasry 已提交
410

411
	/* In this loop, we essentially handle an entry for the range
412
	 * [last_accounted_offset, iter->from), at every iteration, with some
413 414
	 * bounds checking.
	 */
415
	list_for_each_entry_safe(iter, trg, head, link) {
416
		/* Skip irrelevant regions that start before our range. */
417
		if (iter->from < f) {
418 419 420
			/* If this region ends after the last accounted offset,
			 * then we need to update last_accounted_offset.
			 */
421 422
			if (iter->to > last_accounted_offset)
				last_accounted_offset = iter->to;
423 424
			continue;
		}
M
Mina Almasry 已提交
425

426 427 428
		/* When we find a region that starts beyond our range, we've
		 * finished.
		 */
429 430
		if (iter->from >= t) {
			rg = iter->link.prev;
M
Mina Almasry 已提交
431
			break;
432
		}
M
Mina Almasry 已提交
433

434
		/* Add an entry for last_accounted_offset -> iter->from, and
435 436
		 * update last_accounted_offset.
		 */
437 438
		if (iter->from > last_accounted_offset)
			add += hugetlb_resv_map_add(resv, iter->link.prev,
439
						    last_accounted_offset,
440
						    iter->from, h, h_cg,
441
						    regions_needed);
442

443
		last_accounted_offset = iter->to;
444 445 446 447 448
	}

	/* Handle the case where our range extends beyond
	 * last_accounted_offset.
	 */
449 450
	if (!rg)
		rg = head->prev;
451 452 453
	if (last_accounted_offset < t)
		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
					    t, h, h_cg, regions_needed);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	return add;
}

/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 */
static int allocate_file_region_entries(struct resv_map *resv,
					int regions_needed)
	__must_hold(&resv->lock)
{
	struct list_head allocated_regions;
	int to_allocate = 0, i = 0;
	struct file_region *trg = NULL, *rg = NULL;

	VM_BUG_ON(regions_needed < 0);

	INIT_LIST_HEAD(&allocated_regions);

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations plus regions_needed.
	 *
	 * This is a while loop because when we drop the lock, some other call
	 * to region_add or region_del may have consumed some region_entries,
	 * so we keep looping here until we finally have enough entries for
	 * (adds_in_progress + regions_needed).
	 */
	while (resv->region_cache_count <
	       (resv->adds_in_progress + regions_needed)) {
		to_allocate = resv->adds_in_progress + regions_needed -
			      resv->region_cache_count;

		/* At this point, we should have enough entries in the cache
I
Ingo Molnar 已提交
487
		 * for all the existing adds_in_progress. We should only be
488
		 * needing to allocate for regions_needed.
M
Mina Almasry 已提交
489
		 */
490 491 492 493 494 495 496 497
		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);

		spin_unlock(&resv->lock);
		for (i = 0; i < to_allocate; i++) {
			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
			if (!trg)
				goto out_of_memory;
			list_add(&trg->link, &allocated_regions);
M
Mina Almasry 已提交
498 499
		}

500 501
		spin_lock(&resv->lock);

502 503
		list_splice(&allocated_regions, &resv->region_cache);
		resv->region_cache_count += to_allocate;
M
Mina Almasry 已提交
504 505
	}

506
	return 0;
M
Mina Almasry 已提交
507

508 509 510 511 512 513
out_of_memory:
	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
		list_del(&rg->link);
		kfree(rg);
	}
	return -ENOMEM;
M
Mina Almasry 已提交
514 515
}

516 517
/*
 * Add the huge page range represented by [f, t) to the reserve
518 519 520 521 522
 * map.  Regions will be taken from the cache to fill in this range.
 * Sufficient regions should exist in the cache due to the previous
 * call to region_chg with the same range, but in some cases the cache will not
 * have sufficient entries due to races with other code doing region_add or
 * region_del.  The extra needed entries will be allocated.
523
 *
524 525 526 527
 * regions_needed is the out value provided by a previous call to region_chg.
 *
 * Return the number of new huge pages added to the map.  This number is greater
 * than or equal to zero.  If file_region entries needed to be allocated for
E
Ethon Paul 已提交
528
 * this operation and we were not able to allocate, it returns -ENOMEM.
529 530 531
 * region_add of regions of length 1 never allocate file_regions and cannot
 * fail; region_chg will always allocate at least 1 entry and a region_add for
 * 1 page will only require at most 1 entry.
532
 */
533
static long region_add(struct resv_map *resv, long f, long t,
534 535
		       long in_regions_needed, struct hstate *h,
		       struct hugetlb_cgroup *h_cg)
536
{
537
	long add = 0, actual_regions_needed = 0;
538

539
	spin_lock(&resv->lock);
540 541 542
retry:

	/* Count how many regions are actually needed to execute this add. */
543 544
	add_reservation_in_range(resv, f, t, NULL, NULL,
				 &actual_regions_needed);
545

546
	/*
547 548 549 550 551 552 553
	 * Check for sufficient descriptors in the cache to accommodate
	 * this add operation. Note that actual_regions_needed may be greater
	 * than in_regions_needed, as the resv_map may have been modified since
	 * the region_chg call. In this case, we need to make sure that we
	 * allocate extra entries, such that we have enough for all the
	 * existing adds_in_progress, plus the excess needed for this
	 * operation.
554
	 */
555 556 557 558 559 560 561 562
	if (actual_regions_needed > in_regions_needed &&
	    resv->region_cache_count <
		    resv->adds_in_progress +
			    (actual_regions_needed - in_regions_needed)) {
		/* region_add operation of range 1 should never need to
		 * allocate file_region entries.
		 */
		VM_BUG_ON(t - f <= 1);
563

564 565 566 567
		if (allocate_file_region_entries(
			    resv, actual_regions_needed - in_regions_needed)) {
			return -ENOMEM;
		}
568

569
		goto retry;
570 571
	}

572
	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
573 574

	resv->adds_in_progress -= in_regions_needed;
575

576
	spin_unlock(&resv->lock);
577
	return add;
578 579
}

580 581 582 583 584 585 586
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
587 588 589 590 591 592 593
 * map.  A number of new file_region structures is added to the cache as a
 * placeholder, for the subsequent region_add call to use. At least 1
 * file_region structure is added.
 *
 * out_regions_needed is the number of regions added to the
 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 * to region_add or region_abort for proper accounting.
594 595 596 597 598
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
599
 */
600 601
static long region_chg(struct resv_map *resv, long f, long t,
		       long *out_regions_needed)
602 603 604
{
	long chg = 0;

605
	spin_lock(&resv->lock);
606

607
	/* Count how many hugepages in this range are NOT represented. */
608
	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
609
				       out_regions_needed);
610

611 612
	if (*out_regions_needed == 0)
		*out_regions_needed = 1;
613

614 615
	if (allocate_file_region_entries(resv, *out_regions_needed))
		return -ENOMEM;
616

617
	resv->adds_in_progress += *out_regions_needed;
618 619

	spin_unlock(&resv->lock);
620 621 622
	return chg;
}

623 624 625 626 627
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
628 629 630
 * is called to decrement the adds_in_progress counter. regions_needed
 * is the value returned by the region_chg call, it is used to decrement
 * the adds_in_progress counter.
631 632 633 634 635
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
636 637
static void region_abort(struct resv_map *resv, long f, long t,
			 long regions_needed)
638 639 640
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
641
	resv->adds_in_progress -= regions_needed;
642 643 644
	spin_unlock(&resv->lock);
}

645
/*
646 647 648 649 650 651 652 653 654 655 656 657
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
658
 */
659
static long region_del(struct resv_map *resv, long f, long t)
660
{
661
	struct list_head *head = &resv->regions;
662
	struct file_region *rg, *trg;
663 664
	struct file_region *nrg = NULL;
	long del = 0;
665

666
retry:
667
	spin_lock(&resv->lock);
668
	list_for_each_entry_safe(rg, trg, head, link) {
669 670 671 672 673 674 675 676
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
677
			continue;
678

679
		if (rg->from >= t)
680 681
			break;

682 683 684 685 686 687 688 689 690 691 692 693 694
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
695

696 697 698 699 700 701 702 703 704
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;
705
			hugetlb_cgroup_uncharge_file_region(
706
				resv, rg, t - f, false);
707 708 709 710

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
711 712 713

			copy_hugetlb_cgroup_uncharge_info(nrg, rg);

714 715 716 717 718 719 720
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
721
			break;
722 723 724 725
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
726
			hugetlb_cgroup_uncharge_file_region(resv, rg,
727
							    rg->to - rg->from, true);
728 729 730 731 732 733
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
734
			hugetlb_cgroup_uncharge_file_region(resv, rg,
735
							    t - rg->from, false);
736

737 738 739
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
740
			hugetlb_cgroup_uncharge_file_region(resv, rg,
741
							    rg->to - f, false);
742 743 744

			del += rg->to - f;
			rg->to = f;
745
		}
746
	}
747 748

	spin_unlock(&resv->lock);
749 750
	kfree(nrg);
	return del;
751 752
}

753 754 755 756 757 758 759 760 761
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
762
void hugetlb_fix_reserve_counts(struct inode *inode)
763 764 765
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;
766
	bool reserved = false;
767 768

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
769
	if (rsv_adjust > 0) {
770 771
		struct hstate *h = hstate_inode(inode);

772 773 774 775
		if (!hugetlb_acct_memory(h, 1))
			reserved = true;
	} else if (!rsv_adjust) {
		reserved = true;
776
	}
777 778 779

	if (!reserved)
		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 781
}

782 783 784 785
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
786
static long region_count(struct resv_map *resv, long f, long t)
787
{
788
	struct list_head *head = &resv->regions;
789 790 791
	struct file_region *rg;
	long chg = 0;

792
	spin_lock(&resv->lock);
793 794
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
795 796
		long seg_from;
		long seg_to;
797 798 799 800 801 802 803 804 805 806 807

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
808
	spin_unlock(&resv->lock);
809 810 811 812

	return chg;
}

813 814 815 816
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
817 818
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
819
{
820 821
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
822 823
}

824 825 826 827 828
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
829
EXPORT_SYMBOL_GPL(linear_hugepage_index);
830

831 832 833 834 835 836
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
837 838 839
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
840
}
841
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
842

843 844 845
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
846 847
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
848
 */
849
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
850 851 852 853
{
	return vma_kernel_pagesize(vma);
}

854 855 856 857 858 859 860
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
861
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
862

863 864 865 866 867 868 869 870 871
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
872 873 874 875 876 877 878 879 880
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
881
 */
882 883 884 885 886 887 888 889 890 891 892
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
					  struct hugetlb_cgroup *h_cg,
					  struct hstate *h)
{
#ifdef CONFIG_CGROUP_HUGETLB
	if (!h_cg || !h) {
		resv_map->reservation_counter = NULL;
		resv_map->pages_per_hpage = 0;
		resv_map->css = NULL;
	} else {
		resv_map->reservation_counter =
			&h_cg->rsvd_hugepage[hstate_index(h)];
		resv_map->pages_per_hpage = pages_per_huge_page(h);
		resv_map->css = &h_cg->css;
	}
#endif
}

912
struct resv_map *resv_map_alloc(void)
913 914
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
915 916 917 918 919
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
920
		return NULL;
921
	}
922 923

	kref_init(&resv_map->refs);
924
	spin_lock_init(&resv_map->lock);
925 926
	INIT_LIST_HEAD(&resv_map->regions);

927
	resv_map->adds_in_progress = 0;
928 929 930 931 932 933 934
	/*
	 * Initialize these to 0. On shared mappings, 0's here indicate these
	 * fields don't do cgroup accounting. On private mappings, these will be
	 * re-initialized to the proper values, to indicate that hugetlb cgroup
	 * reservations are to be un-charged from here.
	 */
	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
935 936 937 938 939

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

940 941 942
	return resv_map;
}

943
void resv_map_release(struct kref *ref)
944 945
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
946 947
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
948 949

	/* Clear out any active regions before we release the map. */
950
	region_del(resv_map, 0, LONG_MAX);
951 952 953 954 955 956 957 958 959

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

960 961 962
	kfree(resv_map);
}

963 964
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
965 966 967 968 969 970 971 972 973
	/*
	 * At inode evict time, i_mapping may not point to the original
	 * address space within the inode.  This original address space
	 * contains the pointer to the resv_map.  So, always use the
	 * address space embedded within the inode.
	 * The VERY common case is inode->mapping == &inode->i_data but,
	 * this may not be true for device special inodes.
	 */
	return (struct resv_map *)(&inode->i_data)->private_data;
974 975
}

976
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
977
{
978
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
979 980 981 982 983 984 985
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
986 987
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
988
	}
989 990
}

991
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
992
{
993 994
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
995

996 997
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
998 999 1000 1001
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
1002 1003
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1004 1005

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1006 1007 1008 1009
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
1010
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1011 1012

	return (get_vma_private_data(vma) & flag) != 0;
1013 1014
}

1015
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1016 1017
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
1018
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1019
	if (!(vma->vm_flags & VM_MAYSHARE))
1020 1021 1022
		vma->vm_private_data = (void *)0;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * Reset and decrement one ref on hugepage private reservation.
 * Called with mm->mmap_sem writer semaphore held.
 * This function should be only used by move_vma() and operate on
 * same sized vma. It should never come here with last ref on the
 * reservation.
 */
void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	/*
	 * Clear the old hugetlb private page reservation.
	 * It has already been transferred to new_vma.
	 *
	 * During a mremap() operation of a hugetlb vma we call move_vma()
	 * which copies vma into new_vma and unmaps vma. After the copy
	 * operation both new_vma and vma share a reference to the resv_map
	 * struct, and at that point vma is about to be unmapped. We don't
	 * want to return the reservation to the pool at unmap of vma because
	 * the reservation still lives on in new_vma, so simply decrement the
	 * ref here and remove the resv_map reference from this vma.
	 */
	struct resv_map *reservations = vma_resv_map(vma);

1046 1047
	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1048
		kref_put(&reservations->refs, resv_map_release);
1049
	}
1050 1051 1052 1053

	reset_vma_resv_huge_pages(vma);
}

1054
/* Returns true if the VMA has associated reserve pages */
1055
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1056
{
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1068
			return true;
1069
		else
1070
			return false;
1071
	}
1072 1073

	/* Shared mappings always use reserves */
1074 1075 1076 1077 1078
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
E
Ethon Paul 已提交
1079
		 * fallocate.  In this case, there really are no reserves to
1080 1081 1082 1083 1084 1085 1086
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1087 1088 1089 1090 1091

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
1113

1114
	return false;
1115 1116
}

1117
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
1118 1119
{
	int nid = page_to_nid(page);
1120 1121

	lockdep_assert_held(&hugetlb_lock);
1122 1123
	VM_BUG_ON_PAGE(page_count(page), page);

1124
	list_move(&page->lru, &h->hugepage_freelists[nid]);
1125 1126
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
1127
	SetHPageFreed(page);
L
Linus Torvalds 已提交
1128 1129
}

1130
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1131 1132
{
	struct page *page;
1133
	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1134

1135
	lockdep_assert_held(&hugetlb_lock);
1136
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1137
		if (pin && !is_pinnable_page(page))
1138
			continue;
1139

1140 1141 1142 1143 1144
		if (PageHWPoison(page))
			continue;

		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
1145
		ClearHPageFreed(page);
1146 1147 1148
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		return page;
1149 1150
	}

1151
	return NULL;
1152 1153
}

1154 1155
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
1156
{
1157 1158 1159 1160
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1161
	int node = NUMA_NO_NODE;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
1179 1180 1181 1182 1183

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
1184 1185 1186
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

1187 1188 1189
	return NULL;
}

1190 1191
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
1192 1193
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
1194
{
1195
	struct page *page = NULL;
1196
	struct mempolicy *mpol;
1197
	gfp_t gfp_mask;
1198
	nodemask_t *nodemask;
1199
	int nid;
L
Linus Torvalds 已提交
1200

1201 1202 1203 1204 1205
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
1206
	if (!vma_has_reserves(vma, chg) &&
1207
			h->free_huge_pages - h->resv_huge_pages == 0)
1208
		goto err;
1209

1210
	/* If reserves cannot be used, ensure enough pages are in the pool */
1211
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1212
		goto err;
1213

1214 1215
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	if (mpol_is_preferred_many(mpol)) {
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);

		/* Fallback to all nodes if page==NULL */
		nodemask = NULL;
	}

	if (!page)
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);

1227
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1228
		SetHPageRestoreReserve(page);
1229
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
1230
	}
1231

1232
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
1233
	return page;
1234 1235 1236

err:
	return NULL;
L
Linus Torvalds 已提交
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
1248
	nid = next_node_in(nid, *nodes_allowed);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
1281
 * helper for remove_pool_huge_page() - return the previously saved
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1310
/* used to demote non-gigantic_huge pages as well */
1311 1312
static void __destroy_compound_gigantic_page(struct page *page,
					unsigned int order, bool demote)
1313 1314 1315 1316 1317
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1318
	atomic_set(compound_mapcount_ptr(page), 0);
1319
	atomic_set(compound_pincount_ptr(page), 0);
1320

1321
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1322
		p->mapping = NULL;
1323
		clear_compound_head(p);
1324 1325
		if (!demote)
			set_page_refcounted(p);
1326 1327 1328
	}

	set_compound_order(page, 0);
1329
#ifdef CONFIG_64BIT
1330
	page[1].compound_nr = 0;
1331
#endif
1332 1333 1334
	__ClearPageHead(page);
}

1335 1336 1337 1338 1339 1340 1341
static void destroy_compound_hugetlb_page_for_demote(struct page *page,
					unsigned int order)
{
	__destroy_compound_gigantic_page(page, order, true);
}

#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1342 1343 1344 1345 1346 1347
static void destroy_compound_gigantic_page(struct page *page,
					unsigned int order)
{
	__destroy_compound_gigantic_page(page, order, false);
}

1348
static void free_gigantic_page(struct page *page, unsigned int order)
1349
{
1350 1351 1352 1353
	/*
	 * If the page isn't allocated using the cma allocator,
	 * cma_release() returns false.
	 */
1354 1355
#ifdef CONFIG_CMA
	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1356
		return;
1357
#endif
1358

1359 1360 1361
	free_contig_range(page_to_pfn(page), 1 << order);
}

1362
#ifdef CONFIG_CONTIG_ALLOC
1363 1364
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1365
{
1366
	unsigned long nr_pages = pages_per_huge_page(h);
1367 1368
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1369

1370 1371
#ifdef CONFIG_CMA
	{
1372 1373 1374
		struct page *page;
		int node;

1375 1376 1377
		if (hugetlb_cma[nid]) {
			page = cma_alloc(hugetlb_cma[nid], nr_pages,
					huge_page_order(h), true);
1378 1379 1380
			if (page)
				return page;
		}
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

		if (!(gfp_mask & __GFP_THISNODE)) {
			for_each_node_mask(node, *nodemask) {
				if (node == nid || !hugetlb_cma[node])
					continue;

				page = cma_alloc(hugetlb_cma[node], nr_pages,
						huge_page_order(h), true);
				if (page)
					return page;
			}
		}
1393
	}
1394
#endif
1395

1396
	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1397 1398
}

1399 1400 1401 1402 1403 1404 1405
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
1406

