blk-mq.c 69.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41 42 43 44

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
45
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
46
{
47 48 49
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
50 51
}

52 53 54 55 56 57
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
58 59
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 61 62 63 64
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
65
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 67
}

68
void blk_mq_freeze_queue_start(struct request_queue *q)
69
{
70
	int freeze_depth;
71

72 73
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
74
		percpu_ref_kill(&q->q_usage_counter);
75
		blk_mq_run_hw_queues(q, false);
76
	}
77
}
78
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
79

80
void blk_mq_freeze_queue_wait(struct request_queue *q)
81
{
82
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
83
}
84
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
85

86 87 88 89 90 91 92 93
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
94

95 96 97 98
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
99
void blk_freeze_queue(struct request_queue *q)
100
{
101 102 103 104 105 106 107
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
108 109 110
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
111 112 113 114 115 116 117 118 119

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
120
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
121

122
void blk_mq_unfreeze_queue(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127 128
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
129
		percpu_ref_reinit(&q->q_usage_counter);
130
		wake_up_all(&q->mq_freeze_wq);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

162 163 164 165 166 167 168 169
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
170 171 172 173 174 175 176

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
177 178
}

179 180 181 182 183 184
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

185 186
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
187
{
188 189 190
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
191
	rq->mq_ctx = ctx;
192
	rq->cmd_flags = op;
193 194
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
195 196 197 198 199 200
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
201
	rq->start_time = jiffies;
202 203
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
204
	set_start_time_ns(rq);
205 206 207 208 209 210 211 212 213 214 215 216
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223
	ctx->rq_dispatched[op_is_sync(op)]++;
224
}
225
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
226

227 228
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
229 230 231 232
{
	struct request *rq;
	unsigned int tag;

233
	tag = blk_mq_get_tag(data);
234
	if (tag != BLK_MQ_TAG_FAIL) {
235 236 237
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
238

239 240 241 242
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
243 244 245 246
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
247 248
			rq->tag = tag;
			rq->internal_tag = -1;
249
			data->hctx->tags->rqs[rq->tag] = rq;
250 251
		}

252
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
253 254 255 256 257
		return rq;
	}

	return NULL;
}
258
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
259

260 261
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
262
{
263
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
264
	struct request *rq;
265
	int ret;
266

267
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
268 269
	if (ret)
		return ERR_PTR(ret);
270

271
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
272

273 274 275 276
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
277
		return ERR_PTR(-EWOULDBLOCK);
278 279 280 281

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
282 283
	return rq;
}
284
EXPORT_SYMBOL(blk_mq_alloc_request);
285

M
Ming Lin 已提交
286 287 288
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
289
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
290
	struct request *rq;
291
	unsigned int cpu;
M
Ming Lin 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

310 311 312 313
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
314 315 316 317
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
318
	}
319 320
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
321

322
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
323 324

	blk_queue_exit(q);
325 326 327 328 329

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
330 331 332
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

333 334
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
335
{
336
	const int sched_tag = rq->internal_tag;
337 338
	struct request_queue *q = rq->q;

339
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
340
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
341 342

	wbt_done(q->rq_wb, &rq->issue_stat);
343
	rq->rq_flags = 0;
344

345
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
346
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
347 348 349 350
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
351
	blk_mq_sched_restart_queues(hctx);
352
	blk_queue_exit(q);
353 354
}

355
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
356
				     struct request *rq)
357 358 359 360
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
361 362 363 364 365 366
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
367 368 369 370
}

void blk_mq_free_request(struct request *rq)
{
371
	blk_mq_sched_put_request(rq);
372
}
J
Jens Axboe 已提交
373
EXPORT_SYMBOL_GPL(blk_mq_free_request);
374

375
inline void __blk_mq_end_request(struct request *rq, int error)
376
{
M
Ming Lei 已提交
377 378
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
379
	if (rq->end_io) {
J
Jens Axboe 已提交
380
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
381
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
382 383 384
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
385
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
386
	}
387
}
388
EXPORT_SYMBOL(__blk_mq_end_request);
389

390
void blk_mq_end_request(struct request *rq, int error)
391 392 393
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
394
	__blk_mq_end_request(rq, error);
395
}
396
EXPORT_SYMBOL(blk_mq_end_request);
397