1407
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1408
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1409 1410 1411 1412
					int nid, nodemask_t *nodemask)
{
	return NULL;
}
1413
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1414
static inline void destroy_compound_gigantic_page(struct page *page,
1415
						unsigned int order) { }
1416 1417
#endif

1418 1419
/*
 * Remove hugetlb page from lists, and update dtor so that page appears
1420 1421 1422
 * as just a compound page.
 *
 * A reference is held on the page, except in the case of demote.
1423 1424 1425
 *
 * Must be called with hugetlb lock held.
 */
1426 1427 1428
static void __remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus,
							bool demote)
1429 1430 1431 1432 1433 1434
{
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);

1435
	lockdep_assert_held(&hugetlb_lock);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return;

	list_del(&page->lru);

	if (HPageFreed(page)) {
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
	}
	if (adjust_surplus) {
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
	}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	/*
	 * Very subtle
	 *
	 * For non-gigantic pages set the destructor to the normal compound
	 * page dtor.  This is needed in case someone takes an additional
	 * temporary ref to the page, and freeing is delayed until they drop
	 * their reference.
	 *
	 * For gigantic pages set the destructor to the null dtor.  This
	 * destructor will never be called.  Before freeing the gigantic
	 * page destroy_compound_gigantic_page will turn the compound page
	 * into a simple group of pages.  After this the destructor does not
	 * apply.
	 *
	 * This handles the case where more than one ref is held when and
	 * after update_and_free_page is called.
1466 1467 1468
	 *
	 * In the case of demote we do not ref count the page as it will soon
	 * be turned into a page of smaller size.
1469
	 */
1470 1471
	if (!demote)
		set_page_refcounted(page);
1472 1473 1474 1475
	if (hstate_is_gigantic(h))
		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
	else
		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1476 1477 1478 1479 1480

	h->nr_huge_pages--;
	h->nr_huge_pages_node[nid]--;
}

1481 1482 1483 1484 1485 1486
static void remove_hugetlb_page(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	__remove_hugetlb_page(h, page, adjust_surplus, false);
}

1487 1488 1489 1490 1491 1492
static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
							bool adjust_surplus)
{
	__remove_hugetlb_page(h, page, adjust_surplus, true);
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static void add_hugetlb_page(struct hstate *h, struct page *page,
			     bool adjust_surplus)
{
	int zeroed;
	int nid = page_to_nid(page);

	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);

	lockdep_assert_held(&hugetlb_lock);

	INIT_LIST_HEAD(&page->lru);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;

	if (adjust_surplus) {
		h->surplus_huge_pages++;
		h->surplus_huge_pages_node[nid]++;
	}

	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
	set_page_private(page, 0);
	SetHPageVmemmapOptimized(page);

	/*
1517 1518 1519
	 * This page is about to be managed by the hugetlb allocator and
	 * should have no users.  Drop our reference, and check for others
	 * just in case.
1520 1521
	 */
	zeroed = put_page_testzero(page);
1522 1523 1524 1525 1526 1527 1528 1529 1530
	if (!zeroed)
		/*
		 * It is VERY unlikely soneone else has taken a ref on
		 * the page.  In this case, we simply return as the
		 * hugetlb destructor (free_huge_page) will be called
		 * when this other ref is dropped.
		 */
		return;

1531 1532 1533 1534
	arch_clear_hugepage_flags(page);
	enqueue_huge_page(h, page);
}

1535
static void __update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1536 1537
{
	int i;
1538
	struct page *subpage = page;
1539

1540
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1541
		return;
1542

1543
	if (hugetlb_vmemmap_alloc(h, page)) {
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		spin_lock_irq(&hugetlb_lock);
		/*
		 * If we cannot allocate vmemmap pages, just refuse to free the
		 * page and put the page back on the hugetlb free list and treat
		 * as a surplus page.
		 */
		add_hugetlb_page(h, page, true);
		spin_unlock_irq(&hugetlb_lock);
		return;
	}

1555 1556 1557
	for (i = 0; i < pages_per_huge_page(h);
	     i++, subpage = mem_map_next(subpage, page, i)) {
		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1558
				1 << PG_referenced | 1 << PG_dirty |
1559 1560
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1561
	}
1562 1563 1564 1565 1566 1567 1568

	/*
	 * Non-gigantic pages demoted from CMA allocated gigantic pages
	 * need to be given back to CMA in free_gigantic_page.
	 */
	if (hstate_is_gigantic(h) ||
	    hugetlb_cma_page(page, huge_page_order(h))) {
1569 1570 1571 1572 1573
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1574 1575
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
/*
 * As update_and_free_page() can be called under any context, so we cannot
 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
 * the vmemmap pages.
 *
 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
 * freed and frees them one-by-one. As the page->mapping pointer is going
 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
 * structure of a lockless linked list of huge pages to be freed.
 */
static LLIST_HEAD(hpage_freelist);

static void free_hpage_workfn(struct work_struct *work)
{
	struct llist_node *node;

	node = llist_del_all(&hpage_freelist);

	while (node) {
		struct page *page;
		struct hstate *h;

		page = container_of((struct address_space **)node,
				     struct page, mapping);
		node = node->next;
		page->mapping = NULL;
		/*
		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
		 * is going to trigger because a previous call to
		 * remove_hugetlb_page() will set_compound_page_dtor(page,
		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
		 */
		h = size_to_hstate(page_size(page));

		__update_and_free_page(h, page);

		cond_resched();
	}
}
static DECLARE_WORK(free_hpage_work, free_hpage_workfn);

static inline void flush_free_hpage_work(struct hstate *h)
{
1620
	if (hugetlb_optimize_vmemmap_pages(h))
1621 1622 1623 1624 1625 1626
		flush_work(&free_hpage_work);
}

static void update_and_free_page(struct hstate *h, struct page *page,
				 bool atomic)
{
1627
	if (!HPageVmemmapOptimized(page) || !atomic) {
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
		__update_and_free_page(h, page);
		return;
	}

	/*
	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
	 *
	 * Only call schedule_work() if hpage_freelist is previously
	 * empty. Otherwise, schedule_work() had been called but the workfn
	 * hasn't retrieved the list yet.
	 */
	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
		schedule_work(&free_hpage_work);
}

1643 1644 1645 1646 1647
static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
{
	struct page *page, *t_page;

	list_for_each_entry_safe(page, t_page, list, lru) {
1648
		update_and_free_page(h, page, false);
1649 1650 1651 1652
		cond_resched();
	}
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1664
void free_huge_page(struct page *page)
1665
{
1666 1667 1668 1669
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1670
	struct hstate *h = page_hstate(page);
1671
	int nid = page_to_nid(page);
1672
	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1673
	bool restore_reserve;
1674
	unsigned long flags;
1675

1676 1677
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1678

1679
	hugetlb_set_page_subpool(page, NULL);
1680
	page->mapping = NULL;
1681 1682
	restore_reserve = HPageRestoreReserve(page);
	ClearHPageRestoreReserve(page);
1683

1684
	/*
1685
	 * If HPageRestoreReserve was set on page, page allocation consumed a
1686 1687 1688
	 * reservation.  If the page was associated with a subpool, there
	 * would have been a page reserved in the subpool before allocation
	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
M
Miaohe Lin 已提交
1689
	 * reservation, do not call hugepage_subpool_put_pages() as this will
1690
	 * remove the reserved page from the subpool.
1691
	 */
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	if (!restore_reserve) {
		/*
		 * A return code of zero implies that the subpool will be
		 * under its minimum size if the reservation is not restored
		 * after page is free.  Therefore, force restore_reserve
		 * operation.
		 */
		if (hugepage_subpool_put_pages(spool, 1) == 0)
			restore_reserve = true;
	}
1702

1703
	spin_lock_irqsave(&hugetlb_lock, flags);
1704
	ClearHPageMigratable(page);
1705 1706
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1707 1708
	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					  pages_per_huge_page(h), page);
1709 1710 1711
	if (restore_reserve)
		h->resv_huge_pages++;

1712
	if (HPageTemporary(page)) {
1713
		remove_hugetlb_page(h, page, false);
1714
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1715
		update_and_free_page(h, page, true);
1716
	} else if (h->surplus_huge_pages_node[nid]) {
1717
		/* remove the page from active list */
1718
		remove_hugetlb_page(h, page, true);
1719
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1720
		update_and_free_page(h, page, true);
1721
	} else {
1722
		arch_clear_hugepage_flags(page);
1723
		enqueue_huge_page(h, page);
1724
		spin_unlock_irqrestore(&hugetlb_lock, flags);
1725 1726 1727
	}
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
/*
 * Must be called with the hugetlb lock held
 */
static void __prep_account_new_huge_page(struct hstate *h, int nid)
{
	lockdep_assert_held(&hugetlb_lock);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
}

1738
static void __prep_new_huge_page(struct hstate *h, struct page *page)
1739
{
1740
	hugetlb_vmemmap_free(h, page);
1741
	INIT_LIST_HEAD(&page->lru);
1742
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1743
	hugetlb_set_page_subpool(page, NULL);
1744
	set_hugetlb_cgroup(page, NULL);
1745
	set_hugetlb_cgroup_rsvd(page, NULL);
1746 1747 1748 1749
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
1750
	__prep_new_huge_page(h, page);
1751
	spin_lock_irq(&hugetlb_lock);
1752
	__prep_account_new_huge_page(h, nid);
1753
	spin_unlock_irq(&hugetlb_lock);
1754 1755
}

1756 1757
static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
								bool demote)
1758
{
1759
	int i, j;
1760 1761 1762 1763 1764
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1765
	__ClearPageReserved(page);
1766
	__SetPageHead(page);
1767
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1768 1769 1770 1771
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
E
Ethon Paul 已提交
1772
		 * too.  Otherwise drivers using get_user_pages() to access tail
1773 1774 1775 1776 1777 1778 1779 1780
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		/*
		 * Subtle and very unlikely
		 *
		 * Gigantic 'page allocators' such as memblock or cma will
		 * return a set of pages with each page ref counted.  We need
		 * to turn this set of pages into a compound page with tail
		 * page ref counts set to zero.  Code such as speculative page
		 * cache adding could take a ref on a 'to be' tail page.
		 * We need to respect any increased ref count, and only set
		 * the ref count to zero if count is currently 1.  If count
1791 1792 1793 1794
		 * is not 1, we return an error.  An error return indicates
		 * the set of pages can not be converted to a gigantic page.
		 * The caller who allocated the pages should then discard the
		 * pages using the appropriate free interface.
1795 1796
		 *
		 * In the case of demote, the ref count will be zero.
1797
		 */
1798 1799 1800 1801 1802 1803 1804
		if (!demote) {
			if (!page_ref_freeze(p, 1)) {
				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
				goto out_error;
			}
		} else {
			VM_BUG_ON_PAGE(page_count(p), p);
1805
		}
1806
		set_compound_head(p, page);
1807
	}
1808
	atomic_set(compound_mapcount_ptr(page), -1);
1809
	atomic_set(compound_pincount_ptr(page), 0);
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	return true;

out_error:
	/* undo tail page modifications made above */
	p = page + 1;
	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
		clear_compound_head(p);
		set_page_refcounted(p);
	}
	/* need to clear PG_reserved on remaining tail pages  */
	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
		__ClearPageReserved(p);
	set_compound_order(page, 0);
1823
#ifdef CONFIG_64BIT
1824
	page[1].compound_nr = 0;
1825
#endif
1826 1827
	__ClearPageHead(page);
	return false;
1828 1829
}

1830 1831 1832 1833 1834
static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
{
	return __prep_compound_gigantic_page(page, order, false);
}

1835 1836 1837 1838 1839 1840
static bool prep_compound_gigantic_page_for_demote(struct page *page,
							unsigned int order)
{
	return __prep_compound_gigantic_page(page, order, true);
}

A
Andrew Morton 已提交
1841 1842 1843 1844 1845
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1846 1847 1848 1849 1850 1851
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1852
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1853
}
1854 1855
EXPORT_SYMBOL_GPL(PageHuge);

1856 1857 1858 1859 1860 1861 1862 1863 1864
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1865
	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1866
}
1867
EXPORT_SYMBOL_GPL(PageHeadHuge);
1868

1869 1870 1871
/*
 * Find and lock address space (mapping) in write mode.
 *
1872 1873 1874
 * Upon entry, the page is locked which means that page_mapping() is
 * stable.  Due to locking order, we can only trylock_write.  If we can
 * not get the lock, simply return NULL to caller.
1875 1876 1877
 */
struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
{
1878
	struct address_space *mapping = page_mapping(hpage);
1879 1880 1881 1882 1883 1884 1885

	if (!mapping)
		return mapping;

	if (i_mmap_trylock_write(mapping))
		return mapping;

1886
	return NULL;
1887 1888
}

1889
pgoff_t hugetlb_basepage_index(struct page *page)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1903
static struct page *alloc_buddy_huge_page(struct hstate *h,
1904 1905
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
L
Linus Torvalds 已提交
1906
{
1907
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1908
	struct page *page;
1909
	bool alloc_try_hard = true;
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * By default we always try hard to allocate the page with
	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
	 * a loop (to adjust global huge page counts) and previous allocation
	 * failed, do not continue to try hard on the same node.  Use the
	 * node_alloc_noretry bitmap to manage this state information.
	 */
	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
		alloc_try_hard = false;
	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
	if (alloc_try_hard)
		gfp_mask |= __GFP_RETRY_MAYFAIL;
1923 1924
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
1925
	page = __alloc_pages(gfp_mask, order, nid, nmask);
1926 1927 1928 1929
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
	 * indicates an overall state change.  Clear bit so that we resume
	 * normal 'try hard' allocations.
	 */
	if (node_alloc_noretry && page && !alloc_try_hard)
		node_clear(nid, *node_alloc_noretry);

	/*
	 * If we tried hard to get a page but failed, set bit so that
	 * subsequent attempts will not try as hard until there is an
	 * overall state change.
	 */
	if (node_alloc_noretry && !page && alloc_try_hard)
		node_set(nid, *node_alloc_noretry);

1947 1948 1949
	return page;
}

1950 1951 1952 1953 1954
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
1955 1956
		gfp_t gfp_mask, int nid, nodemask_t *nmask,
		nodemask_t *node_alloc_noretry)
1957 1958
{
	struct page *page;
1959
	bool retry = false;
1960

1961
retry:
1962 1963 1964 1965
	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
1966
				nid, nmask, node_alloc_noretry);
1967 1968 1969
	if (!page)
		return NULL;

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	if (hstate_is_gigantic(h)) {
		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
			/*
			 * Rare failure to convert pages to compound page.
			 * Free pages and try again - ONCE!
			 */
			free_gigantic_page(page, huge_page_order(h));
			if (!retry) {
				retry = true;
				goto retry;
			}
			return NULL;
		}
	}
1984 1985 1986 1987 1988
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1989 1990 1991 1992
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1993 1994
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
				nodemask_t *node_alloc_noretry)
1995 1996 1997
{
	struct page *page;
	int nr_nodes, node;
1998
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1999 2000

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2001 2002
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
						node_alloc_noretry);
2003
		if (page)
2004 2005 2006
			break;
	}

2007 2008
	if (!page)
		return 0;
2009

2010 2011 2012
	put_page(page); /* free it into the hugepage allocator */

	return 1;
2013 2014
}

2015
/*
2016 2017 2018 2019
 * Remove huge page from pool from next node to free.  Attempt to keep
 * persistent huge pages more or less balanced over allowed nodes.
 * This routine only 'removes' the hugetlb page.  The caller must make
 * an additional call to free the page to low level allocators.
2020 2021
 * Called with hugetlb_lock locked.
 */
2022 2023 2024
static struct page *remove_pool_huge_page(struct hstate *h,
						nodemask_t *nodes_allowed,
						 bool acct_surplus)
2025
{
2026
	int nr_nodes, node;
2027
	struct page *page = NULL;
2028

2029
	lockdep_assert_held(&hugetlb_lock);
2030
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2031 2032 2033 2034
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
2035 2036
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
2037
			page = list_entry(h->hugepage_freelists[node].next,
2038
					  struct page, lru);
2039
			remove_hugetlb_page(h, page, acct_surplus);
2040
			break;
2041
		}
2042
	}
2043

2044
	return page;
2045 2046
}

2047 2048
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
2049 2050 2051
 * nothing for in-use hugepages and non-hugepages.
 * This function returns values like below:
 *
2052 2053 2054 2055 2056 2057 2058 2059
 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
 *           when the system is under memory pressure and the feature of
 *           freeing unused vmemmap pages associated with each hugetlb page
 *           is enabled.
 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
 *           (allocated or reserved.)
 *       0:  successfully dissolved free hugepages or the page is not a
 *           hugepage (considered as already dissolved)
2060
 */
2061
int dissolve_free_huge_page(struct page *page)
2062
{
2063
	int rc = -EBUSY;
2064

2065
retry:
2066 2067 2068 2069
	/* Not to disrupt normal path by vainly holding hugetlb_lock */
	if (!PageHuge(page))
		return 0;

2070
	spin_lock_irq(&hugetlb_lock);
2071 2072 2073 2074 2075 2076
	if (!PageHuge(page)) {
		rc = 0;
		goto out;
	}

	if (!page_count(page)) {
2077 2078
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
2079
		if (h->free_huge_pages - h->resv_huge_pages == 0)
2080
			goto out;
2081 2082 2083 2084 2085

		/*
		 * We should make sure that the page is already on the free list
		 * when it is dissolved.
		 */
2086
		if (unlikely(!HPageFreed(head))) {
2087
			spin_unlock_irq(&hugetlb_lock);
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
			cond_resched();

			/*
			 * Theoretically, we should return -EBUSY when we
			 * encounter this race. In fact, we have a chance
			 * to successfully dissolve the page if we do a
			 * retry. Because the race window is quite small.
			 * If we seize this opportunity, it is an optimization
			 * for increasing the success rate of dissolving page.
			 */
			goto retry;
		}

2101
		remove_hugetlb_page(h, head, false);
2102
		h->max_huge_pages--;
2103
		spin_unlock_irq(&hugetlb_lock);
2104 2105 2106 2107 2108 2109 2110 2111 2112

		/*
		 * Normally update_and_free_page will allocate required vmemmmap
		 * before freeing the page.  update_and_free_page will fail to
		 * free the page if it can not allocate required vmemmap.  We
		 * need to adjust max_huge_pages if the page is not freed.
		 * Attempt to allocate vmemmmap here so that we can take
		 * appropriate action on failure.
		 */
2113
		rc = hugetlb_vmemmap_alloc(h, head);
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		if (!rc) {
			/*
			 * Move PageHWPoison flag from head page to the raw
			 * error page, which makes any subpages rather than
			 * the error page reusable.
			 */
			if (PageHWPoison(head) && page != head) {
				SetPageHWPoison(page);
				ClearPageHWPoison(head);
			}
			update_and_free_page(h, head, false);
		} else {
			spin_lock_irq(&hugetlb_lock);
			add_hugetlb_page(h, head, false);
			h->max_huge_pages++;
			spin_unlock_irq(&hugetlb_lock);
		}

		return rc;
2133
	}
2134
out:
2135
	spin_unlock_irq(&hugetlb_lock);
2136
	return rc;
2137 2138 2139 2140 2141
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
2142 2143
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
2144 2145
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
2146
 */
2147
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2148 2149
{
	unsigned long pfn;
2150
	struct page *page;
2151
	int rc = 0;
2152

2153
	if (!hugepages_supported())
2154
		return rc;
2155

2156 2157
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
2158 2159 2160
		rc = dissolve_free_huge_page(page);
		if (rc)
			break;
2161
	}
2162 2163

	return rc;
2164 2165
}

2166 2167 2168
/*
 * Allocates a fresh surplus page from the page allocator.
 */
2169
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2170
		int nid, nodemask_t *nmask, bool zero_ref)
2171
{
2172
	struct page *page = NULL;
2173
	bool retry = false;
2174

2175
	if (hstate_is_gigantic(h))
2176 2177
		return NULL;

2178
	spin_lock_irq(&hugetlb_lock);
2179 2180
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
2181
	spin_unlock_irq(&hugetlb_lock);
2182

2183
retry:
2184
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2185
	if (!page)
2186
		return NULL;
2187

2188
	spin_lock_irq(&hugetlb_lock);
2189 2190 2191 2192 2193 2194 2195 2196
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2197
		SetHPageTemporary(page);
2198
		spin_unlock_irq(&hugetlb_lock);
2199
		put_page(page);
2200
		return NULL;
2201
	}
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	if (zero_ref) {
		/*
		 * Caller requires a page with zero ref count.
		 * We will drop ref count here.  If someone else is holding
		 * a ref, the page will be freed when they drop it.  Abuse
		 * temporary page flag to accomplish this.
		 */
		SetHPageTemporary(page);
		if (!put_page_testzero(page)) {
			/*
			 * Unexpected inflated ref count on freshly allocated
			 * huge.  Retry once.
			 */
			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
			spin_unlock_irq(&hugetlb_lock);
			if (retry)
				return NULL;

			retry = true;
			goto retry;
		}
		ClearHPageTemporary(page);
	}

	h->surplus_huge_pages++;
	h->surplus_huge_pages_node[page_to_nid(page)]++;

2230
out_unlock:
2231
	spin_unlock_irq(&hugetlb_lock);
2232 2233 2234 2235

	return page;
}

2236
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2237
				     int nid, nodemask_t *nmask)
2238 2239 2240 2241 2242 2243
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

2244
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2245 2246 2247 2248 2249 2250 2251
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
2252
	SetHPageTemporary(page);
2253 2254 2255 2256

	return page;
}

2257 2258 2259
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
2260
static
2261
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2262 2263
		struct vm_area_struct *vma, unsigned long addr)
{
2264
	struct page *page = NULL;
2265 2266 2267 2268 2269 2270
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2271 2272 2273 2274 2275
	if (mpol_is_preferred_many(mpol)) {
		gfp_t gfp = gfp_mask | __GFP_NOWARN;

		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2276

2277 2278 2279 2280 2281 2282 2283
		/* Fallback to all nodes if page==NULL */
		nodemask = NULL;
	}

	if (!page)
		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
	mpol_cond_put(mpol);
2284
	return page;
2285 2286
}

2287
/* page migration callback function */
2288
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2289
		nodemask_t *nmask, gfp_t gfp_mask)
2290
{
2291
	spin_lock_irq(&hugetlb_lock);
2292
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
2293 2294 2295 2296
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
2297
			spin_unlock_irq(&hugetlb_lock);
2298
			return page;
2299 2300
		}
	}
2301
	spin_unlock_irq(&hugetlb_lock);
2302

2303
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2304 2305
}

2306
/* mempolicy aware migration callback */
2307 2308
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
2309 2310 2311 2312 2313 2314 2315 2316 2317
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2318
	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2319 2320 2321 2322 2323
	mpol_cond_put(mpol);

	return page;
}

2324
/*
L
Lucas De Marchi 已提交
2325
 * Increase the hugetlb pool such that it can accommodate a reservation
2326 2327
 * of size 'delta'.
 */
2328
static int gather_surplus_pages(struct hstate *h, long delta)
2329
	__must_hold(&hugetlb_lock)
2330 2331 2332
{
	struct list_head surplus_list;
	struct page *page, *tmp;
2333 2334 2335
	int ret;
	long i;
	long needed, allocated;
2336
	bool alloc_ok = true;
2337

2338
	lockdep_assert_held(&hugetlb_lock);
2339
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2340
	if (needed <= 0) {
2341
		h->resv_huge_pages += delta;
2342
		return 0;
2343
	}
2344 2345 2346 2347 2348 2349

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
2350
	spin_unlock_irq(&hugetlb_lock);
2351
	for (i = 0; i < needed; i++) {
2352
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2353
				NUMA_NO_NODE, NULL, true);
2354 2355 2356 2357
		if (!page) {
			alloc_ok = false;
			break;
		}
2358
		list_add(&page->lru, &surplus_list);
2359
		cond_resched();
2360
	}
2361
	allocated += i;
2362 2363 2364 2365 2366

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
2367
	spin_lock_irq(&hugetlb_lock);
2368 2369
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
2380 2381
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
2382
	 * needed to accommodate the reservation.  Add the appropriate number
2383
	 * of pages to the hugetlb pool and free the extras back to the buddy
2384 2385 2386
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
2387 2388
	 */
	needed += allocated;
2389
	h->resv_huge_pages += delta;
2390
	ret = 0;
2391

2392
	/* Free the needed pages to the hugetlb pool */
2393
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2394 2395
		if ((--needed) < 0)
			break;
2396
		/* Add the page to the hugetlb allocator */
2397
		enqueue_huge_page(h, page);
2398
	}
2399
free:
2400
	spin_unlock_irq(&hugetlb_lock);
2401

2402 2403 2404 2405
	/*
	 * Free unnecessary surplus pages to the buddy allocator.
	 * Pages have no ref count, call free_huge_page directly.
	 */
2406
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2407
		free_huge_page(page);
2408
	spin_lock_irq(&hugetlb_lock);
2409 2410 2411 2412 2413

	return ret;
}

/*
2414 2415 2416 2417 2418 2419
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
2420
 */
2421 2422
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
2423 2424
{
	unsigned long nr_pages;
2425 2426 2427
	struct page *page;
	LIST_HEAD(page_list);

2428
	lockdep_assert_held(&hugetlb_lock);
2429 2430
	/* Uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
2431

2432
	/* Cannot return gigantic pages currently */
2433
	if (hstate_is_gigantic(h))
2434
		goto out;
2435

2436 2437 2438 2439
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
2440
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2441

2442 2443
	/*
	 * We want to release as many surplus pages as possible, spread
2444 2445 2446
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
2447
	 * remove_pool_huge_page() will balance the freed pages across the
2448
	 * on-line nodes with memory and will handle the hstate accounting.
2449 2450
	 */
	while (nr_pages--) {
2451 2452
		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
		if (!page)
2453
			goto out;
2454 2455

		list_add(&page->lru, &page_list);
2456
	}
2457 2458

out:
2459
	spin_unlock_irq(&hugetlb_lock);
2460
	update_and_free_pages_bulk(h, &page_list);
2461
	spin_lock_irq(&hugetlb_lock);
2462 2463
}

2464

2465
/*
2466
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2467
 * are used by the huge page allocation routines to manage reservations.
2468 2469 2470 2471 2472 2473
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
2474 2475 2476
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
2477 2478 2479 2480 2481 2482
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
2483 2484 2485 2486 2487
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
2488 2489 2490 2491 2492
 *
 * vma_del_reservation is used in error paths where an entry in the reserve
 * map was created during huge page allocation and must be removed.  It is to
 * be called after calling vma_needs_reservation to determine if a reservation
 * exists.
2493
 */
2494 2495 2496
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
2497
	VMA_END_RESV,
2498
	VMA_ADD_RESV,
2499
	VMA_DEL_RESV,
2500
};
2501 2502
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
2503
				enum vma_resv_mode mode)
2504
{
2505 2506
	struct resv_map *resv;
	pgoff_t idx;
2507
	long ret;
2508
	long dummy_out_regions_needed;
2509

2510 2511
	resv = vma_resv_map(vma);
	if (!resv)
2512
		return 1;
2513

2514
	idx = vma_hugecache_offset(h, vma, addr);
2515 2516
	switch (mode) {
	case VMA_NEEDS_RESV:
2517 2518 2519 2520 2521 2522
		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
		/* We assume that vma_reservation_* routines always operate on
		 * 1 page, and that adding to resv map a 1 page entry can only
		 * ever require 1 region.
		 */
		VM_BUG_ON(dummy_out_regions_needed != 1);
2523 2524
		break;
	case VMA_COMMIT_RESV:
2525
		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2526 2527
		/* region_add calls of range 1 should never fail. */
		VM_BUG_ON(ret < 0);
2528
		break;
2529
	case VMA_END_RESV:
2530
		region_abort(resv, idx, idx + 1, 1);
2531 2532
		ret = 0;
		break;
2533
	case VMA_ADD_RESV:
2534
		if (vma->vm_flags & VM_MAYSHARE) {
2535
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2536 2537 2538 2539
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		} else {
			region_abort(resv, idx, idx + 1, 1);
2540 2541 2542
			ret = region_del(resv, idx, idx + 1);
		}
		break;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	case VMA_DEL_RESV:
		if (vma->vm_flags & VM_MAYSHARE) {
			region_abort(resv, idx, idx + 1, 1);
			ret = region_del(resv, idx, idx + 1);
		} else {
			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
			/* region_add calls of range 1 should never fail. */
			VM_BUG_ON(ret < 0);
		}
		break;
2553 2554 2555
	default:
		BUG();
	}
2556

2557
	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2558
		return ret;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	/*
	 * We know private mapping must have HPAGE_RESV_OWNER set.
	 *
	 * In most cases, reserves always exist for private mappings.
	 * However, a file associated with mapping could have been
	 * hole punched or truncated after reserves were consumed.
	 * As subsequent fault on such a range will not use reserves.
	 * Subtle - The reserve map for private mappings has the
	 * opposite meaning than that of shared mappings.  If NO
	 * entry is in the reserve map, it means a reservation exists.
	 * If an entry exists in the reserve map, it means the
	 * reservation has already been consumed.  As a result, the
	 * return value of this routine is the opposite of the
	 * value returned from reserve map manipulation routines above.
	 */
	if (ret > 0)
		return 0;
	if (ret == 0)
		return 1;
	return ret;
2579
}
2580 2581

static long vma_needs_reservation(struct hstate *h,
2582
			struct vm_area_struct *vma, unsigned long addr)
2583
{
2584
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2585
}
2586

2587 2588 2589
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
2590 2591 2592
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

2593
static void vma_end_reservation(struct hstate *h,
2594 2595
			struct vm_area_struct *vma, unsigned long addr)
{
2596
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2597 2598
}

2599 2600 2601 2602 2603 2604
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

2605 2606 2607 2608 2609 2610
static long vma_del_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
}

2611
/*
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
 * This routine is called to restore reservation information on error paths.
 * It should ONLY be called for pages allocated via alloc_huge_page(), and
 * the hugetlb mutex should remain held when calling this routine.
 *
 * It handles two specific cases:
 * 1) A reservation was in place and the page consumed the reservation.
 *    HPageRestoreReserve is set in the page.
 * 2) No reservation was in place for the page, so HPageRestoreReserve is
 *    not set.  However, alloc_huge_page always updates the reserve map.
 *
 * In case 1, free_huge_page later in the error path will increment the
 * global reserve count.  But, free_huge_page does not have enough context
 * to adjust the reservation map.  This case deals primarily with private
 * mappings.  Adjust the reserve map here to be consistent with global
 * reserve count adjustments to be made by free_huge_page.  Make sure the
 * reserve map indicates there is a reservation present.
 *
 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2630
 */
2631 2632
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
			unsigned long address, struct page *page)
2633
{
2634
	long rc = vma_needs_reservation(h, vma, address);
2635

2636 2637
	if (HPageRestoreReserve(page)) {
		if (unlikely(rc < 0))
2638 2639
			/*
			 * Rare out of memory condition in reserve map
2640
			 * manipulation.  Clear HPageRestoreReserve so that
2641 2642 2643 2644 2645 2646 2647 2648
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
2649
			ClearHPageRestoreReserve(page);
2650 2651 2652 2653 2654 2655 2656 2657
		else if (rc)
			(void)vma_add_reservation(h, vma, address);
		else
			vma_end_reservation(h, vma, address);
	} else {
		if (!rc) {
			/*
			 * This indicates there is an entry in the reserve map
2658
			 * not added by alloc_huge_page.  We know it was added
2659 2660 2661 2662 2663 2664 2665
			 * before the alloc_huge_page call, otherwise
			 * HPageRestoreReserve would be set on the page.
			 * Remove the entry so that a subsequent allocation
			 * does not consume a reservation.
			 */
			rc = vma_del_reservation(h, vma, address);
			if (rc < 0)
2666
				/*
2667 2668 2669 2670 2671 2672
				 * VERY rare out of memory condition.  Since
				 * we can not delete the entry, set
				 * HPageRestoreReserve so that the reserve
				 * count will be incremented when the page
				 * is freed.  This reserve will be consumed
				 * on a subsequent allocation.
2673
				 */
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
				SetHPageRestoreReserve(page);
		} else if (rc < 0) {
			/*
			 * Rare out of memory condition from
			 * vma_needs_reservation call.  Memory allocation is
			 * only attempted if a new entry is needed.  Therefore,
			 * this implies there is not an entry in the
			 * reserve map.
			 *
			 * For shared mappings, no entry in the map indicates
			 * no reservation.  We are done.
			 */
			if (!(vma->vm_flags & VM_MAYSHARE))
				/*
				 * For private mappings, no entry indicates
				 * a reservation is present.  Since we can
				 * not add an entry, set SetHPageRestoreReserve
				 * on the page so reserve count will be
				 * incremented when freed.  This reserve will
				 * be consumed on a subsequent allocation.
				 */
				SetHPageRestoreReserve(page);
2696
		} else
2697 2698 2699 2700
			/*
			 * No reservation present, do nothing
			 */
			 vma_end_reservation(h, vma, address);
2701 2702 2703
	}
}

2704 2705 2706 2707
/*
 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
 * @h: struct hstate old page belongs to
 * @old_page: Old page to dissolve
2708
 * @list: List to isolate the page in case we need to
2709 2710
 * Returns 0 on success, otherwise negated error.
 */
2711 2712
static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
					struct list_head *list)
2713 2714 2715
{
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
	int nid = page_to_nid(old_page);
2716
	bool alloc_retry = false;
2717 2718 2719 2720 2721
	struct page *new_page;
	int ret = 0;

	/*
	 * Before dissolving the page, we need to allocate a new one for the
2722 2723 2724 2725
	 * pool to remain stable.  Here, we allocate the page and 'prep' it
	 * by doing everything but actually updating counters and adding to
	 * the pool.  This simplifies and let us do most of the processing
	 * under the lock.
2726
	 */
2727
alloc_retry:
2728 2729 2730
	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
	if (!new_page)
		return -ENOMEM;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	/*
	 * If all goes well, this page will be directly added to the free
	 * list in the pool.  For this the ref count needs to be zero.
	 * Attempt to drop now, and retry once if needed.  It is VERY
	 * unlikely there is another ref on the page.
	 *
	 * If someone else has a reference to the page, it will be freed
	 * when they drop their ref.  Abuse temporary page flag to accomplish
	 * this.  Retry once if there is an inflated ref count.
	 */
	SetHPageTemporary(new_page);
	if (!put_page_testzero(new_page)) {
		if (alloc_retry)
			return -EBUSY;

		alloc_retry = true;
		goto alloc_retry;
	}
	ClearHPageTemporary(new_page);

2751
	__prep_new_huge_page(h, new_page);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

retry:
	spin_lock_irq(&hugetlb_lock);
	if (!PageHuge(old_page)) {
		/*
		 * Freed from under us. Drop new_page too.
		 */
		goto free_new;
	} else if (page_count(old_page)) {
		/*
2762 2763
		 * Someone has grabbed the page, try to isolate it here.
		 * Fail with -EBUSY if not possible.
2764
		 */
2765 2766 2767 2768
		spin_unlock_irq(&hugetlb_lock);
		if (!isolate_huge_page(old_page, list))
			ret = -EBUSY;
		spin_lock_irq(&hugetlb_lock);
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		goto free_new;
	} else if (!HPageFreed(old_page)) {
		/*
		 * Page's refcount is 0 but it has not been enqueued in the
		 * freelist yet. Race window is small, so we can succeed here if
		 * we retry.
		 */
		spin_unlock_irq(&hugetlb_lock);
		cond_resched();
		goto retry;
	} else {
		/*
		 * Ok, old_page is still a genuine free hugepage. Remove it from
		 * the freelist and decrease the counters. These will be
		 * incremented again when calling __prep_account_new_huge_page()
		 * and enqueue_huge_page() for new_page. The counters will remain
		 * stable since this happens under the lock.
		 */
		remove_hugetlb_page(h, old_page, false);

		/*
2790 2791
		 * Ref count on new page is already zero as it was dropped
		 * earlier.  It can be directly added to the pool free list.
2792 2793 2794 2795 2796 2797 2798 2799
		 */
		__prep_account_new_huge_page(h, nid);
		enqueue_huge_page(h, new_page);

		/*
		 * Pages have been replaced, we can safely free the old one.
		 */
		spin_unlock_irq(&hugetlb_lock);
2800
		update_and_free_page(h, old_page, false);
2801 2802 2803 2804 2805 2806
	}

	return ret;

free_new:
	spin_unlock_irq(&hugetlb_lock);
2807 2808
	/* Page has a zero ref count, but needs a ref to be freed */
	set_page_refcounted(new_page);
2809
	update_and_free_page(h, new_page, false);
2810 2811 2812 2813

	return ret;
}

2814
int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2815 2816 2817
{
	struct hstate *h;
	struct page *head;
2818
	int ret = -EBUSY;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	/*
	 * The page might have been dissolved from under our feet, so make sure
	 * to carefully check the state under the lock.
	 * Return success when racing as if we dissolved the page ourselves.
	 */
	spin_lock_irq(&hugetlb_lock);
	if (PageHuge(page)) {
		head = compound_head(page);
		h = page_hstate(head);
	} else {
		spin_unlock_irq(&hugetlb_lock);
		return 0;
	}
	spin_unlock_irq(&hugetlb_lock);

	/*
	 * Fence off gigantic pages as there is a cyclic dependency between
	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
	 * of bailing out right away without further retrying.
	 */
	if (hstate_is_gigantic(h))
		return -ENOMEM;

2843 2844 2845 2846 2847 2848
	if (page_count(head) && isolate_huge_page(head, list))
		ret = 0;
	else if (!page_count(head))
		ret = alloc_and_dissolve_huge_page(h, head, list);

	return ret;
2849 2850
}

2851
struct page *alloc_huge_page(struct vm_area_struct *vma,
2852
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2853
{
2854
	struct hugepage_subpool *spool = subpool_vma(vma);
2855
	struct hstate *h = hstate_vma(vma);
2856
	struct page *page;
2857 2858
	long map_chg, map_commit;
	long gbl_chg;
2859 2860
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2861
	bool deferred_reserve;
2862