398
static void __blk_mq_complete_request_remote(void *data)
399
{
400
	struct request *rq = data;
401

402
	rq->q->softirq_done_fn(rq);
403 404
}

405
static void blk_mq_ipi_complete_request(struct request *rq)
406 407
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
408
	bool shared = false;
409 410
	int cpu;

C
Christoph Hellwig 已提交
411
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
412 413 414
		rq->q->softirq_done_fn(rq);
		return;
	}
415 416

	cpu = get_cpu();
C
Christoph Hellwig 已提交
417 418 419 420
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
421
		rq->csd.func = __blk_mq_complete_request_remote;
422 423
		rq->csd.info = rq;
		rq->csd.flags = 0;
424
		smp_call_function_single_async(ctx->cpu, &rq->csd);
425
	} else {
426
		rq->q->softirq_done_fn(rq);
427
	}
428 429
	put_cpu();
}
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

446
static void __blk_mq_complete_request(struct request *rq)
447 448 449
{
	struct request_queue *q = rq->q;

450 451
	blk_mq_stat_add(rq);

452
	if (!q->softirq_done_fn)
453
		blk_mq_end_request(rq, rq->errors);
454 455 456 457
	else
		blk_mq_ipi_complete_request(rq);
}

458 459 460 461 462 463 464 465
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
466
void blk_mq_complete_request(struct request *rq, int error)
467
{
468 469 470
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
471
		return;
472 473
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
474
		__blk_mq_complete_request(rq);
475
	}
476 477
}
EXPORT_SYMBOL(blk_mq_complete_request);
478

479 480 481 482 483 484
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

485
void blk_mq_start_request(struct request *rq)
486 487 488
{
	struct request_queue *q = rq->q;

489 490
	blk_mq_sched_started_request(rq);

491 492
	trace_block_rq_issue(q, rq);

493 494 495
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
496
		wbt_issue(q->rq_wb, &rq->issue_stat);
497 498
	}

499
	blk_add_timer(rq);
500

501 502 503 504 505 506
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

507 508 509 510 511 512
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
513 514 515 516
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 518 519 520 521 522 523 524 525

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
526
}
527
EXPORT_SYMBOL(blk_mq_start_request);
528

529
static void __blk_mq_requeue_request(struct request *rq)
530 531 532 533
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
534
	wbt_requeue(q->rq_wb, &rq->issue_stat);
535
	blk_mq_sched_requeue_request(rq);
536

537 538 539 540
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
541 542
}

543
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
544 545 546 547
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
548
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
549 550 551
}
EXPORT_SYMBOL(blk_mq_requeue_request);

552 553 554
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
555
		container_of(work, struct request_queue, requeue_work.work);
556 557 558 559 560 561 562 563 564
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
565
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
566 567
			continue;

568
		rq->rq_flags &= ~RQF_SOFTBARRIER;
569
		list_del_init(&rq->queuelist);
570
		blk_mq_sched_insert_request(rq, true, false, false, true);
571 572 573 574 575
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
576
		blk_mq_sched_insert_request(rq, false, false, false, true);
577 578
	}

579
	blk_mq_run_hw_queues(q, false);
580 581
}

582 583
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
584 585 586 587 588 589 590 591
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
592
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
593 594 595

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
596
		rq->rq_flags |= RQF_SOFTBARRIER;
597 598 599 600 601
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
602 603 604

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
605 606 607 608 609
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
610
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
611 612 613
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

614 615 616 617 618 619 620 621
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

642 643
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
644 645
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
646
		return tags->rqs[tag];
647
	}
648 649

	return NULL;
650 651 652
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

653
struct blk_mq_timeout_data {
654 655
	unsigned long next;
	unsigned int next_set;
656 657
};

658
void blk_mq_rq_timed_out(struct request *req, bool reserved)
659
{
J
Jens Axboe 已提交
660
	const struct blk_mq_ops *ops = req->q->mq_ops;
661
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
662 663 664 665 666 667 668 669 670 671

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
672 673
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
674

675
	if (ops->timeout)
676
		ret = ops->timeout(req, reserved);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
692
}
693

694 695 696 697
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
698

699
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
700
		return;
701

702 703
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
704
			blk_mq_rq_timed_out(rq, reserved);
705 706 707 708
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
709 710
}