2863
	idx = hstate_index(h);
2864
	/*
2865 2866 2867
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2868
	 */
2869 2870
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2871
		return ERR_PTR(-ENOMEM);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2883
			vma_end_reservation(h, vma, addr);
2884
			return ERR_PTR(-ENOSPC);
2885
		}
L
Linus Torvalds 已提交
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2899 2900
	/* If this allocation is not consuming a reservation, charge it now.
	 */
2901
	deferred_reserve = map_chg || avoid_reserve;
2902 2903 2904 2905 2906 2907 2908
	if (deferred_reserve) {
		ret = hugetlb_cgroup_charge_cgroup_rsvd(
			idx, pages_per_huge_page(h), &h_cg);
		if (ret)
			goto out_subpool_put;
	}

2909
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2910
	if (ret)
2911
		goto out_uncharge_cgroup_reservation;
2912

2913
	spin_lock_irq(&hugetlb_lock);
2914 2915 2916 2917 2918 2919
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2920
	if (!page) {
2921
		spin_unlock_irq(&hugetlb_lock);
2922
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2923 2924
		if (!page)
			goto out_uncharge_cgroup;
2925
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2926
			SetHPageRestoreReserve(page);
2927 2928
			h->resv_huge_pages--;
		}
2929
		spin_lock_irq(&hugetlb_lock);
2930
		list_add(&page->lru, &h->hugepage_activelist);
2931
		/* Fall through */
K
Ken Chen 已提交
2932
	}
2933
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2934 2935 2936 2937 2938 2939 2940 2941
	/* If allocation is not consuming a reservation, also store the
	 * hugetlb_cgroup pointer on the page.
	 */
	if (deferred_reserve) {
		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
						  h_cg, page);
	}

2942
	spin_unlock_irq(&hugetlb_lock);
2943

2944
	hugetlb_set_page_subpool(page, spool);
2945

2946 2947
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
2961 2962 2963
		if (deferred_reserve)
			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
					pages_per_huge_page(h), page);
2964
	}
2965
	return page;
2966 2967 2968

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2969 2970 2971 2972
out_uncharge_cgroup_reservation:
	if (deferred_reserve)
		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
						    h_cg);
2973
out_subpool_put:
2974
	if (map_chg || avoid_reserve)
2975
		hugepage_subpool_put_pages(spool, 1);
2976
	vma_end_reservation(h, vma, addr);
2977
	return ERR_PTR(-ENOSPC);
2978 2979
}

2980
int alloc_bootmem_huge_page(struct hstate *h, int nid)
2981
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2982
int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2983
{
2984
	struct huge_bootmem_page *m = NULL; /* initialize for clang */
2985
	int nr_nodes, node;
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995
	/* do node specific alloc */
	if (nid != NUMA_NO_NODE) {
		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
		if (!m)
			return 0;
		goto found;
	}
	/* allocate from next node when distributing huge pages */
2996
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2997
		m = memblock_alloc_try_nid_raw(
2998
				huge_page_size(h), huge_page_size(h),
2999
				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3000 3001 3002 3003 3004 3005 3006 3007
		/*
		 * Use the beginning of the huge page to store the
		 * huge_bootmem_page struct (until gather_bootmem
		 * puts them into the mem_map).
		 */
		if (!m)
			return 0;
		goto found;
3008 3009 3010 3011
	}

found:
	/* Put them into a private list first because mem_map is not up yet */
3012
	INIT_LIST_HEAD(&m->list);
3013 3014 3015 3016 3017
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

3018 3019 3020 3021
/*
 * Put bootmem huge pages into the standard lists after mem_map is up.
 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
 */
3022 3023 3024 3025 3026
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
3027
		struct page *page = virt_to_page(m);
3028
		struct hstate *h = m->hstate;
3029

3030
		VM_BUG_ON(!hstate_is_gigantic(h));
3031
		WARN_ON(page_count(page) != 1);
3032 3033 3034 3035 3036
		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
			WARN_ON(PageReserved(page));
			prep_new_huge_page(h, page, page_to_nid(page));
			put_page(page); /* add to the hugepage allocator */
		} else {
3037
			/* VERY unlikely inflated ref count on a tail page */
3038 3039
			free_gigantic_page(page, huge_page_order(h));
		}
3040

3041
		/*
3042 3043 3044
		 * We need to restore the 'stolen' pages to totalram_pages
		 * in order to fix confusing memory reports from free(1) and
		 * other side-effects, like CommitLimit going negative.
3045
		 */
3046
		adjust_managed_page_count(page, pages_per_huge_page(h));
3047
		cond_resched();
3048 3049
	}
}
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
{
	unsigned long i;
	char buf[32];

	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
		if (hstate_is_gigantic(h)) {
			if (!alloc_bootmem_huge_page(h, nid))
				break;
		} else {
			struct page *page;
			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;

			page = alloc_fresh_huge_page(h, gfp_mask, nid,
					&node_states[N_MEMORY], NULL);
			if (!page)
				break;
			put_page(page); /* free it into the hugepage allocator */
		}
		cond_resched();
	}
	if (i == h->max_huge_pages_node[nid])
		return;

	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
		h->max_huge_pages_node[nid], buf, nid, i);
	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
	h->max_huge_pages_node[nid] = i;
}
3080

3081
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
3082 3083
{
	unsigned long i;
3084
	nodemask_t *node_alloc_noretry;
3085 3086 3087 3088 3089 3090 3091 3092 3093
	bool node_specific_alloc = false;

	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
		return;
	}

	/* do node specific alloc */
3094
	for_each_online_node(i) {
3095 3096 3097 3098 3099
		if (h->max_huge_pages_node[i] > 0) {
			hugetlb_hstate_alloc_pages_onenode(h, i);
			node_specific_alloc = true;
		}
	}
3100

3101 3102 3103 3104
	if (node_specific_alloc)
		return;

	/* below will do all node balanced alloc */
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	if (!hstate_is_gigantic(h)) {
		/*
		 * Bit mask controlling how hard we retry per-node allocations.
		 * Ignore errors as lower level routines can deal with
		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
		 * time, we are likely in bigger trouble.
		 */
		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
						GFP_KERNEL);
	} else {
		/* allocations done at boot time */
		node_alloc_noretry = NULL;
	}

	/* bit mask controlling how hard we retry per-node allocations */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
3122

3123
	for (i = 0; i < h->max_huge_pages; ++i) {
3124
		if (hstate_is_gigantic(h)) {
3125
			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3126
				break;
3127
		} else if (!alloc_pool_huge_page(h,
3128 3129
					 &node_states[N_MEMORY],
					 node_alloc_noretry))
L
Linus Torvalds 已提交
3130
			break;
3131
		cond_resched();
L
Linus Torvalds 已提交
3132
	}
3133 3134 3135
	if (i < h->max_huge_pages) {
		char buf[32];

3136
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3137 3138 3139 3140
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
3141
	kfree(node_alloc_noretry);
3142 3143 3144 3145
}

static void __init hugetlb_init_hstates(void)
{
3146
	struct hstate *h, *h2;
3147 3148

	for_each_hstate(h) {
3149 3150 3151
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

3152
		/* oversize hugepages were init'ed in early boot */
3153
		if (!hstate_is_gigantic(h))
3154
			hugetlb_hstate_alloc_pages(h);
3155 3156 3157 3158 3159 3160

		/*
		 * Set demote order for each hstate.  Note that
		 * h->demote_order is initially 0.
		 * - We can not demote gigantic pages if runtime freeing
		 *   is not supported, so skip this.
3161 3162
		 * - If CMA allocation is possible, we can not demote
		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3163 3164 3165
		 */
		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
			continue;
3166 3167
		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
			continue;
3168 3169 3170 3171 3172 3173 3174
		for_each_hstate(h2) {
			if (h2 == h)
				continue;
			if (h2->order < h->order &&
			    h2->order > h->demote_order)
				h->demote_order = h2->order;
		}
3175
	}
3176
	VM_BUG_ON(minimum_order == UINT_MAX);
3177 3178 3179 3180 3181 3182 3183
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
3184
		char buf[32];
3185 3186

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3187
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3188
			buf, h->free_huge_pages);
3189 3190 3191
	}
}

L
Linus Torvalds 已提交
3192
#ifdef CONFIG_HIGHMEM
3193 3194
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3195
{
3196
	int i;
3197
	LIST_HEAD(page_list);
3198

3199
	lockdep_assert_held(&hugetlb_lock);
3200
	if (hstate_is_gigantic(h))
3201 3202
		return;

3203 3204 3205
	/*
	 * Collect pages to be freed on a list, and free after dropping lock
	 */
3206
	for_each_node_mask(i, *nodes_allowed) {
3207
		struct page *page, *next;
3208 3209 3210
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
3211
				goto out;
L
Linus Torvalds 已提交
3212 3213
			if (PageHighMem(page))
				continue;
3214
			remove_hugetlb_page(h, page, false);
3215
			list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3216 3217
		}
	}
3218 3219

out:
3220
	spin_unlock_irq(&hugetlb_lock);
3221
	update_and_free_pages_bulk(h, &page_list);
3222
	spin_lock_irq(&hugetlb_lock);
L
Linus Torvalds 已提交
3223 3224
}
#else
3225 3226
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3227 3228 3229 3230
{
}
#endif

3231 3232 3233 3234 3235
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
3236 3237
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
3238
{
3239
	int nr_nodes, node;
3240

3241
	lockdep_assert_held(&hugetlb_lock);
3242 3243
	VM_BUG_ON(delta != -1 && delta != 1);

3244 3245 3246 3247
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
3248
		}
3249 3250 3251 3252 3253
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
3254
		}
3255 3256
	}
	return 0;
3257

3258 3259 3260 3261
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
3262 3263
}

3264
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3265
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3266
			      nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
3267
{
3268
	unsigned long min_count, ret;
3269 3270
	struct page *page;
	LIST_HEAD(page_list);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);

	/*
	 * Bit mask controlling how hard we retry per-node allocations.
	 * If we can not allocate the bit mask, do not attempt to allocate
	 * the requested huge pages.
	 */
	if (node_alloc_noretry)
		nodes_clear(*node_alloc_noretry);
	else
		return -ENOMEM;
L
Linus Torvalds 已提交
3282

3283 3284 3285 3286 3287
	/*
	 * resize_lock mutex prevents concurrent adjustments to number of
	 * pages in hstate via the proc/sysfs interfaces.
	 */
	mutex_lock(&h->resize_lock);
3288
	flush_free_hpage_work(h);
3289
	spin_lock_irq(&hugetlb_lock);
3290

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
	/*
	 * Check for a node specific request.
	 * Changing node specific huge page count may require a corresponding
	 * change to the global count.  In any case, the passed node mask
	 * (nodes_allowed) will restrict alloc/free to the specified node.
	 */
	if (nid != NUMA_NO_NODE) {
		unsigned long old_count = count;

		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		/*
		 * User may have specified a large count value which caused the
		 * above calculation to overflow.  In this case, they wanted
		 * to allocate as many huge pages as possible.  Set count to
		 * largest possible value to align with their intention.
		 */
		if (count < old_count)
			count = ULONG_MAX;
	}

3311 3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * Gigantic pages runtime allocation depend on the capability for large
	 * page range allocation.
	 * If the system does not provide this feature, return an error when
	 * the user tries to allocate gigantic pages but let the user free the
	 * boottime allocated gigantic pages.
	 */
	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
		if (count > persistent_huge_pages(h)) {
3320
			spin_unlock_irq(&hugetlb_lock);
3321
			mutex_unlock(&h->resize_lock);
3322
			NODEMASK_FREE(node_alloc_noretry);
3323 3324 3325 3326
			return -EINVAL;
		}
		/* Fall through to decrease pool */
	}
3327

3328 3329 3330 3331
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
3332
	 *
3333
	 * We might race with alloc_surplus_huge_page() here and be unable
3334 3335 3336 3337
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
3338
	 */
3339
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3340
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3341 3342 3343
			break;
	}

3344
	while (count > persistent_huge_pages(h)) {
3345 3346 3347 3348 3349
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
3350
		spin_unlock_irq(&hugetlb_lock);
3351 3352 3353 3354

		/* yield cpu to avoid soft lockup */
		cond_resched();

3355 3356
		ret = alloc_pool_huge_page(h, nodes_allowed,
						node_alloc_noretry);
3357
		spin_lock_irq(&hugetlb_lock);
3358 3359 3360
		if (!ret)
			goto out;

3361 3362 3363
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
3364 3365 3366 3367 3368 3369 3370 3371
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
3372 3373 3374 3375
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
3376
	 * alloc_surplus_huge_page() is checking the global counter,
3377 3378 3379
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
3380
	 */
3381
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3382
	min_count = max(count, min_count);
3383
	try_to_free_low(h, min_count, nodes_allowed);
3384 3385 3386 3387

	/*
	 * Collect pages to be removed on list without dropping lock
	 */
3388
	while (min_count < persistent_huge_pages(h)) {
3389 3390
		page = remove_pool_huge_page(h, nodes_allowed, 0);
		if (!page)
L
Linus Torvalds 已提交
3391
			break;
3392 3393

		list_add(&page->lru, &page_list);
L
Linus Torvalds 已提交
3394
	}
3395
	/* free the pages after dropping lock */
3396
	spin_unlock_irq(&hugetlb_lock);
3397
	update_and_free_pages_bulk(h, &page_list);
3398
	flush_free_hpage_work(h);
3399
	spin_lock_irq(&hugetlb_lock);
3400

3401
	while (count < persistent_huge_pages(h)) {
3402
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3403 3404 3405
			break;
	}
out:
3406
	h->max_huge_pages = persistent_huge_pages(h);
3407
	spin_unlock_irq(&hugetlb_lock);
3408
	mutex_unlock(&h->resize_lock);
3409

3410 3411
	NODEMASK_FREE(node_alloc_noretry);

3412
	return 0;
L
Linus Torvalds 已提交
3413 3414
}

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
static int demote_free_huge_page(struct hstate *h, struct page *page)
{
	int i, nid = page_to_nid(page);
	struct hstate *target_hstate;
	int rc = 0;

	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);

	remove_hugetlb_page_for_demote(h, page, false);
	spin_unlock_irq(&hugetlb_lock);

3426
	rc = hugetlb_vmemmap_alloc(h, page);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	if (rc) {
		/* Allocation of vmemmmap failed, we can not demote page */
		spin_lock_irq(&hugetlb_lock);
		set_page_refcounted(page);
		add_hugetlb_page(h, page, false);
		return rc;
	}

	/*
	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
	 * sizes as it will not ref count pages.
	 */
	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));

	/*
	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
	 * Without the mutex, pages added to target hstate could be marked
	 * as surplus.
	 *
	 * Note that we already hold h->resize_lock.  To prevent deadlock,
	 * use the convention of always taking larger size hstate mutex first.
	 */
	mutex_lock(&target_hstate->resize_lock);
	for (i = 0; i < pages_per_huge_page(h);
				i += pages_per_huge_page(target_hstate)) {
		if (hstate_is_gigantic(target_hstate))
			prep_compound_gigantic_page_for_demote(page + i,
							target_hstate->order);
		else
			prep_compound_page(page + i, target_hstate->order);
		set_page_private(page + i, 0);
		set_page_refcounted(page + i);
		prep_new_huge_page(target_hstate, page + i, nid);
		put_page(page + i);
	}
	mutex_unlock(&target_hstate->resize_lock);

	spin_lock_irq(&hugetlb_lock);

	/*
	 * Not absolutely necessary, but for consistency update max_huge_pages
	 * based on pool changes for the demoted page.
	 */
	h->max_huge_pages--;
	target_hstate->max_huge_pages += pages_per_huge_page(h);

	return rc;
}

3476 3477 3478
static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
	__must_hold(&hugetlb_lock)
{
3479 3480
	int nr_nodes, node;
	struct page *page;
3481 3482 3483 3484 3485 3486 3487 3488 3489

	lockdep_assert_held(&hugetlb_lock);

	/* We should never get here if no demote order */
	if (!h->demote_order) {
		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
		return -EINVAL;		/* internal error */
	}

3490
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3491 3492 3493 3494 3495
		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
			if (PageHWPoison(page))
				continue;

			return demote_free_huge_page(h, page);
3496 3497 3498
		}
	}

3499 3500 3501 3502 3503
	/*
	 * Only way to get here is if all pages on free lists are poisoned.
	 * Return -EBUSY so that caller will not retry.
	 */
	return -EBUSY;
3504 3505
}

3506 3507 3508
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

3509 3510 3511
#define HSTATE_ATTR_WO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)

3512
#define HSTATE_ATTR(_name) \
3513
	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3514 3515 3516 3517

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

3518 3519 3520
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3521 3522
{
	int i;
3523

3524
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3525 3526 3527
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
3528
			return &hstates[i];
3529 3530 3531
		}

	return kobj_to_node_hstate(kobj, nidp);
3532 3533
}

3534
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3535 3536
					struct kobj_attribute *attr, char *buf)
{
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

3547
	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3548
}
3549

3550 3551 3552
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
3553 3554
{
	int err;
3555
	nodemask_t nodes_allowed, *n_mask;
3556

3557 3558
	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
		return -EINVAL;
3559

3560 3561 3562 3563 3564
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
3565 3566 3567 3568 3569
				init_nodemask_of_mempolicy(&nodes_allowed)))
			n_mask = &node_states[N_MEMORY];
		else
			n_mask = &nodes_allowed;
	} else {
3570
		/*
3571 3572
		 * Node specific request.  count adjustment happens in
		 * set_max_huge_pages() after acquiring hugetlb_lock.
3573
		 */
3574 3575
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
3576
	}
3577

3578
	err = set_max_huge_pages(h, count, nid, n_mask);
3579

3580
	return err ? err : len;
3581 3582
}

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

3600 3601 3602 3603 3604 3605 3606 3607 3608
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3609
	return nr_hugepages_store_common(false, kobj, buf, len);
3610 3611 3612
}
HSTATE_ATTR(nr_hugepages);

3613 3614 3615 3616 3617 3618 3619
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3620 3621
					   struct kobj_attribute *attr,
					   char *buf)
3622 3623 3624 3625 3626 3627 3628
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
3629
	return nr_hugepages_store_common(true, kobj, buf, len);
3630 3631 3632 3633 3634
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


3635 3636 3637
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3638
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3639
	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3640
}
3641

3642 3643 3644 3645 3646
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
3647
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3648

3649
	if (hstate_is_gigantic(h))
3650 3651
		return -EINVAL;

3652
	err = kstrtoul(buf, 10, &input);
3653
	if (err)
3654
		return err;
3655

3656
	spin_lock_irq(&hugetlb_lock);
3657
	h->nr_overcommit_huge_pages = input;
3658
	spin_unlock_irq(&hugetlb_lock);
3659 3660 3661 3662 3663 3664 3665 3666

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

3677
	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3678 3679 3680 3681 3682 3683
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3684
	struct hstate *h = kobj_to_hstate(kobj, NULL);
3685
	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3686 3687 3688 3689 3690 3691
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

3702
	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3703 3704 3705
}
HSTATE_ATTR_RO(surplus_hugepages);

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
static ssize_t demote_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	unsigned long nr_demote;
	unsigned long nr_available;
	nodemask_t nodes_allowed, *n_mask;
	struct hstate *h;
	int err = 0;
	int nid;

	err = kstrtoul(buf, 10, &nr_demote);
	if (err)
		return err;
	h = kobj_to_hstate(kobj, &nid);

	if (nid != NUMA_NO_NODE) {
		init_nodemask_of_node(&nodes_allowed, nid);
		n_mask = &nodes_allowed;
	} else {
		n_mask = &node_states[N_MEMORY];
	}

	/* Synchronize with other sysfs operations modifying huge pages */
	mutex_lock(&h->resize_lock);
	spin_lock_irq(&hugetlb_lock);

	while (nr_demote) {
		/*
		 * Check for available pages to demote each time thorough the
		 * loop as demote_pool_huge_page will drop hugetlb_lock.
		 */
		if (nid != NUMA_NO_NODE)
			nr_available = h->free_huge_pages_node[nid];
		else
			nr_available = h->free_huge_pages;
		nr_available -= h->resv_huge_pages;
		if (!nr_available)
			break;

		err = demote_pool_huge_page(h, n_mask);
		if (err)
			break;

		nr_demote--;
	}

	spin_unlock_irq(&hugetlb_lock);
	mutex_unlock(&h->resize_lock);

	if (err)
		return err;
	return len;
}
HSTATE_ATTR_WO(demote);

static ssize_t demote_size_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	int nid;
	struct hstate *h = kobj_to_hstate(kobj, &nid);
	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;

	return sysfs_emit(buf, "%lukB\n", demote_size);
}

static ssize_t demote_size_store(struct kobject *kobj,
					struct kobj_attribute *attr,
					const char *buf, size_t count)
{
	struct hstate *h, *demote_hstate;
	unsigned long demote_size;
	unsigned int demote_order;
	int nid;

	demote_size = (unsigned long)memparse(buf, NULL);

	demote_hstate = size_to_hstate(demote_size);
	if (!demote_hstate)
		return -EINVAL;
	demote_order = demote_hstate->order;
3786 3787
	if (demote_order < HUGETLB_PAGE_ORDER)
		return -EINVAL;
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	/* demote order must be smaller than hstate order */
	h = kobj_to_hstate(kobj, &nid);
	if (demote_order >= h->order)
		return -EINVAL;

	/* resize_lock synchronizes access to demote size and writes */
	mutex_lock(&h->resize_lock);
	h->demote_order = demote_order;
	mutex_unlock(&h->resize_lock);

	return count;
}
HSTATE_ATTR(demote_size);

3803 3804 3805 3806 3807 3808
static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
3809 3810 3811
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
3812 3813 3814
	NULL,
};

3815
static const struct attribute_group hstate_attr_group = {
3816 3817 3818
	.attrs = hstate_attrs,
};

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
static struct attribute *hstate_demote_attrs[] = {
	&demote_size_attr.attr,
	&demote_attr.attr,
	NULL,
};

static const struct attribute_group hstate_demote_attr_group = {
	.attrs = hstate_demote_attrs,
};

J
Jeff Mahoney 已提交
3829 3830
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
3831
				    const struct attribute_group *hstate_attr_group)
3832 3833
{
	int retval;
3834
	int hi = hstate_index(h);
3835

3836 3837
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
3838 3839
		return -ENOMEM;

3840
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3841
	if (retval) {
3842
		kobject_put(hstate_kobjs[hi]);
3843 3844
		hstate_kobjs[hi] = NULL;
	}
3845

3846 3847 3848 3849 3850 3851
	if (h->demote_order) {
		if (sysfs_create_group(hstate_kobjs[hi],
					&hstate_demote_attr_group))
			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
	}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
3865 3866
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
3867
		if (err)
3868
			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3869 3870 3871
	}
}

3872 3873 3874 3875
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3876 3877 3878
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
3879 3880 3881 3882 3883 3884
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
3885
static struct node_hstate node_hstates[MAX_NUMNODES];
3886 3887

/*
3888
 * A subset of global hstate attributes for node devices
3889 3890 3891 3892 3893 3894 3895 3896
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

3897
static const struct attribute_group per_node_hstate_attr_group = {
3898 3899 3900 3901
	.attrs = per_node_hstate_attrs,
};

/*
3902
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
3925
 * Unregister hstate attributes from a single node device.
3926 3927
 * No-op if no hstate attributes attached.
 */
3928
static void hugetlb_unregister_node(struct node *node)
3929 3930
{
	struct hstate *h;
3931
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3932 3933

	if (!nhs->hugepages_kobj)
3934
		return;		/* no hstate attributes */
3935

3936 3937 3938 3939 3940
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
3941
		}
3942
	}
3943 3944 3945 3946 3947 3948 3949

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
3950
 * Register hstate attributes for a single node device.
3951 3952
 * No-op if attributes already registered.
 */
3953
static void hugetlb_register_node(struct node *node)
3954 3955
{
	struct hstate *h;
3956
	struct node_hstate *nhs = &node_hstates[node->dev.id];
3957 3958 3959 3960 3961 3962
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3963
							&node->dev.kobj);
3964 3965 3966 3967 3968 3969 3970 3971
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
3972
			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3973
				h->name, node->dev.id);
3974 3975 3976 3977 3978 3979 3980
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
3981
 * hugetlb init time:  register hstate attributes for all registered node
3982 3983
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
3984
 */
3985
static void __init hugetlb_register_all_nodes(void)
3986 3987 3988
{
	int nid;

3989
	for_each_node_state(nid, N_MEMORY) {
3990
		struct node *node = node_devices[nid];
3991
		if (node->dev.id == nid)
3992 3993 3994 3995
			hugetlb_register_node(node);
	}

	/*
3996
	 * Let the node device driver know we're here so it can
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

4016 4017
static int __init hugetlb_init(void)
{
4018 4019
	int i;

4020 4021 4022
	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
			__NR_HPAGEFLAGS);

4023 4024 4025
	if (!hugepages_supported()) {
		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4026
		return 0;
4027
	}
4028

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	/*
	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
	 * architectures depend on setup being done here.
	 */
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		/*
		 * If we did not parse a default huge page size, set
		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
		 * number of huge pages for this default size was implicitly
		 * specified, set that here as well.
		 * Note that the implicit setting will overwrite an explicit
		 * setting.  A warning will be printed in this case.
		 */
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		if (default_hstate_max_huge_pages) {
			if (default_hstate.max_huge_pages) {
				char buf[32];

				string_get_size(huge_page_size(&default_hstate),
					1, STRING_UNITS_2, buf, 32);
				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
					default_hstate.max_huge_pages, buf);
				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
					default_hstate_max_huge_pages);
			}
			default_hstate.max_huge_pages =
				default_hstate_max_huge_pages;
4057

4058
			for_each_online_node(i)
4059 4060
				default_hstate.max_huge_pages_node[i] =
					default_hugepages_in_node[i];
4061
		}
4062
	}
4063

4064
	hugetlb_cma_check();
4065
	hugetlb_init_hstates();
4066
	gather_bootmem_prealloc();
4067 4068 4069
	report_hugepages();

	hugetlb_sysfs_init();
4070
	hugetlb_register_all_nodes();
4071
	hugetlb_cgroup_file_init();
4072

4073 4074 4075 4076 4077
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
4078
	hugetlb_fault_mutex_table =
4079 4080
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
4081
	BUG_ON(!hugetlb_fault_mutex_table);
4082 4083

	for (i = 0; i < num_fault_mutexes; i++)
4084
		mutex_init(&hugetlb_fault_mutex_table[i]);
4085 4086
	return 0;
}
4087
subsys_initcall(hugetlb_init);
4088

4089 4090
/* Overwritten by architectures with more huge page sizes */
bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4091
{
4092
	return size == HPAGE_SIZE;
4093 4094
}

4095
void __init hugetlb_add_hstate(unsigned int order)
4096 4097
{
	struct hstate *h;
4098 4099
	unsigned long i;

4100 4101 4102
	if (size_to_hstate(PAGE_SIZE << order)) {
		return;
	}
4103
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4104
	BUG_ON(order == 0);
4105
	h = &hstates[hugetlb_max_hstate++];
4106
	mutex_init(&h->resize_lock);
4107
	h->order = order;
4108
	h->mask = ~(huge_page_size(h) - 1);
4109 4110
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4111
	INIT_LIST_HEAD(&h->hugepage_activelist);
4112 4113
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
4114 4115
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
4116
	hugetlb_vmemmap_init(h);
4117

4118 4119 4120
	parsed_hstate = h;
}

4121 4122 4123 4124
bool __init __weak hugetlb_node_alloc_supported(void)
{
	return true;
}
4125 4126 4127 4128 4129 4130 4131 4132
/*
 * hugepages command line processing
 * hugepages normally follows a valid hugepagsz or default_hugepagsz
 * specification.  If not, ignore the hugepages value.  hugepages can also
 * be the first huge page command line  option in which case it implicitly
 * specifies the number of huge pages for the default size.
 */
static int __init hugepages_setup(char *s)
4133 4134
{
	unsigned long *mhp;
4135
	static unsigned long *last_mhp;
4136 4137 4138 4139
	int node = NUMA_NO_NODE;
	int count;
	unsigned long tmp;
	char *p = s;
4140

4141
	if (!parsed_valid_hugepagesz) {
4142
		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4143
		parsed_valid_hugepagesz = true;
4144
		return 0;
4145
	}
4146

4147
	/*
4148 4149 4150 4151
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
	 * yet, so this hugepages= parameter goes to the "default hstate".
	 * Otherwise, it goes with the previously parsed hugepagesz or
	 * default_hugepagesz.
4152
	 */
4153
	else if (!hugetlb_max_hstate)
4154 4155 4156 4157
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

4158
	if (mhp == last_mhp) {
4159 4160
		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
		return 0;
4161 4162
	}

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	while (*p) {
		count = 0;
		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
			goto invalid;
		/* Parameter is node format */
		if (p[count] == ':') {
			if (!hugetlb_node_alloc_supported()) {
				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
				return 0;
			}
4173
			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4174
				goto invalid;
4175
			node = array_index_nospec(tmp, MAX_NUMNODES);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
			p += count + 1;
			/* Parse hugepages */
			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
				goto invalid;
			if (!hugetlb_max_hstate)
				default_hugepages_in_node[node] = tmp;
			else
				parsed_hstate->max_huge_pages_node[node] = tmp;
			*mhp += tmp;
			/* Go to parse next node*/
			if (p[count] == ',')
				p += count + 1;
			else
				break;
		} else {
			if (p != s)
				goto invalid;
			*mhp = tmp;
			break;
		}
	}
4197

4198 4199
	/*
	 * Global state is always initialized later in hugetlb_init.
4200
	 * But we need to allocate gigantic hstates here early to still
4201 4202
	 * use the bootmem allocator.
	 */
4203
	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4204 4205 4206 4207
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

4208
	return 1;
4209 4210 4211 4212

invalid:
	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
	return 0;
4213
}
4214
__setup("hugepages=", hugepages_setup);
4215

4216 4217 4218 4219 4220 4221 4222
/*
 * hugepagesz command line processing
 * A specific huge page size can only be specified once with hugepagesz.
 * hugepagesz is followed by hugepages on the command line.  The global
 * variable 'parsed_valid_hugepagesz' is used to determine if prior
 * hugepagesz argument was valid.
 */
4223
static int __init hugepagesz_setup(char *s)
4224
{
4225
	unsigned long size;
4226 4227 4228
	struct hstate *h;

	parsed_valid_hugepagesz = false;
4229 4230 4231
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
4232
		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4233 4234 4235
		return 0;
	}

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
	h = size_to_hstate(size);
	if (h) {
		/*
		 * hstate for this size already exists.  This is normally
		 * an error, but is allowed if the existing hstate is the
		 * default hstate.  More specifically, it is only allowed if
		 * the number of huge pages for the default hstate was not
		 * previously specified.
		 */
		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
		    default_hstate.max_huge_pages) {
			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
			return 0;
		}

		/*
		 * No need to call hugetlb_add_hstate() as hstate already
		 * exists.  But, do set parsed_hstate so that a following
		 * hugepages= parameter will be applied to this hstate.
		 */
		parsed_hstate = h;
		parsed_valid_hugepagesz = true;
		return 1;
4259 4260
	}

4261
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4262
	parsed_valid_hugepagesz = true;
4263 4264
	return 1;
}
4265 4266
__setup("hugepagesz=", hugepagesz_setup);

4267 4268 4269 4270
/*
 * default_hugepagesz command line input
 * Only one instance of default_hugepagesz allowed on command line.
 */
4271
static int __init default_hugepagesz_setup(char *s)
4272
{
4273
	unsigned long size;
4274
	int i;
4275

4276 4277 4278 4279 4280 4281
	parsed_valid_hugepagesz = false;
	if (parsed_default_hugepagesz) {
		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
		return 0;
	}

4282 4283 4284
	size = (unsigned long)memparse(s, NULL);

	if (!arch_hugetlb_valid_size(size)) {
4285
		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4286 4287 4288
		return 0;
	}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
	parsed_valid_hugepagesz = true;
	parsed_default_hugepagesz = true;
	default_hstate_idx = hstate_index(size_to_hstate(size));

	/*
	 * The number of default huge pages (for this size) could have been
	 * specified as the first hugetlb parameter: hugepages=X.  If so,
	 * then default_hstate_max_huge_pages is set.  If the default huge
	 * page size is gigantic (>= MAX_ORDER), then the pages must be
	 * allocated here from bootmem allocator.
	 */
	if (default_hstate_max_huge_pages) {
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4303
		for_each_online_node(i)
4304 4305
			default_hstate.max_huge_pages_node[i] =
				default_hugepages_in_node[i];
4306 4307 4308 4309 4310
		if (hstate_is_gigantic(&default_hstate))
			hugetlb_hstate_alloc_pages(&default_hstate);
		default_hstate_max_huge_pages = 0;
	}

4311 4312
	return 1;
}
4313
__setup("default_hugepagesz=", default_hugepagesz_setup);
4314

4315
static unsigned int allowed_mems_nr(struct hstate *h)
4316 4317 4318
{
	int node;
	unsigned int nr = 0;
4319 4320 4321 4322 4323
	nodemask_t *mpol_allowed;
	unsigned int *array = h->free_huge_pages_node;
	gfp_t gfp_mask = htlb_alloc_mask(h);

	mpol_allowed = policy_nodemask_current(gfp_mask);
4324

4325
	for_each_node_mask(node, cpuset_current_mems_allowed) {
4326
		if (!mpol_allowed || node_isset(node, *mpol_allowed))
4327 4328
			nr += array[node];
	}
4329 4330 4331 4332 4333

	return nr;
}

#ifdef CONFIG_SYSCTL
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
					  void *buffer, size_t *length,
					  loff_t *ppos, unsigned long *out)
{
	struct ctl_table dup_table;

	/*
	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
	 * can duplicate the @table and alter the duplicate of it.
	 */
	dup_table = *table;
	dup_table.data = out;

	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
}

4350 4351
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
4352
			 void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
4353
{
4354
	struct hstate *h = &default_hstate;
4355
	unsigned long tmp = h->max_huge_pages;
4356
	int ret;
4357

4358
	if (!hugepages_supported())
4359
		return -EOPNOTSUPP;
4360

4361 4362
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
4363 4364
	if (ret)
		goto out;
4365

4366 4367 4368
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
4369 4370
out:
	return ret;
L
Linus Torvalds 已提交
4371
}
4372

4373
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4374
			  void *buffer, size_t *length, loff_t *ppos)
4375 4376 4377 4378 4379 4380 4381 4382
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4383
			  void *buffer, size_t *length, loff_t *ppos)
4384 4385 4386 4387 4388 4389
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

4390
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4391
		void *buffer, size_t *length, loff_t *ppos)
4392
{
4393
	struct hstate *h = &default_hstate;
4394
	unsigned long tmp;
4395
	int ret;
4396

4397
	if (!hugepages_supported())
4398
		return -EOPNOTSUPP;
4399

4400
	tmp = h->nr_overcommit_huge_pages;
4401

4402
	if (write && hstate_is_gigantic(h))
4403 4404
		return -EINVAL;

4405 4406
	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
					     &tmp);
4407 4408
	if (ret)
		goto out;
4409 4410

	if (write) {
4411
		spin_lock_irq(&hugetlb_lock);
4412
		h->nr_overcommit_huge_pages = tmp;
4413
		spin_unlock_irq(&hugetlb_lock);
4414
	}
4415 4416
out:
	return ret;
4417 4418
}

L
Linus Torvalds 已提交
4419 4420
#endif /* CONFIG_SYSCTL */

4421
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
4422
{
4423 4424 4425
	struct hstate *h;
	unsigned long total = 0;

4426 4427
	if (!hugepages_supported())
		return;
4428 4429 4430 4431

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

4432
		total += huge_page_size(h) * count;
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
4445
				   huge_page_size(h) / SZ_1K);
4446 4447
	}

4448
	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
L
Linus Torvalds 已提交
4449 4450
}

4451
int hugetlb_report_node_meminfo(char *buf, int len, int nid)
L
Linus Torvalds 已提交
4452
{
4453
	struct hstate *h = &default_hstate;
4454

4455 4456
	if (!hugepages_supported())
		return 0;
4457 4458 4459 4460 4461 4462 4463 4464

	return sysfs_emit_at(buf, len,
			     "Node %d HugePages_Total: %5u\n"
			     "Node %d HugePages_Free:  %5u\n"
			     "Node %d HugePages_Surp:  %5u\n",
			     nid, h->nr_huge_pages_node[nid],
			     nid, h->free_huge_pages_node[nid],
			     nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
4465 4466
}

4467 4468 4469 4470 4471
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

4472 4473 4474
	if (!hugepages_supported())
		return;

4475 4476 4477 4478 4479 4480 4481
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
4482
				huge_page_size(h) / SZ_1K);
4483 4484
}

4485 4486 4487 4488 4489 4490
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
4491 4492 4493
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
4494 4495 4496 4497 4498 4499
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
4500 4501
}

4502
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
4503 4504 4505
{
	int ret = -ENOMEM;

4506 4507 4508
	if (!delta)
		return 0;

4509
	spin_lock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
4526 4527 4528 4529 4530 4531
	 *
	 * Apart from cpuset, we also have memory policy mechanism that
	 * also determines from which node the kernel will allocate memory
	 * in a NUMA system. So similar to cpuset, we also should consider
	 * the memory policy of the current task. Similar to the description
	 * above.
M
Mel Gorman 已提交
4532 4533
	 */
	if (delta > 0) {
4534
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
4535 4536
			goto out;

4537
		if (delta > allowed_mems_nr(h)) {
4538
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
4539 4540 4541 4542 4543 4544
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
4545
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
4546 4547

out:
4548
	spin_unlock_irq(&hugetlb_lock);
M
Mel Gorman 已提交
4549 4550 4551
	return ret;
}

4552 4553
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
4554
	struct resv_map *resv = vma_resv_map(vma);
4555 4556 4557 4558 4559

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
4560
	 * has a reference to the reservation map it cannot disappear until
4561 4562 4563
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
4564 4565
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4566
		kref_get(&resv->refs);
4567
	}
4568 4569
}

4570 4571
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
4572
	struct hstate *h = hstate_vma(vma);
4573
	struct resv_map *resv = vma_resv_map(vma);
4574
	struct hugepage_subpool *spool = subpool_vma(vma);
4575
	unsigned long reserve, start, end;
4576
	long gbl_reserve;
4577