711
static void blk_mq_timeout_work(struct work_struct *work)
712
{
713 714
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
715 716 717 718 719
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
735 736
		return;

737
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738

739 740 741
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
742
	} else {
743 744
		struct blk_mq_hw_ctx *hctx;

745 746 747 748 749
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
750
	}
751
	blk_queue_exit(q);
752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766
		bool merged = false;
767 768 769 770 771 772 773

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

774 775 776 777
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
778
			break;
779 780 781
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
782
			break;
783 784
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
785
			break;
786 787
		default:
			continue;
788
		}
789 790 791 792

		if (merged)
			ctx->rq_merged++;
		return merged;
793 794 795 796 797
	}

	return false;
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

816 817 818 819
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
820
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821
{
822 823 824 825
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
826

827
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828
}
829
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830

831 832 833 834
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
835

836
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 838
}

839 840
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
841 842 843 844 845 846 847 848 849 850 851 852 853 854
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

855 856 857
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

858 859
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
860 861 862 863
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
864 865 866 867 868 869 870
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

871 872
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
873 874 875 876 877 878 879 880 881 882
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

965
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
966 967 968
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
969 970
	LIST_HEAD(driver_list);
	struct list_head *dptr;
971
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
972

973 974 975 976 977 978
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

979 980 981
	/*
	 * Now process all the entries, sending them to the driver.
	 */
982
	errors = queued = 0;
983
	while (!list_empty(list)) {
984
		struct blk_mq_queue_data bd;
985

986
		rq = list_first_entry(list, struct request, queuelist);
987 988 989
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
990 991

			/*
992 993
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
994
			 */
995 996 997 998 999 1000 1001 1002 1003
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1004
				break;
1005
			}
1006
		}
1007

1008 1009
		list_del_init(&rq->queuelist);

1010 1011
		bd.rq = rq;
		bd.list = dptr;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1025 1026

		ret = q->mq_ops->queue_rq(hctx, &bd);
1027 1028 1029
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1030
			break;
1031
		case BLK_MQ_RQ_QUEUE_BUSY:
1032
			blk_mq_put_driver_tag_hctx(hctx, rq);
1033
			list_add(&rq->queuelist, list);
1034
			__blk_mq_requeue_request(rq);
1035 1036 1037 1038
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1039
			errors++;
1040
			rq->errors = -EIO;
1041
			blk_mq_end_request(rq, rq->errors);
1042 1043 1044 1045 1046
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1047 1048 1049 1050 1051

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1052
		if (!dptr && list->next != list->prev)
1053
			dptr = &driver_list;
1054 1055
	}

1056
	hctx->dispatched[queued_to_index(queued)]++;
1057 1058 1059 1060 1061

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1062
	if (!list_empty(list)) {
1063 1064 1065 1066 1067 1068 1069
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1070
		spin_lock(&hctx->lock);
1071
		list_splice_init(list, &hctx->dispatch);
1072
		spin_unlock(&hctx->lock);
1073

1074 1075 1076 1077 1078 1079 1080 1081
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1082
		 *
1083 1084
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1085
		 */
1086 1087
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1088
			blk_mq_run_hw_queue(hctx, true);
1089
	}
1090

1091
	return (queued + errors) != 0;
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101 1102
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1103
		blk_mq_sched_dispatch_requests(hctx);
1104 1105 1106
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1107
		blk_mq_sched_dispatch_requests(hctx);
1108 1109 1110 1111
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1112 1113 1114 1115 1116 1117 1118 1119
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1120 1121
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1122 1123

	if (--hctx->next_cpu_batch <= 0) {
1124
		int next_cpu;
1125 1126 1127 1128 1129 1130 1131 1132 1133

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1134
	return hctx->next_cpu;
1135 1136
}

1137 1138
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1139 1140
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1141 1142
		return;

1143
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1144 1145
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1146
			__blk_mq_run_hw_queue(hctx);
1147
			put_cpu();
1148 1149
			return;
		}
1150

1151
		put_cpu();
1152
	}
1153

1154
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1155 1156
}

1157
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1158 1159 1160 1161 1162
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1163
		if (!blk_mq_hctx_has_pending(hctx) ||
1164
		    blk_mq_hctx_stopped(hctx))
1165 1166
			continue;

1167
		blk_mq_run_hw_queue(hctx, async);
1168 1169
	}
}
1170
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1192 1193
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1194
	cancel_work(&hctx->run_work);
1195
	cancel_delayed_work(&hctx->delay_work);
1196 1197 1198 1199
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1210 1211 1212
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1213

1214
	blk_mq_run_hw_queue(hctx, false);
1215 1216 1217
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1238
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1239 1240 1241 1242
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1243 1244
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1245 1246 1247
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1248
static void blk_mq_run_work_fn(struct work_struct *work)
1249 1250 1251
{
	struct blk_mq_hw_ctx *hctx;

1252
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1253

1254 1255 1256
	__blk_mq_run_hw_queue(hctx);
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1269 1270
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1271

1272
	blk_mq_stop_hw_queue(hctx);
1273 1274
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1275 1276 1277
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1278 1279 1280
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1281
{
J
Jens Axboe 已提交
1282 1283
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1284 1285
	trace_block_rq_insert(hctx->queue, rq);

1286 1287 1288 1289
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1290
}
1291

1292 1293
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1294 1295 1296
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1297
	__blk_mq_insert_req_list(hctx, rq, at_head);
1298 1299 1300
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1301 1302
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1314
		BUG_ON(rq->mq_ctx != ctx);
1315
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1316
		__blk_mq_insert_req_list(hctx, rq, false);
1317
	}
1318
	blk_mq_hctx_mark_pending(hctx, ctx);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1355 1356 1357 1358
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1375 1376 1377
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1378 1379 1380 1381 1382 1383
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1384

1385
	blk_account_io_start(rq, true);
1386 1387
}

1388 1389 1390 1391 1392 1393
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1394 1395 1396
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1397
{
1398
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1399 1400 1401 1402 1403 1404 1405
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1406 1407
		struct request_queue *q = hctx->queue;

1408 1409 1410 1411 1412
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1413

1414
		spin_unlock(&ctx->lock);
1415
		__blk_mq_finish_request(hctx, ctx, rq);
1416
		return true;
1417
	}
1418
}
1419

1420 1421
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1422 1423 1424 1425
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1426 1427
}

1428 1429
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
				      bool may_sleep)
1430 1431 1432 1433 1434 1435 1436
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1437 1438 1439
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1440

1441
	if (q->elevator)
1442 1443
		goto insert;

1444 1445 1446 1447 1448
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1449 1450 1451 1452 1453 1454
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1455 1456
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1457
		return;
1458
	}
1459

1460 1461 1462 1463 1464 1465
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1466
		return;
1467
	}
1468

1469
insert:
1470
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1471 1472
}

1473 1474 1475 1476 1477
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1478
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1479
{
1480
	const int is_sync = op_is_sync(bio->bi_opf);
1481
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1482
	struct blk_mq_alloc_data data = { .flags = 0 };
1483
	struct request *rq;
1484
	unsigned int request_count = 0, srcu_idx;
1485
	struct blk_plug *plug;
1486
	struct request *same_queue_rq = NULL;
1487
	blk_qc_t cookie;
J
Jens Axboe 已提交
1488
	unsigned int wb_acct;
1489 1490 1491 1492

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1493
		bio_io_error(bio);
1494
		return BLK_QC_T_NONE;
1495 1496
	}

1497 1498
	blk_queue_split(q, &bio, q->bio_split);

1499 1500 1501
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1502

1503 1504 1505
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1506 1507
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1508 1509 1510
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1511 1512
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1513
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1514 1515 1516
	}

	wbt_track(&rq->issue_stat, wb_acct);
1517

1518
	cookie = request_to_qc_t(data.hctx, rq);
1519 1520

	if (unlikely(is_flush_fua)) {
1521 1522
		if (q->elevator)
			goto elv_insert;
1523 1524
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1525
		goto run_queue;
1526 1527
	}

1528
	plug = current->plug;
1529 1530 1531 1532 1533
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1534 1535 1536
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1537 1538 1539 1540

		blk_mq_bio_to_request(rq, bio);