4578 4579
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
4580

4581 4582
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
4583

4584
	reserve = (end - start) - region_count(resv, start, end);
4585
	hugetlb_cgroup_uncharge_counter(resv, start, end);
4586
	if (reserve) {
4587 4588 4589 4590 4591 4592
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
4593
	}
4594 4595

	kref_put(&resv->refs, resv_map_release);
4596 4597
}

4598 4599 4600 4601 4602 4603 4604
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

4605 4606
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
4607
	return huge_page_size(hstate_vma(vma));
4608 4609
}

L
Linus Torvalds 已提交
4610 4611 4612
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
M
Miaohe Lin 已提交
4613
 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
L
Linus Torvalds 已提交
4614 4615
 * this far.
 */
4616
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
4617 4618
{
	BUG();
N
Nick Piggin 已提交
4619
	return 0;
L
Linus Torvalds 已提交
4620 4621
}

4622 4623 4624 4625 4626 4627 4628
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
4629
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
4630
	.fault = hugetlb_vm_op_fault,
4631
	.open = hugetlb_vm_op_open,
4632
	.close = hugetlb_vm_op_close,
4633
	.may_split = hugetlb_vm_op_split,
4634
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
4635 4636
};

4637 4638
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
4639 4640
{
	pte_t entry;
4641
	unsigned int shift = huge_page_shift(hstate_vma(vma));
D
David Gibson 已提交
4642

4643
	if (writable) {
4644 4645
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
4646
	} else {
4647 4648
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
4649 4650
	}
	entry = pte_mkyoung(entry);
4651
	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
D
David Gibson 已提交
4652 4653 4654 4655

	return entry;
}

4656 4657 4658 4659 4660
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

4661
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4662
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4663
		update_mmu_cache(vma, address, ptep);
4664 4665
}

4666
bool is_hugetlb_entry_migration(pte_t pte)
4667 4668 4669 4670
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4671
		return false;
4672
	swp = pte_to_swp_entry(pte);
4673
	if (is_migration_entry(swp))
4674
		return true;
4675
	else
4676
		return false;
4677 4678
}

4679
static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4680 4681 4682 4683
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
4684
		return false;
4685
	swp = pte_to_swp_entry(pte);
4686
	if (is_hwpoison_entry(swp))
4687
		return true;
4688
	else
4689
		return false;
4690
}
4691

4692 4693 4694 4695 4696 4697
static void
hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
		     struct page *new_page)
{
	__SetPageUptodate(new_page);
	hugepage_add_new_anon_rmap(new_page, vma, addr);
4698
	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4699 4700 4701 4702 4703
	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
	ClearHPageRestoreReserve(new_page);
	SetHPageMigratable(new_page);
}

D
David Gibson 已提交
4704 4705 4706
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
4707
	pte_t *src_pte, *dst_pte, entry, dst_entry;
D
David Gibson 已提交
4708
	struct page *ptepage;
4709
	unsigned long addr;
4710
	bool cow = is_cow_mapping(vma->vm_flags);
4711 4712
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4713
	unsigned long npages = pages_per_huge_page(h);
4714
	struct address_space *mapping = vma->vm_file->f_mapping;
4715
	struct mmu_notifier_range range;
4716
	int ret = 0;
4717

4718
	if (cow) {
4719
		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4720
					vma->vm_start,
4721 4722
					vma->vm_end);
		mmu_notifier_invalidate_range_start(&range);
4723 4724 4725 4726 4727 4728 4729 4730
	} else {
		/*
		 * For shared mappings i_mmap_rwsem must be held to call
		 * huge_pte_alloc, otherwise the returned ptep could go
		 * away if part of a shared pmd and another thread calls
		 * huge_pmd_unshare.
		 */
		i_mmap_lock_read(mapping);
4731
	}
4732

4733
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4734
		spinlock_t *src_ptl, *dst_ptl;
4735
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
4736 4737
		if (!src_pte)
			continue;
4738
		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4739 4740 4741 4742
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
4743

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
		/*
		 * If the pagetables are shared don't copy or take references.
		 * dst_pte == src_pte is the common case of src/dest sharing.
		 *
		 * However, src could have 'unshared' and dst shares with
		 * another vma.  If dst_pte !none, this implies sharing.
		 * Check here before taking page table lock, and once again
		 * after taking the lock below.
		 */
		dst_entry = huge_ptep_get(dst_pte);
		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4755 4756
			continue;

4757 4758 4759
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4760
		entry = huge_ptep_get(src_pte);
4761
		dst_entry = huge_ptep_get(dst_pte);
4762
again:
4763 4764 4765 4766 4767 4768
		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
			/*
			 * Skip if src entry none.  Also, skip in the
			 * unlikely case dst entry !none as this implies
			 * sharing with another vma.
			 */
4769 4770 4771 4772 4773
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

4774
			if (is_writable_migration_entry(swp_entry) && cow) {
4775 4776 4777 4778
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
4779 4780
				swp_entry = make_readable_migration_entry(
							swp_offset(swp_entry));
4781
				entry = swp_entry_to_pte(swp_entry);
4782 4783
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
4784
			}
4785
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4786
		} else {
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
			entry = huge_ptep_get(src_pte);
			ptepage = pte_page(entry);
			get_page(ptepage);

			/*
			 * This is a rare case where we see pinned hugetlb
			 * pages while they're prone to COW.  We need to do the
			 * COW earlier during fork.
			 *
			 * When pre-allocating the page or copying data, we
			 * need to be without the pgtable locks since we could
			 * sleep during the process.
			 */
			if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
				pte_t src_pte_old = entry;
				struct page *new;

				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				/* Do not use reserve as it's private owned */
				new = alloc_huge_page(vma, addr, 1);
				if (IS_ERR(new)) {
					put_page(ptepage);
					ret = PTR_ERR(new);
					break;
				}
				copy_user_huge_page(new, ptepage, addr, vma,
						    npages);
				put_page(ptepage);

				/* Install the new huge page if src pte stable */
				dst_ptl = huge_pte_lock(h, dst, dst_pte);
				src_ptl = huge_pte_lockptr(h, src, src_pte);
				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
				entry = huge_ptep_get(src_pte);
				if (!pte_same(src_pte_old, entry)) {
4823 4824
					restore_reserve_on_error(h, vma, addr,
								new);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
					put_page(new);
					/* dst_entry won't change as in child */
					goto again;
				}
				hugetlb_install_page(vma, dst_pte, addr, new);
				spin_unlock(src_ptl);
				spin_unlock(dst_ptl);
				continue;
			}

4835
			if (cow) {
4836 4837 4838 4839 4840
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
4841
				 * See Documentation/vm/mmu_notifier.rst
4842
				 */
4843
				huge_ptep_set_wrprotect(src, addr, src_pte);
4844
				entry = huge_pte_wrprotect(entry);
4845
			}
4846

4847
			page_dup_rmap(ptepage, true);
4848
			set_huge_pte_at(dst, addr, dst_pte, entry);
4849
			hugetlb_count_add(npages, dst);
4850
		}
4851 4852
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
4853 4854
	}

4855
	if (cow)
4856
		mmu_notifier_invalidate_range_end(&range);
4857 4858
	else
		i_mmap_unlock_read(mapping);
4859 4860

	return ret;
D
David Gibson 已提交
4861 4862
}

4863
static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4864
			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4865 4866 4867 4868
{
	struct hstate *h = hstate_vma(vma);
	struct mm_struct *mm = vma->vm_mm;
	spinlock_t *src_ptl, *dst_ptl;
4869
	pte_t pte;
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

	dst_ptl = huge_pte_lock(h, mm, dst_pte);
	src_ptl = huge_pte_lockptr(h, mm, src_pte);

	/*
	 * We don't have to worry about the ordering of src and dst ptlocks
	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
	 */
	if (src_ptl != dst_ptl)
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
	set_huge_pte_at(mm, new_addr, dst_pte, pte);

	if (src_ptl != dst_ptl)
		spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
}

int move_hugetlb_page_tables(struct vm_area_struct *vma,
			     struct vm_area_struct *new_vma,
			     unsigned long old_addr, unsigned long new_addr,
			     unsigned long len)
{
	struct hstate *h = hstate_vma(vma);
	struct address_space *mapping = vma->vm_file->f_mapping;
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	unsigned long old_end = old_addr + len;
	unsigned long old_addr_copy;
	pte_t *src_pte, *dst_pte;
	struct mmu_notifier_range range;

	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
				old_end);
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
	/* Prevent race with file truncation */
	i_mmap_lock_write(mapping);
	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
		src_pte = huge_pte_offset(mm, old_addr, sz);
		if (!src_pte)
			continue;
		if (huge_pte_none(huge_ptep_get(src_pte)))
			continue;

		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
		 * arg may be modified. Pass a copy instead to preserve the
		 * value in old_addr.
		 */
		old_addr_copy = old_addr;

		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
			continue;

		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
		if (!dst_pte)
			break;

4929
		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4930 4931 4932
	}
	flush_tlb_range(vma, old_end - len, old_end);
	mmu_notifier_invalidate_range_end(&range);
4933
	i_mmap_unlock_write(mapping);
4934 4935 4936 4937

	return len + old_addr - old_end;
}

4938 4939 4940
static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
				   unsigned long start, unsigned long end,
				   struct page *ref_page)
D
David Gibson 已提交
4941 4942 4943
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
4944
	pte_t *ptep;
D
David Gibson 已提交
4945
	pte_t pte;
4946
	spinlock_t *ptl;
D
David Gibson 已提交
4947
	struct page *page;
4948 4949
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
4950
	struct mmu_notifier_range range;
4951
	bool force_flush = false;
4952

D
David Gibson 已提交
4953
	WARN_ON(!is_vm_hugetlb_page(vma));
4954 4955
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
4956

4957 4958 4959 4960
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
4961
	tlb_change_page_size(tlb, sz);
4962
	tlb_start_vma(tlb, vma);
4963 4964 4965 4966

	/*
	 * If sharing possible, alert mmu notifiers of worst case.
	 */
4967 4968
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
				end);
4969 4970
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
	mmu_notifier_invalidate_range_start(&range);
4971 4972
	address = start;
	for (; address < end; address += sz) {
4973
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
4974
		if (!ptep)
4975 4976
			continue;

4977
		ptl = huge_pte_lock(h, mm, ptep);
4978
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4979
			spin_unlock(ptl);
4980 4981
			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
			force_flush = true;
4982 4983
			continue;
		}
4984

4985
		pte = huge_ptep_get(ptep);
4986 4987 4988 4989
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
4990 4991

		/*
4992 4993
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
4994
		 */
4995
		if (unlikely(!pte_present(pte))) {
4996
			huge_pte_clear(mm, address, ptep, sz);
4997 4998
			spin_unlock(ptl);
			continue;
4999
		}
5000 5001

		page = pte_page(pte);
5002 5003 5004 5005 5006 5007
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
5008 5009 5010 5011
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
5012 5013 5014 5015 5016 5017 5018 5019
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

5020
		pte = huge_ptep_get_and_clear(mm, address, ptep);
5021
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5022
		if (huge_pte_dirty(pte))
5023
			set_page_dirty(page);
5024

5025
		hugetlb_count_sub(pages_per_huge_page(h), mm);
5026
		page_remove_rmap(page, vma, true);
5027

5028
		spin_unlock(ptl);
5029
		tlb_remove_page_size(tlb, page, huge_page_size(h));
5030 5031 5032 5033 5034
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
5035
	}
5036
	mmu_notifier_invalidate_range_end(&range);
5037
	tlb_end_vma(tlb, vma);
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053

	/*
	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
	 * could defer the flush until now, since by holding i_mmap_rwsem we
	 * guaranteed that the last refernece would not be dropped. But we must
	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
	 * dropped and the last reference to the shared PMDs page might be
	 * dropped as well.
	 *
	 * In theory we could defer the freeing of the PMD pages as well, but
	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
	 * detect sharing, so we cannot defer the release of the page either.
	 * Instead, do flush now.
	 */
	if (force_flush)
		tlb_flush_mmu_tlbonly(tlb);
L
Linus Torvalds 已提交
5054
}
D
David Gibson 已提交
5055

5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
5068
	 * is to clear it before releasing the i_mmap_rwsem. This works
5069
	 * because in the context this is called, the VMA is about to be
5070
	 * destroyed and the i_mmap_rwsem is held.
5071 5072 5073 5074
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

5075
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5076
			  unsigned long end, struct page *ref_page)
5077
{
5078
	struct mmu_gather tlb;
5079

5080
	tlb_gather_mmu(&tlb, vma->vm_mm);
5081
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5082
	tlb_finish_mmu(&tlb);
5083 5084
}

5085 5086
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5087
 * mapping it owns the reserve page for. The intention is to unmap the page
5088 5089 5090
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
5091 5092
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
5093
{
5094
	struct hstate *h = hstate_vma(vma);
5095 5096 5097 5098 5099 5100 5101 5102
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
5103
	address = address & huge_page_mask(h);
5104 5105
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
5106
	mapping = vma->vm_file->f_mapping;
5107

5108 5109 5110 5111 5112
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
5113
	i_mmap_lock_write(mapping);
5114
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5115 5116 5117 5118
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

5119 5120 5121 5122 5123 5124 5125 5126
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

5127 5128 5129 5130 5131 5132 5133 5134
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5135 5136
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
5137
	}
5138
	i_mmap_unlock_write(mapping);
5139 5140
}

5141 5142
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5143
 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5144 5145
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
5146
 */
5147
static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5148
		       unsigned long address, pte_t *ptep,
5149
		       struct page *pagecache_page, spinlock_t *ptl)
5150
{
5151
	pte_t pte;
5152
	struct hstate *h = hstate_vma(vma);
5153
	struct page *old_page, *new_page;
5154 5155
	int outside_reserve = 0;
	vm_fault_t ret = 0;
5156
	unsigned long haddr = address & huge_page_mask(h);
5157
	struct mmu_notifier_range range;
5158

5159
	pte = huge_ptep_get(ptep);
5160 5161
	old_page = pte_page(pte);

5162
retry_avoidcopy:
5163 5164
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
5165
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5166
		page_move_anon_rmap(old_page, vma);
5167
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
5168
		return 0;
5169 5170
	}

5171 5172 5173 5174 5175 5176 5177 5178 5179
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
5180
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5181 5182 5183
			old_page != pagecache_page)
		outside_reserve = 1;

5184
	get_page(old_page);
5185

5186 5187 5188 5189
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
5190
	spin_unlock(ptl);
5191
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
5192

5193
	if (IS_ERR(new_page)) {
5194 5195 5196 5197 5198 5199 5200 5201
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
5202 5203 5204 5205
			struct address_space *mapping = vma->vm_file->f_mapping;
			pgoff_t idx;
			u32 hash;

5206
			put_page(old_page);
5207
			BUG_ON(huge_pte_none(pte));
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
			/*
			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
			 * unmapping.  unmapping needs to hold i_mmap_rwsem
			 * in write mode.  Dropping i_mmap_rwsem in read mode
			 * here is OK as COW mappings do not interact with
			 * PMD sharing.
			 *
			 * Reacquire both after unmap operation.
			 */
			idx = vma_hugecache_offset(h, vma, haddr);
			hash = hugetlb_fault_mutex_hash(mapping, idx);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			i_mmap_unlock_read(mapping);

5222
			unmap_ref_private(mm, vma, old_page, haddr);
5223 5224 5225

			i_mmap_lock_read(mapping);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5226
			spin_lock(ptl);
5227
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5228 5229 5230 5231 5232 5233 5234 5235
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
5236 5237
		}

5238
		ret = vmf_error(PTR_ERR(new_page));
5239
		goto out_release_old;
5240 5241
	}

5242 5243 5244 5245
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
5246
	if (unlikely(anon_vma_prepare(vma))) {
5247 5248
		ret = VM_FAULT_OOM;
		goto out_release_all;
5249
	}
5250

5251
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
5252
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
5253
	__SetPageUptodate(new_page);
5254

5255
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5256
				haddr + huge_page_size(h));
5257
	mmu_notifier_invalidate_range_start(&range);
5258

5259
	/*
5260
	 * Retake the page table lock to check for racing updates
5261 5262
	 * before the page tables are altered
	 */
5263
	spin_lock(ptl);
5264
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5265
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5266
		ClearHPageRestoreReserve(new_page);
5267

5268
		/* Break COW */
5269
		huge_ptep_clear_flush(vma, haddr, ptep);
5270
		mmu_notifier_invalidate_range(mm, range.start, range.end);
5271
		page_remove_rmap(old_page, vma, true);
5272
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
5273 5274
		set_huge_pte_at(mm, haddr, ptep,
				make_huge_pte(vma, new_page, 1));
5275
		SetHPageMigratable(new_page);
5276 5277 5278
		/* Make the old page be freed below */
		new_page = old_page;
	}
5279
	spin_unlock(ptl);
5280
	mmu_notifier_invalidate_range_end(&range);
5281
out_release_all:
5282 5283 5284
	/* No restore in case of successful pagetable update (Break COW) */
	if (new_page != old_page)
		restore_reserve_on_error(h, vma, haddr, new_page);
5285
	put_page(new_page);
5286
out_release_old:
5287
	put_page(old_page);
5288

5289 5290
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
5291 5292
}

5293
/* Return the pagecache page at a given address within a VMA */
5294 5295
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
5296 5297
{
	struct address_space *mapping;
5298
	pgoff_t idx;
5299 5300

	mapping = vma->vm_file->f_mapping;
5301
	idx = vma_hugecache_offset(h, vma, address);
5302 5303 5304 5305

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
5306 5307 5308 5309 5310
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

5326 5327 5328 5329 5330 5331 5332 5333 5334
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
5335
	ClearHPageRestoreReserve(page);
5336

5337 5338 5339 5340 5341 5342
	/*
	 * set page dirty so that it will not be removed from cache/file
	 * by non-hugetlbfs specific code paths.
	 */
	set_page_dirty(page);

5343 5344 5345 5346 5347 5348
	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

5349 5350 5351 5352 5353
static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
						  struct address_space *mapping,
						  pgoff_t idx,
						  unsigned int flags,
						  unsigned long haddr,
5354
						  unsigned long addr,
5355 5356 5357 5358 5359 5360 5361
						  unsigned long reason)
{
	vm_fault_t ret;
	u32 hash;
	struct vm_fault vmf = {
		.vma = vma,
		.address = haddr,
5362
		.real_address = addr,
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
		.flags = flags,

		/*
		 * Hard to debug if it ends up being
		 * used by a callee that assumes
		 * something about the other
		 * uninitialized fields... same as in
		 * memory.c
		 */
	};

	/*
	 * hugetlb_fault_mutex and i_mmap_rwsem must be
	 * dropped before handling userfault.  Reacquire
	 * after handling fault to make calling code simpler.
	 */
	hash = hugetlb_fault_mutex_hash(mapping, idx);
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
	i_mmap_unlock_read(mapping);
	ret = handle_userfault(&vmf, reason);
	i_mmap_lock_read(mapping);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);

	return ret;
}

5389 5390 5391 5392
static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
			struct vm_area_struct *vma,
			struct address_space *mapping, pgoff_t idx,
			unsigned long address, pte_t *ptep, unsigned int flags)
5393
{
5394
	struct hstate *h = hstate_vma(vma);
5395
	vm_fault_t ret = VM_FAULT_SIGBUS;
5396
	int anon_rmap = 0;
A
Adam Litke 已提交
5397 5398
	unsigned long size;
	struct page *page;
5399
	pte_t new_pte;
5400
	spinlock_t *ptl;
5401
	unsigned long haddr = address & huge_page_mask(h);
5402
	bool new_page, new_pagecache_page = false;
A
Adam Litke 已提交
5403