		/*
1541
		 * We do limited plugging. If the bio can be merged, do that.
1542 1543
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1544
		 */
1545
		if (plug) {
1546 1547
			/*
			 * The plug list might get flushed before this. If that
1548 1549 1550
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1551 1552
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1553
				list_del_init(&old_rq->queuelist);
1554
			}
1555 1556 1557 1558 1559
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1560
			goto done;
1561 1562 1563

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1564
			blk_mq_try_issue_directly(old_rq, &cookie, false);
1565 1566 1567
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1568
			blk_mq_try_issue_directly(old_rq, &cookie, true);
1569 1570
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1571
		goto done;
1572 1573
	}

1574
	if (q->elevator) {
1575
elv_insert:
1576 1577
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1578
		blk_mq_sched_insert_request(rq, false, true,
1579
						!is_sync || is_flush_fua, true);
1580 1581
		goto done;
	}
1582 1583 1584 1585 1586 1587 1588
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1589
run_queue:
1590 1591 1592
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1593 1594
done:
	return cookie;
1595 1596 1597 1598 1599 1600
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1601
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1602
{
1603
	const int is_sync = op_is_sync(bio->bi_opf);
1604
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1605 1606
	struct blk_plug *plug;
	unsigned int request_count = 0;
1607
	struct blk_mq_alloc_data data = { .flags = 0 };
1608
	struct request *rq;
1609
	blk_qc_t cookie;
J
Jens Axboe 已提交
1610
	unsigned int wb_acct;
1611 1612 1613 1614

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1615
		bio_io_error(bio);
1616
		return BLK_QC_T_NONE;
1617 1618
	}

1619 1620
	blk_queue_split(q, &bio, q->bio_split);

1621 1622 1623 1624 1625
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1626

1627 1628 1629
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1630 1631
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1632 1633 1634
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1635 1636
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1637
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1638 1639 1640
	}

	wbt_track(&rq->issue_stat, wb_acct);
1641

1642
	cookie = request_to_qc_t(data.hctx, rq);
1643 1644

	if (unlikely(is_flush_fua)) {
1645 1646
		if (q->elevator)
			goto elv_insert;
1647 1648
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
1649
		goto run_queue;
1650 1651 1652 1653 1654 1655 1656
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1657 1658
	plug = current->plug;
	if (plug) {
1659 1660
		struct request *last = NULL;

1661
		blk_mq_bio_to_request(rq, bio);
1662 1663 1664 1665 1666 1667 1668

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1669
		if (!request_count)
1670
			trace_block_plug(q);
1671 1672
		else
			last = list_entry_rq(plug->mq_list.prev);
1673 1674 1675

		blk_mq_put_ctx(data.ctx);

1676 1677
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1678 1679
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1680
		}
1681

1682
		list_add_tail(&rq->queuelist, &plug->mq_list);
1683
		return cookie;
1684 1685
	}

1686
	if (q->elevator) {
1687
elv_insert:
1688 1689
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1690
		blk_mq_sched_insert_request(rq, false, true,
1691
						!is_sync || is_flush_fua, true);
1692 1693
		goto done;
	}
1694 1695 1696 1697 1698 1699 1700
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
1701
run_queue:
1702
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1703 1704
	}

1705
	blk_mq_put_ctx(data.ctx);
1706
done:
1707
	return cookie;
1708 1709
}

1710 1711
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1712
{
1713
	struct page *page;
1714

1715
	if (tags->rqs && set->ops->exit_request) {
1716
		int i;
1717

1718
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1719 1720 1721
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1722
				continue;
J
Jens Axboe 已提交
1723
			set->ops->exit_request(set->driver_data, rq,
1724
						hctx_idx, i);
J
Jens Axboe 已提交
1725
			tags->static_rqs[i] = NULL;
1726
		}
1727 1728
	}

1729 1730
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1731
		list_del_init(&page->lru);
1732 1733 1734 1735 1736
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1737 1738
		__free_pages(page, page->private);
	}
1739
}
1740

1741 1742
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1743
	kfree(tags->rqs);
1744
	tags->rqs = NULL;
J
Jens Axboe 已提交
1745 1746
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1747

1748
	blk_mq_free_tags(tags);
1749 1750
}

1751 1752 1753 1754
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1755
{
1756
	struct blk_mq_tags *tags;
1757
	int node;
1758

1759 1760 1761 1762 1763
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1764
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1765 1766
	if (!tags)
		return NULL;
1767

1768
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1769
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1770
				 node);
1771 1772 1773 1774
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1775

J
Jens Axboe 已提交
1776 1777
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1778
				 node);
J
Jens Axboe 已提交
1779 1780 1781 1782 1783 1784
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1798 1799 1800 1801 1802
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1803 1804 1805

	INIT_LIST_HEAD(&tags->page_list);

1806 1807 1808 1809
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1810
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1811
				cache_line_size());
1812
	left = rq_size * depth;
1813

1814
	for (i = 0; i < depth; ) {
1815 1816 1817 1818 1819
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1820
		while (this_order && left < order_to_size(this_order - 1))
1821 1822 1823
			this_order--;

		do {
1824
			page = alloc_pages_node(node,
1825
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1826
				this_order);
1827 1828 1829 1830 1831 1832 1833 1834 1835
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1836
			goto fail;
1837 1838

		page->private = this_order;
1839
		list_add_tail(&page->lru, &tags->page_list);
1840 1841

		p = page_address(page);
1842 1843 1844 1845
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1846
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1847
		entries_per_page = order_to_size(this_order) / rq_size;
1848
		to_do = min(entries_per_page, depth - i);
1849 1850
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1851 1852 1853
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1854 1855
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1856
						rq, hctx_idx, i,
1857
						node)) {
J
Jens Axboe 已提交
1858
					tags->static_rqs[i] = NULL;
1859
					goto fail;
1860
				}
1861 1862
			}

1863 1864 1865 1866
			p += rq_size;
			i++;
		}
	}
1867
	return 0;
1868

1869
fail:
1870 1871
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1872 1873
}

J
Jens Axboe 已提交
1874 1875 1876 1877 1878
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1879
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1880
{
1881
	struct blk_mq_hw_ctx *hctx;
1882 1883 1884
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1885
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1886
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1887 1888 1889 1890 1891 1892 1893 1894 1895

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1896
		return 0;
1897

J
Jens Axboe 已提交
1898 1899 1900
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1901 1902

	blk_mq_run_hw_queue(hctx, true);
1903
	return 0;
1904 1905
}

1906
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1907
{
1908 1909
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1910 1911
}

1912
/* hctx->ctxs will be freed in queue's release handler */
1913 1914 1915 1916
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1917 1918
	unsigned flush_start_tag = set->queue_depth;

1919 1920
	blk_mq_tag_idle(hctx);

1921 1922 1923 1924 1925
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1926 1927 1928
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1929 1930 1931
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1932
	blk_mq_remove_cpuhp(hctx);
1933
	blk_free_flush_queue(hctx->fq);
1934
	sbitmap_free(&hctx->ctx_map);
1935 1936
}

M
Ming Lei 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1946
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1947 1948 1949
	}
}

1950 1951 1952
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1953
{
1954
	int node;
1955
	unsigned flush_start_tag = set->queue_depth;
1956 1957 1958 1959 1960

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1961
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1962 1963 1964 1965 1966
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1967
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1968

1969
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1970 1971

	hctx->tags = set->tags[hctx_idx];
1972 1973

	/*
1974 1975
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1976
	 */
1977 1978 1979 1980
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1981

1982 1983
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1984
		goto free_ctxs;
1985

1986
	hctx->nr_ctx = 0;
1987

1988 1989 1990
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1991

1992 1993 1994
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1995

1996 1997 1998 1999 2000
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
2001

2002 2003 2004
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

2005
	return 0;
2006

2007 2008 2009 2010 2011
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2012
 free_bitmap:
2013
	sbitmap_free(&hctx->ctx_map);
2014 2015 2016
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2017
	blk_mq_remove_cpuhp(hctx);
2018 2019
	return -1;
}
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
2034 2035
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
2036 2037 2038 2039 2040

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
2041
		hctx = blk_mq_map_queue(q, i);
2042

2043 2044 2045 2046 2047
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2048
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2049 2050 2051
	}
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2074 2075 2076 2077 2078
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2079 2080
}

2081 2082
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2083
{
2084
	unsigned int i, hctx_idx;
2085 2086
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2087
	struct blk_mq_tag_set *set = q->tag_set;
2088