5404 5405 5406
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
5407
	 * COW. Warn that such a situation has occurred as it may not be obvious
5408 5409
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5410
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5411
			   current->pid);
5412 5413 5414
		return ret;
	}

A
Adam Litke 已提交
5415
	/*
5416 5417 5418
	 * We can not race with truncation due to holding i_mmap_rwsem.
	 * i_size is modified when holding i_mmap_rwsem, so check here
	 * once for faults beyond end of file.
A
Adam Litke 已提交
5419
	 */
5420 5421 5422 5423
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto out;

5424
retry:
5425
	new_page = false;
5426 5427
	page = find_lock_page(mapping, idx);
	if (!page) {
5428
		/* Check for page in userfault range */
5429
		if (userfaultfd_missing(vma)) {
5430
			ret = hugetlb_handle_userfault(vma, mapping, idx,
5431
						       flags, haddr, address,
5432
						       VM_UFFD_MISSING);
5433 5434 5435
			goto out;
		}

5436
		page = alloc_huge_page(vma, haddr, 0);
5437
		if (IS_ERR(page)) {
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
			/*
			 * Returning error will result in faulting task being
			 * sent SIGBUS.  The hugetlb fault mutex prevents two
			 * tasks from racing to fault in the same page which
			 * could result in false unable to allocate errors.
			 * Page migration does not take the fault mutex, but
			 * does a clear then write of pte's under page table
			 * lock.  Page fault code could race with migration,
			 * notice the clear pte and try to allocate a page
			 * here.  Before returning error, get ptl and make
			 * sure there really is no pte entry.
			 */
			ptl = huge_pte_lock(h, mm, ptep);
5451 5452 5453
			ret = 0;
			if (huge_pte_none(huge_ptep_get(ptep)))
				ret = vmf_error(PTR_ERR(page));
5454
			spin_unlock(ptl);
5455 5456
			goto out;
		}
A
Andrea Arcangeli 已提交
5457
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
5458
		__SetPageUptodate(page);
5459
		new_page = true;
5460

5461
		if (vma->vm_flags & VM_MAYSHARE) {
5462
			int err = huge_add_to_page_cache(page, mapping, idx);
5463 5464 5465 5466 5467 5468
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
5469
			new_pagecache_page = true;
5470
		} else {
5471
			lock_page(page);
5472 5473 5474 5475
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
5476
			anon_rmap = 1;
5477
		}
5478
	} else {
5479 5480 5481 5482 5483 5484
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
5485
			ret = VM_FAULT_HWPOISON_LARGE |
5486
				VM_FAULT_SET_HINDEX(hstate_index(h));
5487 5488
			goto backout_unlocked;
		}
5489 5490 5491 5492 5493 5494

		/* Check for page in userfault range. */
		if (userfaultfd_minor(vma)) {
			unlock_page(page);
			put_page(page);
			ret = hugetlb_handle_userfault(vma, mapping, idx,
5495
						       flags, haddr, address,
5496 5497 5498
						       VM_UFFD_MINOR);
			goto out;
		}
5499
	}
5500

5501 5502 5503 5504 5505 5506
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
5507
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5508
		if (vma_needs_reservation(h, vma, haddr) < 0) {
5509 5510 5511
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
5512
		/* Just decrements count, does not deallocate */
5513
		vma_end_reservation(h, vma, haddr);
5514
	}
5515

5516
	ptl = huge_pte_lock(h, mm, ptep);
N
Nick Piggin 已提交
5517
	ret = 0;
5518
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
5519 5520
		goto backout;

5521
	if (anon_rmap) {
5522
		ClearHPageRestoreReserve(page);
5523
		hugepage_add_new_anon_rmap(page, vma, haddr);
5524
	} else
5525
		page_dup_rmap(page, true);
5526 5527
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
5528
	set_huge_pte_at(mm, haddr, ptep, new_pte);
5529

5530
	hugetlb_count_add(pages_per_huge_page(h), mm);
5531
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5532
		/* Optimization, do the COW without a second fault */
5533
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5534 5535
	}

5536
	spin_unlock(ptl);
5537 5538

	/*
5539 5540 5541
	 * Only set HPageMigratable in newly allocated pages.  Existing pages
	 * found in the pagecache may not have HPageMigratableset if they have
	 * been isolated for migration.
5542 5543
	 */
	if (new_page)
5544
		SetHPageMigratable(page);
5545

A
Adam Litke 已提交
5546 5547
	unlock_page(page);
out:
5548
	return ret;
A
Adam Litke 已提交
5549 5550

backout:
5551
	spin_unlock(ptl);
5552
backout_unlocked:
A
Adam Litke 已提交
5553
	unlock_page(page);
5554 5555 5556
	/* restore reserve for newly allocated pages not in page cache */
	if (new_page && !new_pagecache_page)
		restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
5557 5558
	put_page(page);
	goto out;
5559 5560
}

5561
#ifdef CONFIG_SMP
5562
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5563 5564 5565 5566
{
	unsigned long key[2];
	u32 hash;

5567 5568
	key[0] = (unsigned long) mapping;
	key[1] = idx;
5569

5570
	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5571 5572 5573 5574 5575

	return hash & (num_fault_mutexes - 1);
}
#else
/*
M
Miaohe Lin 已提交
5576
 * For uniprocessor systems we always use a single mutex, so just
5577 5578
 * return 0 and avoid the hashing overhead.
 */
5579
u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5580 5581 5582 5583 5584
{
	return 0;
}
#endif

5585
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5586
			unsigned long address, unsigned int flags)
5587
{
5588
	pte_t *ptep, entry;
5589
	spinlock_t *ptl;
5590
	vm_fault_t ret;
5591 5592
	u32 hash;
	pgoff_t idx;
5593
	struct page *page = NULL;
5594
	struct page *pagecache_page = NULL;
5595
	struct hstate *h = hstate_vma(vma);
5596
	struct address_space *mapping;
5597
	int need_wait_lock = 0;
5598
	unsigned long haddr = address & huge_page_mask(h);
5599

5600
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5601
	if (ptep) {
5602 5603 5604 5605 5606
		/*
		 * Since we hold no locks, ptep could be stale.  That is
		 * OK as we are only making decisions based on content and
		 * not actually modifying content here.
		 */
5607
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
5608
		if (unlikely(is_hugetlb_entry_migration(entry))) {
5609
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
5610 5611
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5612
			return VM_FAULT_HWPOISON_LARGE |
5613
				VM_FAULT_SET_HINDEX(hstate_index(h));
5614 5615
	}

5616 5617
	/*
	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5618 5619 5620 5621
	 * until finished with ptep.  This serves two purposes:
	 * 1) It prevents huge_pmd_unshare from being called elsewhere
	 *    and making the ptep no longer valid.
	 * 2) It synchronizes us with i_size modifications during truncation.
5622 5623 5624 5625 5626
	 *
	 * ptep could have already be assigned via huge_pte_offset.  That
	 * is OK, as huge_pte_alloc will return the same value unless
	 * something has changed.
	 */
5627
	mapping = vma->vm_file->f_mapping;
5628
	i_mmap_lock_read(mapping);
5629
	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5630 5631 5632 5633
	if (!ptep) {
		i_mmap_unlock_read(mapping);
		return VM_FAULT_OOM;
	}
5634

5635 5636 5637 5638 5639
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
5640
	idx = vma_hugecache_offset(h, vma, haddr);
5641
	hash = hugetlb_fault_mutex_hash(mapping, idx);
5642
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5643

5644 5645
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
5646
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5647
		goto out_mutex;
5648
	}
5649

N
Nick Piggin 已提交
5650
	ret = 0;
5651

5652 5653 5654
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
E
Ethon Paul 已提交
5655 5656 5657
	 * an active hugepage in pagecache. This goto expects the 2nd page
	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
	 * properly handle it.
5658 5659 5660 5661
	 */
	if (!pte_present(entry))
		goto out_mutex;

5662 5663 5664 5665 5666 5667 5668 5669
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
5670
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5671
		if (vma_needs_reservation(h, vma, haddr) < 0) {
5672
			ret = VM_FAULT_OOM;
5673
			goto out_mutex;
5674
		}
5675
		/* Just decrements count, does not deallocate */
5676
		vma_end_reservation(h, vma, haddr);
5677

5678
		if (!(vma->vm_flags & VM_MAYSHARE))
5679
			pagecache_page = hugetlbfs_pagecache_page(h,
5680
								vma, haddr);
5681 5682
	}

5683 5684 5685 5686 5687 5688
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

5689 5690 5691 5692 5693 5694 5695
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
5696 5697 5698 5699
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
5700

5701
	get_page(page);
5702

5703
	if (flags & FAULT_FLAG_WRITE) {
5704
		if (!huge_pte_write(entry)) {
5705
			ret = hugetlb_cow(mm, vma, address, ptep,
5706
					  pagecache_page, ptl);
5707
			goto out_put_page;
5708
		}
5709
		entry = huge_pte_mkdirty(entry);
5710 5711
	}
	entry = pte_mkyoung(entry);
5712
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5713
						flags & FAULT_FLAG_WRITE))
5714
		update_mmu_cache(vma, haddr, ptep);
5715 5716 5717 5718
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
5719 5720
out_ptl:
	spin_unlock(ptl);
5721 5722 5723 5724 5725

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
5726
out_mutex:
5727
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5728
	i_mmap_unlock_read(mapping);
5729 5730 5731 5732 5733 5734 5735 5736 5737
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
5738
	return ret;
5739 5740
}

5741
#ifdef CONFIG_USERFAULTFD
5742 5743 5744 5745 5746 5747 5748 5749 5750
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
5751
			    enum mcopy_atomic_mode mode,
5752 5753
			    struct page **pagep)
{
5754
	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5755 5756 5757
	struct hstate *h = hstate_vma(dst_vma);
	struct address_space *mapping = dst_vma->vm_file->f_mapping;
	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5758
	unsigned long size;
5759
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
5760 5761
	pte_t _dst_pte;
	spinlock_t *ptl;
5762
	int ret = -ENOMEM;
5763
	struct page *page;
5764
	int writable;
5765
	bool page_in_pagecache = false;
5766

5767 5768 5769 5770 5771
	if (is_continue) {
		ret = -EFAULT;
		page = find_lock_page(mapping, idx);
		if (!page)
			goto out;
5772
		page_in_pagecache = true;
5773
	} else if (!*pagep) {
5774 5775 5776 5777 5778 5779 5780 5781 5782
		/* If a page already exists, then it's UFFDIO_COPY for
		 * a non-missing case. Return -EEXIST.
		 */
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			ret = -EEXIST;
			goto out;
		}

5783
		page = alloc_huge_page(dst_vma, dst_addr, 0);
5784 5785
		if (IS_ERR(page)) {
			ret = -ENOMEM;
5786
			goto out;
5787
		}
5788 5789 5790

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
5791
						pages_per_huge_page(h), false);
5792

5793
		/* fallback to copy_from_user outside mmap_lock */
5794
		if (unlikely(ret)) {
5795
			ret = -ENOENT;
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
			/* Free the allocated page which may have
			 * consumed a reservation.
			 */
			restore_reserve_on_error(h, dst_vma, dst_addr, page);
			put_page(page);

			/* Allocate a temporary page to hold the copied
			 * contents.
			 */
			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
			if (!page) {
				ret = -ENOMEM;
				goto out;
			}
5810
			*pagep = page;
5811 5812 5813 5814
			/* Set the outparam pagep and return to the caller to
			 * copy the contents outside the lock. Don't free the
			 * page.
			 */
5815 5816 5817
			goto out;
		}
	} else {
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
		if (vm_shared &&
		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
			put_page(*pagep);
			ret = -EEXIST;
			*pagep = NULL;
			goto out;
		}

		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page)) {
			ret = -ENOMEM;
			*pagep = NULL;
			goto out;
		}
5832 5833
		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
				    pages_per_huge_page(h));
5834
		put_page(*pagep);
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

5845 5846
	/* Add shared, newly allocated pages to the page cache. */
	if (vm_shared && !is_continue) {
5847 5848 5849 5850
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
5851

5852 5853 5854 5855 5856 5857
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
5858 5859 5860
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
5861
		page_in_pagecache = true;
5862 5863
	}

5864 5865 5866
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

5881 5882 5883 5884
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

5885 5886 5887
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
5888
		ClearHPageRestoreReserve(page);
5889 5890
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
5891

5892 5893 5894 5895 5896 5897 5898 5899
	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
	if (is_continue && !vm_shared)
		writable = 0;
	else
		writable = dst_vma->vm_flags & VM_WRITE;

	_dst_pte = make_huge_pte(dst_vma, page, writable);
	if (writable)
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
5913 5914 5915
	if (!is_continue)
		SetHPageMigratable(page);
	if (vm_shared || is_continue)
5916
		unlock_page(page);
5917 5918 5919 5920 5921
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
5922
	if (vm_shared || is_continue)
5923
		unlock_page(page);
5924
out_release_nounlock:
5925
	if (!page_in_pagecache)
5926
		restore_reserve_on_error(h, dst_vma, dst_addr, page);
5927 5928 5929
	put_page(page);
	goto out;
}
5930
#endif /* CONFIG_USERFAULTFD */
5931

5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
				 int refs, struct page **pages,
				 struct vm_area_struct **vmas)
{
	int nr;

	for (nr = 0; nr < refs; nr++) {
		if (likely(pages))
			pages[nr] = mem_map_offset(page, nr);
		if (vmas)
			vmas[nr] = vma;
	}
}

5946 5947 5948
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
5949
			 long i, unsigned int flags, int *locked)
D
David Gibson 已提交
5950
{
5951 5952
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
5953
	unsigned long remainder = *nr_pages;
5954
	struct hstate *h = hstate_vma(vma);
5955
	int err = -EFAULT, refs;
D
David Gibson 已提交
5956 5957

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
5958
		pte_t *pte;
5959
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
5960
		int absent;
A
Adam Litke 已提交
5961
		struct page *page;
D
David Gibson 已提交
5962

5963 5964 5965 5966
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
5967
		if (fatal_signal_pending(current)) {
5968 5969 5970 5971
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
5972 5973
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
5974
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
5975
		 * first, for the page indexing below to work.
5976 5977
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
5978
		 */
5979 5980
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
5981 5982
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
5983 5984 5985 5986
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
5987 5988 5989 5990
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
5991
		 */
H
Hugh Dickins 已提交
5992 5993
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5994 5995
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
5996 5997 5998
			remainder = 0;
			break;
		}
D
David Gibson 已提交
5999

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6011 6012
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
6013
			vm_fault_t ret;
6014
			unsigned int fault_flags = 0;
D
David Gibson 已提交
6015

6016 6017
			if (pte)
				spin_unlock(ptl);
6018 6019
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
6020
			if (locked)
6021 6022
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_KILLABLE;
6023 6024 6025 6026
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
6027 6028 6029 6030
				/*
				 * Note: FAULT_FLAG_ALLOW_RETRY and
				 * FAULT_FLAG_TRIED can co-exist
				 */
6031 6032 6033 6034
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
6035
				err = vm_fault_to_errno(ret, flags);
6036 6037 6038 6039
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
6040
				if (locked &&
6041
				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6042
					*locked = 0;
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
6056 6057
		}

6058
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6059
		page = pte_page(huge_ptep_get(pte));
6060

6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
		/*
		 * If subpage information not requested, update counters
		 * and skip the same_page loop below.
		 */
		if (!pages && !vmas && !pfn_offset &&
		    (vaddr + huge_page_size(h) < vma->vm_end) &&
		    (remainder >= pages_per_huge_page(h))) {
			vaddr += huge_page_size(h);
			remainder -= pages_per_huge_page(h);
			i += pages_per_huge_page(h);
			spin_unlock(ptl);
			continue;
		}

6075 6076 6077
		/* vaddr may not be aligned to PAGE_SIZE */
		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6078

6079 6080 6081 6082 6083
		if (pages || vmas)
			record_subpages_vmas(mem_map_offset(page, pfn_offset),
					     vma, refs,
					     likely(pages) ? pages + i : NULL,
					     vmas ? vmas + i : NULL);
D
David Gibson 已提交
6084

6085
		if (pages) {
6086
			/*
6087
			 * try_grab_folio() should always succeed here,
6088 6089 6090 6091 6092 6093 6094 6095
			 * because: a) we hold the ptl lock, and b) we've just
			 * checked that the huge page is present in the page
			 * tables. If the huge page is present, then the tail
			 * pages must also be present. The ptl prevents the
			 * head page and tail pages from being rearranged in
			 * any way. So this page must be available at this
			 * point, unless the page refcount overflowed:
			 */
6096 6097
			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
							 flags))) {
6098 6099 6100 6101 6102
				spin_unlock(ptl);
				remainder = 0;
				err = -ENOMEM;
				break;
			}
6103
		}
6104 6105 6106 6107 6108

		vaddr += (refs << PAGE_SHIFT);
		remainder -= refs;
		i += refs;

6109
		spin_unlock(ptl);
D
David Gibson 已提交
6110
	}
6111
	*nr_pages = remainder;
6112 6113 6114 6115 6116
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
6117 6118
	*position = vaddr;

6119
	return i ? i : err;
D
David Gibson 已提交
6120
}
6121

6122
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6123 6124 6125 6126 6127 6128
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
6129
	struct hstate *h = hstate_vma(vma);
6130
	unsigned long pages = 0;
6131
	bool shared_pmd = false;
6132
	struct mmu_notifier_range range;
6133 6134 6135

	/*
	 * In the case of shared PMDs, the area to flush could be beyond
6136
	 * start/end.  Set range.start/range.end to cover the maximum possible
6137 6138
	 * range if PMD sharing is possible.
	 */
6139 6140
	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
				0, vma, mm, start, end);
6141
	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6142 6143

	BUG_ON(address >= end);
6144
	flush_cache_range(vma, range.start, range.end);
6145

6146
	mmu_notifier_invalidate_range_start(&range);
6147
	i_mmap_lock_write(vma->vm_file->f_mapping);
6148
	for (; address < end; address += huge_page_size(h)) {
6149
		spinlock_t *ptl;
6150
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
6151 6152
		if (!ptep)
			continue;
6153
		ptl = huge_pte_lock(h, mm, ptep);
6154
		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6155
			pages++;
6156
			spin_unlock(ptl);
6157
			shared_pmd = true;
6158
			continue;
6159
		}
6160 6161 6162 6163 6164 6165 6166 6167
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

6168
			if (is_writable_migration_entry(entry)) {
6169 6170
				pte_t newpte;

6171 6172
				entry = make_readable_migration_entry(
							swp_offset(entry));
6173
				newpte = swp_entry_to_pte(entry);
6174 6175
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
6176 6177 6178 6179 6180 6181
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
6182
			pte_t old_pte;
6183
			unsigned int shift = huge_page_shift(hstate_vma(vma));
6184 6185