2089 2090 2091 2092 2093
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2094
	queue_for_each_hw_ctx(q, hctx, i) {
2095
		cpumask_clear(hctx->cpumask);
2096 2097 2098 2099 2100 2101
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2102
	for_each_possible_cpu(i) {
2103
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2104
		if (!cpumask_test_cpu(i, online_mask))
2105 2106
			continue;

2107 2108
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2109 2110
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2111 2112 2113 2114 2115 2116
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2117
			q->mq_map[i] = 0;
2118 2119
		}

2120
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2121
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2122

2123
		cpumask_set_cpu(i, hctx->cpumask);
2124 2125 2126
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2127

2128 2129
	mutex_unlock(&q->sysfs_lock);

2130
	queue_for_each_hw_ctx(q, hctx, i) {
2131
		/*
2132 2133
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2134 2135
		 */
		if (!hctx->nr_ctx) {
2136 2137 2138 2139
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2140 2141 2142
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2143
			hctx->tags = NULL;
2144 2145 2146
			continue;
		}

M
Ming Lei 已提交
2147 2148 2149
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2150 2151 2152 2153 2154
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2155
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2156

2157 2158 2159
		/*
		 * Initialize batch roundrobin counts
		 */
2160 2161 2162
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2163 2164
}

2165
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2166 2167 2168 2169
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2181 2182 2183

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2184
		queue_set_hctx_shared(q, shared);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2195 2196 2197 2198 2199 2200
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2201 2202 2203 2204 2205 2206 2207 2208 2209
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2210 2211 2212 2213 2214 2215 2216 2217 2218

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2219
	list_add_tail(&q->tag_set_list, &set->tag_list);
2220

2221 2222 2223
	mutex_unlock(&set->tag_list_lock);
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2235 2236
	blk_mq_sched_teardown(q);

2237
	/* hctx kobj stays in hctx */
2238 2239 2240
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2241
		kobject_put(&hctx->kobj);
2242
	}
2243

2244 2245
	q->mq_map = NULL;

2246 2247
	kfree(q->queue_hw_ctx);

2248 2249 2250 2251 2252 2253
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2254 2255 2256
	free_percpu(q->queue_ctx);
}

2257
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2273 2274
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2275
{
K
Keith Busch 已提交
2276 2277
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2278

K
Keith Busch 已提交
2279
	blk_mq_sysfs_unregister(q);
2280
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2281
		int node;
2282

K
Keith Busch 已提交
2283 2284 2285 2286
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2287 2288
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2289
		if (!hctxs[i])
K
Keith Busch 已提交
2290
			break;
2291

2292
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2293 2294 2295 2296 2297
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2298

2299
		atomic_set(&hctxs[i]->nr_active, 0);
2300
		hctxs[i]->numa_node = node;
2301
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2302 2303 2304 2305 2306 2307 2308 2309

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2310
	}
K
Keith Busch 已提交
2311 2312 2313 2314
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2315 2316
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2330 2331 2332
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2333 2334
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2335
		goto err_exit;
K
Keith Busch 已提交
2336

2337 2338 2339
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2340 2341 2342 2343 2344
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2345
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2346 2347 2348 2349

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2350

2351
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2352
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2353 2354 2355

	q->nr_queues = nr_cpu_ids;

2356
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2357

2358 2359 2360
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2361 2362
	q->sg_reserved_size = INT_MAX;

2363
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2364 2365 2366
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2367 2368 2369 2370 2371
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2372 2373 2374 2375 2376
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2377 2378 2379 2380 2381
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2382 2383
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2384

2385
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2386

2387
	get_online_cpus();
2388 2389
	mutex_lock(&all_q_mutex);

2390
	list_add_tail(&q->all_q_node, &all_q_list);
2391
	blk_mq_add_queue_tag_set(set, q);
2392
	blk_mq_map_swqueue(q, cpu_online_mask);
2393

2394
	mutex_unlock(&all_q_mutex);
2395
	put_online_cpus();
2396

2397 2398 2399 2400 2401 2402 2403 2404
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2405
	return q;
2406

2407
err_hctxs:
K
Keith Busch 已提交
2408
	kfree(q->queue_hw_ctx);
2409
err_percpu:
K
Keith Busch 已提交
2410
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2411 2412
err_exit:
	q->mq_ops = NULL;
2413 2414
	return ERR_PTR(-ENOMEM);
}
2415
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2416 2417 2418