			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6186
			pte = huge_pte_modify(old_pte, newprot);
6187
			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6188
			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6189
			pages++;
6190
		}
6191
		spin_unlock(ptl);
6192
	}
6193
	/*
6194
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6195
	 * may have cleared our pud entry and done put_page on the page table:
6196
	 * once we release i_mmap_rwsem, another task can do the final put_page
6197 6198
	 * and that page table be reused and filled with junk.  If we actually
	 * did unshare a page of pmds, flush the range corresponding to the pud.
6199
	 */
6200
	if (shared_pmd)
6201
		flush_hugetlb_tlb_range(vma, range.start, range.end);
6202 6203
	else
		flush_hugetlb_tlb_range(vma, start, end);
6204 6205 6206 6207
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
6208
	 * See Documentation/vm/mmu_notifier.rst
6209
	 */
6210
	i_mmap_unlock_write(vma->vm_file->f_mapping);
6211
	mmu_notifier_invalidate_range_end(&range);
6212 6213

	return pages << h->order;
6214 6215
}

6216 6217
/* Return true if reservation was successful, false otherwise.  */
bool hugetlb_reserve_pages(struct inode *inode,
6218
					long from, long to,
6219
					struct vm_area_struct *vma,
6220
					vm_flags_t vm_flags)
6221
{
6222
	long chg, add = -1;
6223
	struct hstate *h = hstate_inode(inode);
6224
	struct hugepage_subpool *spool = subpool_inode(inode);
6225
	struct resv_map *resv_map;
6226
	struct hugetlb_cgroup *h_cg = NULL;
6227
	long gbl_reserve, regions_needed = 0;
6228

6229 6230 6231
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
6232
		return false;
6233 6234
	}

6235 6236 6237
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
6238
	 * without using reserves
6239
	 */
6240
	if (vm_flags & VM_NORESERVE)
6241
		return true;
6242

6243 6244 6245 6246 6247 6248
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
6249
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6250 6251 6252 6253 6254
		/*
		 * resv_map can not be NULL as hugetlb_reserve_pages is only
		 * called for inodes for which resv_maps were created (see
		 * hugetlbfs_get_inode).
		 */
6255
		resv_map = inode_resv_map(inode);
6256

6257
		chg = region_chg(resv_map, from, to, &regions_needed);
6258 6259

	} else {
6260
		/* Private mapping. */
6261
		resv_map = resv_map_alloc();
6262
		if (!resv_map)
6263
			return false;
6264

6265
		chg = to - from;
6266

6267 6268 6269 6270
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

6271
	if (chg < 0)
6272
		goto out_err;
6273

6274 6275
	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
				chg * pages_per_huge_page(h), &h_cg) < 0)
6276 6277 6278 6279 6280 6281 6282 6283 6284
		goto out_err;

	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
		/* For private mappings, the hugetlb_cgroup uncharge info hangs
		 * of the resv_map.
		 */
		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
	}

6285 6286 6287 6288 6289 6290
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6291
	if (gbl_reserve < 0)
6292
		goto out_uncharge_cgroup;
6293 6294

	/*
6295
	 * Check enough hugepages are available for the reservation.
6296
	 * Hand the pages back to the subpool if there are not
6297
	 */
6298
	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6299
		goto out_put_pages;
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
6312
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6313
		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6314 6315 6316

		if (unlikely(add < 0)) {
			hugetlb_acct_memory(h, -gbl_reserve);
6317
			goto out_put_pages;
6318
		} else if (unlikely(chg > add)) {
6319 6320 6321 6322 6323 6324 6325 6326 6327
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

6328 6329 6330 6331
			/*
			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
			 * reference to h_cg->css. See comment below for detail.
			 */
6332 6333 6334 6335
			hugetlb_cgroup_uncharge_cgroup_rsvd(
				hstate_index(h),
				(chg - add) * pages_per_huge_page(h), h_cg);

6336 6337 6338
			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
6339 6340 6341 6342 6343 6344 6345 6346
		} else if (h_cg) {
			/*
			 * The file_regions will hold their own reference to
			 * h_cg->css. So we should release the reference held
			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
			 * done.
			 */
			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6347 6348
		}
	}
6349 6350
	return true;

6351 6352 6353 6354 6355 6356
out_put_pages:
	/* put back original number of pages, chg */
	(void)hugepage_subpool_put_pages(spool, chg);
out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
					    chg * pages_per_huge_page(h), h_cg);
6357
out_err:
6358
	if (!vma || vma->vm_flags & VM_MAYSHARE)
6359 6360 6361 6362 6363
		/* Only call region_abort if the region_chg succeeded but the
		 * region_add failed or didn't run.
		 */
		if (chg >= 0 && add < 0)
			region_abort(resv_map, from, to, regions_needed);
J
Joonsoo Kim 已提交
6364 6365
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
6366
	return false;
6367 6368
}

6369 6370
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
6371
{
6372
	struct hstate *h = hstate_inode(inode);
6373
	struct resv_map *resv_map = inode_resv_map(inode);
6374
	long chg = 0;
6375
	struct hugepage_subpool *spool = subpool_inode(inode);
6376
	long gbl_reserve;
K
Ken Chen 已提交
6377

6378 6379 6380 6381
	/*
	 * Since this routine can be called in the evict inode path for all
	 * hugetlbfs inodes, resv_map could be NULL.
	 */
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
6393
	spin_lock(&inode->i_lock);
6394
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
6395 6396
	spin_unlock(&inode->i_lock);

6397 6398 6399
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
6400 6401 6402
	 *
	 * Note that !resv_map implies freed == 0. So (chg - freed)
	 * won't go negative.
6403 6404 6405
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
6406 6407

	return 0;
6408
}
6409

6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
6421 6422
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6423 6424 6425 6426 6427 6428 6429

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
6430
	    !range_in_vma(svma, sbase, s_end))
6431 6432 6433 6434 6435
		return 0;

	return saddr;
}

6436
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6437 6438 6439 6440 6441 6442 6443
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
6444
	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6445 6446
		return true;
	return false;
6447 6448
}

6449 6450 6451 6452 6453 6454 6455 6456 6457
bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
#ifdef CONFIG_USERFAULTFD
	if (uffd_disable_huge_pmd_share(vma))
		return false;
#endif
	return vma_shareable(vma, addr);
}

6458 6459 6460 6461 6462 6463 6464 6465
/*
 * Determine if start,end range within vma could be mapped by shared pmd.
 * If yes, adjust start and end to cover range associated with possible
 * shared pmd mappings.
 */
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
6466 6467
	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6468

6469
	/*
I
Ingo Molnar 已提交
6470 6471
	 * vma needs to span at least one aligned PUD size, and the range
	 * must be at least partially within in.
6472 6473 6474
	 */
	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
		(*end <= v_start) || (*start >= v_end))
6475 6476
		return;

6477
	/* Extend the range to be PUD aligned for a worst case scenario */
6478 6479
	if (*start > v_start)
		*start = ALIGN_DOWN(*start, PUD_SIZE);
6480

6481 6482
	if (*end < v_end)
		*end = ALIGN(*end, PUD_SIZE);
6483 6484
}

6485 6486 6487 6488
/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
6489 6490
 * code much cleaner.
 *
6491 6492 6493 6494
 * This routine must be called with i_mmap_rwsem held in at least read mode if
 * sharing is possible.  For hugetlbfs, this prevents removal of any page
 * table entries associated with the address space.  This is important as we
 * are setting up sharing based on existing page table entries (mappings).
6495
 */
6496 6497
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
6498 6499 6500 6501 6502 6503 6504 6505
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
6506
	spinlock_t *ptl;
6507

6508
	i_mmap_assert_locked(mapping);
6509 6510 6511 6512 6513 6514
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
6515 6516
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

6527
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6528
	if (pud_none(*pud)) {
6529 6530
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6531
		mm_inc_nr_pmds(mm);
6532
	} else {
6533
		put_page(virt_to_page(spte));
6534
	}
6535
	spin_unlock(ptl);
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
6548
 * Called with page table lock held and i_mmap_rwsem held in write mode.
6549 6550 6551 6552
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
6553 6554
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
					unsigned long *addr, pte_t *ptep)
6555 6556
{
	pgd_t *pgd = pgd_offset(mm, *addr);
6557 6558
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
6559

6560
	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6561 6562 6563 6564 6565 6566
	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
6567
	mm_dec_nr_pmds(mm);
6568 6569 6570
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
6571

6572
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6573 6574
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
		      unsigned long addr, pud_t *pud)
6575 6576 6577
{
	return NULL;
}
6578

6579 6580
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
				unsigned long *addr, pte_t *ptep)
6581 6582 6583
{
	return 0;
}
6584 6585 6586 6587 6588

void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
				unsigned long *start, unsigned long *end)
{
}
6589 6590 6591 6592 6593

bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
	return false;
}
6594 6595
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

6596
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6597
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6598 6599 6600
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
6601
	p4d_t *p4d;
6602 6603 6604 6605
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
6606 6607 6608
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
6609
	pud = pud_alloc(mm, p4d, addr);
6610 6611 6612 6613 6614
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
6615
			if (want_pmd_share(vma, addr) && pud_none(*pud))
6616
				pte = huge_pmd_share(mm, vma, addr, pud);
6617 6618 6619 6620
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
6621
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6622 6623 6624 6625

	return pte;
}

6626 6627 6628 6629
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
6630 6631
 * Return: Pointer to page table entry (PUD or PMD) for
 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6632 6633 6634
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
6635 6636
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
6637 6638
{
	pgd_t *pgd;
6639
	p4d_t *p4d;
6640 6641
	pud_t *pud;
	pmd_t *pmd;
6642 6643

	pgd = pgd_offset(mm, addr);
6644 6645 6646 6647 6648
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
6649

6650
	pud = pud_offset(p4d, addr);
6651 6652
	if (sz == PUD_SIZE)
		/* must be pud huge, non-present or none */
6653
		return (pte_t *)pud;
6654
	if (!pud_present(*pud))
6655
		return NULL;
6656
	/* must have a valid entry and size to go further */
6657

6658 6659 6660
	pmd = pmd_offset(pud, addr);
	/* must be pmd huge, non-present or none */
	return (pte_t *)pmd;
6661 6662
}

6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

6676 6677 6678 6679 6680 6681 6682 6683
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

6684
struct page * __weak
6685
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6686
		pmd_t *pmd, int flags)
6687
{
6688 6689
	struct page *page = NULL;
	spinlock_t *ptl;
6690
	pte_t pte;
J
John Hubbard 已提交
6691 6692 6693 6694 6695 6696

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

6697 6698 6699 6700 6701 6702 6703 6704 6705
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
6706 6707
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
6708
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
J
John Hubbard 已提交
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
		/*
		 * try_grab_page() should always succeed here, because: a) we
		 * hold the pmd (ptl) lock, and b) we've just checked that the
		 * huge pmd (head) page is present in the page tables. The ptl
		 * prevents the head page and tail pages from being rearranged
		 * in any way. So this page must be available at this point,
		 * unless the page refcount overflowed:
		 */
		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
			page = NULL;
			goto out;
		}
6721
	} else {
6722
		if (is_hugetlb_entry_migration(pte)) {
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
6734 6735 6736
	return page;
}

6737
struct page * __weak
6738
follow_huge_pud(struct mm_struct *mm, unsigned long address,
6739
		pud_t *pud, int flags)
6740
{
J
John Hubbard 已提交
6741
	if (flags & (FOLL_GET | FOLL_PIN))
6742
		return NULL;
6743

6744
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6745 6746
}

6747 6748 6749
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
J
John Hubbard 已提交
6750
	if (flags & (FOLL_GET | FOLL_PIN))
6751 6752 6753 6754 6755
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

6756 6757
bool isolate_huge_page(struct page *page, struct list_head *list)
{
6758 6759
	bool ret = true;

6760
	spin_lock_irq(&hugetlb_lock);
6761 6762
	if (!PageHeadHuge(page) ||
	    !HPageMigratable(page) ||
6763
	    !get_page_unless_zero(page)) {
6764 6765 6766
		ret = false;
		goto unlock;
	}
6767
	ClearHPageMigratable(page);
6768
	list_move_tail(&page->lru, list);
6769
unlock:
6770
	spin_unlock_irq(&hugetlb_lock);
6771
	return ret;
6772 6773
}

6774 6775 6776 6777 6778 6779 6780 6781
int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
{
	int ret = 0;

	*hugetlb = false;
	spin_lock_irq(&hugetlb_lock);
	if (PageHeadHuge(page)) {
		*hugetlb = true;
6782 6783 6784
		if (HPageFreed(page))
			ret = 0;
		else if (HPageMigratable(page))
6785
			ret = get_page_unless_zero(page);
6786 6787
		else
			ret = -EBUSY;
6788 6789 6790 6791 6792
	}
	spin_unlock_irq(&hugetlb_lock);
	return ret;
}

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
{
	int ret;

	spin_lock_irq(&hugetlb_lock);
	ret = __get_huge_page_for_hwpoison(pfn, flags);
	spin_unlock_irq(&hugetlb_lock);
	return ret;
}

6803 6804
void putback_active_hugepage(struct page *page)
{
6805
	spin_lock_irq(&hugetlb_lock);
6806
	SetHPageMigratable(page);
6807
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6808
	spin_unlock_irq(&hugetlb_lock);
6809 6810
	put_page(page);
}
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
6829
	if (HPageTemporary(newpage)) {
6830 6831 6832
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

6833 6834
		SetHPageTemporary(oldpage);
		ClearHPageTemporary(newpage);
6835

6836 6837 6838 6839 6840 6841
		/*
		 * There is no need to transfer the per-node surplus state
		 * when we do not cross the node.
		 */
		if (new_nid == old_nid)
			return;
6842
		spin_lock_irq(&hugetlb_lock);
6843 6844 6845 6846
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
6847
		spin_unlock_irq(&hugetlb_lock);
6848 6849
	}
}
6850

6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
/*
 * This function will unconditionally remove all the shared pmd pgtable entries
 * within the specific vma for a hugetlbfs memory range.
 */
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
	struct mm_struct *mm = vma->vm_mm;
	struct mmu_notifier_range range;
	unsigned long address, start, end;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & VM_MAYSHARE))
		return;

	start = ALIGN(vma->vm_start, PUD_SIZE);
	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);

	if (start >= end)
		return;

	/*
	 * No need to call adjust_range_if_pmd_sharing_possible(), because
	 * we have already done the PUD_SIZE alignment.
	 */
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
				start, end);
	mmu_notifier_invalidate_range_start(&range);
	i_mmap_lock_write(vma->vm_file->f_mapping);
	for (address = start; address < end; address += PUD_SIZE) {
		unsigned long tmp = address;

		ptep = huge_pte_offset(mm, address, sz);
		if (!ptep)
			continue;
		ptl = huge_pte_lock(h, mm, ptep);
		/* We don't want 'address' to be changed */
		huge_pmd_unshare(mm, vma, &tmp, ptep);
		spin_unlock(ptl);
	}
	flush_hugetlb_tlb_range(vma, start, end);
	i_mmap_unlock_write(vma->vm_file->f_mapping);
	/*
	 * No need to call mmu_notifier_invalidate_range(), see
	 * Documentation/vm/mmu_notifier.rst.
	 */
	mmu_notifier_invalidate_range_end(&range);
}

6902 6903 6904 6905 6906
#ifdef CONFIG_CMA
static bool cma_reserve_called __initdata;

static int __init cmdline_parse_hugetlb_cma(char *p)
{
6907 6908 6909 6910 6911 6912 6913 6914 6915
	int nid, count = 0;
	unsigned long tmp;
	char *s = p;

	while (*s) {
		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
			break;

		if (s[count] == ':') {
6916
			if (tmp >= MAX_NUMNODES)
6917
				break;
6918
			nid = array_index_nospec(tmp, MAX_NUMNODES);
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938

			s += count + 1;
			tmp = memparse(s, &s);
			hugetlb_cma_size_in_node[nid] = tmp;
			hugetlb_cma_size += tmp;

			/*
			 * Skip the separator if have one, otherwise
			 * break the parsing.
			 */
			if (*s == ',')
				s++;
			else
				break;
		} else {
			hugetlb_cma_size = memparse(p, &p);
			break;
		}
	}

6939 6940 6941 6942 6943 6944 6945 6946
	return 0;
}

early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);

void __init hugetlb_cma_reserve(int order)
{
	unsigned long size, reserved, per_node;
6947
	bool node_specific_cma_alloc = false;
6948 6949 6950 6951
	int nid;

	cma_reserve_called = true;

6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976
	if (!hugetlb_cma_size)
		return;

	for (nid = 0; nid < MAX_NUMNODES; nid++) {
		if (hugetlb_cma_size_in_node[nid] == 0)
			continue;

		if (!node_state(nid, N_ONLINE)) {
			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
			hugetlb_cma_size_in_node[nid] = 0;
			continue;
		}

		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
				nid, (PAGE_SIZE << order) / SZ_1M);
			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
			hugetlb_cma_size_in_node[nid] = 0;
		} else {
			node_specific_cma_alloc = true;
		}
	}

	/* Validate the CMA size again in case some invalid nodes specified. */
6977 6978 6979 6980 6981 6982
	if (!hugetlb_cma_size)
		return;

	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
			(PAGE_SIZE << order) / SZ_1M);
6983
		hugetlb_cma_size = 0;
6984 6985 6986
		return;
	}

6987 6988 6989 6990 6991 6992 6993 6994 6995
	if (!node_specific_cma_alloc) {
		/*
		 * If 3 GB area is requested on a machine with 4 numa nodes,
		 * let's allocate 1 GB on first three nodes and ignore the last one.
		 */
		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
	}
6996 6997 6998 6999

	reserved = 0;
	for_each_node_state(nid, N_ONLINE) {
		int res;
7000
		char name[CMA_MAX_NAME];
7001

7002 7003 7004 7005 7006 7007 7008 7009 7010
		if (node_specific_cma_alloc) {
			if (hugetlb_cma_size_in_node[nid] == 0)
				continue;

			size = hugetlb_cma_size_in_node[nid];
		} else {
			size = min(per_node, hugetlb_cma_size - reserved);
		}

7011 7012
		size = round_up(size, PAGE_SIZE << order);

7013
		snprintf(name, sizeof(name), "hugetlb%d", nid);
7014 7015 7016 7017 7018 7019 7020
		/*
		 * Note that 'order per bit' is based on smallest size that
		 * may be returned to CMA allocator in the case of
		 * huge page demotion.
		 */
		res = cma_declare_contiguous_nid(0, size, 0,
						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7021
						 0, false, name,
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035
						 &hugetlb_cma[nid], nid);
		if (res) {
			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
				res, nid);
			continue;
		}

		reserved += size;
		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
			size / SZ_1M, nid);

		if (reserved >= hugetlb_cma_size)
			break;
	}
7036 7037 7038 7039 7040 7041 7042

	if (!reserved)
		/*
		 * hugetlb_cma_size is used to determine if allocations from
		 * cma are possible.  Set to zero if no cma regions are set up.
		 */
		hugetlb_cma_size = 0;
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
}

void __init hugetlb_cma_check(void)
{
	if (!hugetlb_cma_size || cma_reserve_called)
		return;

	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
}

#endif /* CONFIG_CMA */