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2419
	struct blk_mq_tag_set	*set = q->tag_set;
2420

2421 2422 2423 2424
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2425 2426
	wbt_exit(q);

2427 2428
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2429
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2430 2431 2432
}

/* Basically redo blk_mq_init_queue with queue frozen */
2433 2434
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2435
{
2436
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2437

2438 2439
	blk_mq_sysfs_unregister(q);

2440 2441 2442 2443 2444 2445
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2446
	blk_mq_map_swqueue(q, online_mask);
2447

2448
	blk_mq_sysfs_register(q);
2449 2450
}

2451 2452 2453 2454 2455 2456 2457 2458
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2459 2460 2461 2462
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2463 2464 2465 2466 2467 2468 2469 2470 2471
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2472
	list_for_each_entry(q, &all_q_list, all_q_node)
2473 2474
		blk_mq_freeze_queue_wait(q);

2475
	list_for_each_entry(q, &all_q_list, all_q_node)
2476
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2477 2478 2479 2480

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2481
	mutex_unlock(&all_q_mutex);
2482 2483 2484 2485
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2486
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2502 2503 2504 2505
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2506 2507 2508 2509 2510 2511 2512
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2513 2514
}

2515 2516 2517 2518
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2519 2520
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2521 2522 2523 2524 2525 2526
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2527
		blk_mq_free_rq_map(set->tags[i]);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2567 2568 2569 2570 2571 2572
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2573 2574
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2575 2576
	int ret;

B
Bart Van Assche 已提交
2577 2578
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2579 2580
	if (!set->nr_hw_queues)
		return -EINVAL;
2581
	if (!set->queue_depth)
2582 2583 2584 2585
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2586
	if (!set->ops->queue_rq)
2587 2588
		return -EINVAL;

2589 2590 2591 2592 2593
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2594

2595 2596 2597 2598 2599 2600 2601 2602 2603
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2604 2605 2606 2607 2608
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2609

K
Keith Busch 已提交
2610
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2611 2612
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2613
		return -ENOMEM;
2614

2615 2616 2617
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2618 2619 2620
	if (!set->mq_map)
		goto out_free_tags;

2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2630
		goto out_free_mq_map;
2631

2632 2633 2634
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2635
	return 0;
2636 2637 2638 2639 2640

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2641 2642
	kfree(set->tags);
	set->tags = NULL;
2643
	return ret;
2644 2645 2646 2647 2648 2649 2650
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2651 2652
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2653

2654 2655 2656
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2657
	kfree(set->tags);
2658
	set->tags = NULL;
2659 2660 2661
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2662 2663 2664 2665 2666 2667
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2668
	if (!set)
2669 2670
		return -EINVAL;

2671 2672 2673
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2674 2675
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2676 2677
		if (!hctx->tags)
			continue;
2678 2679 2680 2681
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2682 2683 2684 2685 2686 2687 2688 2689
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2690 2691 2692 2693 2694 2695 2696
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2697 2698 2699
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2700 2701 2702
	return ret;
}

K
Keith Busch 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

2719 2720 2721 2722
		/*
		 * Manually set the make_request_fn as blk_queue_make_request
		 * resets a lot of the queue settings.
		 */
K
Keith Busch 已提交
2723
		if (q->nr_hw_queues > 1)
2724
			q->make_request_fn = blk_mq_make_request;
K
Keith Busch 已提交
2725
		else
2726
			q->make_request_fn = blk_sq_make_request;
K
Keith Busch 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2773
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2774
				     struct blk_mq_hw_ctx *hctx,
2775 2776 2777 2778
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2779
	unsigned int nsecs;
2780 2781
	ktime_t kt;

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2800 2801 2802 2803 2804 2805 2806 2807
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2808
	kt = nsecs;
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2831 2832 2833 2834 2835
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2836 2837 2838 2839 2840 2841 2842
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2843
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2844 2845
		return true;

J
Jens Axboe 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2889 2890 2891 2892
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2893 2894 2895 2896 2897

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2908 2909
static int __init blk_mq_init(void)
{
2910 2911
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2912

2913 2914 2915
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2916 2917 2918
	return 0;
}
subsys_initcall(blk_mq_init);